fault.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663
  1. /*
  2. * PowerPC version
  3. * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  4. *
  5. * Derived from "arch/i386/mm/fault.c"
  6. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  7. *
  8. * Modified by Cort Dougan and Paul Mackerras.
  9. *
  10. * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
  11. *
  12. * This program is free software; you can redistribute it and/or
  13. * modify it under the terms of the GNU General Public License
  14. * as published by the Free Software Foundation; either version
  15. * 2 of the License, or (at your option) any later version.
  16. */
  17. #include <linux/signal.h>
  18. #include <linux/sched.h>
  19. #include <linux/sched/task_stack.h>
  20. #include <linux/kernel.h>
  21. #include <linux/errno.h>
  22. #include <linux/string.h>
  23. #include <linux/types.h>
  24. #include <linux/pagemap.h>
  25. #include <linux/ptrace.h>
  26. #include <linux/mman.h>
  27. #include <linux/mm.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/highmem.h>
  30. #include <linux/extable.h>
  31. #include <linux/kprobes.h>
  32. #include <linux/kdebug.h>
  33. #include <linux/perf_event.h>
  34. #include <linux/ratelimit.h>
  35. #include <linux/context_tracking.h>
  36. #include <linux/hugetlb.h>
  37. #include <linux/uaccess.h>
  38. #include <asm/firmware.h>
  39. #include <asm/page.h>
  40. #include <asm/pgtable.h>
  41. #include <asm/mmu.h>
  42. #include <asm/mmu_context.h>
  43. #include <asm/siginfo.h>
  44. #include <asm/debug.h>
  45. static inline bool notify_page_fault(struct pt_regs *regs)
  46. {
  47. bool ret = false;
  48. #ifdef CONFIG_KPROBES
  49. /* kprobe_running() needs smp_processor_id() */
  50. if (!user_mode(regs)) {
  51. preempt_disable();
  52. if (kprobe_running() && kprobe_fault_handler(regs, 11))
  53. ret = true;
  54. preempt_enable();
  55. }
  56. #endif /* CONFIG_KPROBES */
  57. if (unlikely(debugger_fault_handler(regs)))
  58. ret = true;
  59. return ret;
  60. }
  61. /*
  62. * Check whether the instruction inst is a store using
  63. * an update addressing form which will update r1.
  64. */
  65. static bool store_updates_sp(unsigned int inst)
  66. {
  67. /* check for 1 in the rA field */
  68. if (((inst >> 16) & 0x1f) != 1)
  69. return false;
  70. /* check major opcode */
  71. switch (inst >> 26) {
  72. case OP_STWU:
  73. case OP_STBU:
  74. case OP_STHU:
  75. case OP_STFSU:
  76. case OP_STFDU:
  77. return true;
  78. case OP_STD: /* std or stdu */
  79. return (inst & 3) == 1;
  80. case OP_31:
  81. /* check minor opcode */
  82. switch ((inst >> 1) & 0x3ff) {
  83. case OP_31_XOP_STDUX:
  84. case OP_31_XOP_STWUX:
  85. case OP_31_XOP_STBUX:
  86. case OP_31_XOP_STHUX:
  87. case OP_31_XOP_STFSUX:
  88. case OP_31_XOP_STFDUX:
  89. return true;
  90. }
  91. }
  92. return false;
  93. }
  94. /*
  95. * do_page_fault error handling helpers
  96. */
  97. static int
  98. __bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code)
  99. {
  100. /*
  101. * If we are in kernel mode, bail out with a SEGV, this will
  102. * be caught by the assembly which will restore the non-volatile
  103. * registers before calling bad_page_fault()
  104. */
  105. if (!user_mode(regs))
  106. return SIGSEGV;
  107. _exception(SIGSEGV, regs, si_code, address);
  108. return 0;
  109. }
  110. static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address)
  111. {
  112. return __bad_area_nosemaphore(regs, address, SEGV_MAPERR);
  113. }
  114. static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code)
  115. {
  116. struct mm_struct *mm = current->mm;
  117. /*
  118. * Something tried to access memory that isn't in our memory map..
  119. * Fix it, but check if it's kernel or user first..
  120. */
  121. up_read(&mm->mmap_sem);
  122. return __bad_area_nosemaphore(regs, address, si_code);
  123. }
  124. static noinline int bad_area(struct pt_regs *regs, unsigned long address)
  125. {
  126. return __bad_area(regs, address, SEGV_MAPERR);
  127. }
  128. static int bad_key_fault_exception(struct pt_regs *regs, unsigned long address,
  129. int pkey)
  130. {
  131. /*
  132. * If we are in kernel mode, bail out with a SEGV, this will
  133. * be caught by the assembly which will restore the non-volatile
  134. * registers before calling bad_page_fault()
  135. */
  136. if (!user_mode(regs))
  137. return SIGSEGV;
  138. _exception_pkey(regs, address, pkey);
  139. return 0;
  140. }
  141. static noinline int bad_access(struct pt_regs *regs, unsigned long address)
  142. {
  143. return __bad_area(regs, address, SEGV_ACCERR);
  144. }
  145. static int do_sigbus(struct pt_regs *regs, unsigned long address,
  146. vm_fault_t fault)
  147. {
  148. if (!user_mode(regs))
  149. return SIGBUS;
  150. current->thread.trap_nr = BUS_ADRERR;
  151. #ifdef CONFIG_MEMORY_FAILURE
  152. if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
  153. unsigned int lsb = 0; /* shutup gcc */
  154. pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
  155. current->comm, current->pid, address);
  156. if (fault & VM_FAULT_HWPOISON_LARGE)
  157. lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
  158. if (fault & VM_FAULT_HWPOISON)
  159. lsb = PAGE_SHIFT;
  160. force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb,
  161. current);
  162. return 0;
  163. }
  164. #endif
  165. force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address, current);
  166. return 0;
  167. }
  168. static int mm_fault_error(struct pt_regs *regs, unsigned long addr,
  169. vm_fault_t fault)
  170. {
  171. /*
  172. * Kernel page fault interrupted by SIGKILL. We have no reason to
  173. * continue processing.
  174. */
  175. if (fatal_signal_pending(current) && !user_mode(regs))
  176. return SIGKILL;
  177. /* Out of memory */
  178. if (fault & VM_FAULT_OOM) {
  179. /*
  180. * We ran out of memory, or some other thing happened to us that
  181. * made us unable to handle the page fault gracefully.
  182. */
  183. if (!user_mode(regs))
  184. return SIGSEGV;
  185. pagefault_out_of_memory();
  186. } else {
  187. if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
  188. VM_FAULT_HWPOISON_LARGE))
  189. return do_sigbus(regs, addr, fault);
  190. else if (fault & VM_FAULT_SIGSEGV)
  191. return bad_area_nosemaphore(regs, addr);
  192. else
  193. BUG();
  194. }
  195. return 0;
  196. }
  197. /* Is this a bad kernel fault ? */
  198. static bool bad_kernel_fault(bool is_exec, unsigned long error_code,
  199. unsigned long address)
  200. {
  201. if (is_exec && (error_code & (DSISR_NOEXEC_OR_G | DSISR_KEYFAULT))) {
  202. printk_ratelimited(KERN_CRIT "kernel tried to execute"
  203. " exec-protected page (%lx) -"
  204. "exploit attempt? (uid: %d)\n",
  205. address, from_kuid(&init_user_ns,
  206. current_uid()));
  207. }
  208. return is_exec || (address >= TASK_SIZE);
  209. }
  210. static bool bad_stack_expansion(struct pt_regs *regs, unsigned long address,
  211. struct vm_area_struct *vma, unsigned int flags,
  212. bool *must_retry)
  213. {
  214. /*
  215. * N.B. The POWER/Open ABI allows programs to access up to
  216. * 288 bytes below the stack pointer.
  217. * The kernel signal delivery code writes up to about 1.5kB
  218. * below the stack pointer (r1) before decrementing it.
  219. * The exec code can write slightly over 640kB to the stack
  220. * before setting the user r1. Thus we allow the stack to
  221. * expand to 1MB without further checks.
  222. */
  223. if (address + 0x100000 < vma->vm_end) {
  224. unsigned int __user *nip = (unsigned int __user *)regs->nip;
  225. /* get user regs even if this fault is in kernel mode */
  226. struct pt_regs *uregs = current->thread.regs;
  227. if (uregs == NULL)
  228. return true;
  229. /*
  230. * A user-mode access to an address a long way below
  231. * the stack pointer is only valid if the instruction
  232. * is one which would update the stack pointer to the
  233. * address accessed if the instruction completed,
  234. * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
  235. * (or the byte, halfword, float or double forms).
  236. *
  237. * If we don't check this then any write to the area
  238. * between the last mapped region and the stack will
  239. * expand the stack rather than segfaulting.
  240. */
  241. if (address + 2048 >= uregs->gpr[1])
  242. return false;
  243. if ((flags & FAULT_FLAG_WRITE) && (flags & FAULT_FLAG_USER) &&
  244. access_ok(VERIFY_READ, nip, sizeof(*nip))) {
  245. unsigned int inst;
  246. int res;
  247. pagefault_disable();
  248. res = __get_user_inatomic(inst, nip);
  249. pagefault_enable();
  250. if (!res)
  251. return !store_updates_sp(inst);
  252. *must_retry = true;
  253. }
  254. return true;
  255. }
  256. return false;
  257. }
  258. static bool access_error(bool is_write, bool is_exec,
  259. struct vm_area_struct *vma)
  260. {
  261. /*
  262. * Allow execution from readable areas if the MMU does not
  263. * provide separate controls over reading and executing.
  264. *
  265. * Note: That code used to not be enabled for 4xx/BookE.
  266. * It is now as I/D cache coherency for these is done at
  267. * set_pte_at() time and I see no reason why the test
  268. * below wouldn't be valid on those processors. This -may-
  269. * break programs compiled with a really old ABI though.
  270. */
  271. if (is_exec) {
  272. return !(vma->vm_flags & VM_EXEC) &&
  273. (cpu_has_feature(CPU_FTR_NOEXECUTE) ||
  274. !(vma->vm_flags & (VM_READ | VM_WRITE)));
  275. }
  276. if (is_write) {
  277. if (unlikely(!(vma->vm_flags & VM_WRITE)))
  278. return true;
  279. return false;
  280. }
  281. if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
  282. return true;
  283. /*
  284. * We should ideally do the vma pkey access check here. But in the
  285. * fault path, handle_mm_fault() also does the same check. To avoid
  286. * these multiple checks, we skip it here and handle access error due
  287. * to pkeys later.
  288. */
  289. return false;
  290. }
  291. #ifdef CONFIG_PPC_SMLPAR
  292. static inline void cmo_account_page_fault(void)
  293. {
  294. if (firmware_has_feature(FW_FEATURE_CMO)) {
  295. u32 page_ins;
  296. preempt_disable();
  297. page_ins = be32_to_cpu(get_lppaca()->page_ins);
  298. page_ins += 1 << PAGE_FACTOR;
  299. get_lppaca()->page_ins = cpu_to_be32(page_ins);
  300. preempt_enable();
  301. }
  302. }
  303. #else
  304. static inline void cmo_account_page_fault(void) { }
  305. #endif /* CONFIG_PPC_SMLPAR */
  306. #ifdef CONFIG_PPC_STD_MMU
  307. static void sanity_check_fault(bool is_write, unsigned long error_code)
  308. {
  309. /*
  310. * For hash translation mode, we should never get a
  311. * PROTFAULT. Any update to pte to reduce access will result in us
  312. * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
  313. * fault instead of DSISR_PROTFAULT.
  314. *
  315. * A pte update to relax the access will not result in a hash page table
  316. * entry invalidate and hence can result in DSISR_PROTFAULT.
  317. * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
  318. * the special !is_write in the below conditional.
  319. *
  320. * For platforms that doesn't supports coherent icache and do support
  321. * per page noexec bit, we do setup things such that we do the
  322. * sync between D/I cache via fault. But that is handled via low level
  323. * hash fault code (hash_page_do_lazy_icache()) and we should not reach
  324. * here in such case.
  325. *
  326. * For wrong access that can result in PROTFAULT, the above vma->vm_flags
  327. * check should handle those and hence we should fall to the bad_area
  328. * handling correctly.
  329. *
  330. * For embedded with per page exec support that doesn't support coherent
  331. * icache we do get PROTFAULT and we handle that D/I cache sync in
  332. * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
  333. * is conditional for server MMU.
  334. *
  335. * For radix, we can get prot fault for autonuma case, because radix
  336. * page table will have them marked noaccess for user.
  337. */
  338. if (!radix_enabled() && !is_write)
  339. WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
  340. }
  341. #else
  342. static void sanity_check_fault(bool is_write, unsigned long error_code) { }
  343. #endif /* CONFIG_PPC_STD_MMU */
  344. /*
  345. * Define the correct "is_write" bit in error_code based
  346. * on the processor family
  347. */
  348. #if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
  349. #define page_fault_is_write(__err) ((__err) & ESR_DST)
  350. #define page_fault_is_bad(__err) (0)
  351. #else
  352. #define page_fault_is_write(__err) ((__err) & DSISR_ISSTORE)
  353. #if defined(CONFIG_PPC_8xx)
  354. #define page_fault_is_bad(__err) ((__err) & DSISR_NOEXEC_OR_G)
  355. #elif defined(CONFIG_PPC64)
  356. #define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_64S)
  357. #else
  358. #define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_32S)
  359. #endif
  360. #endif
  361. /*
  362. * For 600- and 800-family processors, the error_code parameter is DSISR
  363. * for a data fault, SRR1 for an instruction fault. For 400-family processors
  364. * the error_code parameter is ESR for a data fault, 0 for an instruction
  365. * fault.
  366. * For 64-bit processors, the error_code parameter is
  367. * - DSISR for a non-SLB data access fault,
  368. * - SRR1 & 0x08000000 for a non-SLB instruction access fault
  369. * - 0 any SLB fault.
  370. *
  371. * The return value is 0 if the fault was handled, or the signal
  372. * number if this is a kernel fault that can't be handled here.
  373. */
  374. static int __do_page_fault(struct pt_regs *regs, unsigned long address,
  375. unsigned long error_code)
  376. {
  377. struct vm_area_struct * vma;
  378. struct mm_struct *mm = current->mm;
  379. unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
  380. int is_exec = TRAP(regs) == 0x400;
  381. int is_user = user_mode(regs);
  382. int is_write = page_fault_is_write(error_code);
  383. vm_fault_t fault, major = 0;
  384. bool must_retry = false;
  385. if (notify_page_fault(regs))
  386. return 0;
  387. if (unlikely(page_fault_is_bad(error_code))) {
  388. if (is_user) {
  389. _exception(SIGBUS, regs, BUS_OBJERR, address);
  390. return 0;
  391. }
  392. return SIGBUS;
  393. }
  394. /* Additional sanity check(s) */
  395. sanity_check_fault(is_write, error_code);
  396. /*
  397. * The kernel should never take an execute fault nor should it
  398. * take a page fault to a kernel address.
  399. */
  400. if (unlikely(!is_user && bad_kernel_fault(is_exec, error_code, address)))
  401. return SIGSEGV;
  402. /*
  403. * If we're in an interrupt, have no user context or are running
  404. * in a region with pagefaults disabled then we must not take the fault
  405. */
  406. if (unlikely(faulthandler_disabled() || !mm)) {
  407. if (is_user)
  408. printk_ratelimited(KERN_ERR "Page fault in user mode"
  409. " with faulthandler_disabled()=%d"
  410. " mm=%p\n",
  411. faulthandler_disabled(), mm);
  412. return bad_area_nosemaphore(regs, address);
  413. }
  414. /* We restore the interrupt state now */
  415. if (!arch_irq_disabled_regs(regs))
  416. local_irq_enable();
  417. perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
  418. if (error_code & DSISR_KEYFAULT)
  419. return bad_key_fault_exception(regs, address,
  420. get_mm_addr_key(mm, address));
  421. /*
  422. * We want to do this outside mmap_sem, because reading code around nip
  423. * can result in fault, which will cause a deadlock when called with
  424. * mmap_sem held
  425. */
  426. if (is_user)
  427. flags |= FAULT_FLAG_USER;
  428. if (is_write)
  429. flags |= FAULT_FLAG_WRITE;
  430. if (is_exec)
  431. flags |= FAULT_FLAG_INSTRUCTION;
  432. /* When running in the kernel we expect faults to occur only to
  433. * addresses in user space. All other faults represent errors in the
  434. * kernel and should generate an OOPS. Unfortunately, in the case of an
  435. * erroneous fault occurring in a code path which already holds mmap_sem
  436. * we will deadlock attempting to validate the fault against the
  437. * address space. Luckily the kernel only validly references user
  438. * space from well defined areas of code, which are listed in the
  439. * exceptions table.
  440. *
  441. * As the vast majority of faults will be valid we will only perform
  442. * the source reference check when there is a possibility of a deadlock.
  443. * Attempt to lock the address space, if we cannot we then validate the
  444. * source. If this is invalid we can skip the address space check,
  445. * thus avoiding the deadlock.
  446. */
  447. if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
  448. if (!is_user && !search_exception_tables(regs->nip))
  449. return bad_area_nosemaphore(regs, address);
  450. retry:
  451. down_read(&mm->mmap_sem);
  452. } else {
  453. /*
  454. * The above down_read_trylock() might have succeeded in
  455. * which case we'll have missed the might_sleep() from
  456. * down_read():
  457. */
  458. might_sleep();
  459. }
  460. vma = find_vma(mm, address);
  461. if (unlikely(!vma))
  462. return bad_area(regs, address);
  463. if (likely(vma->vm_start <= address))
  464. goto good_area;
  465. if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
  466. return bad_area(regs, address);
  467. /* The stack is being expanded, check if it's valid */
  468. if (unlikely(bad_stack_expansion(regs, address, vma, flags,
  469. &must_retry))) {
  470. if (!must_retry)
  471. return bad_area(regs, address);
  472. up_read(&mm->mmap_sem);
  473. if (fault_in_pages_readable((const char __user *)regs->nip,
  474. sizeof(unsigned int)))
  475. return bad_area_nosemaphore(regs, address);
  476. goto retry;
  477. }
  478. /* Try to expand it */
  479. if (unlikely(expand_stack(vma, address)))
  480. return bad_area(regs, address);
  481. good_area:
  482. if (unlikely(access_error(is_write, is_exec, vma)))
  483. return bad_access(regs, address);
  484. /*
  485. * If for any reason at all we couldn't handle the fault,
  486. * make sure we exit gracefully rather than endlessly redo
  487. * the fault.
  488. */
  489. fault = handle_mm_fault(vma, address, flags);
  490. #ifdef CONFIG_PPC_MEM_KEYS
  491. /*
  492. * we skipped checking for access error due to key earlier.
  493. * Check that using handle_mm_fault error return.
  494. */
  495. if (unlikely(fault & VM_FAULT_SIGSEGV) &&
  496. !arch_vma_access_permitted(vma, is_write, is_exec, 0)) {
  497. int pkey = vma_pkey(vma);
  498. up_read(&mm->mmap_sem);
  499. return bad_key_fault_exception(regs, address, pkey);
  500. }
  501. #endif /* CONFIG_PPC_MEM_KEYS */
  502. major |= fault & VM_FAULT_MAJOR;
  503. /*
  504. * Handle the retry right now, the mmap_sem has been released in that
  505. * case.
  506. */
  507. if (unlikely(fault & VM_FAULT_RETRY)) {
  508. /* We retry only once */
  509. if (flags & FAULT_FLAG_ALLOW_RETRY) {
  510. /*
  511. * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
  512. * of starvation.
  513. */
  514. flags &= ~FAULT_FLAG_ALLOW_RETRY;
  515. flags |= FAULT_FLAG_TRIED;
  516. if (!fatal_signal_pending(current))
  517. goto retry;
  518. }
  519. /*
  520. * User mode? Just return to handle the fatal exception otherwise
  521. * return to bad_page_fault
  522. */
  523. return is_user ? 0 : SIGBUS;
  524. }
  525. up_read(&current->mm->mmap_sem);
  526. if (unlikely(fault & VM_FAULT_ERROR))
  527. return mm_fault_error(regs, address, fault);
  528. /*
  529. * Major/minor page fault accounting.
  530. */
  531. if (major) {
  532. current->maj_flt++;
  533. perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
  534. cmo_account_page_fault();
  535. } else {
  536. current->min_flt++;
  537. perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
  538. }
  539. return 0;
  540. }
  541. NOKPROBE_SYMBOL(__do_page_fault);
  542. int do_page_fault(struct pt_regs *regs, unsigned long address,
  543. unsigned long error_code)
  544. {
  545. enum ctx_state prev_state = exception_enter();
  546. int rc = __do_page_fault(regs, address, error_code);
  547. exception_exit(prev_state);
  548. return rc;
  549. }
  550. NOKPROBE_SYMBOL(do_page_fault);
  551. /*
  552. * bad_page_fault is called when we have a bad access from the kernel.
  553. * It is called from the DSI and ISI handlers in head.S and from some
  554. * of the procedures in traps.c.
  555. */
  556. void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
  557. {
  558. const struct exception_table_entry *entry;
  559. /* Are we prepared to handle this fault? */
  560. if ((entry = search_exception_tables(regs->nip)) != NULL) {
  561. regs->nip = extable_fixup(entry);
  562. return;
  563. }
  564. /* kernel has accessed a bad area */
  565. switch (TRAP(regs)) {
  566. case 0x300:
  567. case 0x380:
  568. printk(KERN_ALERT "Unable to handle kernel paging request for "
  569. "data at address 0x%08lx\n", regs->dar);
  570. break;
  571. case 0x400:
  572. case 0x480:
  573. printk(KERN_ALERT "Unable to handle kernel paging request for "
  574. "instruction fetch\n");
  575. break;
  576. case 0x600:
  577. printk(KERN_ALERT "Unable to handle kernel paging request for "
  578. "unaligned access at address 0x%08lx\n", regs->dar);
  579. break;
  580. default:
  581. printk(KERN_ALERT "Unable to handle kernel paging request for "
  582. "unknown fault\n");
  583. break;
  584. }
  585. printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
  586. regs->nip);
  587. if (task_stack_end_corrupted(current))
  588. printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
  589. die("Kernel access of bad area", regs, sig);
  590. }