init.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948
  1. #include <linux/gfp.h>
  2. #include <linux/initrd.h>
  3. #include <linux/ioport.h>
  4. #include <linux/swap.h>
  5. #include <linux/memblock.h>
  6. #include <linux/swapfile.h>
  7. #include <linux/swapops.h>
  8. #include <asm/set_memory.h>
  9. #include <asm/e820/api.h>
  10. #include <asm/init.h>
  11. #include <asm/page.h>
  12. #include <asm/page_types.h>
  13. #include <asm/sections.h>
  14. #include <asm/setup.h>
  15. #include <asm/tlbflush.h>
  16. #include <asm/tlb.h>
  17. #include <asm/proto.h>
  18. #include <asm/dma.h> /* for MAX_DMA_PFN */
  19. #include <asm/microcode.h>
  20. #include <asm/kaslr.h>
  21. #include <asm/hypervisor.h>
  22. #include <asm/cpufeature.h>
  23. #include <asm/pti.h>
  24. /*
  25. * We need to define the tracepoints somewhere, and tlb.c
  26. * is only compied when SMP=y.
  27. */
  28. #define CREATE_TRACE_POINTS
  29. #include <trace/events/tlb.h>
  30. #include "mm_internal.h"
  31. /*
  32. * Tables translating between page_cache_type_t and pte encoding.
  33. *
  34. * The default values are defined statically as minimal supported mode;
  35. * WC and WT fall back to UC-. pat_init() updates these values to support
  36. * more cache modes, WC and WT, when it is safe to do so. See pat_init()
  37. * for the details. Note, __early_ioremap() used during early boot-time
  38. * takes pgprot_t (pte encoding) and does not use these tables.
  39. *
  40. * Index into __cachemode2pte_tbl[] is the cachemode.
  41. *
  42. * Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
  43. * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
  44. */
  45. uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
  46. [_PAGE_CACHE_MODE_WB ] = 0 | 0 ,
  47. [_PAGE_CACHE_MODE_WC ] = 0 | _PAGE_PCD,
  48. [_PAGE_CACHE_MODE_UC_MINUS] = 0 | _PAGE_PCD,
  49. [_PAGE_CACHE_MODE_UC ] = _PAGE_PWT | _PAGE_PCD,
  50. [_PAGE_CACHE_MODE_WT ] = 0 | _PAGE_PCD,
  51. [_PAGE_CACHE_MODE_WP ] = 0 | _PAGE_PCD,
  52. };
  53. EXPORT_SYMBOL(__cachemode2pte_tbl);
  54. uint8_t __pte2cachemode_tbl[8] = {
  55. [__pte2cm_idx( 0 | 0 | 0 )] = _PAGE_CACHE_MODE_WB,
  56. [__pte2cm_idx(_PAGE_PWT | 0 | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
  57. [__pte2cm_idx( 0 | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
  58. [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC,
  59. [__pte2cm_idx( 0 | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
  60. [__pte2cm_idx(_PAGE_PWT | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
  61. [__pte2cm_idx(0 | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
  62. [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
  63. };
  64. EXPORT_SYMBOL(__pte2cachemode_tbl);
  65. static unsigned long __initdata pgt_buf_start;
  66. static unsigned long __initdata pgt_buf_end;
  67. static unsigned long __initdata pgt_buf_top;
  68. static unsigned long min_pfn_mapped;
  69. static bool __initdata can_use_brk_pgt = true;
  70. /*
  71. * Pages returned are already directly mapped.
  72. *
  73. * Changing that is likely to break Xen, see commit:
  74. *
  75. * 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
  76. *
  77. * for detailed information.
  78. */
  79. __ref void *alloc_low_pages(unsigned int num)
  80. {
  81. unsigned long pfn;
  82. int i;
  83. if (after_bootmem) {
  84. unsigned int order;
  85. order = get_order((unsigned long)num << PAGE_SHIFT);
  86. return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
  87. }
  88. if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
  89. unsigned long ret = 0;
  90. if (min_pfn_mapped < max_pfn_mapped) {
  91. ret = memblock_find_in_range(
  92. min_pfn_mapped << PAGE_SHIFT,
  93. max_pfn_mapped << PAGE_SHIFT,
  94. PAGE_SIZE * num , PAGE_SIZE);
  95. }
  96. if (ret)
  97. memblock_reserve(ret, PAGE_SIZE * num);
  98. else if (can_use_brk_pgt)
  99. ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE));
  100. if (!ret)
  101. panic("alloc_low_pages: can not alloc memory");
  102. pfn = ret >> PAGE_SHIFT;
  103. } else {
  104. pfn = pgt_buf_end;
  105. pgt_buf_end += num;
  106. printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
  107. pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
  108. }
  109. for (i = 0; i < num; i++) {
  110. void *adr;
  111. adr = __va((pfn + i) << PAGE_SHIFT);
  112. clear_page(adr);
  113. }
  114. return __va(pfn << PAGE_SHIFT);
  115. }
  116. /*
  117. * By default need 3 4k for initial PMD_SIZE, 3 4k for 0-ISA_END_ADDRESS.
  118. * With KASLR memory randomization, depending on the machine e820 memory
  119. * and the PUD alignment. We may need twice more pages when KASLR memory
  120. * randomization is enabled.
  121. */
  122. #ifndef CONFIG_RANDOMIZE_MEMORY
  123. #define INIT_PGD_PAGE_COUNT 6
  124. #else
  125. #define INIT_PGD_PAGE_COUNT 12
  126. #endif
  127. #define INIT_PGT_BUF_SIZE (INIT_PGD_PAGE_COUNT * PAGE_SIZE)
  128. RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
  129. void __init early_alloc_pgt_buf(void)
  130. {
  131. unsigned long tables = INIT_PGT_BUF_SIZE;
  132. phys_addr_t base;
  133. base = __pa(extend_brk(tables, PAGE_SIZE));
  134. pgt_buf_start = base >> PAGE_SHIFT;
  135. pgt_buf_end = pgt_buf_start;
  136. pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
  137. }
  138. int after_bootmem;
  139. early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
  140. struct map_range {
  141. unsigned long start;
  142. unsigned long end;
  143. unsigned page_size_mask;
  144. };
  145. static int page_size_mask;
  146. static void __init probe_page_size_mask(void)
  147. {
  148. /*
  149. * For pagealloc debugging, identity mapping will use small pages.
  150. * This will simplify cpa(), which otherwise needs to support splitting
  151. * large pages into small in interrupt context, etc.
  152. */
  153. if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
  154. page_size_mask |= 1 << PG_LEVEL_2M;
  155. else
  156. direct_gbpages = 0;
  157. /* Enable PSE if available */
  158. if (boot_cpu_has(X86_FEATURE_PSE))
  159. cr4_set_bits_and_update_boot(X86_CR4_PSE);
  160. /* Enable PGE if available */
  161. __supported_pte_mask &= ~_PAGE_GLOBAL;
  162. if (boot_cpu_has(X86_FEATURE_PGE)) {
  163. cr4_set_bits_and_update_boot(X86_CR4_PGE);
  164. __supported_pte_mask |= _PAGE_GLOBAL;
  165. }
  166. /* By the default is everything supported: */
  167. __default_kernel_pte_mask = __supported_pte_mask;
  168. /* Except when with PTI where the kernel is mostly non-Global: */
  169. if (cpu_feature_enabled(X86_FEATURE_PTI))
  170. __default_kernel_pte_mask &= ~_PAGE_GLOBAL;
  171. /* Enable 1 GB linear kernel mappings if available: */
  172. if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
  173. printk(KERN_INFO "Using GB pages for direct mapping\n");
  174. page_size_mask |= 1 << PG_LEVEL_1G;
  175. } else {
  176. direct_gbpages = 0;
  177. }
  178. }
  179. static void setup_pcid(void)
  180. {
  181. if (!IS_ENABLED(CONFIG_X86_64))
  182. return;
  183. if (!boot_cpu_has(X86_FEATURE_PCID))
  184. return;
  185. if (boot_cpu_has(X86_FEATURE_PGE)) {
  186. /*
  187. * This can't be cr4_set_bits_and_update_boot() -- the
  188. * trampoline code can't handle CR4.PCIDE and it wouldn't
  189. * do any good anyway. Despite the name,
  190. * cr4_set_bits_and_update_boot() doesn't actually cause
  191. * the bits in question to remain set all the way through
  192. * the secondary boot asm.
  193. *
  194. * Instead, we brute-force it and set CR4.PCIDE manually in
  195. * start_secondary().
  196. */
  197. cr4_set_bits(X86_CR4_PCIDE);
  198. /*
  199. * INVPCID's single-context modes (2/3) only work if we set
  200. * X86_CR4_PCIDE, *and* we INVPCID support. It's unusable
  201. * on systems that have X86_CR4_PCIDE clear, or that have
  202. * no INVPCID support at all.
  203. */
  204. if (boot_cpu_has(X86_FEATURE_INVPCID))
  205. setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE);
  206. } else {
  207. /*
  208. * flush_tlb_all(), as currently implemented, won't work if
  209. * PCID is on but PGE is not. Since that combination
  210. * doesn't exist on real hardware, there's no reason to try
  211. * to fully support it, but it's polite to avoid corrupting
  212. * data if we're on an improperly configured VM.
  213. */
  214. setup_clear_cpu_cap(X86_FEATURE_PCID);
  215. }
  216. }
  217. #ifdef CONFIG_X86_32
  218. #define NR_RANGE_MR 3
  219. #else /* CONFIG_X86_64 */
  220. #define NR_RANGE_MR 5
  221. #endif
  222. static int __meminit save_mr(struct map_range *mr, int nr_range,
  223. unsigned long start_pfn, unsigned long end_pfn,
  224. unsigned long page_size_mask)
  225. {
  226. if (start_pfn < end_pfn) {
  227. if (nr_range >= NR_RANGE_MR)
  228. panic("run out of range for init_memory_mapping\n");
  229. mr[nr_range].start = start_pfn<<PAGE_SHIFT;
  230. mr[nr_range].end = end_pfn<<PAGE_SHIFT;
  231. mr[nr_range].page_size_mask = page_size_mask;
  232. nr_range++;
  233. }
  234. return nr_range;
  235. }
  236. /*
  237. * adjust the page_size_mask for small range to go with
  238. * big page size instead small one if nearby are ram too.
  239. */
  240. static void __ref adjust_range_page_size_mask(struct map_range *mr,
  241. int nr_range)
  242. {
  243. int i;
  244. for (i = 0; i < nr_range; i++) {
  245. if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
  246. !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
  247. unsigned long start = round_down(mr[i].start, PMD_SIZE);
  248. unsigned long end = round_up(mr[i].end, PMD_SIZE);
  249. #ifdef CONFIG_X86_32
  250. if ((end >> PAGE_SHIFT) > max_low_pfn)
  251. continue;
  252. #endif
  253. if (memblock_is_region_memory(start, end - start))
  254. mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
  255. }
  256. if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
  257. !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
  258. unsigned long start = round_down(mr[i].start, PUD_SIZE);
  259. unsigned long end = round_up(mr[i].end, PUD_SIZE);
  260. if (memblock_is_region_memory(start, end - start))
  261. mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
  262. }
  263. }
  264. }
  265. static const char *page_size_string(struct map_range *mr)
  266. {
  267. static const char str_1g[] = "1G";
  268. static const char str_2m[] = "2M";
  269. static const char str_4m[] = "4M";
  270. static const char str_4k[] = "4k";
  271. if (mr->page_size_mask & (1<<PG_LEVEL_1G))
  272. return str_1g;
  273. /*
  274. * 32-bit without PAE has a 4M large page size.
  275. * PG_LEVEL_2M is misnamed, but we can at least
  276. * print out the right size in the string.
  277. */
  278. if (IS_ENABLED(CONFIG_X86_32) &&
  279. !IS_ENABLED(CONFIG_X86_PAE) &&
  280. mr->page_size_mask & (1<<PG_LEVEL_2M))
  281. return str_4m;
  282. if (mr->page_size_mask & (1<<PG_LEVEL_2M))
  283. return str_2m;
  284. return str_4k;
  285. }
  286. static int __meminit split_mem_range(struct map_range *mr, int nr_range,
  287. unsigned long start,
  288. unsigned long end)
  289. {
  290. unsigned long start_pfn, end_pfn, limit_pfn;
  291. unsigned long pfn;
  292. int i;
  293. limit_pfn = PFN_DOWN(end);
  294. /* head if not big page alignment ? */
  295. pfn = start_pfn = PFN_DOWN(start);
  296. #ifdef CONFIG_X86_32
  297. /*
  298. * Don't use a large page for the first 2/4MB of memory
  299. * because there are often fixed size MTRRs in there
  300. * and overlapping MTRRs into large pages can cause
  301. * slowdowns.
  302. */
  303. if (pfn == 0)
  304. end_pfn = PFN_DOWN(PMD_SIZE);
  305. else
  306. end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
  307. #else /* CONFIG_X86_64 */
  308. end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
  309. #endif
  310. if (end_pfn > limit_pfn)
  311. end_pfn = limit_pfn;
  312. if (start_pfn < end_pfn) {
  313. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
  314. pfn = end_pfn;
  315. }
  316. /* big page (2M) range */
  317. start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
  318. #ifdef CONFIG_X86_32
  319. end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
  320. #else /* CONFIG_X86_64 */
  321. end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
  322. if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
  323. end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
  324. #endif
  325. if (start_pfn < end_pfn) {
  326. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
  327. page_size_mask & (1<<PG_LEVEL_2M));
  328. pfn = end_pfn;
  329. }
  330. #ifdef CONFIG_X86_64
  331. /* big page (1G) range */
  332. start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
  333. end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
  334. if (start_pfn < end_pfn) {
  335. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
  336. page_size_mask &
  337. ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
  338. pfn = end_pfn;
  339. }
  340. /* tail is not big page (1G) alignment */
  341. start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
  342. end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
  343. if (start_pfn < end_pfn) {
  344. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
  345. page_size_mask & (1<<PG_LEVEL_2M));
  346. pfn = end_pfn;
  347. }
  348. #endif
  349. /* tail is not big page (2M) alignment */
  350. start_pfn = pfn;
  351. end_pfn = limit_pfn;
  352. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
  353. if (!after_bootmem)
  354. adjust_range_page_size_mask(mr, nr_range);
  355. /* try to merge same page size and continuous */
  356. for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
  357. unsigned long old_start;
  358. if (mr[i].end != mr[i+1].start ||
  359. mr[i].page_size_mask != mr[i+1].page_size_mask)
  360. continue;
  361. /* move it */
  362. old_start = mr[i].start;
  363. memmove(&mr[i], &mr[i+1],
  364. (nr_range - 1 - i) * sizeof(struct map_range));
  365. mr[i--].start = old_start;
  366. nr_range--;
  367. }
  368. for (i = 0; i < nr_range; i++)
  369. pr_debug(" [mem %#010lx-%#010lx] page %s\n",
  370. mr[i].start, mr[i].end - 1,
  371. page_size_string(&mr[i]));
  372. return nr_range;
  373. }
  374. struct range pfn_mapped[E820_MAX_ENTRIES];
  375. int nr_pfn_mapped;
  376. static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
  377. {
  378. nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
  379. nr_pfn_mapped, start_pfn, end_pfn);
  380. nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
  381. max_pfn_mapped = max(max_pfn_mapped, end_pfn);
  382. if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
  383. max_low_pfn_mapped = max(max_low_pfn_mapped,
  384. min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
  385. }
  386. bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
  387. {
  388. int i;
  389. for (i = 0; i < nr_pfn_mapped; i++)
  390. if ((start_pfn >= pfn_mapped[i].start) &&
  391. (end_pfn <= pfn_mapped[i].end))
  392. return true;
  393. return false;
  394. }
  395. /*
  396. * Setup the direct mapping of the physical memory at PAGE_OFFSET.
  397. * This runs before bootmem is initialized and gets pages directly from
  398. * the physical memory. To access them they are temporarily mapped.
  399. */
  400. unsigned long __ref init_memory_mapping(unsigned long start,
  401. unsigned long end)
  402. {
  403. struct map_range mr[NR_RANGE_MR];
  404. unsigned long ret = 0;
  405. int nr_range, i;
  406. pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
  407. start, end - 1);
  408. memset(mr, 0, sizeof(mr));
  409. nr_range = split_mem_range(mr, 0, start, end);
  410. for (i = 0; i < nr_range; i++)
  411. ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
  412. mr[i].page_size_mask);
  413. add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
  414. return ret >> PAGE_SHIFT;
  415. }
  416. /*
  417. * We need to iterate through the E820 memory map and create direct mappings
  418. * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
  419. * create direct mappings for all pfns from [0 to max_low_pfn) and
  420. * [4GB to max_pfn) because of possible memory holes in high addresses
  421. * that cannot be marked as UC by fixed/variable range MTRRs.
  422. * Depending on the alignment of E820 ranges, this may possibly result
  423. * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
  424. *
  425. * init_mem_mapping() calls init_range_memory_mapping() with big range.
  426. * That range would have hole in the middle or ends, and only ram parts
  427. * will be mapped in init_range_memory_mapping().
  428. */
  429. static unsigned long __init init_range_memory_mapping(
  430. unsigned long r_start,
  431. unsigned long r_end)
  432. {
  433. unsigned long start_pfn, end_pfn;
  434. unsigned long mapped_ram_size = 0;
  435. int i;
  436. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
  437. u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
  438. u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
  439. if (start >= end)
  440. continue;
  441. /*
  442. * if it is overlapping with brk pgt, we need to
  443. * alloc pgt buf from memblock instead.
  444. */
  445. can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
  446. min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
  447. init_memory_mapping(start, end);
  448. mapped_ram_size += end - start;
  449. can_use_brk_pgt = true;
  450. }
  451. return mapped_ram_size;
  452. }
  453. static unsigned long __init get_new_step_size(unsigned long step_size)
  454. {
  455. /*
  456. * Initial mapped size is PMD_SIZE (2M).
  457. * We can not set step_size to be PUD_SIZE (1G) yet.
  458. * In worse case, when we cross the 1G boundary, and
  459. * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
  460. * to map 1G range with PTE. Hence we use one less than the
  461. * difference of page table level shifts.
  462. *
  463. * Don't need to worry about overflow in the top-down case, on 32bit,
  464. * when step_size is 0, round_down() returns 0 for start, and that
  465. * turns it into 0x100000000ULL.
  466. * In the bottom-up case, round_up(x, 0) returns 0 though too, which
  467. * needs to be taken into consideration by the code below.
  468. */
  469. return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
  470. }
  471. /**
  472. * memory_map_top_down - Map [map_start, map_end) top down
  473. * @map_start: start address of the target memory range
  474. * @map_end: end address of the target memory range
  475. *
  476. * This function will setup direct mapping for memory range
  477. * [map_start, map_end) in top-down. That said, the page tables
  478. * will be allocated at the end of the memory, and we map the
  479. * memory in top-down.
  480. */
  481. static void __init memory_map_top_down(unsigned long map_start,
  482. unsigned long map_end)
  483. {
  484. unsigned long real_end, start, last_start;
  485. unsigned long step_size;
  486. unsigned long addr;
  487. unsigned long mapped_ram_size = 0;
  488. /* xen has big range in reserved near end of ram, skip it at first.*/
  489. addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
  490. real_end = addr + PMD_SIZE;
  491. /* step_size need to be small so pgt_buf from BRK could cover it */
  492. step_size = PMD_SIZE;
  493. max_pfn_mapped = 0; /* will get exact value next */
  494. min_pfn_mapped = real_end >> PAGE_SHIFT;
  495. last_start = start = real_end;
  496. /*
  497. * We start from the top (end of memory) and go to the bottom.
  498. * The memblock_find_in_range() gets us a block of RAM from the
  499. * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
  500. * for page table.
  501. */
  502. while (last_start > map_start) {
  503. if (last_start > step_size) {
  504. start = round_down(last_start - 1, step_size);
  505. if (start < map_start)
  506. start = map_start;
  507. } else
  508. start = map_start;
  509. mapped_ram_size += init_range_memory_mapping(start,
  510. last_start);
  511. last_start = start;
  512. min_pfn_mapped = last_start >> PAGE_SHIFT;
  513. if (mapped_ram_size >= step_size)
  514. step_size = get_new_step_size(step_size);
  515. }
  516. if (real_end < map_end)
  517. init_range_memory_mapping(real_end, map_end);
  518. }
  519. /**
  520. * memory_map_bottom_up - Map [map_start, map_end) bottom up
  521. * @map_start: start address of the target memory range
  522. * @map_end: end address of the target memory range
  523. *
  524. * This function will setup direct mapping for memory range
  525. * [map_start, map_end) in bottom-up. Since we have limited the
  526. * bottom-up allocation above the kernel, the page tables will
  527. * be allocated just above the kernel and we map the memory
  528. * in [map_start, map_end) in bottom-up.
  529. */
  530. static void __init memory_map_bottom_up(unsigned long map_start,
  531. unsigned long map_end)
  532. {
  533. unsigned long next, start;
  534. unsigned long mapped_ram_size = 0;
  535. /* step_size need to be small so pgt_buf from BRK could cover it */
  536. unsigned long step_size = PMD_SIZE;
  537. start = map_start;
  538. min_pfn_mapped = start >> PAGE_SHIFT;
  539. /*
  540. * We start from the bottom (@map_start) and go to the top (@map_end).
  541. * The memblock_find_in_range() gets us a block of RAM from the
  542. * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
  543. * for page table.
  544. */
  545. while (start < map_end) {
  546. if (step_size && map_end - start > step_size) {
  547. next = round_up(start + 1, step_size);
  548. if (next > map_end)
  549. next = map_end;
  550. } else {
  551. next = map_end;
  552. }
  553. mapped_ram_size += init_range_memory_mapping(start, next);
  554. start = next;
  555. if (mapped_ram_size >= step_size)
  556. step_size = get_new_step_size(step_size);
  557. }
  558. }
  559. void __init init_mem_mapping(void)
  560. {
  561. unsigned long end;
  562. pti_check_boottime_disable();
  563. probe_page_size_mask();
  564. setup_pcid();
  565. #ifdef CONFIG_X86_64
  566. end = max_pfn << PAGE_SHIFT;
  567. #else
  568. end = max_low_pfn << PAGE_SHIFT;
  569. #endif
  570. /* the ISA range is always mapped regardless of memory holes */
  571. init_memory_mapping(0, ISA_END_ADDRESS);
  572. /* Init the trampoline, possibly with KASLR memory offset */
  573. init_trampoline();
  574. /*
  575. * If the allocation is in bottom-up direction, we setup direct mapping
  576. * in bottom-up, otherwise we setup direct mapping in top-down.
  577. */
  578. if (memblock_bottom_up()) {
  579. unsigned long kernel_end = __pa_symbol(_end);
  580. /*
  581. * we need two separate calls here. This is because we want to
  582. * allocate page tables above the kernel. So we first map
  583. * [kernel_end, end) to make memory above the kernel be mapped
  584. * as soon as possible. And then use page tables allocated above
  585. * the kernel to map [ISA_END_ADDRESS, kernel_end).
  586. */
  587. memory_map_bottom_up(kernel_end, end);
  588. memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
  589. } else {
  590. memory_map_top_down(ISA_END_ADDRESS, end);
  591. }
  592. #ifdef CONFIG_X86_64
  593. if (max_pfn > max_low_pfn) {
  594. /* can we preseve max_low_pfn ?*/
  595. max_low_pfn = max_pfn;
  596. }
  597. #else
  598. early_ioremap_page_table_range_init();
  599. #endif
  600. load_cr3(swapper_pg_dir);
  601. __flush_tlb_all();
  602. x86_init.hyper.init_mem_mapping();
  603. early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
  604. }
  605. /*
  606. * devmem_is_allowed() checks to see if /dev/mem access to a certain address
  607. * is valid. The argument is a physical page number.
  608. *
  609. * On x86, access has to be given to the first megabyte of RAM because that
  610. * area traditionally contains BIOS code and data regions used by X, dosemu,
  611. * and similar apps. Since they map the entire memory range, the whole range
  612. * must be allowed (for mapping), but any areas that would otherwise be
  613. * disallowed are flagged as being "zero filled" instead of rejected.
  614. * Access has to be given to non-kernel-ram areas as well, these contain the
  615. * PCI mmio resources as well as potential bios/acpi data regions.
  616. */
  617. int devmem_is_allowed(unsigned long pagenr)
  618. {
  619. if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
  620. IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
  621. != REGION_DISJOINT) {
  622. /*
  623. * For disallowed memory regions in the low 1MB range,
  624. * request that the page be shown as all zeros.
  625. */
  626. if (pagenr < 256)
  627. return 2;
  628. return 0;
  629. }
  630. /*
  631. * This must follow RAM test, since System RAM is considered a
  632. * restricted resource under CONFIG_STRICT_IOMEM.
  633. */
  634. if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
  635. /* Low 1MB bypasses iomem restrictions. */
  636. if (pagenr < 256)
  637. return 1;
  638. return 0;
  639. }
  640. return 1;
  641. }
  642. void free_init_pages(char *what, unsigned long begin, unsigned long end)
  643. {
  644. unsigned long begin_aligned, end_aligned;
  645. /* Make sure boundaries are page aligned */
  646. begin_aligned = PAGE_ALIGN(begin);
  647. end_aligned = end & PAGE_MASK;
  648. if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
  649. begin = begin_aligned;
  650. end = end_aligned;
  651. }
  652. if (begin >= end)
  653. return;
  654. /*
  655. * If debugging page accesses then do not free this memory but
  656. * mark them not present - any buggy init-section access will
  657. * create a kernel page fault:
  658. */
  659. if (debug_pagealloc_enabled()) {
  660. pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
  661. begin, end - 1);
  662. set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
  663. } else {
  664. /*
  665. * We just marked the kernel text read only above, now that
  666. * we are going to free part of that, we need to make that
  667. * writeable and non-executable first.
  668. */
  669. set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
  670. set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
  671. free_reserved_area((void *)begin, (void *)end,
  672. POISON_FREE_INITMEM, what);
  673. }
  674. }
  675. /*
  676. * begin/end can be in the direct map or the "high kernel mapping"
  677. * used for the kernel image only. free_init_pages() will do the
  678. * right thing for either kind of address.
  679. */
  680. void free_kernel_image_pages(void *begin, void *end)
  681. {
  682. unsigned long begin_ul = (unsigned long)begin;
  683. unsigned long end_ul = (unsigned long)end;
  684. unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
  685. free_init_pages("unused kernel image", begin_ul, end_ul);
  686. /*
  687. * PTI maps some of the kernel into userspace. For performance,
  688. * this includes some kernel areas that do not contain secrets.
  689. * Those areas might be adjacent to the parts of the kernel image
  690. * being freed, which may contain secrets. Remove the "high kernel
  691. * image mapping" for these freed areas, ensuring they are not even
  692. * potentially vulnerable to Meltdown regardless of the specific
  693. * optimizations PTI is currently using.
  694. *
  695. * The "noalias" prevents unmapping the direct map alias which is
  696. * needed to access the freed pages.
  697. *
  698. * This is only valid for 64bit kernels. 32bit has only one mapping
  699. * which can't be treated in this way for obvious reasons.
  700. */
  701. if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
  702. set_memory_np_noalias(begin_ul, len_pages);
  703. }
  704. void __weak mem_encrypt_free_decrypted_mem(void) { }
  705. void __ref free_initmem(void)
  706. {
  707. e820__reallocate_tables();
  708. mem_encrypt_free_decrypted_mem();
  709. free_kernel_image_pages(&__init_begin, &__init_end);
  710. }
  711. #ifdef CONFIG_BLK_DEV_INITRD
  712. void __init free_initrd_mem(unsigned long start, unsigned long end)
  713. {
  714. /*
  715. * end could be not aligned, and We can not align that,
  716. * decompresser could be confused by aligned initrd_end
  717. * We already reserve the end partial page before in
  718. * - i386_start_kernel()
  719. * - x86_64_start_kernel()
  720. * - relocate_initrd()
  721. * So here We can do PAGE_ALIGN() safely to get partial page to be freed
  722. */
  723. free_init_pages("initrd", start, PAGE_ALIGN(end));
  724. }
  725. #endif
  726. /*
  727. * Calculate the precise size of the DMA zone (first 16 MB of RAM),
  728. * and pass it to the MM layer - to help it set zone watermarks more
  729. * accurately.
  730. *
  731. * Done on 64-bit systems only for the time being, although 32-bit systems
  732. * might benefit from this as well.
  733. */
  734. void __init memblock_find_dma_reserve(void)
  735. {
  736. #ifdef CONFIG_X86_64
  737. u64 nr_pages = 0, nr_free_pages = 0;
  738. unsigned long start_pfn, end_pfn;
  739. phys_addr_t start_addr, end_addr;
  740. int i;
  741. u64 u;
  742. /*
  743. * Iterate over all memory ranges (free and reserved ones alike),
  744. * to calculate the total number of pages in the first 16 MB of RAM:
  745. */
  746. nr_pages = 0;
  747. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
  748. start_pfn = min(start_pfn, MAX_DMA_PFN);
  749. end_pfn = min(end_pfn, MAX_DMA_PFN);
  750. nr_pages += end_pfn - start_pfn;
  751. }
  752. /*
  753. * Iterate over free memory ranges to calculate the number of free
  754. * pages in the DMA zone, while not counting potential partial
  755. * pages at the beginning or the end of the range:
  756. */
  757. nr_free_pages = 0;
  758. for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
  759. start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
  760. end_pfn = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
  761. if (start_pfn < end_pfn)
  762. nr_free_pages += end_pfn - start_pfn;
  763. }
  764. set_dma_reserve(nr_pages - nr_free_pages);
  765. #endif
  766. }
  767. void __init zone_sizes_init(void)
  768. {
  769. unsigned long max_zone_pfns[MAX_NR_ZONES];
  770. memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
  771. #ifdef CONFIG_ZONE_DMA
  772. max_zone_pfns[ZONE_DMA] = min(MAX_DMA_PFN, max_low_pfn);
  773. #endif
  774. #ifdef CONFIG_ZONE_DMA32
  775. max_zone_pfns[ZONE_DMA32] = min(MAX_DMA32_PFN, max_low_pfn);
  776. #endif
  777. max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
  778. #ifdef CONFIG_HIGHMEM
  779. max_zone_pfns[ZONE_HIGHMEM] = max_pfn;
  780. #endif
  781. free_area_init_nodes(max_zone_pfns);
  782. }
  783. __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
  784. .loaded_mm = &init_mm,
  785. .next_asid = 1,
  786. .cr4 = ~0UL, /* fail hard if we screw up cr4 shadow initialization */
  787. };
  788. EXPORT_PER_CPU_SYMBOL(cpu_tlbstate);
  789. void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
  790. {
  791. /* entry 0 MUST be WB (hardwired to speed up translations) */
  792. BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
  793. __cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
  794. __pte2cachemode_tbl[entry] = cache;
  795. }
  796. #ifdef CONFIG_SWAP
  797. unsigned long max_swapfile_size(void)
  798. {
  799. unsigned long pages;
  800. pages = generic_max_swapfile_size();
  801. if (boot_cpu_has_bug(X86_BUG_L1TF)) {
  802. /* Limit the swap file size to MAX_PA/2 for L1TF workaround */
  803. unsigned long long l1tf_limit = l1tf_pfn_limit();
  804. /*
  805. * We encode swap offsets also with 3 bits below those for pfn
  806. * which makes the usable limit higher.
  807. */
  808. #if CONFIG_PGTABLE_LEVELS > 2
  809. l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
  810. #endif
  811. pages = min_t(unsigned long long, l1tf_limit, pages);
  812. }
  813. return pages;
  814. }
  815. #endif