123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873 |
- #include <linux/init.h>
- #include <linux/mm.h>
- #include <linux/spinlock.h>
- #include <linux/smp.h>
- #include <linux/interrupt.h>
- #include <linux/export.h>
- #include <linux/cpu.h>
- #include <linux/debugfs.h>
- #include <asm/tlbflush.h>
- #include <asm/mmu_context.h>
- #include <asm/nospec-branch.h>
- #include <asm/cache.h>
- #include <asm/apic.h>
- #include <asm/uv/uv.h>
- /*
- * TLB flushing, formerly SMP-only
- * c/o Linus Torvalds.
- *
- * These mean you can really definitely utterly forget about
- * writing to user space from interrupts. (Its not allowed anyway).
- *
- * Optimizations Manfred Spraul <manfred@colorfullife.com>
- *
- * More scalable flush, from Andi Kleen
- *
- * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
- */
- /*
- * Use bit 0 to mangle the TIF_SPEC_IB state into the mm pointer which is
- * stored in cpu_tlb_state.last_user_mm_ibpb.
- */
- #define LAST_USER_MM_IBPB 0x1UL
- /*
- * We get here when we do something requiring a TLB invalidation
- * but could not go invalidate all of the contexts. We do the
- * necessary invalidation by clearing out the 'ctx_id' which
- * forces a TLB flush when the context is loaded.
- */
- static void clear_asid_other(void)
- {
- u16 asid;
- /*
- * This is only expected to be set if we have disabled
- * kernel _PAGE_GLOBAL pages.
- */
- if (!static_cpu_has(X86_FEATURE_PTI)) {
- WARN_ON_ONCE(1);
- return;
- }
- for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
- /* Do not need to flush the current asid */
- if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
- continue;
- /*
- * Make sure the next time we go to switch to
- * this asid, we do a flush:
- */
- this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
- }
- this_cpu_write(cpu_tlbstate.invalidate_other, false);
- }
- atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
- static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
- u16 *new_asid, bool *need_flush)
- {
- u16 asid;
- if (!static_cpu_has(X86_FEATURE_PCID)) {
- *new_asid = 0;
- *need_flush = true;
- return;
- }
- if (this_cpu_read(cpu_tlbstate.invalidate_other))
- clear_asid_other();
- for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
- if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
- next->context.ctx_id)
- continue;
- *new_asid = asid;
- *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
- next_tlb_gen);
- return;
- }
- /*
- * We don't currently own an ASID slot on this CPU.
- * Allocate a slot.
- */
- *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
- if (*new_asid >= TLB_NR_DYN_ASIDS) {
- *new_asid = 0;
- this_cpu_write(cpu_tlbstate.next_asid, 1);
- }
- *need_flush = true;
- }
- static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush)
- {
- unsigned long new_mm_cr3;
- if (need_flush) {
- invalidate_user_asid(new_asid);
- new_mm_cr3 = build_cr3(pgdir, new_asid);
- } else {
- new_mm_cr3 = build_cr3_noflush(pgdir, new_asid);
- }
- /*
- * Caution: many callers of this function expect
- * that load_cr3() is serializing and orders TLB
- * fills with respect to the mm_cpumask writes.
- */
- write_cr3(new_mm_cr3);
- }
- void leave_mm(int cpu)
- {
- struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
- /*
- * It's plausible that we're in lazy TLB mode while our mm is init_mm.
- * If so, our callers still expect us to flush the TLB, but there
- * aren't any user TLB entries in init_mm to worry about.
- *
- * This needs to happen before any other sanity checks due to
- * intel_idle's shenanigans.
- */
- if (loaded_mm == &init_mm)
- return;
- /* Warn if we're not lazy. */
- WARN_ON(!this_cpu_read(cpu_tlbstate.is_lazy));
- switch_mm(NULL, &init_mm, NULL);
- }
- EXPORT_SYMBOL_GPL(leave_mm);
- void switch_mm(struct mm_struct *prev, struct mm_struct *next,
- struct task_struct *tsk)
- {
- unsigned long flags;
- local_irq_save(flags);
- switch_mm_irqs_off(prev, next, tsk);
- local_irq_restore(flags);
- }
- static void sync_current_stack_to_mm(struct mm_struct *mm)
- {
- unsigned long sp = current_stack_pointer;
- pgd_t *pgd = pgd_offset(mm, sp);
- if (pgtable_l5_enabled()) {
- if (unlikely(pgd_none(*pgd))) {
- pgd_t *pgd_ref = pgd_offset_k(sp);
- set_pgd(pgd, *pgd_ref);
- }
- } else {
- /*
- * "pgd" is faked. The top level entries are "p4d"s, so sync
- * the p4d. This compiles to approximately the same code as
- * the 5-level case.
- */
- p4d_t *p4d = p4d_offset(pgd, sp);
- if (unlikely(p4d_none(*p4d))) {
- pgd_t *pgd_ref = pgd_offset_k(sp);
- p4d_t *p4d_ref = p4d_offset(pgd_ref, sp);
- set_p4d(p4d, *p4d_ref);
- }
- }
- }
- static inline unsigned long mm_mangle_tif_spec_ib(struct task_struct *next)
- {
- unsigned long next_tif = task_thread_info(next)->flags;
- unsigned long ibpb = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_IBPB;
- return (unsigned long)next->mm | ibpb;
- }
- static void cond_ibpb(struct task_struct *next)
- {
- if (!next || !next->mm)
- return;
- /*
- * Both, the conditional and the always IBPB mode use the mm
- * pointer to avoid the IBPB when switching between tasks of the
- * same process. Using the mm pointer instead of mm->context.ctx_id
- * opens a hypothetical hole vs. mm_struct reuse, which is more or
- * less impossible to control by an attacker. Aside of that it
- * would only affect the first schedule so the theoretically
- * exposed data is not really interesting.
- */
- if (static_branch_likely(&switch_mm_cond_ibpb)) {
- unsigned long prev_mm, next_mm;
- /*
- * This is a bit more complex than the always mode because
- * it has to handle two cases:
- *
- * 1) Switch from a user space task (potential attacker)
- * which has TIF_SPEC_IB set to a user space task
- * (potential victim) which has TIF_SPEC_IB not set.
- *
- * 2) Switch from a user space task (potential attacker)
- * which has TIF_SPEC_IB not set to a user space task
- * (potential victim) which has TIF_SPEC_IB set.
- *
- * This could be done by unconditionally issuing IBPB when
- * a task which has TIF_SPEC_IB set is either scheduled in
- * or out. Though that results in two flushes when:
- *
- * - the same user space task is scheduled out and later
- * scheduled in again and only a kernel thread ran in
- * between.
- *
- * - a user space task belonging to the same process is
- * scheduled in after a kernel thread ran in between
- *
- * - a user space task belonging to the same process is
- * scheduled in immediately.
- *
- * Optimize this with reasonably small overhead for the
- * above cases. Mangle the TIF_SPEC_IB bit into the mm
- * pointer of the incoming task which is stored in
- * cpu_tlbstate.last_user_mm_ibpb for comparison.
- */
- next_mm = mm_mangle_tif_spec_ib(next);
- prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_ibpb);
- /*
- * Issue IBPB only if the mm's are different and one or
- * both have the IBPB bit set.
- */
- if (next_mm != prev_mm &&
- (next_mm | prev_mm) & LAST_USER_MM_IBPB)
- indirect_branch_prediction_barrier();
- this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, next_mm);
- }
- if (static_branch_unlikely(&switch_mm_always_ibpb)) {
- /*
- * Only flush when switching to a user space task with a
- * different context than the user space task which ran
- * last on this CPU.
- */
- if (this_cpu_read(cpu_tlbstate.last_user_mm) != next->mm) {
- indirect_branch_prediction_barrier();
- this_cpu_write(cpu_tlbstate.last_user_mm, next->mm);
- }
- }
- }
- void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
- struct task_struct *tsk)
- {
- struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
- u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
- bool was_lazy = this_cpu_read(cpu_tlbstate.is_lazy);
- unsigned cpu = smp_processor_id();
- u64 next_tlb_gen;
- bool need_flush;
- u16 new_asid;
- /*
- * NB: The scheduler will call us with prev == next when switching
- * from lazy TLB mode to normal mode if active_mm isn't changing.
- * When this happens, we don't assume that CR3 (and hence
- * cpu_tlbstate.loaded_mm) matches next.
- *
- * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
- */
- /* We don't want flush_tlb_func_* to run concurrently with us. */
- if (IS_ENABLED(CONFIG_PROVE_LOCKING))
- WARN_ON_ONCE(!irqs_disabled());
- /*
- * Verify that CR3 is what we think it is. This will catch
- * hypothetical buggy code that directly switches to swapper_pg_dir
- * without going through leave_mm() / switch_mm_irqs_off() or that
- * does something like write_cr3(read_cr3_pa()).
- *
- * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
- * isn't free.
- */
- #ifdef CONFIG_DEBUG_VM
- if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) {
- /*
- * If we were to BUG here, we'd be very likely to kill
- * the system so hard that we don't see the call trace.
- * Try to recover instead by ignoring the error and doing
- * a global flush to minimize the chance of corruption.
- *
- * (This is far from being a fully correct recovery.
- * Architecturally, the CPU could prefetch something
- * back into an incorrect ASID slot and leave it there
- * to cause trouble down the road. It's better than
- * nothing, though.)
- */
- __flush_tlb_all();
- }
- #endif
- this_cpu_write(cpu_tlbstate.is_lazy, false);
- /*
- * The membarrier system call requires a full memory barrier and
- * core serialization before returning to user-space, after
- * storing to rq->curr. Writing to CR3 provides that full
- * memory barrier and core serializing instruction.
- */
- if (real_prev == next) {
- VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
- next->context.ctx_id);
- /*
- * Even in lazy TLB mode, the CPU should stay set in the
- * mm_cpumask. The TLB shootdown code can figure out from
- * from cpu_tlbstate.is_lazy whether or not to send an IPI.
- */
- if (WARN_ON_ONCE(real_prev != &init_mm &&
- !cpumask_test_cpu(cpu, mm_cpumask(next))))
- cpumask_set_cpu(cpu, mm_cpumask(next));
- /*
- * If the CPU is not in lazy TLB mode, we are just switching
- * from one thread in a process to another thread in the same
- * process. No TLB flush required.
- */
- if (!was_lazy)
- return;
- /*
- * Read the tlb_gen to check whether a flush is needed.
- * If the TLB is up to date, just use it.
- * The barrier synchronizes with the tlb_gen increment in
- * the TLB shootdown code.
- */
- smp_mb();
- next_tlb_gen = atomic64_read(&next->context.tlb_gen);
- if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) ==
- next_tlb_gen)
- return;
- /*
- * TLB contents went out of date while we were in lazy
- * mode. Fall through to the TLB switching code below.
- */
- new_asid = prev_asid;
- need_flush = true;
- } else {
- /*
- * Avoid user/user BTB poisoning by flushing the branch
- * predictor when switching between processes. This stops
- * one process from doing Spectre-v2 attacks on another.
- */
- cond_ibpb(tsk);
- if (IS_ENABLED(CONFIG_VMAP_STACK)) {
- /*
- * If our current stack is in vmalloc space and isn't
- * mapped in the new pgd, we'll double-fault. Forcibly
- * map it.
- */
- sync_current_stack_to_mm(next);
- }
- /*
- * Stop remote flushes for the previous mm.
- * Skip kernel threads; we never send init_mm TLB flushing IPIs,
- * but the bitmap manipulation can cause cache line contention.
- */
- if (real_prev != &init_mm) {
- VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu,
- mm_cpumask(real_prev)));
- cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
- }
- /*
- * Start remote flushes and then read tlb_gen.
- */
- if (next != &init_mm)
- cpumask_set_cpu(cpu, mm_cpumask(next));
- next_tlb_gen = atomic64_read(&next->context.tlb_gen);
- choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
- /* Let nmi_uaccess_okay() know that we're changing CR3. */
- this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
- barrier();
- }
- if (need_flush) {
- this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
- this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
- load_new_mm_cr3(next->pgd, new_asid, true);
- /*
- * NB: This gets called via leave_mm() in the idle path
- * where RCU functions differently. Tracing normally
- * uses RCU, so we need to use the _rcuidle variant.
- *
- * (There is no good reason for this. The idle code should
- * be rearranged to call this before rcu_idle_enter().)
- */
- trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
- } else {
- /* The new ASID is already up to date. */
- load_new_mm_cr3(next->pgd, new_asid, false);
- /* See above wrt _rcuidle. */
- trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, 0);
- }
- /* Make sure we write CR3 before loaded_mm. */
- barrier();
- this_cpu_write(cpu_tlbstate.loaded_mm, next);
- this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
- if (next != real_prev) {
- load_mm_cr4(next);
- switch_ldt(real_prev, next);
- }
- }
- /*
- * Please ignore the name of this function. It should be called
- * switch_to_kernel_thread().
- *
- * enter_lazy_tlb() is a hint from the scheduler that we are entering a
- * kernel thread or other context without an mm. Acceptable implementations
- * include doing nothing whatsoever, switching to init_mm, or various clever
- * lazy tricks to try to minimize TLB flushes.
- *
- * The scheduler reserves the right to call enter_lazy_tlb() several times
- * in a row. It will notify us that we're going back to a real mm by
- * calling switch_mm_irqs_off().
- */
- void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
- {
- if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
- return;
- this_cpu_write(cpu_tlbstate.is_lazy, true);
- }
- /*
- * Call this when reinitializing a CPU. It fixes the following potential
- * problems:
- *
- * - The ASID changed from what cpu_tlbstate thinks it is (most likely
- * because the CPU was taken down and came back up with CR3's PCID
- * bits clear. CPU hotplug can do this.
- *
- * - The TLB contains junk in slots corresponding to inactive ASIDs.
- *
- * - The CPU went so far out to lunch that it may have missed a TLB
- * flush.
- */
- void initialize_tlbstate_and_flush(void)
- {
- int i;
- struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
- u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
- unsigned long cr3 = __read_cr3();
- /* Assert that CR3 already references the right mm. */
- WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
- /*
- * Assert that CR4.PCIDE is set if needed. (CR4.PCIDE initialization
- * doesn't work like other CR4 bits because it can only be set from
- * long mode.)
- */
- WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
- !(cr4_read_shadow() & X86_CR4_PCIDE));
- /* Force ASID 0 and force a TLB flush. */
- write_cr3(build_cr3(mm->pgd, 0));
- /* Reinitialize tlbstate. */
- this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, LAST_USER_MM_IBPB);
- this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
- this_cpu_write(cpu_tlbstate.next_asid, 1);
- this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
- this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
- for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
- this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
- }
- /*
- * flush_tlb_func_common()'s memory ordering requirement is that any
- * TLB fills that happen after we flush the TLB are ordered after we
- * read active_mm's tlb_gen. We don't need any explicit barriers
- * because all x86 flush operations are serializing and the
- * atomic64_read operation won't be reordered by the compiler.
- */
- static void flush_tlb_func_common(const struct flush_tlb_info *f,
- bool local, enum tlb_flush_reason reason)
- {
- /*
- * We have three different tlb_gen values in here. They are:
- *
- * - mm_tlb_gen: the latest generation.
- * - local_tlb_gen: the generation that this CPU has already caught
- * up to.
- * - f->new_tlb_gen: the generation that the requester of the flush
- * wants us to catch up to.
- */
- struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
- u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
- u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
- u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
- /* This code cannot presently handle being reentered. */
- VM_WARN_ON(!irqs_disabled());
- if (unlikely(loaded_mm == &init_mm))
- return;
- VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
- loaded_mm->context.ctx_id);
- if (this_cpu_read(cpu_tlbstate.is_lazy)) {
- /*
- * We're in lazy mode. We need to at least flush our
- * paging-structure cache to avoid speculatively reading
- * garbage into our TLB. Since switching to init_mm is barely
- * slower than a minimal flush, just switch to init_mm.
- *
- * This should be rare, with native_flush_tlb_others skipping
- * IPIs to lazy TLB mode CPUs.
- */
- switch_mm_irqs_off(NULL, &init_mm, NULL);
- return;
- }
- if (unlikely(local_tlb_gen == mm_tlb_gen)) {
- /*
- * There's nothing to do: we're already up to date. This can
- * happen if two concurrent flushes happen -- the first flush to
- * be handled can catch us all the way up, leaving no work for
- * the second flush.
- */
- trace_tlb_flush(reason, 0);
- return;
- }
- WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
- WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
- /*
- * If we get to this point, we know that our TLB is out of date.
- * This does not strictly imply that we need to flush (it's
- * possible that f->new_tlb_gen <= local_tlb_gen), but we're
- * going to need to flush in the very near future, so we might
- * as well get it over with.
- *
- * The only question is whether to do a full or partial flush.
- *
- * We do a partial flush if requested and two extra conditions
- * are met:
- *
- * 1. f->new_tlb_gen == local_tlb_gen + 1. We have an invariant that
- * we've always done all needed flushes to catch up to
- * local_tlb_gen. If, for example, local_tlb_gen == 2 and
- * f->new_tlb_gen == 3, then we know that the flush needed to bring
- * us up to date for tlb_gen 3 is the partial flush we're
- * processing.
- *
- * As an example of why this check is needed, suppose that there
- * are two concurrent flushes. The first is a full flush that
- * changes context.tlb_gen from 1 to 2. The second is a partial
- * flush that changes context.tlb_gen from 2 to 3. If they get
- * processed on this CPU in reverse order, we'll see
- * local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
- * If we were to use __flush_tlb_one_user() and set local_tlb_gen to
- * 3, we'd be break the invariant: we'd update local_tlb_gen above
- * 1 without the full flush that's needed for tlb_gen 2.
- *
- * 2. f->new_tlb_gen == mm_tlb_gen. This is purely an optimiation.
- * Partial TLB flushes are not all that much cheaper than full TLB
- * flushes, so it seems unlikely that it would be a performance win
- * to do a partial flush if that won't bring our TLB fully up to
- * date. By doing a full flush instead, we can increase
- * local_tlb_gen all the way to mm_tlb_gen and we can probably
- * avoid another flush in the very near future.
- */
- if (f->end != TLB_FLUSH_ALL &&
- f->new_tlb_gen == local_tlb_gen + 1 &&
- f->new_tlb_gen == mm_tlb_gen) {
- /* Partial flush */
- unsigned long nr_invalidate = (f->end - f->start) >> f->stride_shift;
- unsigned long addr = f->start;
- while (addr < f->end) {
- __flush_tlb_one_user(addr);
- addr += 1UL << f->stride_shift;
- }
- if (local)
- count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate);
- trace_tlb_flush(reason, nr_invalidate);
- } else {
- /* Full flush. */
- local_flush_tlb();
- if (local)
- count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
- trace_tlb_flush(reason, TLB_FLUSH_ALL);
- }
- /* Both paths above update our state to mm_tlb_gen. */
- this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
- }
- static void flush_tlb_func_local(void *info, enum tlb_flush_reason reason)
- {
- const struct flush_tlb_info *f = info;
- flush_tlb_func_common(f, true, reason);
- }
- static void flush_tlb_func_remote(void *info)
- {
- const struct flush_tlb_info *f = info;
- inc_irq_stat(irq_tlb_count);
- if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm))
- return;
- count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
- flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
- }
- static bool tlb_is_not_lazy(int cpu, void *data)
- {
- return !per_cpu(cpu_tlbstate.is_lazy, cpu);
- }
- void native_flush_tlb_others(const struct cpumask *cpumask,
- const struct flush_tlb_info *info)
- {
- count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
- if (info->end == TLB_FLUSH_ALL)
- trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
- else
- trace_tlb_flush(TLB_REMOTE_SEND_IPI,
- (info->end - info->start) >> PAGE_SHIFT);
- if (is_uv_system()) {
- /*
- * This whole special case is confused. UV has a "Broadcast
- * Assist Unit", which seems to be a fancy way to send IPIs.
- * Back when x86 used an explicit TLB flush IPI, UV was
- * optimized to use its own mechanism. These days, x86 uses
- * smp_call_function_many(), but UV still uses a manual IPI,
- * and that IPI's action is out of date -- it does a manual
- * flush instead of calling flush_tlb_func_remote(). This
- * means that the percpu tlb_gen variables won't be updated
- * and we'll do pointless flushes on future context switches.
- *
- * Rather than hooking native_flush_tlb_others() here, I think
- * that UV should be updated so that smp_call_function_many(),
- * etc, are optimal on UV.
- */
- unsigned int cpu;
- cpu = smp_processor_id();
- cpumask = uv_flush_tlb_others(cpumask, info);
- if (cpumask)
- smp_call_function_many(cpumask, flush_tlb_func_remote,
- (void *)info, 1);
- return;
- }
- /*
- * If no page tables were freed, we can skip sending IPIs to
- * CPUs in lazy TLB mode. They will flush the CPU themselves
- * at the next context switch.
- *
- * However, if page tables are getting freed, we need to send the
- * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping
- * up on the new contents of what used to be page tables, while
- * doing a speculative memory access.
- */
- if (info->freed_tables)
- smp_call_function_many(cpumask, flush_tlb_func_remote,
- (void *)info, 1);
- else
- on_each_cpu_cond_mask(tlb_is_not_lazy, flush_tlb_func_remote,
- (void *)info, 1, GFP_ATOMIC, cpumask);
- }
- /*
- * See Documentation/x86/tlb.txt for details. We choose 33
- * because it is large enough to cover the vast majority (at
- * least 95%) of allocations, and is small enough that we are
- * confident it will not cause too much overhead. Each single
- * flush is about 100 ns, so this caps the maximum overhead at
- * _about_ 3,000 ns.
- *
- * This is in units of pages.
- */
- static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
- void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
- unsigned long end, unsigned int stride_shift,
- bool freed_tables)
- {
- int cpu;
- struct flush_tlb_info info __aligned(SMP_CACHE_BYTES) = {
- .mm = mm,
- .stride_shift = stride_shift,
- .freed_tables = freed_tables,
- };
- cpu = get_cpu();
- /* This is also a barrier that synchronizes with switch_mm(). */
- info.new_tlb_gen = inc_mm_tlb_gen(mm);
- /* Should we flush just the requested range? */
- if ((end != TLB_FLUSH_ALL) &&
- ((end - start) >> stride_shift) <= tlb_single_page_flush_ceiling) {
- info.start = start;
- info.end = end;
- } else {
- info.start = 0UL;
- info.end = TLB_FLUSH_ALL;
- }
- if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
- VM_WARN_ON(irqs_disabled());
- local_irq_disable();
- flush_tlb_func_local(&info, TLB_LOCAL_MM_SHOOTDOWN);
- local_irq_enable();
- }
- if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
- flush_tlb_others(mm_cpumask(mm), &info);
- put_cpu();
- }
- static void do_flush_tlb_all(void *info)
- {
- count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
- __flush_tlb_all();
- }
- void flush_tlb_all(void)
- {
- count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
- on_each_cpu(do_flush_tlb_all, NULL, 1);
- }
- static void do_kernel_range_flush(void *info)
- {
- struct flush_tlb_info *f = info;
- unsigned long addr;
- /* flush range by one by one 'invlpg' */
- for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
- __flush_tlb_one_kernel(addr);
- }
- void flush_tlb_kernel_range(unsigned long start, unsigned long end)
- {
- /* Balance as user space task's flush, a bit conservative */
- if (end == TLB_FLUSH_ALL ||
- (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
- on_each_cpu(do_flush_tlb_all, NULL, 1);
- } else {
- struct flush_tlb_info info;
- info.start = start;
- info.end = end;
- on_each_cpu(do_kernel_range_flush, &info, 1);
- }
- }
- void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
- {
- struct flush_tlb_info info = {
- .mm = NULL,
- .start = 0UL,
- .end = TLB_FLUSH_ALL,
- };
- int cpu = get_cpu();
- if (cpumask_test_cpu(cpu, &batch->cpumask)) {
- VM_WARN_ON(irqs_disabled());
- local_irq_disable();
- flush_tlb_func_local(&info, TLB_LOCAL_SHOOTDOWN);
- local_irq_enable();
- }
- if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids)
- flush_tlb_others(&batch->cpumask, &info);
- cpumask_clear(&batch->cpumask);
- put_cpu();
- }
- static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
- size_t count, loff_t *ppos)
- {
- char buf[32];
- unsigned int len;
- len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
- return simple_read_from_buffer(user_buf, count, ppos, buf, len);
- }
- static ssize_t tlbflush_write_file(struct file *file,
- const char __user *user_buf, size_t count, loff_t *ppos)
- {
- char buf[32];
- ssize_t len;
- int ceiling;
- len = min(count, sizeof(buf) - 1);
- if (copy_from_user(buf, user_buf, len))
- return -EFAULT;
- buf[len] = '\0';
- if (kstrtoint(buf, 0, &ceiling))
- return -EINVAL;
- if (ceiling < 0)
- return -EINVAL;
- tlb_single_page_flush_ceiling = ceiling;
- return count;
- }
- static const struct file_operations fops_tlbflush = {
- .read = tlbflush_read_file,
- .write = tlbflush_write_file,
- .llseek = default_llseek,
- };
- static int __init create_tlb_single_page_flush_ceiling(void)
- {
- debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
- arch_debugfs_dir, NULL, &fops_tlbflush);
- return 0;
- }
- late_initcall(create_tlb_single_page_flush_ceiling);
|