nmi.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554
  1. /*
  2. * Copyright (C) 1991, 1992 Linus Torvalds
  3. * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
  4. * Copyright (C) 2011 Don Zickus Red Hat, Inc.
  5. *
  6. * Pentium III FXSR, SSE support
  7. * Gareth Hughes <gareth@valinux.com>, May 2000
  8. */
  9. /*
  10. * Handle hardware traps and faults.
  11. */
  12. #include <linux/spinlock.h>
  13. #include <linux/kprobes.h>
  14. #include <linux/kdebug.h>
  15. #include <linux/sched/debug.h>
  16. #include <linux/nmi.h>
  17. #include <linux/debugfs.h>
  18. #include <linux/delay.h>
  19. #include <linux/hardirq.h>
  20. #include <linux/ratelimit.h>
  21. #include <linux/slab.h>
  22. #include <linux/export.h>
  23. #include <linux/sched/clock.h>
  24. #if defined(CONFIG_EDAC)
  25. #include <linux/edac.h>
  26. #endif
  27. #include <linux/atomic.h>
  28. #include <asm/traps.h>
  29. #include <asm/mach_traps.h>
  30. #include <asm/nmi.h>
  31. #include <asm/x86_init.h>
  32. #include <asm/reboot.h>
  33. #include <asm/cache.h>
  34. #define CREATE_TRACE_POINTS
  35. #include <trace/events/nmi.h>
  36. struct nmi_desc {
  37. raw_spinlock_t lock;
  38. struct list_head head;
  39. };
  40. static struct nmi_desc nmi_desc[NMI_MAX] =
  41. {
  42. {
  43. .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
  44. .head = LIST_HEAD_INIT(nmi_desc[0].head),
  45. },
  46. {
  47. .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
  48. .head = LIST_HEAD_INIT(nmi_desc[1].head),
  49. },
  50. {
  51. .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
  52. .head = LIST_HEAD_INIT(nmi_desc[2].head),
  53. },
  54. {
  55. .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
  56. .head = LIST_HEAD_INIT(nmi_desc[3].head),
  57. },
  58. };
  59. struct nmi_stats {
  60. unsigned int normal;
  61. unsigned int unknown;
  62. unsigned int external;
  63. unsigned int swallow;
  64. };
  65. static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
  66. static int ignore_nmis __read_mostly;
  67. int unknown_nmi_panic;
  68. /*
  69. * Prevent NMI reason port (0x61) being accessed simultaneously, can
  70. * only be used in NMI handler.
  71. */
  72. static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
  73. static int __init setup_unknown_nmi_panic(char *str)
  74. {
  75. unknown_nmi_panic = 1;
  76. return 1;
  77. }
  78. __setup("unknown_nmi_panic", setup_unknown_nmi_panic);
  79. #define nmi_to_desc(type) (&nmi_desc[type])
  80. static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC;
  81. static int __init nmi_warning_debugfs(void)
  82. {
  83. debugfs_create_u64("nmi_longest_ns", 0644,
  84. arch_debugfs_dir, &nmi_longest_ns);
  85. return 0;
  86. }
  87. fs_initcall(nmi_warning_debugfs);
  88. static void nmi_max_handler(struct irq_work *w)
  89. {
  90. struct nmiaction *a = container_of(w, struct nmiaction, irq_work);
  91. int remainder_ns, decimal_msecs;
  92. u64 whole_msecs = READ_ONCE(a->max_duration);
  93. remainder_ns = do_div(whole_msecs, (1000 * 1000));
  94. decimal_msecs = remainder_ns / 1000;
  95. printk_ratelimited(KERN_INFO
  96. "INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n",
  97. a->handler, whole_msecs, decimal_msecs);
  98. }
  99. static int nmi_handle(unsigned int type, struct pt_regs *regs)
  100. {
  101. struct nmi_desc *desc = nmi_to_desc(type);
  102. struct nmiaction *a;
  103. int handled=0;
  104. rcu_read_lock();
  105. /*
  106. * NMIs are edge-triggered, which means if you have enough
  107. * of them concurrently, you can lose some because only one
  108. * can be latched at any given time. Walk the whole list
  109. * to handle those situations.
  110. */
  111. list_for_each_entry_rcu(a, &desc->head, list) {
  112. int thishandled;
  113. u64 delta;
  114. delta = sched_clock();
  115. thishandled = a->handler(type, regs);
  116. handled += thishandled;
  117. delta = sched_clock() - delta;
  118. trace_nmi_handler(a->handler, (int)delta, thishandled);
  119. if (delta < nmi_longest_ns || delta < a->max_duration)
  120. continue;
  121. a->max_duration = delta;
  122. irq_work_queue(&a->irq_work);
  123. }
  124. rcu_read_unlock();
  125. /* return total number of NMI events handled */
  126. return handled;
  127. }
  128. NOKPROBE_SYMBOL(nmi_handle);
  129. int __register_nmi_handler(unsigned int type, struct nmiaction *action)
  130. {
  131. struct nmi_desc *desc = nmi_to_desc(type);
  132. unsigned long flags;
  133. if (!action->handler)
  134. return -EINVAL;
  135. init_irq_work(&action->irq_work, nmi_max_handler);
  136. raw_spin_lock_irqsave(&desc->lock, flags);
  137. /*
  138. * Indicate if there are multiple registrations on the
  139. * internal NMI handler call chains (SERR and IO_CHECK).
  140. */
  141. WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
  142. WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
  143. /*
  144. * some handlers need to be executed first otherwise a fake
  145. * event confuses some handlers (kdump uses this flag)
  146. */
  147. if (action->flags & NMI_FLAG_FIRST)
  148. list_add_rcu(&action->list, &desc->head);
  149. else
  150. list_add_tail_rcu(&action->list, &desc->head);
  151. raw_spin_unlock_irqrestore(&desc->lock, flags);
  152. return 0;
  153. }
  154. EXPORT_SYMBOL(__register_nmi_handler);
  155. void unregister_nmi_handler(unsigned int type, const char *name)
  156. {
  157. struct nmi_desc *desc = nmi_to_desc(type);
  158. struct nmiaction *n;
  159. unsigned long flags;
  160. raw_spin_lock_irqsave(&desc->lock, flags);
  161. list_for_each_entry_rcu(n, &desc->head, list) {
  162. /*
  163. * the name passed in to describe the nmi handler
  164. * is used as the lookup key
  165. */
  166. if (!strcmp(n->name, name)) {
  167. WARN(in_nmi(),
  168. "Trying to free NMI (%s) from NMI context!\n", n->name);
  169. list_del_rcu(&n->list);
  170. break;
  171. }
  172. }
  173. raw_spin_unlock_irqrestore(&desc->lock, flags);
  174. synchronize_rcu();
  175. }
  176. EXPORT_SYMBOL_GPL(unregister_nmi_handler);
  177. static void
  178. pci_serr_error(unsigned char reason, struct pt_regs *regs)
  179. {
  180. /* check to see if anyone registered against these types of errors */
  181. if (nmi_handle(NMI_SERR, regs))
  182. return;
  183. pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
  184. reason, smp_processor_id());
  185. if (panic_on_unrecovered_nmi)
  186. nmi_panic(regs, "NMI: Not continuing");
  187. pr_emerg("Dazed and confused, but trying to continue\n");
  188. /* Clear and disable the PCI SERR error line. */
  189. reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
  190. outb(reason, NMI_REASON_PORT);
  191. }
  192. NOKPROBE_SYMBOL(pci_serr_error);
  193. static void
  194. io_check_error(unsigned char reason, struct pt_regs *regs)
  195. {
  196. unsigned long i;
  197. /* check to see if anyone registered against these types of errors */
  198. if (nmi_handle(NMI_IO_CHECK, regs))
  199. return;
  200. pr_emerg(
  201. "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
  202. reason, smp_processor_id());
  203. show_regs(regs);
  204. if (panic_on_io_nmi) {
  205. nmi_panic(regs, "NMI IOCK error: Not continuing");
  206. /*
  207. * If we end up here, it means we have received an NMI while
  208. * processing panic(). Simply return without delaying and
  209. * re-enabling NMIs.
  210. */
  211. return;
  212. }
  213. /* Re-enable the IOCK line, wait for a few seconds */
  214. reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
  215. outb(reason, NMI_REASON_PORT);
  216. i = 20000;
  217. while (--i) {
  218. touch_nmi_watchdog();
  219. udelay(100);
  220. }
  221. reason &= ~NMI_REASON_CLEAR_IOCHK;
  222. outb(reason, NMI_REASON_PORT);
  223. }
  224. NOKPROBE_SYMBOL(io_check_error);
  225. static void
  226. unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
  227. {
  228. int handled;
  229. /*
  230. * Use 'false' as back-to-back NMIs are dealt with one level up.
  231. * Of course this makes having multiple 'unknown' handlers useless
  232. * as only the first one is ever run (unless it can actually determine
  233. * if it caused the NMI)
  234. */
  235. handled = nmi_handle(NMI_UNKNOWN, regs);
  236. if (handled) {
  237. __this_cpu_add(nmi_stats.unknown, handled);
  238. return;
  239. }
  240. __this_cpu_add(nmi_stats.unknown, 1);
  241. pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
  242. reason, smp_processor_id());
  243. pr_emerg("Do you have a strange power saving mode enabled?\n");
  244. if (unknown_nmi_panic || panic_on_unrecovered_nmi)
  245. nmi_panic(regs, "NMI: Not continuing");
  246. pr_emerg("Dazed and confused, but trying to continue\n");
  247. }
  248. NOKPROBE_SYMBOL(unknown_nmi_error);
  249. static DEFINE_PER_CPU(bool, swallow_nmi);
  250. static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
  251. static void default_do_nmi(struct pt_regs *regs)
  252. {
  253. unsigned char reason = 0;
  254. int handled;
  255. bool b2b = false;
  256. /*
  257. * CPU-specific NMI must be processed before non-CPU-specific
  258. * NMI, otherwise we may lose it, because the CPU-specific
  259. * NMI can not be detected/processed on other CPUs.
  260. */
  261. /*
  262. * Back-to-back NMIs are interesting because they can either
  263. * be two NMI or more than two NMIs (any thing over two is dropped
  264. * due to NMI being edge-triggered). If this is the second half
  265. * of the back-to-back NMI, assume we dropped things and process
  266. * more handlers. Otherwise reset the 'swallow' NMI behaviour
  267. */
  268. if (regs->ip == __this_cpu_read(last_nmi_rip))
  269. b2b = true;
  270. else
  271. __this_cpu_write(swallow_nmi, false);
  272. __this_cpu_write(last_nmi_rip, regs->ip);
  273. handled = nmi_handle(NMI_LOCAL, regs);
  274. __this_cpu_add(nmi_stats.normal, handled);
  275. if (handled) {
  276. /*
  277. * There are cases when a NMI handler handles multiple
  278. * events in the current NMI. One of these events may
  279. * be queued for in the next NMI. Because the event is
  280. * already handled, the next NMI will result in an unknown
  281. * NMI. Instead lets flag this for a potential NMI to
  282. * swallow.
  283. */
  284. if (handled > 1)
  285. __this_cpu_write(swallow_nmi, true);
  286. return;
  287. }
  288. /*
  289. * Non-CPU-specific NMI: NMI sources can be processed on any CPU.
  290. *
  291. * Another CPU may be processing panic routines while holding
  292. * nmi_reason_lock. Check if the CPU issued the IPI for crash dumping,
  293. * and if so, call its callback directly. If there is no CPU preparing
  294. * crash dump, we simply loop here.
  295. */
  296. while (!raw_spin_trylock(&nmi_reason_lock)) {
  297. run_crash_ipi_callback(regs);
  298. cpu_relax();
  299. }
  300. reason = x86_platform.get_nmi_reason();
  301. if (reason & NMI_REASON_MASK) {
  302. if (reason & NMI_REASON_SERR)
  303. pci_serr_error(reason, regs);
  304. else if (reason & NMI_REASON_IOCHK)
  305. io_check_error(reason, regs);
  306. #ifdef CONFIG_X86_32
  307. /*
  308. * Reassert NMI in case it became active
  309. * meanwhile as it's edge-triggered:
  310. */
  311. reassert_nmi();
  312. #endif
  313. __this_cpu_add(nmi_stats.external, 1);
  314. raw_spin_unlock(&nmi_reason_lock);
  315. return;
  316. }
  317. raw_spin_unlock(&nmi_reason_lock);
  318. /*
  319. * Only one NMI can be latched at a time. To handle
  320. * this we may process multiple nmi handlers at once to
  321. * cover the case where an NMI is dropped. The downside
  322. * to this approach is we may process an NMI prematurely,
  323. * while its real NMI is sitting latched. This will cause
  324. * an unknown NMI on the next run of the NMI processing.
  325. *
  326. * We tried to flag that condition above, by setting the
  327. * swallow_nmi flag when we process more than one event.
  328. * This condition is also only present on the second half
  329. * of a back-to-back NMI, so we flag that condition too.
  330. *
  331. * If both are true, we assume we already processed this
  332. * NMI previously and we swallow it. Otherwise we reset
  333. * the logic.
  334. *
  335. * There are scenarios where we may accidentally swallow
  336. * a 'real' unknown NMI. For example, while processing
  337. * a perf NMI another perf NMI comes in along with a
  338. * 'real' unknown NMI. These two NMIs get combined into
  339. * one (as descibed above). When the next NMI gets
  340. * processed, it will be flagged by perf as handled, but
  341. * noone will know that there was a 'real' unknown NMI sent
  342. * also. As a result it gets swallowed. Or if the first
  343. * perf NMI returns two events handled then the second
  344. * NMI will get eaten by the logic below, again losing a
  345. * 'real' unknown NMI. But this is the best we can do
  346. * for now.
  347. */
  348. if (b2b && __this_cpu_read(swallow_nmi))
  349. __this_cpu_add(nmi_stats.swallow, 1);
  350. else
  351. unknown_nmi_error(reason, regs);
  352. }
  353. NOKPROBE_SYMBOL(default_do_nmi);
  354. /*
  355. * NMIs can page fault or hit breakpoints which will cause it to lose
  356. * its NMI context with the CPU when the breakpoint or page fault does an IRET.
  357. *
  358. * As a result, NMIs can nest if NMIs get unmasked due an IRET during
  359. * NMI processing. On x86_64, the asm glue protects us from nested NMIs
  360. * if the outer NMI came from kernel mode, but we can still nest if the
  361. * outer NMI came from user mode.
  362. *
  363. * To handle these nested NMIs, we have three states:
  364. *
  365. * 1) not running
  366. * 2) executing
  367. * 3) latched
  368. *
  369. * When no NMI is in progress, it is in the "not running" state.
  370. * When an NMI comes in, it goes into the "executing" state.
  371. * Normally, if another NMI is triggered, it does not interrupt
  372. * the running NMI and the HW will simply latch it so that when
  373. * the first NMI finishes, it will restart the second NMI.
  374. * (Note, the latch is binary, thus multiple NMIs triggering,
  375. * when one is running, are ignored. Only one NMI is restarted.)
  376. *
  377. * If an NMI executes an iret, another NMI can preempt it. We do not
  378. * want to allow this new NMI to run, but we want to execute it when the
  379. * first one finishes. We set the state to "latched", and the exit of
  380. * the first NMI will perform a dec_return, if the result is zero
  381. * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the
  382. * dec_return would have set the state to NMI_EXECUTING (what we want it
  383. * to be when we are running). In this case, we simply jump back to
  384. * rerun the NMI handler again, and restart the 'latched' NMI.
  385. *
  386. * No trap (breakpoint or page fault) should be hit before nmi_restart,
  387. * thus there is no race between the first check of state for NOT_RUNNING
  388. * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
  389. * at this point.
  390. *
  391. * In case the NMI takes a page fault, we need to save off the CR2
  392. * because the NMI could have preempted another page fault and corrupt
  393. * the CR2 that is about to be read. As nested NMIs must be restarted
  394. * and they can not take breakpoints or page faults, the update of the
  395. * CR2 must be done before converting the nmi state back to NOT_RUNNING.
  396. * Otherwise, there would be a race of another nested NMI coming in
  397. * after setting state to NOT_RUNNING but before updating the nmi_cr2.
  398. */
  399. enum nmi_states {
  400. NMI_NOT_RUNNING = 0,
  401. NMI_EXECUTING,
  402. NMI_LATCHED,
  403. };
  404. static DEFINE_PER_CPU(enum nmi_states, nmi_state);
  405. static DEFINE_PER_CPU(unsigned long, nmi_cr2);
  406. #ifdef CONFIG_X86_64
  407. /*
  408. * In x86_64, we need to handle breakpoint -> NMI -> breakpoint. Without
  409. * some care, the inner breakpoint will clobber the outer breakpoint's
  410. * stack.
  411. *
  412. * If a breakpoint is being processed, and the debug stack is being
  413. * used, if an NMI comes in and also hits a breakpoint, the stack
  414. * pointer will be set to the same fixed address as the breakpoint that
  415. * was interrupted, causing that stack to be corrupted. To handle this
  416. * case, check if the stack that was interrupted is the debug stack, and
  417. * if so, change the IDT so that new breakpoints will use the current
  418. * stack and not switch to the fixed address. On return of the NMI,
  419. * switch back to the original IDT.
  420. */
  421. static DEFINE_PER_CPU(int, update_debug_stack);
  422. #endif
  423. dotraplinkage notrace void
  424. do_nmi(struct pt_regs *regs, long error_code)
  425. {
  426. if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) {
  427. this_cpu_write(nmi_state, NMI_LATCHED);
  428. return;
  429. }
  430. this_cpu_write(nmi_state, NMI_EXECUTING);
  431. this_cpu_write(nmi_cr2, read_cr2());
  432. nmi_restart:
  433. #ifdef CONFIG_X86_64
  434. /*
  435. * If we interrupted a breakpoint, it is possible that
  436. * the nmi handler will have breakpoints too. We need to
  437. * change the IDT such that breakpoints that happen here
  438. * continue to use the NMI stack.
  439. */
  440. if (unlikely(is_debug_stack(regs->sp))) {
  441. debug_stack_set_zero();
  442. this_cpu_write(update_debug_stack, 1);
  443. }
  444. #endif
  445. nmi_enter();
  446. inc_irq_stat(__nmi_count);
  447. if (!ignore_nmis)
  448. default_do_nmi(regs);
  449. nmi_exit();
  450. #ifdef CONFIG_X86_64
  451. if (unlikely(this_cpu_read(update_debug_stack))) {
  452. debug_stack_reset();
  453. this_cpu_write(update_debug_stack, 0);
  454. }
  455. #endif
  456. if (unlikely(this_cpu_read(nmi_cr2) != read_cr2()))
  457. write_cr2(this_cpu_read(nmi_cr2));
  458. if (this_cpu_dec_return(nmi_state))
  459. goto nmi_restart;
  460. }
  461. NOKPROBE_SYMBOL(do_nmi);
  462. void stop_nmi(void)
  463. {
  464. ignore_nmis++;
  465. }
  466. void restart_nmi(void)
  467. {
  468. ignore_nmis--;
  469. }
  470. /* reset the back-to-back NMI logic */
  471. void local_touch_nmi(void)
  472. {
  473. __this_cpu_write(last_nmi_rip, 0);
  474. }
  475. EXPORT_SYMBOL_GPL(local_touch_nmi);