123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568 |
- /*
- * AMD Memory Encryption Support
- *
- * Copyright (C) 2016 Advanced Micro Devices, Inc.
- *
- * Author: Tom Lendacky <thomas.lendacky@amd.com>
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- */
- #define DISABLE_BRANCH_PROFILING
- /*
- * Since we're dealing with identity mappings, physical and virtual
- * addresses are the same, so override these defines which are ultimately
- * used by the headers in misc.h.
- */
- #define __pa(x) ((unsigned long)(x))
- #define __va(x) ((void *)((unsigned long)(x)))
- /*
- * Special hack: we have to be careful, because no indirections are
- * allowed here, and paravirt_ops is a kind of one. As it will only run in
- * baremetal anyway, we just keep it from happening. (This list needs to
- * be extended when new paravirt and debugging variants are added.)
- */
- #undef CONFIG_PARAVIRT
- #undef CONFIG_PARAVIRT_XXL
- #undef CONFIG_PARAVIRT_SPINLOCKS
- #include <linux/kernel.h>
- #include <linux/mm.h>
- #include <linux/mem_encrypt.h>
- #include <asm/setup.h>
- #include <asm/sections.h>
- #include <asm/cmdline.h>
- #include "mm_internal.h"
- #define PGD_FLAGS _KERNPG_TABLE_NOENC
- #define P4D_FLAGS _KERNPG_TABLE_NOENC
- #define PUD_FLAGS _KERNPG_TABLE_NOENC
- #define PMD_FLAGS _KERNPG_TABLE_NOENC
- #define PMD_FLAGS_LARGE (__PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL)
- #define PMD_FLAGS_DEC PMD_FLAGS_LARGE
- #define PMD_FLAGS_DEC_WP ((PMD_FLAGS_DEC & ~_PAGE_CACHE_MASK) | \
- (_PAGE_PAT | _PAGE_PWT))
- #define PMD_FLAGS_ENC (PMD_FLAGS_LARGE | _PAGE_ENC)
- #define PTE_FLAGS (__PAGE_KERNEL_EXEC & ~_PAGE_GLOBAL)
- #define PTE_FLAGS_DEC PTE_FLAGS
- #define PTE_FLAGS_DEC_WP ((PTE_FLAGS_DEC & ~_PAGE_CACHE_MASK) | \
- (_PAGE_PAT | _PAGE_PWT))
- #define PTE_FLAGS_ENC (PTE_FLAGS | _PAGE_ENC)
- struct sme_populate_pgd_data {
- void *pgtable_area;
- pgd_t *pgd;
- pmdval_t pmd_flags;
- pteval_t pte_flags;
- unsigned long paddr;
- unsigned long vaddr;
- unsigned long vaddr_end;
- };
- static char sme_cmdline_arg[] __initdata = "mem_encrypt";
- static char sme_cmdline_on[] __initdata = "on";
- static char sme_cmdline_off[] __initdata = "off";
- static void __init sme_clear_pgd(struct sme_populate_pgd_data *ppd)
- {
- unsigned long pgd_start, pgd_end, pgd_size;
- pgd_t *pgd_p;
- pgd_start = ppd->vaddr & PGDIR_MASK;
- pgd_end = ppd->vaddr_end & PGDIR_MASK;
- pgd_size = (((pgd_end - pgd_start) / PGDIR_SIZE) + 1) * sizeof(pgd_t);
- pgd_p = ppd->pgd + pgd_index(ppd->vaddr);
- memset(pgd_p, 0, pgd_size);
- }
- static pud_t __init *sme_prepare_pgd(struct sme_populate_pgd_data *ppd)
- {
- pgd_t *pgd;
- p4d_t *p4d;
- pud_t *pud;
- pmd_t *pmd;
- pgd = ppd->pgd + pgd_index(ppd->vaddr);
- if (pgd_none(*pgd)) {
- p4d = ppd->pgtable_area;
- memset(p4d, 0, sizeof(*p4d) * PTRS_PER_P4D);
- ppd->pgtable_area += sizeof(*p4d) * PTRS_PER_P4D;
- set_pgd(pgd, __pgd(PGD_FLAGS | __pa(p4d)));
- }
- p4d = p4d_offset(pgd, ppd->vaddr);
- if (p4d_none(*p4d)) {
- pud = ppd->pgtable_area;
- memset(pud, 0, sizeof(*pud) * PTRS_PER_PUD);
- ppd->pgtable_area += sizeof(*pud) * PTRS_PER_PUD;
- set_p4d(p4d, __p4d(P4D_FLAGS | __pa(pud)));
- }
- pud = pud_offset(p4d, ppd->vaddr);
- if (pud_none(*pud)) {
- pmd = ppd->pgtable_area;
- memset(pmd, 0, sizeof(*pmd) * PTRS_PER_PMD);
- ppd->pgtable_area += sizeof(*pmd) * PTRS_PER_PMD;
- set_pud(pud, __pud(PUD_FLAGS | __pa(pmd)));
- }
- if (pud_large(*pud))
- return NULL;
- return pud;
- }
- static void __init sme_populate_pgd_large(struct sme_populate_pgd_data *ppd)
- {
- pud_t *pud;
- pmd_t *pmd;
- pud = sme_prepare_pgd(ppd);
- if (!pud)
- return;
- pmd = pmd_offset(pud, ppd->vaddr);
- if (pmd_large(*pmd))
- return;
- set_pmd(pmd, __pmd(ppd->paddr | ppd->pmd_flags));
- }
- static void __init sme_populate_pgd(struct sme_populate_pgd_data *ppd)
- {
- pud_t *pud;
- pmd_t *pmd;
- pte_t *pte;
- pud = sme_prepare_pgd(ppd);
- if (!pud)
- return;
- pmd = pmd_offset(pud, ppd->vaddr);
- if (pmd_none(*pmd)) {
- pte = ppd->pgtable_area;
- memset(pte, 0, sizeof(pte) * PTRS_PER_PTE);
- ppd->pgtable_area += sizeof(pte) * PTRS_PER_PTE;
- set_pmd(pmd, __pmd(PMD_FLAGS | __pa(pte)));
- }
- if (pmd_large(*pmd))
- return;
- pte = pte_offset_map(pmd, ppd->vaddr);
- if (pte_none(*pte))
- set_pte(pte, __pte(ppd->paddr | ppd->pte_flags));
- }
- static void __init __sme_map_range_pmd(struct sme_populate_pgd_data *ppd)
- {
- while (ppd->vaddr < ppd->vaddr_end) {
- sme_populate_pgd_large(ppd);
- ppd->vaddr += PMD_PAGE_SIZE;
- ppd->paddr += PMD_PAGE_SIZE;
- }
- }
- static void __init __sme_map_range_pte(struct sme_populate_pgd_data *ppd)
- {
- while (ppd->vaddr < ppd->vaddr_end) {
- sme_populate_pgd(ppd);
- ppd->vaddr += PAGE_SIZE;
- ppd->paddr += PAGE_SIZE;
- }
- }
- static void __init __sme_map_range(struct sme_populate_pgd_data *ppd,
- pmdval_t pmd_flags, pteval_t pte_flags)
- {
- unsigned long vaddr_end;
- ppd->pmd_flags = pmd_flags;
- ppd->pte_flags = pte_flags;
- /* Save original end value since we modify the struct value */
- vaddr_end = ppd->vaddr_end;
- /* If start is not 2MB aligned, create PTE entries */
- ppd->vaddr_end = ALIGN(ppd->vaddr, PMD_PAGE_SIZE);
- __sme_map_range_pte(ppd);
- /* Create PMD entries */
- ppd->vaddr_end = vaddr_end & PMD_PAGE_MASK;
- __sme_map_range_pmd(ppd);
- /* If end is not 2MB aligned, create PTE entries */
- ppd->vaddr_end = vaddr_end;
- __sme_map_range_pte(ppd);
- }
- static void __init sme_map_range_encrypted(struct sme_populate_pgd_data *ppd)
- {
- __sme_map_range(ppd, PMD_FLAGS_ENC, PTE_FLAGS_ENC);
- }
- static void __init sme_map_range_decrypted(struct sme_populate_pgd_data *ppd)
- {
- __sme_map_range(ppd, PMD_FLAGS_DEC, PTE_FLAGS_DEC);
- }
- static void __init sme_map_range_decrypted_wp(struct sme_populate_pgd_data *ppd)
- {
- __sme_map_range(ppd, PMD_FLAGS_DEC_WP, PTE_FLAGS_DEC_WP);
- }
- static unsigned long __init sme_pgtable_calc(unsigned long len)
- {
- unsigned long entries = 0, tables = 0;
- /*
- * Perform a relatively simplistic calculation of the pagetable
- * entries that are needed. Those mappings will be covered mostly
- * by 2MB PMD entries so we can conservatively calculate the required
- * number of P4D, PUD and PMD structures needed to perform the
- * mappings. For mappings that are not 2MB aligned, PTE mappings
- * would be needed for the start and end portion of the address range
- * that fall outside of the 2MB alignment. This results in, at most,
- * two extra pages to hold PTE entries for each range that is mapped.
- * Incrementing the count for each covers the case where the addresses
- * cross entries.
- */
- /* PGDIR_SIZE is equal to P4D_SIZE on 4-level machine. */
- if (PTRS_PER_P4D > 1)
- entries += (DIV_ROUND_UP(len, PGDIR_SIZE) + 1) * sizeof(p4d_t) * PTRS_PER_P4D;
- entries += (DIV_ROUND_UP(len, P4D_SIZE) + 1) * sizeof(pud_t) * PTRS_PER_PUD;
- entries += (DIV_ROUND_UP(len, PUD_SIZE) + 1) * sizeof(pmd_t) * PTRS_PER_PMD;
- entries += 2 * sizeof(pte_t) * PTRS_PER_PTE;
- /*
- * Now calculate the added pagetable structures needed to populate
- * the new pagetables.
- */
- if (PTRS_PER_P4D > 1)
- tables += DIV_ROUND_UP(entries, PGDIR_SIZE) * sizeof(p4d_t) * PTRS_PER_P4D;
- tables += DIV_ROUND_UP(entries, P4D_SIZE) * sizeof(pud_t) * PTRS_PER_PUD;
- tables += DIV_ROUND_UP(entries, PUD_SIZE) * sizeof(pmd_t) * PTRS_PER_PMD;
- return entries + tables;
- }
- void __init sme_encrypt_kernel(struct boot_params *bp)
- {
- unsigned long workarea_start, workarea_end, workarea_len;
- unsigned long execute_start, execute_end, execute_len;
- unsigned long kernel_start, kernel_end, kernel_len;
- unsigned long initrd_start, initrd_end, initrd_len;
- struct sme_populate_pgd_data ppd;
- unsigned long pgtable_area_len;
- unsigned long decrypted_base;
- if (!sme_active())
- return;
- /*
- * Prepare for encrypting the kernel and initrd by building new
- * pagetables with the necessary attributes needed to encrypt the
- * kernel in place.
- *
- * One range of virtual addresses will map the memory occupied
- * by the kernel and initrd as encrypted.
- *
- * Another range of virtual addresses will map the memory occupied
- * by the kernel and initrd as decrypted and write-protected.
- *
- * The use of write-protect attribute will prevent any of the
- * memory from being cached.
- */
- /* Physical addresses gives us the identity mapped virtual addresses */
- kernel_start = __pa_symbol(_text);
- kernel_end = ALIGN(__pa_symbol(_end), PMD_PAGE_SIZE);
- kernel_len = kernel_end - kernel_start;
- initrd_start = 0;
- initrd_end = 0;
- initrd_len = 0;
- #ifdef CONFIG_BLK_DEV_INITRD
- initrd_len = (unsigned long)bp->hdr.ramdisk_size |
- ((unsigned long)bp->ext_ramdisk_size << 32);
- if (initrd_len) {
- initrd_start = (unsigned long)bp->hdr.ramdisk_image |
- ((unsigned long)bp->ext_ramdisk_image << 32);
- initrd_end = PAGE_ALIGN(initrd_start + initrd_len);
- initrd_len = initrd_end - initrd_start;
- }
- #endif
- /* Set the encryption workarea to be immediately after the kernel */
- workarea_start = kernel_end;
- /*
- * Calculate required number of workarea bytes needed:
- * executable encryption area size:
- * stack page (PAGE_SIZE)
- * encryption routine page (PAGE_SIZE)
- * intermediate copy buffer (PMD_PAGE_SIZE)
- * pagetable structures for the encryption of the kernel
- * pagetable structures for workarea (in case not currently mapped)
- */
- execute_start = workarea_start;
- execute_end = execute_start + (PAGE_SIZE * 2) + PMD_PAGE_SIZE;
- execute_len = execute_end - execute_start;
- /*
- * One PGD for both encrypted and decrypted mappings and a set of
- * PUDs and PMDs for each of the encrypted and decrypted mappings.
- */
- pgtable_area_len = sizeof(pgd_t) * PTRS_PER_PGD;
- pgtable_area_len += sme_pgtable_calc(execute_end - kernel_start) * 2;
- if (initrd_len)
- pgtable_area_len += sme_pgtable_calc(initrd_len) * 2;
- /* PUDs and PMDs needed in the current pagetables for the workarea */
- pgtable_area_len += sme_pgtable_calc(execute_len + pgtable_area_len);
- /*
- * The total workarea includes the executable encryption area and
- * the pagetable area. The start of the workarea is already 2MB
- * aligned, align the end of the workarea on a 2MB boundary so that
- * we don't try to create/allocate PTE entries from the workarea
- * before it is mapped.
- */
- workarea_len = execute_len + pgtable_area_len;
- workarea_end = ALIGN(workarea_start + workarea_len, PMD_PAGE_SIZE);
- /*
- * Set the address to the start of where newly created pagetable
- * structures (PGDs, PUDs and PMDs) will be allocated. New pagetable
- * structures are created when the workarea is added to the current
- * pagetables and when the new encrypted and decrypted kernel
- * mappings are populated.
- */
- ppd.pgtable_area = (void *)execute_end;
- /*
- * Make sure the current pagetable structure has entries for
- * addressing the workarea.
- */
- ppd.pgd = (pgd_t *)native_read_cr3_pa();
- ppd.paddr = workarea_start;
- ppd.vaddr = workarea_start;
- ppd.vaddr_end = workarea_end;
- sme_map_range_decrypted(&ppd);
- /* Flush the TLB - no globals so cr3 is enough */
- native_write_cr3(__native_read_cr3());
- /*
- * A new pagetable structure is being built to allow for the kernel
- * and initrd to be encrypted. It starts with an empty PGD that will
- * then be populated with new PUDs and PMDs as the encrypted and
- * decrypted kernel mappings are created.
- */
- ppd.pgd = ppd.pgtable_area;
- memset(ppd.pgd, 0, sizeof(pgd_t) * PTRS_PER_PGD);
- ppd.pgtable_area += sizeof(pgd_t) * PTRS_PER_PGD;
- /*
- * A different PGD index/entry must be used to get different
- * pagetable entries for the decrypted mapping. Choose the next
- * PGD index and convert it to a virtual address to be used as
- * the base of the mapping.
- */
- decrypted_base = (pgd_index(workarea_end) + 1) & (PTRS_PER_PGD - 1);
- if (initrd_len) {
- unsigned long check_base;
- check_base = (pgd_index(initrd_end) + 1) & (PTRS_PER_PGD - 1);
- decrypted_base = max(decrypted_base, check_base);
- }
- decrypted_base <<= PGDIR_SHIFT;
- /* Add encrypted kernel (identity) mappings */
- ppd.paddr = kernel_start;
- ppd.vaddr = kernel_start;
- ppd.vaddr_end = kernel_end;
- sme_map_range_encrypted(&ppd);
- /* Add decrypted, write-protected kernel (non-identity) mappings */
- ppd.paddr = kernel_start;
- ppd.vaddr = kernel_start + decrypted_base;
- ppd.vaddr_end = kernel_end + decrypted_base;
- sme_map_range_decrypted_wp(&ppd);
- if (initrd_len) {
- /* Add encrypted initrd (identity) mappings */
- ppd.paddr = initrd_start;
- ppd.vaddr = initrd_start;
- ppd.vaddr_end = initrd_end;
- sme_map_range_encrypted(&ppd);
- /*
- * Add decrypted, write-protected initrd (non-identity) mappings
- */
- ppd.paddr = initrd_start;
- ppd.vaddr = initrd_start + decrypted_base;
- ppd.vaddr_end = initrd_end + decrypted_base;
- sme_map_range_decrypted_wp(&ppd);
- }
- /* Add decrypted workarea mappings to both kernel mappings */
- ppd.paddr = workarea_start;
- ppd.vaddr = workarea_start;
- ppd.vaddr_end = workarea_end;
- sme_map_range_decrypted(&ppd);
- ppd.paddr = workarea_start;
- ppd.vaddr = workarea_start + decrypted_base;
- ppd.vaddr_end = workarea_end + decrypted_base;
- sme_map_range_decrypted(&ppd);
- /* Perform the encryption */
- sme_encrypt_execute(kernel_start, kernel_start + decrypted_base,
- kernel_len, workarea_start, (unsigned long)ppd.pgd);
- if (initrd_len)
- sme_encrypt_execute(initrd_start, initrd_start + decrypted_base,
- initrd_len, workarea_start,
- (unsigned long)ppd.pgd);
- /*
- * At this point we are running encrypted. Remove the mappings for
- * the decrypted areas - all that is needed for this is to remove
- * the PGD entry/entries.
- */
- ppd.vaddr = kernel_start + decrypted_base;
- ppd.vaddr_end = kernel_end + decrypted_base;
- sme_clear_pgd(&ppd);
- if (initrd_len) {
- ppd.vaddr = initrd_start + decrypted_base;
- ppd.vaddr_end = initrd_end + decrypted_base;
- sme_clear_pgd(&ppd);
- }
- ppd.vaddr = workarea_start + decrypted_base;
- ppd.vaddr_end = workarea_end + decrypted_base;
- sme_clear_pgd(&ppd);
- /* Flush the TLB - no globals so cr3 is enough */
- native_write_cr3(__native_read_cr3());
- }
- void __init sme_enable(struct boot_params *bp)
- {
- const char *cmdline_ptr, *cmdline_arg, *cmdline_on, *cmdline_off;
- unsigned int eax, ebx, ecx, edx;
- unsigned long feature_mask;
- bool active_by_default;
- unsigned long me_mask;
- char buffer[16];
- u64 msr;
- /* Check for the SME/SEV support leaf */
- eax = 0x80000000;
- ecx = 0;
- native_cpuid(&eax, &ebx, &ecx, &edx);
- if (eax < 0x8000001f)
- return;
- #define AMD_SME_BIT BIT(0)
- #define AMD_SEV_BIT BIT(1)
- /*
- * Set the feature mask (SME or SEV) based on whether we are
- * running under a hypervisor.
- */
- eax = 1;
- ecx = 0;
- native_cpuid(&eax, &ebx, &ecx, &edx);
- feature_mask = (ecx & BIT(31)) ? AMD_SEV_BIT : AMD_SME_BIT;
- /*
- * Check for the SME/SEV feature:
- * CPUID Fn8000_001F[EAX]
- * - Bit 0 - Secure Memory Encryption support
- * - Bit 1 - Secure Encrypted Virtualization support
- * CPUID Fn8000_001F[EBX]
- * - Bits 5:0 - Pagetable bit position used to indicate encryption
- */
- eax = 0x8000001f;
- ecx = 0;
- native_cpuid(&eax, &ebx, &ecx, &edx);
- if (!(eax & feature_mask))
- return;
- me_mask = 1UL << (ebx & 0x3f);
- /* Check if memory encryption is enabled */
- if (feature_mask == AMD_SME_BIT) {
- /* For SME, check the SYSCFG MSR */
- msr = __rdmsr(MSR_K8_SYSCFG);
- if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT))
- return;
- } else {
- /* For SEV, check the SEV MSR */
- msr = __rdmsr(MSR_AMD64_SEV);
- if (!(msr & MSR_AMD64_SEV_ENABLED))
- return;
- /* SEV state cannot be controlled by a command line option */
- sme_me_mask = me_mask;
- sev_enabled = true;
- physical_mask &= ~sme_me_mask;
- return;
- }
- /*
- * Fixups have not been applied to phys_base yet and we're running
- * identity mapped, so we must obtain the address to the SME command
- * line argument data using rip-relative addressing.
- */
- asm ("lea sme_cmdline_arg(%%rip), %0"
- : "=r" (cmdline_arg)
- : "p" (sme_cmdline_arg));
- asm ("lea sme_cmdline_on(%%rip), %0"
- : "=r" (cmdline_on)
- : "p" (sme_cmdline_on));
- asm ("lea sme_cmdline_off(%%rip), %0"
- : "=r" (cmdline_off)
- : "p" (sme_cmdline_off));
- if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT))
- active_by_default = true;
- else
- active_by_default = false;
- cmdline_ptr = (const char *)((u64)bp->hdr.cmd_line_ptr |
- ((u64)bp->ext_cmd_line_ptr << 32));
- cmdline_find_option(cmdline_ptr, cmdline_arg, buffer, sizeof(buffer));
- if (!strncmp(buffer, cmdline_on, sizeof(buffer)))
- sme_me_mask = me_mask;
- else if (!strncmp(buffer, cmdline_off, sizeof(buffer)))
- sme_me_mask = 0;
- else
- sme_me_mask = active_by_default ? me_mask : 0;
- physical_mask &= ~sme_me_mask;
- }
|