mmu_context_book3s64.c 5.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253
  1. /*
  2. * MMU context allocation for 64-bit kernels.
  3. *
  4. * Copyright (C) 2004 Anton Blanchard, IBM Corp. <anton@samba.org>
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License
  8. * as published by the Free Software Foundation; either version
  9. * 2 of the License, or (at your option) any later version.
  10. *
  11. */
  12. #include <linux/sched.h>
  13. #include <linux/kernel.h>
  14. #include <linux/errno.h>
  15. #include <linux/string.h>
  16. #include <linux/types.h>
  17. #include <linux/mm.h>
  18. #include <linux/pkeys.h>
  19. #include <linux/spinlock.h>
  20. #include <linux/idr.h>
  21. #include <linux/export.h>
  22. #include <linux/gfp.h>
  23. #include <linux/slab.h>
  24. #include <asm/mmu_context.h>
  25. #include <asm/pgalloc.h>
  26. static DEFINE_IDA(mmu_context_ida);
  27. static int alloc_context_id(int min_id, int max_id)
  28. {
  29. return ida_alloc_range(&mmu_context_ida, min_id, max_id, GFP_KERNEL);
  30. }
  31. void hash__reserve_context_id(int id)
  32. {
  33. int result = ida_alloc_range(&mmu_context_ida, id, id, GFP_KERNEL);
  34. WARN(result != id, "mmu: Failed to reserve context id %d (rc %d)\n", id, result);
  35. }
  36. int hash__alloc_context_id(void)
  37. {
  38. unsigned long max;
  39. if (mmu_has_feature(MMU_FTR_68_BIT_VA))
  40. max = MAX_USER_CONTEXT;
  41. else
  42. max = MAX_USER_CONTEXT_65BIT_VA;
  43. return alloc_context_id(MIN_USER_CONTEXT, max);
  44. }
  45. EXPORT_SYMBOL_GPL(hash__alloc_context_id);
  46. void slb_setup_new_exec(void);
  47. static int hash__init_new_context(struct mm_struct *mm)
  48. {
  49. int index;
  50. index = hash__alloc_context_id();
  51. if (index < 0)
  52. return index;
  53. /*
  54. * The old code would re-promote on fork, we don't do that when using
  55. * slices as it could cause problem promoting slices that have been
  56. * forced down to 4K.
  57. *
  58. * For book3s we have MMU_NO_CONTEXT set to be ~0. Hence check
  59. * explicitly against context.id == 0. This ensures that we properly
  60. * initialize context slice details for newly allocated mm's (which will
  61. * have id == 0) and don't alter context slice inherited via fork (which
  62. * will have id != 0).
  63. *
  64. * We should not be calling init_new_context() on init_mm. Hence a
  65. * check against 0 is OK.
  66. */
  67. if (mm->context.id == 0)
  68. slice_init_new_context_exec(mm);
  69. subpage_prot_init_new_context(mm);
  70. pkey_mm_init(mm);
  71. return index;
  72. }
  73. void hash__setup_new_exec(void)
  74. {
  75. slice_setup_new_exec();
  76. slb_setup_new_exec();
  77. }
  78. static int radix__init_new_context(struct mm_struct *mm)
  79. {
  80. unsigned long rts_field;
  81. int index, max_id;
  82. max_id = (1 << mmu_pid_bits) - 1;
  83. index = alloc_context_id(mmu_base_pid, max_id);
  84. if (index < 0)
  85. return index;
  86. /*
  87. * set the process table entry,
  88. */
  89. rts_field = radix__get_tree_size();
  90. process_tb[index].prtb0 = cpu_to_be64(rts_field | __pa(mm->pgd) | RADIX_PGD_INDEX_SIZE);
  91. /*
  92. * Order the above store with subsequent update of the PID
  93. * register (at which point HW can start loading/caching
  94. * the entry) and the corresponding load by the MMU from
  95. * the L2 cache.
  96. */
  97. asm volatile("ptesync;isync" : : : "memory");
  98. mm->context.npu_context = NULL;
  99. return index;
  100. }
  101. int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
  102. {
  103. int index;
  104. if (radix_enabled())
  105. index = radix__init_new_context(mm);
  106. else
  107. index = hash__init_new_context(mm);
  108. if (index < 0)
  109. return index;
  110. mm->context.id = index;
  111. mm->context.pte_frag = NULL;
  112. mm->context.pmd_frag = NULL;
  113. #ifdef CONFIG_SPAPR_TCE_IOMMU
  114. mm_iommu_init(mm);
  115. #endif
  116. atomic_set(&mm->context.active_cpus, 0);
  117. atomic_set(&mm->context.copros, 0);
  118. return 0;
  119. }
  120. void __destroy_context(int context_id)
  121. {
  122. ida_free(&mmu_context_ida, context_id);
  123. }
  124. EXPORT_SYMBOL_GPL(__destroy_context);
  125. static void destroy_contexts(mm_context_t *ctx)
  126. {
  127. int index, context_id;
  128. for (index = 0; index < ARRAY_SIZE(ctx->extended_id); index++) {
  129. context_id = ctx->extended_id[index];
  130. if (context_id)
  131. ida_free(&mmu_context_ida, context_id);
  132. }
  133. }
  134. static void pte_frag_destroy(void *pte_frag)
  135. {
  136. int count;
  137. struct page *page;
  138. page = virt_to_page(pte_frag);
  139. /* drop all the pending references */
  140. count = ((unsigned long)pte_frag & ~PAGE_MASK) >> PTE_FRAG_SIZE_SHIFT;
  141. /* We allow PTE_FRAG_NR fragments from a PTE page */
  142. if (atomic_sub_and_test(PTE_FRAG_NR - count, &page->pt_frag_refcount)) {
  143. pgtable_page_dtor(page);
  144. __free_page(page);
  145. }
  146. }
  147. static void pmd_frag_destroy(void *pmd_frag)
  148. {
  149. int count;
  150. struct page *page;
  151. page = virt_to_page(pmd_frag);
  152. /* drop all the pending references */
  153. count = ((unsigned long)pmd_frag & ~PAGE_MASK) >> PMD_FRAG_SIZE_SHIFT;
  154. /* We allow PTE_FRAG_NR fragments from a PTE page */
  155. if (atomic_sub_and_test(PMD_FRAG_NR - count, &page->pt_frag_refcount)) {
  156. pgtable_pmd_page_dtor(page);
  157. __free_page(page);
  158. }
  159. }
  160. static void destroy_pagetable_cache(struct mm_struct *mm)
  161. {
  162. void *frag;
  163. frag = mm->context.pte_frag;
  164. if (frag)
  165. pte_frag_destroy(frag);
  166. frag = mm->context.pmd_frag;
  167. if (frag)
  168. pmd_frag_destroy(frag);
  169. return;
  170. }
  171. void destroy_context(struct mm_struct *mm)
  172. {
  173. #ifdef CONFIG_SPAPR_TCE_IOMMU
  174. WARN_ON_ONCE(!list_empty(&mm->context.iommu_group_mem_list));
  175. #endif
  176. if (radix_enabled())
  177. WARN_ON(process_tb[mm->context.id].prtb0 != 0);
  178. else
  179. subpage_prot_free(mm);
  180. destroy_contexts(&mm->context);
  181. mm->context.id = MMU_NO_CONTEXT;
  182. }
  183. void arch_exit_mmap(struct mm_struct *mm)
  184. {
  185. destroy_pagetable_cache(mm);
  186. if (radix_enabled()) {
  187. /*
  188. * Radix doesn't have a valid bit in the process table
  189. * entries. However we know that at least P9 implementation
  190. * will avoid caching an entry with an invalid RTS field,
  191. * and 0 is invalid. So this will do.
  192. *
  193. * This runs before the "fullmm" tlb flush in exit_mmap,
  194. * which does a RIC=2 tlbie to clear the process table
  195. * entry. See the "fullmm" comments in tlb-radix.c.
  196. *
  197. * No barrier required here after the store because
  198. * this process will do the invalidate, which starts with
  199. * ptesync.
  200. */
  201. process_tb[mm->context.id].prtb0 = 0;
  202. }
  203. }
  204. #ifdef CONFIG_PPC_RADIX_MMU
  205. void radix__switch_mmu_context(struct mm_struct *prev, struct mm_struct *next)
  206. {
  207. mtspr(SPRN_PID, next->context.id);
  208. isync();
  209. }
  210. #endif