gup.c 7.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Lockless get_user_pages_fast for s390
  4. *
  5. * Copyright IBM Corp. 2010
  6. * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
  7. */
  8. #include <linux/sched.h>
  9. #include <linux/mm.h>
  10. #include <linux/hugetlb.h>
  11. #include <linux/vmstat.h>
  12. #include <linux/pagemap.h>
  13. #include <linux/rwsem.h>
  14. #include <asm/pgtable.h>
  15. /*
  16. * The performance critical leaf functions are made noinline otherwise gcc
  17. * inlines everything into a single function which results in too much
  18. * register pressure.
  19. */
  20. static inline int gup_pte_range(pmd_t *pmdp, pmd_t pmd, unsigned long addr,
  21. unsigned long end, int write, struct page **pages, int *nr)
  22. {
  23. struct page *head, *page;
  24. unsigned long mask;
  25. pte_t *ptep, pte;
  26. mask = (write ? _PAGE_PROTECT : 0) | _PAGE_INVALID | _PAGE_SPECIAL;
  27. ptep = ((pte_t *) pmd_deref(pmd)) + pte_index(addr);
  28. do {
  29. pte = *ptep;
  30. barrier();
  31. /* Similar to the PMD case, NUMA hinting must take slow path */
  32. if (pte_protnone(pte))
  33. return 0;
  34. if ((pte_val(pte) & mask) != 0)
  35. return 0;
  36. VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
  37. page = pte_page(pte);
  38. head = compound_head(page);
  39. if (!page_cache_get_speculative(head))
  40. return 0;
  41. if (unlikely(pte_val(pte) != pte_val(*ptep))) {
  42. put_page(head);
  43. return 0;
  44. }
  45. VM_BUG_ON_PAGE(compound_head(page) != head, page);
  46. pages[*nr] = page;
  47. (*nr)++;
  48. } while (ptep++, addr += PAGE_SIZE, addr != end);
  49. return 1;
  50. }
  51. static inline int gup_huge_pmd(pmd_t *pmdp, pmd_t pmd, unsigned long addr,
  52. unsigned long end, int write, struct page **pages, int *nr)
  53. {
  54. struct page *head, *page;
  55. unsigned long mask;
  56. int refs;
  57. mask = (write ? _SEGMENT_ENTRY_PROTECT : 0) | _SEGMENT_ENTRY_INVALID;
  58. if ((pmd_val(pmd) & mask) != 0)
  59. return 0;
  60. VM_BUG_ON(!pfn_valid(pmd_val(pmd) >> PAGE_SHIFT));
  61. refs = 0;
  62. head = pmd_page(pmd);
  63. page = head + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
  64. do {
  65. VM_BUG_ON(compound_head(page) != head);
  66. pages[*nr] = page;
  67. (*nr)++;
  68. page++;
  69. refs++;
  70. } while (addr += PAGE_SIZE, addr != end);
  71. if (!page_cache_add_speculative(head, refs)) {
  72. *nr -= refs;
  73. return 0;
  74. }
  75. if (unlikely(pmd_val(pmd) != pmd_val(*pmdp))) {
  76. *nr -= refs;
  77. while (refs--)
  78. put_page(head);
  79. return 0;
  80. }
  81. return 1;
  82. }
  83. static inline int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr,
  84. unsigned long end, int write, struct page **pages, int *nr)
  85. {
  86. unsigned long next;
  87. pmd_t *pmdp, pmd;
  88. pmdp = (pmd_t *) pudp;
  89. if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
  90. pmdp = (pmd_t *) pud_deref(pud);
  91. pmdp += pmd_index(addr);
  92. do {
  93. pmd = *pmdp;
  94. barrier();
  95. next = pmd_addr_end(addr, end);
  96. if (pmd_none(pmd))
  97. return 0;
  98. if (unlikely(pmd_large(pmd))) {
  99. /*
  100. * NUMA hinting faults need to be handled in the GUP
  101. * slowpath for accounting purposes and so that they
  102. * can be serialised against THP migration.
  103. */
  104. if (pmd_protnone(pmd))
  105. return 0;
  106. if (!gup_huge_pmd(pmdp, pmd, addr, next,
  107. write, pages, nr))
  108. return 0;
  109. } else if (!gup_pte_range(pmdp, pmd, addr, next,
  110. write, pages, nr))
  111. return 0;
  112. } while (pmdp++, addr = next, addr != end);
  113. return 1;
  114. }
  115. static int gup_huge_pud(pud_t *pudp, pud_t pud, unsigned long addr,
  116. unsigned long end, int write, struct page **pages, int *nr)
  117. {
  118. struct page *head, *page;
  119. unsigned long mask;
  120. int refs;
  121. mask = (write ? _REGION_ENTRY_PROTECT : 0) | _REGION_ENTRY_INVALID;
  122. if ((pud_val(pud) & mask) != 0)
  123. return 0;
  124. VM_BUG_ON(!pfn_valid(pud_pfn(pud)));
  125. refs = 0;
  126. head = pud_page(pud);
  127. page = head + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
  128. do {
  129. VM_BUG_ON_PAGE(compound_head(page) != head, page);
  130. pages[*nr] = page;
  131. (*nr)++;
  132. page++;
  133. refs++;
  134. } while (addr += PAGE_SIZE, addr != end);
  135. if (!page_cache_add_speculative(head, refs)) {
  136. *nr -= refs;
  137. return 0;
  138. }
  139. if (unlikely(pud_val(pud) != pud_val(*pudp))) {
  140. *nr -= refs;
  141. while (refs--)
  142. put_page(head);
  143. return 0;
  144. }
  145. return 1;
  146. }
  147. static inline int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr,
  148. unsigned long end, int write, struct page **pages, int *nr)
  149. {
  150. unsigned long next;
  151. pud_t *pudp, pud;
  152. pudp = (pud_t *) p4dp;
  153. if ((p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
  154. pudp = (pud_t *) p4d_deref(p4d);
  155. pudp += pud_index(addr);
  156. do {
  157. pud = *pudp;
  158. barrier();
  159. next = pud_addr_end(addr, end);
  160. if (pud_none(pud))
  161. return 0;
  162. if (unlikely(pud_large(pud))) {
  163. if (!gup_huge_pud(pudp, pud, addr, next, write, pages,
  164. nr))
  165. return 0;
  166. } else if (!gup_pmd_range(pudp, pud, addr, next, write, pages,
  167. nr))
  168. return 0;
  169. } while (pudp++, addr = next, addr != end);
  170. return 1;
  171. }
  172. static inline int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr,
  173. unsigned long end, int write, struct page **pages, int *nr)
  174. {
  175. unsigned long next;
  176. p4d_t *p4dp, p4d;
  177. p4dp = (p4d_t *) pgdp;
  178. if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
  179. p4dp = (p4d_t *) pgd_deref(pgd);
  180. p4dp += p4d_index(addr);
  181. do {
  182. p4d = *p4dp;
  183. barrier();
  184. next = p4d_addr_end(addr, end);
  185. if (p4d_none(p4d))
  186. return 0;
  187. if (!gup_pud_range(p4dp, p4d, addr, next, write, pages, nr))
  188. return 0;
  189. } while (p4dp++, addr = next, addr != end);
  190. return 1;
  191. }
  192. /*
  193. * Like get_user_pages_fast() except its IRQ-safe in that it won't fall
  194. * back to the regular GUP.
  195. * Note a difference with get_user_pages_fast: this always returns the
  196. * number of pages pinned, 0 if no pages were pinned.
  197. */
  198. int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
  199. struct page **pages)
  200. {
  201. struct mm_struct *mm = current->mm;
  202. unsigned long addr, len, end;
  203. unsigned long next, flags;
  204. pgd_t *pgdp, pgd;
  205. int nr = 0;
  206. start &= PAGE_MASK;
  207. addr = start;
  208. len = (unsigned long) nr_pages << PAGE_SHIFT;
  209. end = start + len;
  210. if ((end <= start) || (end > mm->context.asce_limit))
  211. return 0;
  212. /*
  213. * local_irq_save() doesn't prevent pagetable teardown, but does
  214. * prevent the pagetables from being freed on s390.
  215. *
  216. * So long as we atomically load page table pointers versus teardown,
  217. * we can follow the address down to the the page and take a ref on it.
  218. */
  219. local_irq_save(flags);
  220. pgdp = pgd_offset(mm, addr);
  221. do {
  222. pgd = *pgdp;
  223. barrier();
  224. next = pgd_addr_end(addr, end);
  225. if (pgd_none(pgd))
  226. break;
  227. if (!gup_p4d_range(pgdp, pgd, addr, next, write, pages, &nr))
  228. break;
  229. } while (pgdp++, addr = next, addr != end);
  230. local_irq_restore(flags);
  231. return nr;
  232. }
  233. /**
  234. * get_user_pages_fast() - pin user pages in memory
  235. * @start: starting user address
  236. * @nr_pages: number of pages from start to pin
  237. * @write: whether pages will be written to
  238. * @pages: array that receives pointers to the pages pinned.
  239. * Should be at least nr_pages long.
  240. *
  241. * Attempt to pin user pages in memory without taking mm->mmap_sem.
  242. * If not successful, it will fall back to taking the lock and
  243. * calling get_user_pages().
  244. *
  245. * Returns number of pages pinned. This may be fewer than the number
  246. * requested. If nr_pages is 0 or negative, returns 0. If no pages
  247. * were pinned, returns -errno.
  248. */
  249. int get_user_pages_fast(unsigned long start, int nr_pages, int write,
  250. struct page **pages)
  251. {
  252. int nr, ret;
  253. might_sleep();
  254. start &= PAGE_MASK;
  255. nr = __get_user_pages_fast(start, nr_pages, write, pages);
  256. if (nr == nr_pages)
  257. return nr;
  258. /* Try to get the remaining pages with get_user_pages */
  259. start += nr << PAGE_SHIFT;
  260. pages += nr;
  261. ret = get_user_pages_unlocked(start, nr_pages - nr, pages,
  262. write ? FOLL_WRITE : 0);
  263. /* Have to be a bit careful with return values */
  264. if (nr > 0)
  265. ret = (ret < 0) ? nr : ret + nr;
  266. return ret;
  267. }