hpet.c 32 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364
  1. #include <linux/clocksource.h>
  2. #include <linux/clockchips.h>
  3. #include <linux/interrupt.h>
  4. #include <linux/irq.h>
  5. #include <linux/export.h>
  6. #include <linux/delay.h>
  7. #include <linux/errno.h>
  8. #include <linux/i8253.h>
  9. #include <linux/slab.h>
  10. #include <linux/hpet.h>
  11. #include <linux/init.h>
  12. #include <linux/cpu.h>
  13. #include <linux/pm.h>
  14. #include <linux/io.h>
  15. #include <asm/cpufeature.h>
  16. #include <asm/irqdomain.h>
  17. #include <asm/fixmap.h>
  18. #include <asm/hpet.h>
  19. #include <asm/time.h>
  20. #define HPET_MASK CLOCKSOURCE_MASK(32)
  21. /* FSEC = 10^-15
  22. NSEC = 10^-9 */
  23. #define FSEC_PER_NSEC 1000000L
  24. #define HPET_DEV_USED_BIT 2
  25. #define HPET_DEV_USED (1 << HPET_DEV_USED_BIT)
  26. #define HPET_DEV_VALID 0x8
  27. #define HPET_DEV_FSB_CAP 0x1000
  28. #define HPET_DEV_PERI_CAP 0x2000
  29. #define HPET_MIN_CYCLES 128
  30. #define HPET_MIN_PROG_DELTA (HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
  31. /*
  32. * HPET address is set in acpi/boot.c, when an ACPI entry exists
  33. */
  34. unsigned long hpet_address;
  35. u8 hpet_blockid; /* OS timer block num */
  36. bool hpet_msi_disable;
  37. #ifdef CONFIG_PCI_MSI
  38. static unsigned int hpet_num_timers;
  39. #endif
  40. static void __iomem *hpet_virt_address;
  41. struct hpet_dev {
  42. struct clock_event_device evt;
  43. unsigned int num;
  44. int cpu;
  45. unsigned int irq;
  46. unsigned int flags;
  47. char name[10];
  48. };
  49. static inline struct hpet_dev *EVT_TO_HPET_DEV(struct clock_event_device *evtdev)
  50. {
  51. return container_of(evtdev, struct hpet_dev, evt);
  52. }
  53. inline unsigned int hpet_readl(unsigned int a)
  54. {
  55. return readl(hpet_virt_address + a);
  56. }
  57. static inline void hpet_writel(unsigned int d, unsigned int a)
  58. {
  59. writel(d, hpet_virt_address + a);
  60. }
  61. #ifdef CONFIG_X86_64
  62. #include <asm/pgtable.h>
  63. #endif
  64. static inline void hpet_set_mapping(void)
  65. {
  66. hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
  67. }
  68. static inline void hpet_clear_mapping(void)
  69. {
  70. iounmap(hpet_virt_address);
  71. hpet_virt_address = NULL;
  72. }
  73. /*
  74. * HPET command line enable / disable
  75. */
  76. bool boot_hpet_disable;
  77. bool hpet_force_user;
  78. static bool hpet_verbose;
  79. static int __init hpet_setup(char *str)
  80. {
  81. while (str) {
  82. char *next = strchr(str, ',');
  83. if (next)
  84. *next++ = 0;
  85. if (!strncmp("disable", str, 7))
  86. boot_hpet_disable = true;
  87. if (!strncmp("force", str, 5))
  88. hpet_force_user = true;
  89. if (!strncmp("verbose", str, 7))
  90. hpet_verbose = true;
  91. str = next;
  92. }
  93. return 1;
  94. }
  95. __setup("hpet=", hpet_setup);
  96. static int __init disable_hpet(char *str)
  97. {
  98. boot_hpet_disable = true;
  99. return 1;
  100. }
  101. __setup("nohpet", disable_hpet);
  102. static inline int is_hpet_capable(void)
  103. {
  104. return !boot_hpet_disable && hpet_address;
  105. }
  106. /*
  107. * HPET timer interrupt enable / disable
  108. */
  109. static bool hpet_legacy_int_enabled;
  110. /**
  111. * is_hpet_enabled - check whether the hpet timer interrupt is enabled
  112. */
  113. int is_hpet_enabled(void)
  114. {
  115. return is_hpet_capable() && hpet_legacy_int_enabled;
  116. }
  117. EXPORT_SYMBOL_GPL(is_hpet_enabled);
  118. static void _hpet_print_config(const char *function, int line)
  119. {
  120. u32 i, timers, l, h;
  121. printk(KERN_INFO "hpet: %s(%d):\n", function, line);
  122. l = hpet_readl(HPET_ID);
  123. h = hpet_readl(HPET_PERIOD);
  124. timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
  125. printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
  126. l = hpet_readl(HPET_CFG);
  127. h = hpet_readl(HPET_STATUS);
  128. printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
  129. l = hpet_readl(HPET_COUNTER);
  130. h = hpet_readl(HPET_COUNTER+4);
  131. printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
  132. for (i = 0; i < timers; i++) {
  133. l = hpet_readl(HPET_Tn_CFG(i));
  134. h = hpet_readl(HPET_Tn_CFG(i)+4);
  135. printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
  136. i, l, h);
  137. l = hpet_readl(HPET_Tn_CMP(i));
  138. h = hpet_readl(HPET_Tn_CMP(i)+4);
  139. printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
  140. i, l, h);
  141. l = hpet_readl(HPET_Tn_ROUTE(i));
  142. h = hpet_readl(HPET_Tn_ROUTE(i)+4);
  143. printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
  144. i, l, h);
  145. }
  146. }
  147. #define hpet_print_config() \
  148. do { \
  149. if (hpet_verbose) \
  150. _hpet_print_config(__func__, __LINE__); \
  151. } while (0)
  152. /*
  153. * When the hpet driver (/dev/hpet) is enabled, we need to reserve
  154. * timer 0 and timer 1 in case of RTC emulation.
  155. */
  156. #ifdef CONFIG_HPET
  157. static void hpet_reserve_msi_timers(struct hpet_data *hd);
  158. static void hpet_reserve_platform_timers(unsigned int id)
  159. {
  160. struct hpet __iomem *hpet = hpet_virt_address;
  161. struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
  162. unsigned int nrtimers, i;
  163. struct hpet_data hd;
  164. nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
  165. memset(&hd, 0, sizeof(hd));
  166. hd.hd_phys_address = hpet_address;
  167. hd.hd_address = hpet;
  168. hd.hd_nirqs = nrtimers;
  169. hpet_reserve_timer(&hd, 0);
  170. #ifdef CONFIG_HPET_EMULATE_RTC
  171. hpet_reserve_timer(&hd, 1);
  172. #endif
  173. /*
  174. * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
  175. * is wrong for i8259!) not the output IRQ. Many BIOS writers
  176. * don't bother configuring *any* comparator interrupts.
  177. */
  178. hd.hd_irq[0] = HPET_LEGACY_8254;
  179. hd.hd_irq[1] = HPET_LEGACY_RTC;
  180. for (i = 2; i < nrtimers; timer++, i++) {
  181. hd.hd_irq[i] = (readl(&timer->hpet_config) &
  182. Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
  183. }
  184. hpet_reserve_msi_timers(&hd);
  185. hpet_alloc(&hd);
  186. }
  187. #else
  188. static void hpet_reserve_platform_timers(unsigned int id) { }
  189. #endif
  190. /*
  191. * Common hpet info
  192. */
  193. static unsigned long hpet_freq;
  194. static struct clock_event_device hpet_clockevent;
  195. static void hpet_stop_counter(void)
  196. {
  197. u32 cfg = hpet_readl(HPET_CFG);
  198. cfg &= ~HPET_CFG_ENABLE;
  199. hpet_writel(cfg, HPET_CFG);
  200. }
  201. static void hpet_reset_counter(void)
  202. {
  203. hpet_writel(0, HPET_COUNTER);
  204. hpet_writel(0, HPET_COUNTER + 4);
  205. }
  206. static void hpet_start_counter(void)
  207. {
  208. unsigned int cfg = hpet_readl(HPET_CFG);
  209. cfg |= HPET_CFG_ENABLE;
  210. hpet_writel(cfg, HPET_CFG);
  211. }
  212. static void hpet_restart_counter(void)
  213. {
  214. hpet_stop_counter();
  215. hpet_reset_counter();
  216. hpet_start_counter();
  217. }
  218. static void hpet_resume_device(void)
  219. {
  220. force_hpet_resume();
  221. }
  222. static void hpet_resume_counter(struct clocksource *cs)
  223. {
  224. hpet_resume_device();
  225. hpet_restart_counter();
  226. }
  227. static void hpet_enable_legacy_int(void)
  228. {
  229. unsigned int cfg = hpet_readl(HPET_CFG);
  230. cfg |= HPET_CFG_LEGACY;
  231. hpet_writel(cfg, HPET_CFG);
  232. hpet_legacy_int_enabled = true;
  233. }
  234. static void hpet_legacy_clockevent_register(void)
  235. {
  236. /* Start HPET legacy interrupts */
  237. hpet_enable_legacy_int();
  238. /*
  239. * Start hpet with the boot cpu mask and make it
  240. * global after the IO_APIC has been initialized.
  241. */
  242. hpet_clockevent.cpumask = cpumask_of(boot_cpu_data.cpu_index);
  243. clockevents_config_and_register(&hpet_clockevent, hpet_freq,
  244. HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
  245. global_clock_event = &hpet_clockevent;
  246. printk(KERN_DEBUG "hpet clockevent registered\n");
  247. }
  248. static int hpet_set_periodic(struct clock_event_device *evt, int timer)
  249. {
  250. unsigned int cfg, cmp, now;
  251. uint64_t delta;
  252. hpet_stop_counter();
  253. delta = ((uint64_t)(NSEC_PER_SEC / HZ)) * evt->mult;
  254. delta >>= evt->shift;
  255. now = hpet_readl(HPET_COUNTER);
  256. cmp = now + (unsigned int)delta;
  257. cfg = hpet_readl(HPET_Tn_CFG(timer));
  258. cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
  259. HPET_TN_32BIT;
  260. hpet_writel(cfg, HPET_Tn_CFG(timer));
  261. hpet_writel(cmp, HPET_Tn_CMP(timer));
  262. udelay(1);
  263. /*
  264. * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
  265. * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
  266. * bit is automatically cleared after the first write.
  267. * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
  268. * Publication # 24674)
  269. */
  270. hpet_writel((unsigned int)delta, HPET_Tn_CMP(timer));
  271. hpet_start_counter();
  272. hpet_print_config();
  273. return 0;
  274. }
  275. static int hpet_set_oneshot(struct clock_event_device *evt, int timer)
  276. {
  277. unsigned int cfg;
  278. cfg = hpet_readl(HPET_Tn_CFG(timer));
  279. cfg &= ~HPET_TN_PERIODIC;
  280. cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
  281. hpet_writel(cfg, HPET_Tn_CFG(timer));
  282. return 0;
  283. }
  284. static int hpet_shutdown(struct clock_event_device *evt, int timer)
  285. {
  286. unsigned int cfg;
  287. cfg = hpet_readl(HPET_Tn_CFG(timer));
  288. cfg &= ~HPET_TN_ENABLE;
  289. hpet_writel(cfg, HPET_Tn_CFG(timer));
  290. return 0;
  291. }
  292. static int hpet_resume(struct clock_event_device *evt)
  293. {
  294. hpet_enable_legacy_int();
  295. hpet_print_config();
  296. return 0;
  297. }
  298. static int hpet_next_event(unsigned long delta,
  299. struct clock_event_device *evt, int timer)
  300. {
  301. u32 cnt;
  302. s32 res;
  303. cnt = hpet_readl(HPET_COUNTER);
  304. cnt += (u32) delta;
  305. hpet_writel(cnt, HPET_Tn_CMP(timer));
  306. /*
  307. * HPETs are a complete disaster. The compare register is
  308. * based on a equal comparison and neither provides a less
  309. * than or equal functionality (which would require to take
  310. * the wraparound into account) nor a simple count down event
  311. * mode. Further the write to the comparator register is
  312. * delayed internally up to two HPET clock cycles in certain
  313. * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
  314. * longer delays. We worked around that by reading back the
  315. * compare register, but that required another workaround for
  316. * ICH9,10 chips where the first readout after write can
  317. * return the old stale value. We already had a minimum
  318. * programming delta of 5us enforced, but a NMI or SMI hitting
  319. * between the counter readout and the comparator write can
  320. * move us behind that point easily. Now instead of reading
  321. * the compare register back several times, we make the ETIME
  322. * decision based on the following: Return ETIME if the
  323. * counter value after the write is less than HPET_MIN_CYCLES
  324. * away from the event or if the counter is already ahead of
  325. * the event. The minimum programming delta for the generic
  326. * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
  327. */
  328. res = (s32)(cnt - hpet_readl(HPET_COUNTER));
  329. return res < HPET_MIN_CYCLES ? -ETIME : 0;
  330. }
  331. static int hpet_legacy_shutdown(struct clock_event_device *evt)
  332. {
  333. return hpet_shutdown(evt, 0);
  334. }
  335. static int hpet_legacy_set_oneshot(struct clock_event_device *evt)
  336. {
  337. return hpet_set_oneshot(evt, 0);
  338. }
  339. static int hpet_legacy_set_periodic(struct clock_event_device *evt)
  340. {
  341. return hpet_set_periodic(evt, 0);
  342. }
  343. static int hpet_legacy_resume(struct clock_event_device *evt)
  344. {
  345. return hpet_resume(evt);
  346. }
  347. static int hpet_legacy_next_event(unsigned long delta,
  348. struct clock_event_device *evt)
  349. {
  350. return hpet_next_event(delta, evt, 0);
  351. }
  352. /*
  353. * The hpet clock event device
  354. */
  355. static struct clock_event_device hpet_clockevent = {
  356. .name = "hpet",
  357. .features = CLOCK_EVT_FEAT_PERIODIC |
  358. CLOCK_EVT_FEAT_ONESHOT,
  359. .set_state_periodic = hpet_legacy_set_periodic,
  360. .set_state_oneshot = hpet_legacy_set_oneshot,
  361. .set_state_shutdown = hpet_legacy_shutdown,
  362. .tick_resume = hpet_legacy_resume,
  363. .set_next_event = hpet_legacy_next_event,
  364. .irq = 0,
  365. .rating = 50,
  366. };
  367. /*
  368. * HPET MSI Support
  369. */
  370. #ifdef CONFIG_PCI_MSI
  371. static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
  372. static struct hpet_dev *hpet_devs;
  373. static struct irq_domain *hpet_domain;
  374. void hpet_msi_unmask(struct irq_data *data)
  375. {
  376. struct hpet_dev *hdev = irq_data_get_irq_handler_data(data);
  377. unsigned int cfg;
  378. /* unmask it */
  379. cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
  380. cfg |= HPET_TN_ENABLE | HPET_TN_FSB;
  381. hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
  382. }
  383. void hpet_msi_mask(struct irq_data *data)
  384. {
  385. struct hpet_dev *hdev = irq_data_get_irq_handler_data(data);
  386. unsigned int cfg;
  387. /* mask it */
  388. cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
  389. cfg &= ~(HPET_TN_ENABLE | HPET_TN_FSB);
  390. hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
  391. }
  392. void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg)
  393. {
  394. hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
  395. hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
  396. }
  397. void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg)
  398. {
  399. msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
  400. msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
  401. msg->address_hi = 0;
  402. }
  403. static int hpet_msi_shutdown(struct clock_event_device *evt)
  404. {
  405. struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
  406. return hpet_shutdown(evt, hdev->num);
  407. }
  408. static int hpet_msi_set_oneshot(struct clock_event_device *evt)
  409. {
  410. struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
  411. return hpet_set_oneshot(evt, hdev->num);
  412. }
  413. static int hpet_msi_set_periodic(struct clock_event_device *evt)
  414. {
  415. struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
  416. return hpet_set_periodic(evt, hdev->num);
  417. }
  418. static int hpet_msi_resume(struct clock_event_device *evt)
  419. {
  420. struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
  421. struct irq_data *data = irq_get_irq_data(hdev->irq);
  422. struct msi_msg msg;
  423. /* Restore the MSI msg and unmask the interrupt */
  424. irq_chip_compose_msi_msg(data, &msg);
  425. hpet_msi_write(hdev, &msg);
  426. hpet_msi_unmask(data);
  427. return 0;
  428. }
  429. static int hpet_msi_next_event(unsigned long delta,
  430. struct clock_event_device *evt)
  431. {
  432. struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
  433. return hpet_next_event(delta, evt, hdev->num);
  434. }
  435. static irqreturn_t hpet_interrupt_handler(int irq, void *data)
  436. {
  437. struct hpet_dev *dev = (struct hpet_dev *)data;
  438. struct clock_event_device *hevt = &dev->evt;
  439. if (!hevt->event_handler) {
  440. printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
  441. dev->num);
  442. return IRQ_HANDLED;
  443. }
  444. hevt->event_handler(hevt);
  445. return IRQ_HANDLED;
  446. }
  447. static int hpet_setup_irq(struct hpet_dev *dev)
  448. {
  449. if (request_irq(dev->irq, hpet_interrupt_handler,
  450. IRQF_TIMER | IRQF_NOBALANCING,
  451. dev->name, dev))
  452. return -1;
  453. disable_irq(dev->irq);
  454. irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
  455. enable_irq(dev->irq);
  456. printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
  457. dev->name, dev->irq);
  458. return 0;
  459. }
  460. /* This should be called in specific @cpu */
  461. static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
  462. {
  463. struct clock_event_device *evt = &hdev->evt;
  464. WARN_ON(cpu != smp_processor_id());
  465. if (!(hdev->flags & HPET_DEV_VALID))
  466. return;
  467. hdev->cpu = cpu;
  468. per_cpu(cpu_hpet_dev, cpu) = hdev;
  469. evt->name = hdev->name;
  470. hpet_setup_irq(hdev);
  471. evt->irq = hdev->irq;
  472. evt->rating = 110;
  473. evt->features = CLOCK_EVT_FEAT_ONESHOT;
  474. if (hdev->flags & HPET_DEV_PERI_CAP) {
  475. evt->features |= CLOCK_EVT_FEAT_PERIODIC;
  476. evt->set_state_periodic = hpet_msi_set_periodic;
  477. }
  478. evt->set_state_shutdown = hpet_msi_shutdown;
  479. evt->set_state_oneshot = hpet_msi_set_oneshot;
  480. evt->tick_resume = hpet_msi_resume;
  481. evt->set_next_event = hpet_msi_next_event;
  482. evt->cpumask = cpumask_of(hdev->cpu);
  483. clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
  484. 0x7FFFFFFF);
  485. }
  486. #ifdef CONFIG_HPET
  487. /* Reserve at least one timer for userspace (/dev/hpet) */
  488. #define RESERVE_TIMERS 1
  489. #else
  490. #define RESERVE_TIMERS 0
  491. #endif
  492. static void hpet_msi_capability_lookup(unsigned int start_timer)
  493. {
  494. unsigned int id;
  495. unsigned int num_timers;
  496. unsigned int num_timers_used = 0;
  497. int i, irq;
  498. if (hpet_msi_disable)
  499. return;
  500. if (boot_cpu_has(X86_FEATURE_ARAT))
  501. return;
  502. id = hpet_readl(HPET_ID);
  503. num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
  504. num_timers++; /* Value read out starts from 0 */
  505. hpet_print_config();
  506. hpet_domain = hpet_create_irq_domain(hpet_blockid);
  507. if (!hpet_domain)
  508. return;
  509. hpet_devs = kcalloc(num_timers, sizeof(struct hpet_dev), GFP_KERNEL);
  510. if (!hpet_devs)
  511. return;
  512. hpet_num_timers = num_timers;
  513. for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
  514. struct hpet_dev *hdev = &hpet_devs[num_timers_used];
  515. unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
  516. /* Only consider HPET timer with MSI support */
  517. if (!(cfg & HPET_TN_FSB_CAP))
  518. continue;
  519. hdev->flags = 0;
  520. if (cfg & HPET_TN_PERIODIC_CAP)
  521. hdev->flags |= HPET_DEV_PERI_CAP;
  522. sprintf(hdev->name, "hpet%d", i);
  523. hdev->num = i;
  524. irq = hpet_assign_irq(hpet_domain, hdev, hdev->num);
  525. if (irq <= 0)
  526. continue;
  527. hdev->irq = irq;
  528. hdev->flags |= HPET_DEV_FSB_CAP;
  529. hdev->flags |= HPET_DEV_VALID;
  530. num_timers_used++;
  531. if (num_timers_used == num_possible_cpus())
  532. break;
  533. }
  534. printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
  535. num_timers, num_timers_used);
  536. }
  537. #ifdef CONFIG_HPET
  538. static void hpet_reserve_msi_timers(struct hpet_data *hd)
  539. {
  540. int i;
  541. if (!hpet_devs)
  542. return;
  543. for (i = 0; i < hpet_num_timers; i++) {
  544. struct hpet_dev *hdev = &hpet_devs[i];
  545. if (!(hdev->flags & HPET_DEV_VALID))
  546. continue;
  547. hd->hd_irq[hdev->num] = hdev->irq;
  548. hpet_reserve_timer(hd, hdev->num);
  549. }
  550. }
  551. #endif
  552. static struct hpet_dev *hpet_get_unused_timer(void)
  553. {
  554. int i;
  555. if (!hpet_devs)
  556. return NULL;
  557. for (i = 0; i < hpet_num_timers; i++) {
  558. struct hpet_dev *hdev = &hpet_devs[i];
  559. if (!(hdev->flags & HPET_DEV_VALID))
  560. continue;
  561. if (test_and_set_bit(HPET_DEV_USED_BIT,
  562. (unsigned long *)&hdev->flags))
  563. continue;
  564. return hdev;
  565. }
  566. return NULL;
  567. }
  568. struct hpet_work_struct {
  569. struct delayed_work work;
  570. struct completion complete;
  571. };
  572. static void hpet_work(struct work_struct *w)
  573. {
  574. struct hpet_dev *hdev;
  575. int cpu = smp_processor_id();
  576. struct hpet_work_struct *hpet_work;
  577. hpet_work = container_of(w, struct hpet_work_struct, work.work);
  578. hdev = hpet_get_unused_timer();
  579. if (hdev)
  580. init_one_hpet_msi_clockevent(hdev, cpu);
  581. complete(&hpet_work->complete);
  582. }
  583. static int hpet_cpuhp_online(unsigned int cpu)
  584. {
  585. struct hpet_work_struct work;
  586. INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work);
  587. init_completion(&work.complete);
  588. /* FIXME: add schedule_work_on() */
  589. schedule_delayed_work_on(cpu, &work.work, 0);
  590. wait_for_completion(&work.complete);
  591. destroy_delayed_work_on_stack(&work.work);
  592. return 0;
  593. }
  594. static int hpet_cpuhp_dead(unsigned int cpu)
  595. {
  596. struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
  597. if (!hdev)
  598. return 0;
  599. free_irq(hdev->irq, hdev);
  600. hdev->flags &= ~HPET_DEV_USED;
  601. per_cpu(cpu_hpet_dev, cpu) = NULL;
  602. return 0;
  603. }
  604. #else
  605. static void hpet_msi_capability_lookup(unsigned int start_timer)
  606. {
  607. return;
  608. }
  609. #ifdef CONFIG_HPET
  610. static void hpet_reserve_msi_timers(struct hpet_data *hd)
  611. {
  612. return;
  613. }
  614. #endif
  615. #define hpet_cpuhp_online NULL
  616. #define hpet_cpuhp_dead NULL
  617. #endif
  618. /*
  619. * Clock source related code
  620. */
  621. #if defined(CONFIG_SMP) && defined(CONFIG_64BIT)
  622. /*
  623. * Reading the HPET counter is a very slow operation. If a large number of
  624. * CPUs are trying to access the HPET counter simultaneously, it can cause
  625. * massive delay and slow down system performance dramatically. This may
  626. * happen when HPET is the default clock source instead of TSC. For a
  627. * really large system with hundreds of CPUs, the slowdown may be so
  628. * severe that it may actually crash the system because of a NMI watchdog
  629. * soft lockup, for example.
  630. *
  631. * If multiple CPUs are trying to access the HPET counter at the same time,
  632. * we don't actually need to read the counter multiple times. Instead, the
  633. * other CPUs can use the counter value read by the first CPU in the group.
  634. *
  635. * This special feature is only enabled on x86-64 systems. It is unlikely
  636. * that 32-bit x86 systems will have enough CPUs to require this feature
  637. * with its associated locking overhead. And we also need 64-bit atomic
  638. * read.
  639. *
  640. * The lock and the hpet value are stored together and can be read in a
  641. * single atomic 64-bit read. It is explicitly assumed that arch_spinlock_t
  642. * is 32 bits in size.
  643. */
  644. union hpet_lock {
  645. struct {
  646. arch_spinlock_t lock;
  647. u32 value;
  648. };
  649. u64 lockval;
  650. };
  651. static union hpet_lock hpet __cacheline_aligned = {
  652. { .lock = __ARCH_SPIN_LOCK_UNLOCKED, },
  653. };
  654. static u64 read_hpet(struct clocksource *cs)
  655. {
  656. unsigned long flags;
  657. union hpet_lock old, new;
  658. BUILD_BUG_ON(sizeof(union hpet_lock) != 8);
  659. /*
  660. * Read HPET directly if in NMI.
  661. */
  662. if (in_nmi())
  663. return (u64)hpet_readl(HPET_COUNTER);
  664. /*
  665. * Read the current state of the lock and HPET value atomically.
  666. */
  667. old.lockval = READ_ONCE(hpet.lockval);
  668. if (arch_spin_is_locked(&old.lock))
  669. goto contended;
  670. local_irq_save(flags);
  671. if (arch_spin_trylock(&hpet.lock)) {
  672. new.value = hpet_readl(HPET_COUNTER);
  673. /*
  674. * Use WRITE_ONCE() to prevent store tearing.
  675. */
  676. WRITE_ONCE(hpet.value, new.value);
  677. arch_spin_unlock(&hpet.lock);
  678. local_irq_restore(flags);
  679. return (u64)new.value;
  680. }
  681. local_irq_restore(flags);
  682. contended:
  683. /*
  684. * Contended case
  685. * --------------
  686. * Wait until the HPET value change or the lock is free to indicate
  687. * its value is up-to-date.
  688. *
  689. * It is possible that old.value has already contained the latest
  690. * HPET value while the lock holder was in the process of releasing
  691. * the lock. Checking for lock state change will enable us to return
  692. * the value immediately instead of waiting for the next HPET reader
  693. * to come along.
  694. */
  695. do {
  696. cpu_relax();
  697. new.lockval = READ_ONCE(hpet.lockval);
  698. } while ((new.value == old.value) && arch_spin_is_locked(&new.lock));
  699. return (u64)new.value;
  700. }
  701. #else
  702. /*
  703. * For UP or 32-bit.
  704. */
  705. static u64 read_hpet(struct clocksource *cs)
  706. {
  707. return (u64)hpet_readl(HPET_COUNTER);
  708. }
  709. #endif
  710. static struct clocksource clocksource_hpet = {
  711. .name = "hpet",
  712. .rating = 250,
  713. .read = read_hpet,
  714. .mask = HPET_MASK,
  715. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  716. .resume = hpet_resume_counter,
  717. };
  718. static int hpet_clocksource_register(void)
  719. {
  720. u64 start, now;
  721. u64 t1;
  722. /* Start the counter */
  723. hpet_restart_counter();
  724. /* Verify whether hpet counter works */
  725. t1 = hpet_readl(HPET_COUNTER);
  726. start = rdtsc();
  727. /*
  728. * We don't know the TSC frequency yet, but waiting for
  729. * 200000 TSC cycles is safe:
  730. * 4 GHz == 50us
  731. * 1 GHz == 200us
  732. */
  733. do {
  734. rep_nop();
  735. now = rdtsc();
  736. } while ((now - start) < 200000UL);
  737. if (t1 == hpet_readl(HPET_COUNTER)) {
  738. printk(KERN_WARNING
  739. "HPET counter not counting. HPET disabled\n");
  740. return -ENODEV;
  741. }
  742. clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
  743. return 0;
  744. }
  745. static u32 *hpet_boot_cfg;
  746. /**
  747. * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
  748. */
  749. int __init hpet_enable(void)
  750. {
  751. u32 hpet_period, cfg, id;
  752. u64 freq;
  753. unsigned int i, last;
  754. if (!is_hpet_capable())
  755. return 0;
  756. hpet_set_mapping();
  757. /*
  758. * Read the period and check for a sane value:
  759. */
  760. hpet_period = hpet_readl(HPET_PERIOD);
  761. /*
  762. * AMD SB700 based systems with spread spectrum enabled use a
  763. * SMM based HPET emulation to provide proper frequency
  764. * setting. The SMM code is initialized with the first HPET
  765. * register access and takes some time to complete. During
  766. * this time the config register reads 0xffffffff. We check
  767. * for max. 1000 loops whether the config register reads a non
  768. * 0xffffffff value to make sure that HPET is up and running
  769. * before we go further. A counting loop is safe, as the HPET
  770. * access takes thousands of CPU cycles. On non SB700 based
  771. * machines this check is only done once and has no side
  772. * effects.
  773. */
  774. for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
  775. if (i == 1000) {
  776. printk(KERN_WARNING
  777. "HPET config register value = 0xFFFFFFFF. "
  778. "Disabling HPET\n");
  779. goto out_nohpet;
  780. }
  781. }
  782. if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
  783. goto out_nohpet;
  784. /*
  785. * The period is a femto seconds value. Convert it to a
  786. * frequency.
  787. */
  788. freq = FSEC_PER_SEC;
  789. do_div(freq, hpet_period);
  790. hpet_freq = freq;
  791. /*
  792. * Read the HPET ID register to retrieve the IRQ routing
  793. * information and the number of channels
  794. */
  795. id = hpet_readl(HPET_ID);
  796. hpet_print_config();
  797. last = (id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;
  798. #ifdef CONFIG_HPET_EMULATE_RTC
  799. /*
  800. * The legacy routing mode needs at least two channels, tick timer
  801. * and the rtc emulation channel.
  802. */
  803. if (!last)
  804. goto out_nohpet;
  805. #endif
  806. cfg = hpet_readl(HPET_CFG);
  807. hpet_boot_cfg = kmalloc_array(last + 2, sizeof(*hpet_boot_cfg),
  808. GFP_KERNEL);
  809. if (hpet_boot_cfg)
  810. *hpet_boot_cfg = cfg;
  811. else
  812. pr_warn("HPET initial state will not be saved\n");
  813. cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
  814. hpet_writel(cfg, HPET_CFG);
  815. if (cfg)
  816. pr_warn("Unrecognized bits %#x set in global cfg\n", cfg);
  817. for (i = 0; i <= last; ++i) {
  818. cfg = hpet_readl(HPET_Tn_CFG(i));
  819. if (hpet_boot_cfg)
  820. hpet_boot_cfg[i + 1] = cfg;
  821. cfg &= ~(HPET_TN_ENABLE | HPET_TN_LEVEL | HPET_TN_FSB);
  822. hpet_writel(cfg, HPET_Tn_CFG(i));
  823. cfg &= ~(HPET_TN_PERIODIC | HPET_TN_PERIODIC_CAP
  824. | HPET_TN_64BIT_CAP | HPET_TN_32BIT | HPET_TN_ROUTE
  825. | HPET_TN_FSB | HPET_TN_FSB_CAP);
  826. if (cfg)
  827. pr_warn("Unrecognized bits %#x set in cfg#%u\n",
  828. cfg, i);
  829. }
  830. hpet_print_config();
  831. if (hpet_clocksource_register())
  832. goto out_nohpet;
  833. if (id & HPET_ID_LEGSUP) {
  834. hpet_legacy_clockevent_register();
  835. return 1;
  836. }
  837. return 0;
  838. out_nohpet:
  839. hpet_clear_mapping();
  840. hpet_address = 0;
  841. return 0;
  842. }
  843. /*
  844. * Needs to be late, as the reserve_timer code calls kalloc !
  845. *
  846. * Not a problem on i386 as hpet_enable is called from late_time_init,
  847. * but on x86_64 it is necessary !
  848. */
  849. static __init int hpet_late_init(void)
  850. {
  851. int ret;
  852. if (boot_hpet_disable)
  853. return -ENODEV;
  854. if (!hpet_address) {
  855. if (!force_hpet_address)
  856. return -ENODEV;
  857. hpet_address = force_hpet_address;
  858. hpet_enable();
  859. }
  860. if (!hpet_virt_address)
  861. return -ENODEV;
  862. if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
  863. hpet_msi_capability_lookup(2);
  864. else
  865. hpet_msi_capability_lookup(0);
  866. hpet_reserve_platform_timers(hpet_readl(HPET_ID));
  867. hpet_print_config();
  868. if (hpet_msi_disable)
  869. return 0;
  870. if (boot_cpu_has(X86_FEATURE_ARAT))
  871. return 0;
  872. /* This notifier should be called after workqueue is ready */
  873. ret = cpuhp_setup_state(CPUHP_AP_X86_HPET_ONLINE, "x86/hpet:online",
  874. hpet_cpuhp_online, NULL);
  875. if (ret)
  876. return ret;
  877. ret = cpuhp_setup_state(CPUHP_X86_HPET_DEAD, "x86/hpet:dead", NULL,
  878. hpet_cpuhp_dead);
  879. if (ret)
  880. goto err_cpuhp;
  881. return 0;
  882. err_cpuhp:
  883. cpuhp_remove_state(CPUHP_AP_X86_HPET_ONLINE);
  884. return ret;
  885. }
  886. fs_initcall(hpet_late_init);
  887. void hpet_disable(void)
  888. {
  889. if (is_hpet_capable() && hpet_virt_address) {
  890. unsigned int cfg = hpet_readl(HPET_CFG), id, last;
  891. if (hpet_boot_cfg)
  892. cfg = *hpet_boot_cfg;
  893. else if (hpet_legacy_int_enabled) {
  894. cfg &= ~HPET_CFG_LEGACY;
  895. hpet_legacy_int_enabled = false;
  896. }
  897. cfg &= ~HPET_CFG_ENABLE;
  898. hpet_writel(cfg, HPET_CFG);
  899. if (!hpet_boot_cfg)
  900. return;
  901. id = hpet_readl(HPET_ID);
  902. last = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
  903. for (id = 0; id <= last; ++id)
  904. hpet_writel(hpet_boot_cfg[id + 1], HPET_Tn_CFG(id));
  905. if (*hpet_boot_cfg & HPET_CFG_ENABLE)
  906. hpet_writel(*hpet_boot_cfg, HPET_CFG);
  907. }
  908. }
  909. #ifdef CONFIG_HPET_EMULATE_RTC
  910. /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
  911. * is enabled, we support RTC interrupt functionality in software.
  912. * RTC has 3 kinds of interrupts:
  913. * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
  914. * is updated
  915. * 2) Alarm Interrupt - generate an interrupt at a specific time of day
  916. * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
  917. * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
  918. * (1) and (2) above are implemented using polling at a frequency of
  919. * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
  920. * overhead. (DEFAULT_RTC_INT_FREQ)
  921. * For (3), we use interrupts at 64Hz or user specified periodic
  922. * frequency, whichever is higher.
  923. */
  924. #include <linux/mc146818rtc.h>
  925. #include <linux/rtc.h>
  926. #define DEFAULT_RTC_INT_FREQ 64
  927. #define DEFAULT_RTC_SHIFT 6
  928. #define RTC_NUM_INTS 1
  929. static unsigned long hpet_rtc_flags;
  930. static int hpet_prev_update_sec;
  931. static struct rtc_time hpet_alarm_time;
  932. static unsigned long hpet_pie_count;
  933. static u32 hpet_t1_cmp;
  934. static u32 hpet_default_delta;
  935. static u32 hpet_pie_delta;
  936. static unsigned long hpet_pie_limit;
  937. static rtc_irq_handler irq_handler;
  938. /*
  939. * Check that the hpet counter c1 is ahead of the c2
  940. */
  941. static inline int hpet_cnt_ahead(u32 c1, u32 c2)
  942. {
  943. return (s32)(c2 - c1) < 0;
  944. }
  945. /*
  946. * Registers a IRQ handler.
  947. */
  948. int hpet_register_irq_handler(rtc_irq_handler handler)
  949. {
  950. if (!is_hpet_enabled())
  951. return -ENODEV;
  952. if (irq_handler)
  953. return -EBUSY;
  954. irq_handler = handler;
  955. return 0;
  956. }
  957. EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
  958. /*
  959. * Deregisters the IRQ handler registered with hpet_register_irq_handler()
  960. * and does cleanup.
  961. */
  962. void hpet_unregister_irq_handler(rtc_irq_handler handler)
  963. {
  964. if (!is_hpet_enabled())
  965. return;
  966. irq_handler = NULL;
  967. hpet_rtc_flags = 0;
  968. }
  969. EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
  970. /*
  971. * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
  972. * is not supported by all HPET implementations for timer 1.
  973. *
  974. * hpet_rtc_timer_init() is called when the rtc is initialized.
  975. */
  976. int hpet_rtc_timer_init(void)
  977. {
  978. unsigned int cfg, cnt, delta;
  979. unsigned long flags;
  980. if (!is_hpet_enabled())
  981. return 0;
  982. if (!hpet_default_delta) {
  983. uint64_t clc;
  984. clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
  985. clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
  986. hpet_default_delta = clc;
  987. }
  988. if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
  989. delta = hpet_default_delta;
  990. else
  991. delta = hpet_pie_delta;
  992. local_irq_save(flags);
  993. cnt = delta + hpet_readl(HPET_COUNTER);
  994. hpet_writel(cnt, HPET_T1_CMP);
  995. hpet_t1_cmp = cnt;
  996. cfg = hpet_readl(HPET_T1_CFG);
  997. cfg &= ~HPET_TN_PERIODIC;
  998. cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
  999. hpet_writel(cfg, HPET_T1_CFG);
  1000. local_irq_restore(flags);
  1001. return 1;
  1002. }
  1003. EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
  1004. static void hpet_disable_rtc_channel(void)
  1005. {
  1006. u32 cfg = hpet_readl(HPET_T1_CFG);
  1007. cfg &= ~HPET_TN_ENABLE;
  1008. hpet_writel(cfg, HPET_T1_CFG);
  1009. }
  1010. /*
  1011. * The functions below are called from rtc driver.
  1012. * Return 0 if HPET is not being used.
  1013. * Otherwise do the necessary changes and return 1.
  1014. */
  1015. int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
  1016. {
  1017. if (!is_hpet_enabled())
  1018. return 0;
  1019. hpet_rtc_flags &= ~bit_mask;
  1020. if (unlikely(!hpet_rtc_flags))
  1021. hpet_disable_rtc_channel();
  1022. return 1;
  1023. }
  1024. EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
  1025. int hpet_set_rtc_irq_bit(unsigned long bit_mask)
  1026. {
  1027. unsigned long oldbits = hpet_rtc_flags;
  1028. if (!is_hpet_enabled())
  1029. return 0;
  1030. hpet_rtc_flags |= bit_mask;
  1031. if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
  1032. hpet_prev_update_sec = -1;
  1033. if (!oldbits)
  1034. hpet_rtc_timer_init();
  1035. return 1;
  1036. }
  1037. EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
  1038. int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
  1039. unsigned char sec)
  1040. {
  1041. if (!is_hpet_enabled())
  1042. return 0;
  1043. hpet_alarm_time.tm_hour = hrs;
  1044. hpet_alarm_time.tm_min = min;
  1045. hpet_alarm_time.tm_sec = sec;
  1046. return 1;
  1047. }
  1048. EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
  1049. int hpet_set_periodic_freq(unsigned long freq)
  1050. {
  1051. uint64_t clc;
  1052. if (!is_hpet_enabled())
  1053. return 0;
  1054. if (freq <= DEFAULT_RTC_INT_FREQ)
  1055. hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
  1056. else {
  1057. clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
  1058. do_div(clc, freq);
  1059. clc >>= hpet_clockevent.shift;
  1060. hpet_pie_delta = clc;
  1061. hpet_pie_limit = 0;
  1062. }
  1063. return 1;
  1064. }
  1065. EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
  1066. int hpet_rtc_dropped_irq(void)
  1067. {
  1068. return is_hpet_enabled();
  1069. }
  1070. EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
  1071. static void hpet_rtc_timer_reinit(void)
  1072. {
  1073. unsigned int delta;
  1074. int lost_ints = -1;
  1075. if (unlikely(!hpet_rtc_flags))
  1076. hpet_disable_rtc_channel();
  1077. if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
  1078. delta = hpet_default_delta;
  1079. else
  1080. delta = hpet_pie_delta;
  1081. /*
  1082. * Increment the comparator value until we are ahead of the
  1083. * current count.
  1084. */
  1085. do {
  1086. hpet_t1_cmp += delta;
  1087. hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
  1088. lost_ints++;
  1089. } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
  1090. if (lost_ints) {
  1091. if (hpet_rtc_flags & RTC_PIE)
  1092. hpet_pie_count += lost_ints;
  1093. if (printk_ratelimit())
  1094. printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
  1095. lost_ints);
  1096. }
  1097. }
  1098. irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
  1099. {
  1100. struct rtc_time curr_time;
  1101. unsigned long rtc_int_flag = 0;
  1102. hpet_rtc_timer_reinit();
  1103. memset(&curr_time, 0, sizeof(struct rtc_time));
  1104. if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
  1105. mc146818_get_time(&curr_time);
  1106. if (hpet_rtc_flags & RTC_UIE &&
  1107. curr_time.tm_sec != hpet_prev_update_sec) {
  1108. if (hpet_prev_update_sec >= 0)
  1109. rtc_int_flag = RTC_UF;
  1110. hpet_prev_update_sec = curr_time.tm_sec;
  1111. }
  1112. if (hpet_rtc_flags & RTC_PIE &&
  1113. ++hpet_pie_count >= hpet_pie_limit) {
  1114. rtc_int_flag |= RTC_PF;
  1115. hpet_pie_count = 0;
  1116. }
  1117. if (hpet_rtc_flags & RTC_AIE &&
  1118. (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
  1119. (curr_time.tm_min == hpet_alarm_time.tm_min) &&
  1120. (curr_time.tm_hour == hpet_alarm_time.tm_hour))
  1121. rtc_int_flag |= RTC_AF;
  1122. if (rtc_int_flag) {
  1123. rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
  1124. if (irq_handler)
  1125. irq_handler(rtc_int_flag, dev_id);
  1126. }
  1127. return IRQ_HANDLED;
  1128. }
  1129. EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
  1130. #endif