kasan_init_64.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391
  1. // SPDX-License-Identifier: GPL-2.0
  2. #define DISABLE_BRANCH_PROFILING
  3. #define pr_fmt(fmt) "kasan: " fmt
  4. /* cpu_feature_enabled() cannot be used this early */
  5. #define USE_EARLY_PGTABLE_L5
  6. #include <linux/memblock.h>
  7. #include <linux/kasan.h>
  8. #include <linux/kdebug.h>
  9. #include <linux/mm.h>
  10. #include <linux/sched.h>
  11. #include <linux/sched/task.h>
  12. #include <linux/vmalloc.h>
  13. #include <asm/e820/types.h>
  14. #include <asm/pgalloc.h>
  15. #include <asm/tlbflush.h>
  16. #include <asm/sections.h>
  17. #include <asm/pgtable.h>
  18. #include <asm/cpu_entry_area.h>
  19. extern struct range pfn_mapped[E820_MAX_ENTRIES];
  20. static p4d_t tmp_p4d_table[MAX_PTRS_PER_P4D] __initdata __aligned(PAGE_SIZE);
  21. static __init void *early_alloc(size_t size, int nid, bool panic)
  22. {
  23. if (panic)
  24. return memblock_alloc_try_nid(size, size,
  25. __pa(MAX_DMA_ADDRESS), MEMBLOCK_ALLOC_ACCESSIBLE, nid);
  26. else
  27. return memblock_alloc_try_nid_nopanic(size, size,
  28. __pa(MAX_DMA_ADDRESS), MEMBLOCK_ALLOC_ACCESSIBLE, nid);
  29. }
  30. static void __init kasan_populate_pmd(pmd_t *pmd, unsigned long addr,
  31. unsigned long end, int nid)
  32. {
  33. pte_t *pte;
  34. if (pmd_none(*pmd)) {
  35. void *p;
  36. if (boot_cpu_has(X86_FEATURE_PSE) &&
  37. ((end - addr) == PMD_SIZE) &&
  38. IS_ALIGNED(addr, PMD_SIZE)) {
  39. p = early_alloc(PMD_SIZE, nid, false);
  40. if (p && pmd_set_huge(pmd, __pa(p), PAGE_KERNEL))
  41. return;
  42. else if (p)
  43. memblock_free(__pa(p), PMD_SIZE);
  44. }
  45. p = early_alloc(PAGE_SIZE, nid, true);
  46. pmd_populate_kernel(&init_mm, pmd, p);
  47. }
  48. pte = pte_offset_kernel(pmd, addr);
  49. do {
  50. pte_t entry;
  51. void *p;
  52. if (!pte_none(*pte))
  53. continue;
  54. p = early_alloc(PAGE_SIZE, nid, true);
  55. entry = pfn_pte(PFN_DOWN(__pa(p)), PAGE_KERNEL);
  56. set_pte_at(&init_mm, addr, pte, entry);
  57. } while (pte++, addr += PAGE_SIZE, addr != end);
  58. }
  59. static void __init kasan_populate_pud(pud_t *pud, unsigned long addr,
  60. unsigned long end, int nid)
  61. {
  62. pmd_t *pmd;
  63. unsigned long next;
  64. if (pud_none(*pud)) {
  65. void *p;
  66. if (boot_cpu_has(X86_FEATURE_GBPAGES) &&
  67. ((end - addr) == PUD_SIZE) &&
  68. IS_ALIGNED(addr, PUD_SIZE)) {
  69. p = early_alloc(PUD_SIZE, nid, false);
  70. if (p && pud_set_huge(pud, __pa(p), PAGE_KERNEL))
  71. return;
  72. else if (p)
  73. memblock_free(__pa(p), PUD_SIZE);
  74. }
  75. p = early_alloc(PAGE_SIZE, nid, true);
  76. pud_populate(&init_mm, pud, p);
  77. }
  78. pmd = pmd_offset(pud, addr);
  79. do {
  80. next = pmd_addr_end(addr, end);
  81. if (!pmd_large(*pmd))
  82. kasan_populate_pmd(pmd, addr, next, nid);
  83. } while (pmd++, addr = next, addr != end);
  84. }
  85. static void __init kasan_populate_p4d(p4d_t *p4d, unsigned long addr,
  86. unsigned long end, int nid)
  87. {
  88. pud_t *pud;
  89. unsigned long next;
  90. if (p4d_none(*p4d)) {
  91. void *p = early_alloc(PAGE_SIZE, nid, true);
  92. p4d_populate(&init_mm, p4d, p);
  93. }
  94. pud = pud_offset(p4d, addr);
  95. do {
  96. next = pud_addr_end(addr, end);
  97. if (!pud_large(*pud))
  98. kasan_populate_pud(pud, addr, next, nid);
  99. } while (pud++, addr = next, addr != end);
  100. }
  101. static void __init kasan_populate_pgd(pgd_t *pgd, unsigned long addr,
  102. unsigned long end, int nid)
  103. {
  104. void *p;
  105. p4d_t *p4d;
  106. unsigned long next;
  107. if (pgd_none(*pgd)) {
  108. p = early_alloc(PAGE_SIZE, nid, true);
  109. pgd_populate(&init_mm, pgd, p);
  110. }
  111. p4d = p4d_offset(pgd, addr);
  112. do {
  113. next = p4d_addr_end(addr, end);
  114. kasan_populate_p4d(p4d, addr, next, nid);
  115. } while (p4d++, addr = next, addr != end);
  116. }
  117. static void __init kasan_populate_shadow(unsigned long addr, unsigned long end,
  118. int nid)
  119. {
  120. pgd_t *pgd;
  121. unsigned long next;
  122. addr = addr & PAGE_MASK;
  123. end = round_up(end, PAGE_SIZE);
  124. pgd = pgd_offset_k(addr);
  125. do {
  126. next = pgd_addr_end(addr, end);
  127. kasan_populate_pgd(pgd, addr, next, nid);
  128. } while (pgd++, addr = next, addr != end);
  129. }
  130. static void __init map_range(struct range *range)
  131. {
  132. unsigned long start;
  133. unsigned long end;
  134. start = (unsigned long)kasan_mem_to_shadow(pfn_to_kaddr(range->start));
  135. end = (unsigned long)kasan_mem_to_shadow(pfn_to_kaddr(range->end));
  136. kasan_populate_shadow(start, end, early_pfn_to_nid(range->start));
  137. }
  138. static void __init clear_pgds(unsigned long start,
  139. unsigned long end)
  140. {
  141. pgd_t *pgd;
  142. /* See comment in kasan_init() */
  143. unsigned long pgd_end = end & PGDIR_MASK;
  144. for (; start < pgd_end; start += PGDIR_SIZE) {
  145. pgd = pgd_offset_k(start);
  146. /*
  147. * With folded p4d, pgd_clear() is nop, use p4d_clear()
  148. * instead.
  149. */
  150. if (pgtable_l5_enabled())
  151. pgd_clear(pgd);
  152. else
  153. p4d_clear(p4d_offset(pgd, start));
  154. }
  155. pgd = pgd_offset_k(start);
  156. for (; start < end; start += P4D_SIZE)
  157. p4d_clear(p4d_offset(pgd, start));
  158. }
  159. static inline p4d_t *early_p4d_offset(pgd_t *pgd, unsigned long addr)
  160. {
  161. unsigned long p4d;
  162. if (!pgtable_l5_enabled())
  163. return (p4d_t *)pgd;
  164. p4d = __pa_nodebug(pgd_val(*pgd)) & PTE_PFN_MASK;
  165. p4d += __START_KERNEL_map - phys_base;
  166. return (p4d_t *)p4d + p4d_index(addr);
  167. }
  168. static void __init kasan_early_p4d_populate(pgd_t *pgd,
  169. unsigned long addr,
  170. unsigned long end)
  171. {
  172. pgd_t pgd_entry;
  173. p4d_t *p4d, p4d_entry;
  174. unsigned long next;
  175. if (pgd_none(*pgd)) {
  176. pgd_entry = __pgd(_KERNPG_TABLE | __pa_nodebug(kasan_zero_p4d));
  177. set_pgd(pgd, pgd_entry);
  178. }
  179. p4d = early_p4d_offset(pgd, addr);
  180. do {
  181. next = p4d_addr_end(addr, end);
  182. if (!p4d_none(*p4d))
  183. continue;
  184. p4d_entry = __p4d(_KERNPG_TABLE | __pa_nodebug(kasan_zero_pud));
  185. set_p4d(p4d, p4d_entry);
  186. } while (p4d++, addr = next, addr != end && p4d_none(*p4d));
  187. }
  188. static void __init kasan_map_early_shadow(pgd_t *pgd)
  189. {
  190. /* See comment in kasan_init() */
  191. unsigned long addr = KASAN_SHADOW_START & PGDIR_MASK;
  192. unsigned long end = KASAN_SHADOW_END;
  193. unsigned long next;
  194. pgd += pgd_index(addr);
  195. do {
  196. next = pgd_addr_end(addr, end);
  197. kasan_early_p4d_populate(pgd, addr, next);
  198. } while (pgd++, addr = next, addr != end);
  199. }
  200. #ifdef CONFIG_KASAN_INLINE
  201. static int kasan_die_handler(struct notifier_block *self,
  202. unsigned long val,
  203. void *data)
  204. {
  205. if (val == DIE_GPF) {
  206. pr_emerg("CONFIG_KASAN_INLINE enabled\n");
  207. pr_emerg("GPF could be caused by NULL-ptr deref or user memory access\n");
  208. }
  209. return NOTIFY_OK;
  210. }
  211. static struct notifier_block kasan_die_notifier = {
  212. .notifier_call = kasan_die_handler,
  213. };
  214. #endif
  215. void __init kasan_early_init(void)
  216. {
  217. int i;
  218. pteval_t pte_val = __pa_nodebug(kasan_zero_page) | __PAGE_KERNEL | _PAGE_ENC;
  219. pmdval_t pmd_val = __pa_nodebug(kasan_zero_pte) | _KERNPG_TABLE;
  220. pudval_t pud_val = __pa_nodebug(kasan_zero_pmd) | _KERNPG_TABLE;
  221. p4dval_t p4d_val = __pa_nodebug(kasan_zero_pud) | _KERNPG_TABLE;
  222. /* Mask out unsupported __PAGE_KERNEL bits: */
  223. pte_val &= __default_kernel_pte_mask;
  224. pmd_val &= __default_kernel_pte_mask;
  225. pud_val &= __default_kernel_pte_mask;
  226. p4d_val &= __default_kernel_pte_mask;
  227. for (i = 0; i < PTRS_PER_PTE; i++)
  228. kasan_zero_pte[i] = __pte(pte_val);
  229. for (i = 0; i < PTRS_PER_PMD; i++)
  230. kasan_zero_pmd[i] = __pmd(pmd_val);
  231. for (i = 0; i < PTRS_PER_PUD; i++)
  232. kasan_zero_pud[i] = __pud(pud_val);
  233. for (i = 0; pgtable_l5_enabled() && i < PTRS_PER_P4D; i++)
  234. kasan_zero_p4d[i] = __p4d(p4d_val);
  235. kasan_map_early_shadow(early_top_pgt);
  236. kasan_map_early_shadow(init_top_pgt);
  237. }
  238. void __init kasan_init(void)
  239. {
  240. int i;
  241. void *shadow_cpu_entry_begin, *shadow_cpu_entry_end;
  242. #ifdef CONFIG_KASAN_INLINE
  243. register_die_notifier(&kasan_die_notifier);
  244. #endif
  245. memcpy(early_top_pgt, init_top_pgt, sizeof(early_top_pgt));
  246. /*
  247. * We use the same shadow offset for 4- and 5-level paging to
  248. * facilitate boot-time switching between paging modes.
  249. * As result in 5-level paging mode KASAN_SHADOW_START and
  250. * KASAN_SHADOW_END are not aligned to PGD boundary.
  251. *
  252. * KASAN_SHADOW_START doesn't share PGD with anything else.
  253. * We claim whole PGD entry to make things easier.
  254. *
  255. * KASAN_SHADOW_END lands in the last PGD entry and it collides with
  256. * bunch of things like kernel code, modules, EFI mapping, etc.
  257. * We need to take extra steps to not overwrite them.
  258. */
  259. if (pgtable_l5_enabled()) {
  260. void *ptr;
  261. ptr = (void *)pgd_page_vaddr(*pgd_offset_k(KASAN_SHADOW_END));
  262. memcpy(tmp_p4d_table, (void *)ptr, sizeof(tmp_p4d_table));
  263. set_pgd(&early_top_pgt[pgd_index(KASAN_SHADOW_END)],
  264. __pgd(__pa(tmp_p4d_table) | _KERNPG_TABLE));
  265. }
  266. load_cr3(early_top_pgt);
  267. __flush_tlb_all();
  268. clear_pgds(KASAN_SHADOW_START & PGDIR_MASK, KASAN_SHADOW_END);
  269. kasan_populate_zero_shadow((void *)(KASAN_SHADOW_START & PGDIR_MASK),
  270. kasan_mem_to_shadow((void *)PAGE_OFFSET));
  271. for (i = 0; i < E820_MAX_ENTRIES; i++) {
  272. if (pfn_mapped[i].end == 0)
  273. break;
  274. map_range(&pfn_mapped[i]);
  275. }
  276. shadow_cpu_entry_begin = (void *)CPU_ENTRY_AREA_BASE;
  277. shadow_cpu_entry_begin = kasan_mem_to_shadow(shadow_cpu_entry_begin);
  278. shadow_cpu_entry_begin = (void *)round_down((unsigned long)shadow_cpu_entry_begin,
  279. PAGE_SIZE);
  280. shadow_cpu_entry_end = (void *)(CPU_ENTRY_AREA_BASE +
  281. CPU_ENTRY_AREA_MAP_SIZE);
  282. shadow_cpu_entry_end = kasan_mem_to_shadow(shadow_cpu_entry_end);
  283. shadow_cpu_entry_end = (void *)round_up((unsigned long)shadow_cpu_entry_end,
  284. PAGE_SIZE);
  285. kasan_populate_zero_shadow(
  286. kasan_mem_to_shadow((void *)PAGE_OFFSET + MAXMEM),
  287. shadow_cpu_entry_begin);
  288. kasan_populate_shadow((unsigned long)shadow_cpu_entry_begin,
  289. (unsigned long)shadow_cpu_entry_end, 0);
  290. kasan_populate_zero_shadow(shadow_cpu_entry_end,
  291. kasan_mem_to_shadow((void *)__START_KERNEL_map));
  292. kasan_populate_shadow((unsigned long)kasan_mem_to_shadow(_stext),
  293. (unsigned long)kasan_mem_to_shadow(_end),
  294. early_pfn_to_nid(__pa(_stext)));
  295. kasan_populate_zero_shadow(kasan_mem_to_shadow((void *)MODULES_END),
  296. (void *)KASAN_SHADOW_END);
  297. load_cr3(init_top_pgt);
  298. __flush_tlb_all();
  299. /*
  300. * kasan_zero_page has been used as early shadow memory, thus it may
  301. * contain some garbage. Now we can clear and write protect it, since
  302. * after the TLB flush no one should write to it.
  303. */
  304. memset(kasan_zero_page, 0, PAGE_SIZE);
  305. for (i = 0; i < PTRS_PER_PTE; i++) {
  306. pte_t pte;
  307. pgprot_t prot;
  308. prot = __pgprot(__PAGE_KERNEL_RO | _PAGE_ENC);
  309. pgprot_val(prot) &= __default_kernel_pte_mask;
  310. pte = __pte(__pa(kasan_zero_page) | pgprot_val(prot));
  311. set_pte(&kasan_zero_pte[i], pte);
  312. }
  313. /* Flush TLBs again to be sure that write protection applied. */
  314. __flush_tlb_all();
  315. init_task.kasan_depth = 0;
  316. pr_info("KernelAddressSanitizer initialized\n");
  317. }