sstep.c 68 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100
  1. /*
  2. * Single-step support.
  3. *
  4. * Copyright (C) 2004 Paul Mackerras <paulus@au.ibm.com>, IBM
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License
  8. * as published by the Free Software Foundation; either version
  9. * 2 of the License, or (at your option) any later version.
  10. */
  11. #include <linux/kernel.h>
  12. #include <linux/kprobes.h>
  13. #include <linux/ptrace.h>
  14. #include <linux/prefetch.h>
  15. #include <asm/sstep.h>
  16. #include <asm/processor.h>
  17. #include <linux/uaccess.h>
  18. #include <asm/cpu_has_feature.h>
  19. #include <asm/cputable.h>
  20. extern char system_call_common[];
  21. #ifdef CONFIG_PPC64
  22. /* Bits in SRR1 that are copied from MSR */
  23. #define MSR_MASK 0xffffffff87c0ffffUL
  24. #else
  25. #define MSR_MASK 0x87c0ffff
  26. #endif
  27. /* Bits in XER */
  28. #define XER_SO 0x80000000U
  29. #define XER_OV 0x40000000U
  30. #define XER_CA 0x20000000U
  31. #define XER_OV32 0x00080000U
  32. #define XER_CA32 0x00040000U
  33. #ifdef CONFIG_PPC_FPU
  34. /*
  35. * Functions in ldstfp.S
  36. */
  37. extern void get_fpr(int rn, double *p);
  38. extern void put_fpr(int rn, const double *p);
  39. extern void get_vr(int rn, __vector128 *p);
  40. extern void put_vr(int rn, __vector128 *p);
  41. extern void load_vsrn(int vsr, const void *p);
  42. extern void store_vsrn(int vsr, void *p);
  43. extern void conv_sp_to_dp(const float *sp, double *dp);
  44. extern void conv_dp_to_sp(const double *dp, float *sp);
  45. #endif
  46. #ifdef __powerpc64__
  47. /*
  48. * Functions in quad.S
  49. */
  50. extern int do_lq(unsigned long ea, unsigned long *regs);
  51. extern int do_stq(unsigned long ea, unsigned long val0, unsigned long val1);
  52. extern int do_lqarx(unsigned long ea, unsigned long *regs);
  53. extern int do_stqcx(unsigned long ea, unsigned long val0, unsigned long val1,
  54. unsigned int *crp);
  55. #endif
  56. #ifdef __LITTLE_ENDIAN__
  57. #define IS_LE 1
  58. #define IS_BE 0
  59. #else
  60. #define IS_LE 0
  61. #define IS_BE 1
  62. #endif
  63. /*
  64. * Emulate the truncation of 64 bit values in 32-bit mode.
  65. */
  66. static nokprobe_inline unsigned long truncate_if_32bit(unsigned long msr,
  67. unsigned long val)
  68. {
  69. #ifdef __powerpc64__
  70. if ((msr & MSR_64BIT) == 0)
  71. val &= 0xffffffffUL;
  72. #endif
  73. return val;
  74. }
  75. /*
  76. * Determine whether a conditional branch instruction would branch.
  77. */
  78. static nokprobe_inline int branch_taken(unsigned int instr,
  79. const struct pt_regs *regs,
  80. struct instruction_op *op)
  81. {
  82. unsigned int bo = (instr >> 21) & 0x1f;
  83. unsigned int bi;
  84. if ((bo & 4) == 0) {
  85. /* decrement counter */
  86. op->type |= DECCTR;
  87. if (((bo >> 1) & 1) ^ (regs->ctr == 1))
  88. return 0;
  89. }
  90. if ((bo & 0x10) == 0) {
  91. /* check bit from CR */
  92. bi = (instr >> 16) & 0x1f;
  93. if (((regs->ccr >> (31 - bi)) & 1) != ((bo >> 3) & 1))
  94. return 0;
  95. }
  96. return 1;
  97. }
  98. static nokprobe_inline long address_ok(struct pt_regs *regs,
  99. unsigned long ea, int nb)
  100. {
  101. if (!user_mode(regs))
  102. return 1;
  103. if (__access_ok(ea, nb, USER_DS))
  104. return 1;
  105. if (__access_ok(ea, 1, USER_DS))
  106. /* Access overlaps the end of the user region */
  107. regs->dar = USER_DS.seg;
  108. else
  109. regs->dar = ea;
  110. return 0;
  111. }
  112. /*
  113. * Calculate effective address for a D-form instruction
  114. */
  115. static nokprobe_inline unsigned long dform_ea(unsigned int instr,
  116. const struct pt_regs *regs)
  117. {
  118. int ra;
  119. unsigned long ea;
  120. ra = (instr >> 16) & 0x1f;
  121. ea = (signed short) instr; /* sign-extend */
  122. if (ra)
  123. ea += regs->gpr[ra];
  124. return ea;
  125. }
  126. #ifdef __powerpc64__
  127. /*
  128. * Calculate effective address for a DS-form instruction
  129. */
  130. static nokprobe_inline unsigned long dsform_ea(unsigned int instr,
  131. const struct pt_regs *regs)
  132. {
  133. int ra;
  134. unsigned long ea;
  135. ra = (instr >> 16) & 0x1f;
  136. ea = (signed short) (instr & ~3); /* sign-extend */
  137. if (ra)
  138. ea += regs->gpr[ra];
  139. return ea;
  140. }
  141. /*
  142. * Calculate effective address for a DQ-form instruction
  143. */
  144. static nokprobe_inline unsigned long dqform_ea(unsigned int instr,
  145. const struct pt_regs *regs)
  146. {
  147. int ra;
  148. unsigned long ea;
  149. ra = (instr >> 16) & 0x1f;
  150. ea = (signed short) (instr & ~0xf); /* sign-extend */
  151. if (ra)
  152. ea += regs->gpr[ra];
  153. return ea;
  154. }
  155. #endif /* __powerpc64 */
  156. /*
  157. * Calculate effective address for an X-form instruction
  158. */
  159. static nokprobe_inline unsigned long xform_ea(unsigned int instr,
  160. const struct pt_regs *regs)
  161. {
  162. int ra, rb;
  163. unsigned long ea;
  164. ra = (instr >> 16) & 0x1f;
  165. rb = (instr >> 11) & 0x1f;
  166. ea = regs->gpr[rb];
  167. if (ra)
  168. ea += regs->gpr[ra];
  169. return ea;
  170. }
  171. /*
  172. * Return the largest power of 2, not greater than sizeof(unsigned long),
  173. * such that x is a multiple of it.
  174. */
  175. static nokprobe_inline unsigned long max_align(unsigned long x)
  176. {
  177. x |= sizeof(unsigned long);
  178. return x & -x; /* isolates rightmost bit */
  179. }
  180. static nokprobe_inline unsigned long byterev_2(unsigned long x)
  181. {
  182. return ((x >> 8) & 0xff) | ((x & 0xff) << 8);
  183. }
  184. static nokprobe_inline unsigned long byterev_4(unsigned long x)
  185. {
  186. return ((x >> 24) & 0xff) | ((x >> 8) & 0xff00) |
  187. ((x & 0xff00) << 8) | ((x & 0xff) << 24);
  188. }
  189. #ifdef __powerpc64__
  190. static nokprobe_inline unsigned long byterev_8(unsigned long x)
  191. {
  192. return (byterev_4(x) << 32) | byterev_4(x >> 32);
  193. }
  194. #endif
  195. static nokprobe_inline void do_byte_reverse(void *ptr, int nb)
  196. {
  197. switch (nb) {
  198. case 2:
  199. *(u16 *)ptr = byterev_2(*(u16 *)ptr);
  200. break;
  201. case 4:
  202. *(u32 *)ptr = byterev_4(*(u32 *)ptr);
  203. break;
  204. #ifdef __powerpc64__
  205. case 8:
  206. *(unsigned long *)ptr = byterev_8(*(unsigned long *)ptr);
  207. break;
  208. case 16: {
  209. unsigned long *up = (unsigned long *)ptr;
  210. unsigned long tmp;
  211. tmp = byterev_8(up[0]);
  212. up[0] = byterev_8(up[1]);
  213. up[1] = tmp;
  214. break;
  215. }
  216. #endif
  217. default:
  218. WARN_ON_ONCE(1);
  219. }
  220. }
  221. static nokprobe_inline int read_mem_aligned(unsigned long *dest,
  222. unsigned long ea, int nb,
  223. struct pt_regs *regs)
  224. {
  225. int err = 0;
  226. unsigned long x = 0;
  227. switch (nb) {
  228. case 1:
  229. err = __get_user(x, (unsigned char __user *) ea);
  230. break;
  231. case 2:
  232. err = __get_user(x, (unsigned short __user *) ea);
  233. break;
  234. case 4:
  235. err = __get_user(x, (unsigned int __user *) ea);
  236. break;
  237. #ifdef __powerpc64__
  238. case 8:
  239. err = __get_user(x, (unsigned long __user *) ea);
  240. break;
  241. #endif
  242. }
  243. if (!err)
  244. *dest = x;
  245. else
  246. regs->dar = ea;
  247. return err;
  248. }
  249. /*
  250. * Copy from userspace to a buffer, using the largest possible
  251. * aligned accesses, up to sizeof(long).
  252. */
  253. static nokprobe_inline int copy_mem_in(u8 *dest, unsigned long ea, int nb,
  254. struct pt_regs *regs)
  255. {
  256. int err = 0;
  257. int c;
  258. for (; nb > 0; nb -= c) {
  259. c = max_align(ea);
  260. if (c > nb)
  261. c = max_align(nb);
  262. switch (c) {
  263. case 1:
  264. err = __get_user(*dest, (unsigned char __user *) ea);
  265. break;
  266. case 2:
  267. err = __get_user(*(u16 *)dest,
  268. (unsigned short __user *) ea);
  269. break;
  270. case 4:
  271. err = __get_user(*(u32 *)dest,
  272. (unsigned int __user *) ea);
  273. break;
  274. #ifdef __powerpc64__
  275. case 8:
  276. err = __get_user(*(unsigned long *)dest,
  277. (unsigned long __user *) ea);
  278. break;
  279. #endif
  280. }
  281. if (err) {
  282. regs->dar = ea;
  283. return err;
  284. }
  285. dest += c;
  286. ea += c;
  287. }
  288. return 0;
  289. }
  290. static nokprobe_inline int read_mem_unaligned(unsigned long *dest,
  291. unsigned long ea, int nb,
  292. struct pt_regs *regs)
  293. {
  294. union {
  295. unsigned long ul;
  296. u8 b[sizeof(unsigned long)];
  297. } u;
  298. int i;
  299. int err;
  300. u.ul = 0;
  301. i = IS_BE ? sizeof(unsigned long) - nb : 0;
  302. err = copy_mem_in(&u.b[i], ea, nb, regs);
  303. if (!err)
  304. *dest = u.ul;
  305. return err;
  306. }
  307. /*
  308. * Read memory at address ea for nb bytes, return 0 for success
  309. * or -EFAULT if an error occurred. N.B. nb must be 1, 2, 4 or 8.
  310. * If nb < sizeof(long), the result is right-justified on BE systems.
  311. */
  312. static int read_mem(unsigned long *dest, unsigned long ea, int nb,
  313. struct pt_regs *regs)
  314. {
  315. if (!address_ok(regs, ea, nb))
  316. return -EFAULT;
  317. if ((ea & (nb - 1)) == 0)
  318. return read_mem_aligned(dest, ea, nb, regs);
  319. return read_mem_unaligned(dest, ea, nb, regs);
  320. }
  321. NOKPROBE_SYMBOL(read_mem);
  322. static nokprobe_inline int write_mem_aligned(unsigned long val,
  323. unsigned long ea, int nb,
  324. struct pt_regs *regs)
  325. {
  326. int err = 0;
  327. switch (nb) {
  328. case 1:
  329. err = __put_user(val, (unsigned char __user *) ea);
  330. break;
  331. case 2:
  332. err = __put_user(val, (unsigned short __user *) ea);
  333. break;
  334. case 4:
  335. err = __put_user(val, (unsigned int __user *) ea);
  336. break;
  337. #ifdef __powerpc64__
  338. case 8:
  339. err = __put_user(val, (unsigned long __user *) ea);
  340. break;
  341. #endif
  342. }
  343. if (err)
  344. regs->dar = ea;
  345. return err;
  346. }
  347. /*
  348. * Copy from a buffer to userspace, using the largest possible
  349. * aligned accesses, up to sizeof(long).
  350. */
  351. static nokprobe_inline int copy_mem_out(u8 *dest, unsigned long ea, int nb,
  352. struct pt_regs *regs)
  353. {
  354. int err = 0;
  355. int c;
  356. for (; nb > 0; nb -= c) {
  357. c = max_align(ea);
  358. if (c > nb)
  359. c = max_align(nb);
  360. switch (c) {
  361. case 1:
  362. err = __put_user(*dest, (unsigned char __user *) ea);
  363. break;
  364. case 2:
  365. err = __put_user(*(u16 *)dest,
  366. (unsigned short __user *) ea);
  367. break;
  368. case 4:
  369. err = __put_user(*(u32 *)dest,
  370. (unsigned int __user *) ea);
  371. break;
  372. #ifdef __powerpc64__
  373. case 8:
  374. err = __put_user(*(unsigned long *)dest,
  375. (unsigned long __user *) ea);
  376. break;
  377. #endif
  378. }
  379. if (err) {
  380. regs->dar = ea;
  381. return err;
  382. }
  383. dest += c;
  384. ea += c;
  385. }
  386. return 0;
  387. }
  388. static nokprobe_inline int write_mem_unaligned(unsigned long val,
  389. unsigned long ea, int nb,
  390. struct pt_regs *regs)
  391. {
  392. union {
  393. unsigned long ul;
  394. u8 b[sizeof(unsigned long)];
  395. } u;
  396. int i;
  397. u.ul = val;
  398. i = IS_BE ? sizeof(unsigned long) - nb : 0;
  399. return copy_mem_out(&u.b[i], ea, nb, regs);
  400. }
  401. /*
  402. * Write memory at address ea for nb bytes, return 0 for success
  403. * or -EFAULT if an error occurred. N.B. nb must be 1, 2, 4 or 8.
  404. */
  405. static int write_mem(unsigned long val, unsigned long ea, int nb,
  406. struct pt_regs *regs)
  407. {
  408. if (!address_ok(regs, ea, nb))
  409. return -EFAULT;
  410. if ((ea & (nb - 1)) == 0)
  411. return write_mem_aligned(val, ea, nb, regs);
  412. return write_mem_unaligned(val, ea, nb, regs);
  413. }
  414. NOKPROBE_SYMBOL(write_mem);
  415. #ifdef CONFIG_PPC_FPU
  416. /*
  417. * These access either the real FP register or the image in the
  418. * thread_struct, depending on regs->msr & MSR_FP.
  419. */
  420. static int do_fp_load(struct instruction_op *op, unsigned long ea,
  421. struct pt_regs *regs, bool cross_endian)
  422. {
  423. int err, rn, nb;
  424. union {
  425. int i;
  426. unsigned int u;
  427. float f;
  428. double d[2];
  429. unsigned long l[2];
  430. u8 b[2 * sizeof(double)];
  431. } u;
  432. nb = GETSIZE(op->type);
  433. if (!address_ok(regs, ea, nb))
  434. return -EFAULT;
  435. rn = op->reg;
  436. err = copy_mem_in(u.b, ea, nb, regs);
  437. if (err)
  438. return err;
  439. if (unlikely(cross_endian)) {
  440. do_byte_reverse(u.b, min(nb, 8));
  441. if (nb == 16)
  442. do_byte_reverse(&u.b[8], 8);
  443. }
  444. preempt_disable();
  445. if (nb == 4) {
  446. if (op->type & FPCONV)
  447. conv_sp_to_dp(&u.f, &u.d[0]);
  448. else if (op->type & SIGNEXT)
  449. u.l[0] = u.i;
  450. else
  451. u.l[0] = u.u;
  452. }
  453. if (regs->msr & MSR_FP)
  454. put_fpr(rn, &u.d[0]);
  455. else
  456. current->thread.TS_FPR(rn) = u.l[0];
  457. if (nb == 16) {
  458. /* lfdp */
  459. rn |= 1;
  460. if (regs->msr & MSR_FP)
  461. put_fpr(rn, &u.d[1]);
  462. else
  463. current->thread.TS_FPR(rn) = u.l[1];
  464. }
  465. preempt_enable();
  466. return 0;
  467. }
  468. NOKPROBE_SYMBOL(do_fp_load);
  469. static int do_fp_store(struct instruction_op *op, unsigned long ea,
  470. struct pt_regs *regs, bool cross_endian)
  471. {
  472. int rn, nb;
  473. union {
  474. unsigned int u;
  475. float f;
  476. double d[2];
  477. unsigned long l[2];
  478. u8 b[2 * sizeof(double)];
  479. } u;
  480. nb = GETSIZE(op->type);
  481. if (!address_ok(regs, ea, nb))
  482. return -EFAULT;
  483. rn = op->reg;
  484. preempt_disable();
  485. if (regs->msr & MSR_FP)
  486. get_fpr(rn, &u.d[0]);
  487. else
  488. u.l[0] = current->thread.TS_FPR(rn);
  489. if (nb == 4) {
  490. if (op->type & FPCONV)
  491. conv_dp_to_sp(&u.d[0], &u.f);
  492. else
  493. u.u = u.l[0];
  494. }
  495. if (nb == 16) {
  496. rn |= 1;
  497. if (regs->msr & MSR_FP)
  498. get_fpr(rn, &u.d[1]);
  499. else
  500. u.l[1] = current->thread.TS_FPR(rn);
  501. }
  502. preempt_enable();
  503. if (unlikely(cross_endian)) {
  504. do_byte_reverse(u.b, min(nb, 8));
  505. if (nb == 16)
  506. do_byte_reverse(&u.b[8], 8);
  507. }
  508. return copy_mem_out(u.b, ea, nb, regs);
  509. }
  510. NOKPROBE_SYMBOL(do_fp_store);
  511. #endif
  512. #ifdef CONFIG_ALTIVEC
  513. /* For Altivec/VMX, no need to worry about alignment */
  514. static nokprobe_inline int do_vec_load(int rn, unsigned long ea,
  515. int size, struct pt_regs *regs,
  516. bool cross_endian)
  517. {
  518. int err;
  519. union {
  520. __vector128 v;
  521. u8 b[sizeof(__vector128)];
  522. } u = {};
  523. if (!address_ok(regs, ea & ~0xfUL, 16))
  524. return -EFAULT;
  525. /* align to multiple of size */
  526. ea &= ~(size - 1);
  527. err = copy_mem_in(&u.b[ea & 0xf], ea, size, regs);
  528. if (err)
  529. return err;
  530. if (unlikely(cross_endian))
  531. do_byte_reverse(&u.b[ea & 0xf], size);
  532. preempt_disable();
  533. if (regs->msr & MSR_VEC)
  534. put_vr(rn, &u.v);
  535. else
  536. current->thread.vr_state.vr[rn] = u.v;
  537. preempt_enable();
  538. return 0;
  539. }
  540. static nokprobe_inline int do_vec_store(int rn, unsigned long ea,
  541. int size, struct pt_regs *regs,
  542. bool cross_endian)
  543. {
  544. union {
  545. __vector128 v;
  546. u8 b[sizeof(__vector128)];
  547. } u;
  548. if (!address_ok(regs, ea & ~0xfUL, 16))
  549. return -EFAULT;
  550. /* align to multiple of size */
  551. ea &= ~(size - 1);
  552. preempt_disable();
  553. if (regs->msr & MSR_VEC)
  554. get_vr(rn, &u.v);
  555. else
  556. u.v = current->thread.vr_state.vr[rn];
  557. preempt_enable();
  558. if (unlikely(cross_endian))
  559. do_byte_reverse(&u.b[ea & 0xf], size);
  560. return copy_mem_out(&u.b[ea & 0xf], ea, size, regs);
  561. }
  562. #endif /* CONFIG_ALTIVEC */
  563. #ifdef __powerpc64__
  564. static nokprobe_inline int emulate_lq(struct pt_regs *regs, unsigned long ea,
  565. int reg, bool cross_endian)
  566. {
  567. int err;
  568. if (!address_ok(regs, ea, 16))
  569. return -EFAULT;
  570. /* if aligned, should be atomic */
  571. if ((ea & 0xf) == 0) {
  572. err = do_lq(ea, &regs->gpr[reg]);
  573. } else {
  574. err = read_mem(&regs->gpr[reg + IS_LE], ea, 8, regs);
  575. if (!err)
  576. err = read_mem(&regs->gpr[reg + IS_BE], ea + 8, 8, regs);
  577. }
  578. if (!err && unlikely(cross_endian))
  579. do_byte_reverse(&regs->gpr[reg], 16);
  580. return err;
  581. }
  582. static nokprobe_inline int emulate_stq(struct pt_regs *regs, unsigned long ea,
  583. int reg, bool cross_endian)
  584. {
  585. int err;
  586. unsigned long vals[2];
  587. if (!address_ok(regs, ea, 16))
  588. return -EFAULT;
  589. vals[0] = regs->gpr[reg];
  590. vals[1] = regs->gpr[reg + 1];
  591. if (unlikely(cross_endian))
  592. do_byte_reverse(vals, 16);
  593. /* if aligned, should be atomic */
  594. if ((ea & 0xf) == 0)
  595. return do_stq(ea, vals[0], vals[1]);
  596. err = write_mem(vals[IS_LE], ea, 8, regs);
  597. if (!err)
  598. err = write_mem(vals[IS_BE], ea + 8, 8, regs);
  599. return err;
  600. }
  601. #endif /* __powerpc64 */
  602. #ifdef CONFIG_VSX
  603. void emulate_vsx_load(struct instruction_op *op, union vsx_reg *reg,
  604. const void *mem, bool rev)
  605. {
  606. int size, read_size;
  607. int i, j;
  608. const unsigned int *wp;
  609. const unsigned short *hp;
  610. const unsigned char *bp;
  611. size = GETSIZE(op->type);
  612. reg->d[0] = reg->d[1] = 0;
  613. switch (op->element_size) {
  614. case 16:
  615. /* whole vector; lxv[x] or lxvl[l] */
  616. if (size == 0)
  617. break;
  618. memcpy(reg, mem, size);
  619. if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
  620. rev = !rev;
  621. if (rev)
  622. do_byte_reverse(reg, 16);
  623. break;
  624. case 8:
  625. /* scalar loads, lxvd2x, lxvdsx */
  626. read_size = (size >= 8) ? 8 : size;
  627. i = IS_LE ? 8 : 8 - read_size;
  628. memcpy(&reg->b[i], mem, read_size);
  629. if (rev)
  630. do_byte_reverse(&reg->b[i], 8);
  631. if (size < 8) {
  632. if (op->type & SIGNEXT) {
  633. /* size == 4 is the only case here */
  634. reg->d[IS_LE] = (signed int) reg->d[IS_LE];
  635. } else if (op->vsx_flags & VSX_FPCONV) {
  636. preempt_disable();
  637. conv_sp_to_dp(&reg->fp[1 + IS_LE],
  638. &reg->dp[IS_LE]);
  639. preempt_enable();
  640. }
  641. } else {
  642. if (size == 16) {
  643. unsigned long v = *(unsigned long *)(mem + 8);
  644. reg->d[IS_BE] = !rev ? v : byterev_8(v);
  645. } else if (op->vsx_flags & VSX_SPLAT)
  646. reg->d[IS_BE] = reg->d[IS_LE];
  647. }
  648. break;
  649. case 4:
  650. /* lxvw4x, lxvwsx */
  651. wp = mem;
  652. for (j = 0; j < size / 4; ++j) {
  653. i = IS_LE ? 3 - j : j;
  654. reg->w[i] = !rev ? *wp++ : byterev_4(*wp++);
  655. }
  656. if (op->vsx_flags & VSX_SPLAT) {
  657. u32 val = reg->w[IS_LE ? 3 : 0];
  658. for (; j < 4; ++j) {
  659. i = IS_LE ? 3 - j : j;
  660. reg->w[i] = val;
  661. }
  662. }
  663. break;
  664. case 2:
  665. /* lxvh8x */
  666. hp = mem;
  667. for (j = 0; j < size / 2; ++j) {
  668. i = IS_LE ? 7 - j : j;
  669. reg->h[i] = !rev ? *hp++ : byterev_2(*hp++);
  670. }
  671. break;
  672. case 1:
  673. /* lxvb16x */
  674. bp = mem;
  675. for (j = 0; j < size; ++j) {
  676. i = IS_LE ? 15 - j : j;
  677. reg->b[i] = *bp++;
  678. }
  679. break;
  680. }
  681. }
  682. EXPORT_SYMBOL_GPL(emulate_vsx_load);
  683. NOKPROBE_SYMBOL(emulate_vsx_load);
  684. void emulate_vsx_store(struct instruction_op *op, const union vsx_reg *reg,
  685. void *mem, bool rev)
  686. {
  687. int size, write_size;
  688. int i, j;
  689. union vsx_reg buf;
  690. unsigned int *wp;
  691. unsigned short *hp;
  692. unsigned char *bp;
  693. size = GETSIZE(op->type);
  694. switch (op->element_size) {
  695. case 16:
  696. /* stxv, stxvx, stxvl, stxvll */
  697. if (size == 0)
  698. break;
  699. if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
  700. rev = !rev;
  701. if (rev) {
  702. /* reverse 16 bytes */
  703. buf.d[0] = byterev_8(reg->d[1]);
  704. buf.d[1] = byterev_8(reg->d[0]);
  705. reg = &buf;
  706. }
  707. memcpy(mem, reg, size);
  708. break;
  709. case 8:
  710. /* scalar stores, stxvd2x */
  711. write_size = (size >= 8) ? 8 : size;
  712. i = IS_LE ? 8 : 8 - write_size;
  713. if (size < 8 && op->vsx_flags & VSX_FPCONV) {
  714. buf.d[0] = buf.d[1] = 0;
  715. preempt_disable();
  716. conv_dp_to_sp(&reg->dp[IS_LE], &buf.fp[1 + IS_LE]);
  717. preempt_enable();
  718. reg = &buf;
  719. }
  720. memcpy(mem, &reg->b[i], write_size);
  721. if (size == 16)
  722. memcpy(mem + 8, &reg->d[IS_BE], 8);
  723. if (unlikely(rev)) {
  724. do_byte_reverse(mem, write_size);
  725. if (size == 16)
  726. do_byte_reverse(mem + 8, 8);
  727. }
  728. break;
  729. case 4:
  730. /* stxvw4x */
  731. wp = mem;
  732. for (j = 0; j < size / 4; ++j) {
  733. i = IS_LE ? 3 - j : j;
  734. *wp++ = !rev ? reg->w[i] : byterev_4(reg->w[i]);
  735. }
  736. break;
  737. case 2:
  738. /* stxvh8x */
  739. hp = mem;
  740. for (j = 0; j < size / 2; ++j) {
  741. i = IS_LE ? 7 - j : j;
  742. *hp++ = !rev ? reg->h[i] : byterev_2(reg->h[i]);
  743. }
  744. break;
  745. case 1:
  746. /* stvxb16x */
  747. bp = mem;
  748. for (j = 0; j < size; ++j) {
  749. i = IS_LE ? 15 - j : j;
  750. *bp++ = reg->b[i];
  751. }
  752. break;
  753. }
  754. }
  755. EXPORT_SYMBOL_GPL(emulate_vsx_store);
  756. NOKPROBE_SYMBOL(emulate_vsx_store);
  757. static nokprobe_inline int do_vsx_load(struct instruction_op *op,
  758. unsigned long ea, struct pt_regs *regs,
  759. bool cross_endian)
  760. {
  761. int reg = op->reg;
  762. u8 mem[16];
  763. union vsx_reg buf;
  764. int size = GETSIZE(op->type);
  765. if (!address_ok(regs, ea, size) || copy_mem_in(mem, ea, size, regs))
  766. return -EFAULT;
  767. emulate_vsx_load(op, &buf, mem, cross_endian);
  768. preempt_disable();
  769. if (reg < 32) {
  770. /* FP regs + extensions */
  771. if (regs->msr & MSR_FP) {
  772. load_vsrn(reg, &buf);
  773. } else {
  774. current->thread.fp_state.fpr[reg][0] = buf.d[0];
  775. current->thread.fp_state.fpr[reg][1] = buf.d[1];
  776. }
  777. } else {
  778. if (regs->msr & MSR_VEC)
  779. load_vsrn(reg, &buf);
  780. else
  781. current->thread.vr_state.vr[reg - 32] = buf.v;
  782. }
  783. preempt_enable();
  784. return 0;
  785. }
  786. static nokprobe_inline int do_vsx_store(struct instruction_op *op,
  787. unsigned long ea, struct pt_regs *regs,
  788. bool cross_endian)
  789. {
  790. int reg = op->reg;
  791. u8 mem[16];
  792. union vsx_reg buf;
  793. int size = GETSIZE(op->type);
  794. if (!address_ok(regs, ea, size))
  795. return -EFAULT;
  796. preempt_disable();
  797. if (reg < 32) {
  798. /* FP regs + extensions */
  799. if (regs->msr & MSR_FP) {
  800. store_vsrn(reg, &buf);
  801. } else {
  802. buf.d[0] = current->thread.fp_state.fpr[reg][0];
  803. buf.d[1] = current->thread.fp_state.fpr[reg][1];
  804. }
  805. } else {
  806. if (regs->msr & MSR_VEC)
  807. store_vsrn(reg, &buf);
  808. else
  809. buf.v = current->thread.vr_state.vr[reg - 32];
  810. }
  811. preempt_enable();
  812. emulate_vsx_store(op, &buf, mem, cross_endian);
  813. return copy_mem_out(mem, ea, size, regs);
  814. }
  815. #endif /* CONFIG_VSX */
  816. int emulate_dcbz(unsigned long ea, struct pt_regs *regs)
  817. {
  818. int err;
  819. unsigned long i, size;
  820. #ifdef __powerpc64__
  821. size = ppc64_caches.l1d.block_size;
  822. if (!(regs->msr & MSR_64BIT))
  823. ea &= 0xffffffffUL;
  824. #else
  825. size = L1_CACHE_BYTES;
  826. #endif
  827. ea &= ~(size - 1);
  828. if (!address_ok(regs, ea, size))
  829. return -EFAULT;
  830. for (i = 0; i < size; i += sizeof(long)) {
  831. err = __put_user(0, (unsigned long __user *) (ea + i));
  832. if (err) {
  833. regs->dar = ea;
  834. return err;
  835. }
  836. }
  837. return 0;
  838. }
  839. NOKPROBE_SYMBOL(emulate_dcbz);
  840. #define __put_user_asmx(x, addr, err, op, cr) \
  841. __asm__ __volatile__( \
  842. "1: " op " %2,0,%3\n" \
  843. " mfcr %1\n" \
  844. "2:\n" \
  845. ".section .fixup,\"ax\"\n" \
  846. "3: li %0,%4\n" \
  847. " b 2b\n" \
  848. ".previous\n" \
  849. EX_TABLE(1b, 3b) \
  850. : "=r" (err), "=r" (cr) \
  851. : "r" (x), "r" (addr), "i" (-EFAULT), "0" (err))
  852. #define __get_user_asmx(x, addr, err, op) \
  853. __asm__ __volatile__( \
  854. "1: "op" %1,0,%2\n" \
  855. "2:\n" \
  856. ".section .fixup,\"ax\"\n" \
  857. "3: li %0,%3\n" \
  858. " b 2b\n" \
  859. ".previous\n" \
  860. EX_TABLE(1b, 3b) \
  861. : "=r" (err), "=r" (x) \
  862. : "r" (addr), "i" (-EFAULT), "0" (err))
  863. #define __cacheop_user_asmx(addr, err, op) \
  864. __asm__ __volatile__( \
  865. "1: "op" 0,%1\n" \
  866. "2:\n" \
  867. ".section .fixup,\"ax\"\n" \
  868. "3: li %0,%3\n" \
  869. " b 2b\n" \
  870. ".previous\n" \
  871. EX_TABLE(1b, 3b) \
  872. : "=r" (err) \
  873. : "r" (addr), "i" (-EFAULT), "0" (err))
  874. static nokprobe_inline void set_cr0(const struct pt_regs *regs,
  875. struct instruction_op *op)
  876. {
  877. long val = op->val;
  878. op->type |= SETCC;
  879. op->ccval = (regs->ccr & 0x0fffffff) | ((regs->xer >> 3) & 0x10000000);
  880. #ifdef __powerpc64__
  881. if (!(regs->msr & MSR_64BIT))
  882. val = (int) val;
  883. #endif
  884. if (val < 0)
  885. op->ccval |= 0x80000000;
  886. else if (val > 0)
  887. op->ccval |= 0x40000000;
  888. else
  889. op->ccval |= 0x20000000;
  890. }
  891. static nokprobe_inline void set_ca32(struct instruction_op *op, bool val)
  892. {
  893. if (cpu_has_feature(CPU_FTR_ARCH_300)) {
  894. if (val)
  895. op->xerval |= XER_CA32;
  896. else
  897. op->xerval &= ~XER_CA32;
  898. }
  899. }
  900. static nokprobe_inline void add_with_carry(const struct pt_regs *regs,
  901. struct instruction_op *op, int rd,
  902. unsigned long val1, unsigned long val2,
  903. unsigned long carry_in)
  904. {
  905. unsigned long val = val1 + val2;
  906. if (carry_in)
  907. ++val;
  908. op->type = COMPUTE + SETREG + SETXER;
  909. op->reg = rd;
  910. op->val = val;
  911. #ifdef __powerpc64__
  912. if (!(regs->msr & MSR_64BIT)) {
  913. val = (unsigned int) val;
  914. val1 = (unsigned int) val1;
  915. }
  916. #endif
  917. op->xerval = regs->xer;
  918. if (val < val1 || (carry_in && val == val1))
  919. op->xerval |= XER_CA;
  920. else
  921. op->xerval &= ~XER_CA;
  922. set_ca32(op, (unsigned int)val < (unsigned int)val1 ||
  923. (carry_in && (unsigned int)val == (unsigned int)val1));
  924. }
  925. static nokprobe_inline void do_cmp_signed(const struct pt_regs *regs,
  926. struct instruction_op *op,
  927. long v1, long v2, int crfld)
  928. {
  929. unsigned int crval, shift;
  930. op->type = COMPUTE + SETCC;
  931. crval = (regs->xer >> 31) & 1; /* get SO bit */
  932. if (v1 < v2)
  933. crval |= 8;
  934. else if (v1 > v2)
  935. crval |= 4;
  936. else
  937. crval |= 2;
  938. shift = (7 - crfld) * 4;
  939. op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
  940. }
  941. static nokprobe_inline void do_cmp_unsigned(const struct pt_regs *regs,
  942. struct instruction_op *op,
  943. unsigned long v1,
  944. unsigned long v2, int crfld)
  945. {
  946. unsigned int crval, shift;
  947. op->type = COMPUTE + SETCC;
  948. crval = (regs->xer >> 31) & 1; /* get SO bit */
  949. if (v1 < v2)
  950. crval |= 8;
  951. else if (v1 > v2)
  952. crval |= 4;
  953. else
  954. crval |= 2;
  955. shift = (7 - crfld) * 4;
  956. op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
  957. }
  958. static nokprobe_inline void do_cmpb(const struct pt_regs *regs,
  959. struct instruction_op *op,
  960. unsigned long v1, unsigned long v2)
  961. {
  962. unsigned long long out_val, mask;
  963. int i;
  964. out_val = 0;
  965. for (i = 0; i < 8; i++) {
  966. mask = 0xffUL << (i * 8);
  967. if ((v1 & mask) == (v2 & mask))
  968. out_val |= mask;
  969. }
  970. op->val = out_val;
  971. }
  972. /*
  973. * The size parameter is used to adjust the equivalent popcnt instruction.
  974. * popcntb = 8, popcntw = 32, popcntd = 64
  975. */
  976. static nokprobe_inline void do_popcnt(const struct pt_regs *regs,
  977. struct instruction_op *op,
  978. unsigned long v1, int size)
  979. {
  980. unsigned long long out = v1;
  981. out -= (out >> 1) & 0x5555555555555555ULL;
  982. out = (0x3333333333333333ULL & out) +
  983. (0x3333333333333333ULL & (out >> 2));
  984. out = (out + (out >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
  985. if (size == 8) { /* popcntb */
  986. op->val = out;
  987. return;
  988. }
  989. out += out >> 8;
  990. out += out >> 16;
  991. if (size == 32) { /* popcntw */
  992. op->val = out & 0x0000003f0000003fULL;
  993. return;
  994. }
  995. out = (out + (out >> 32)) & 0x7f;
  996. op->val = out; /* popcntd */
  997. }
  998. #ifdef CONFIG_PPC64
  999. static nokprobe_inline void do_bpermd(const struct pt_regs *regs,
  1000. struct instruction_op *op,
  1001. unsigned long v1, unsigned long v2)
  1002. {
  1003. unsigned char perm, idx;
  1004. unsigned int i;
  1005. perm = 0;
  1006. for (i = 0; i < 8; i++) {
  1007. idx = (v1 >> (i * 8)) & 0xff;
  1008. if (idx < 64)
  1009. if (v2 & PPC_BIT(idx))
  1010. perm |= 1 << i;
  1011. }
  1012. op->val = perm;
  1013. }
  1014. #endif /* CONFIG_PPC64 */
  1015. /*
  1016. * The size parameter adjusts the equivalent prty instruction.
  1017. * prtyw = 32, prtyd = 64
  1018. */
  1019. static nokprobe_inline void do_prty(const struct pt_regs *regs,
  1020. struct instruction_op *op,
  1021. unsigned long v, int size)
  1022. {
  1023. unsigned long long res = v ^ (v >> 8);
  1024. res ^= res >> 16;
  1025. if (size == 32) { /* prtyw */
  1026. op->val = res & 0x0000000100000001ULL;
  1027. return;
  1028. }
  1029. res ^= res >> 32;
  1030. op->val = res & 1; /*prtyd */
  1031. }
  1032. static nokprobe_inline int trap_compare(long v1, long v2)
  1033. {
  1034. int ret = 0;
  1035. if (v1 < v2)
  1036. ret |= 0x10;
  1037. else if (v1 > v2)
  1038. ret |= 0x08;
  1039. else
  1040. ret |= 0x04;
  1041. if ((unsigned long)v1 < (unsigned long)v2)
  1042. ret |= 0x02;
  1043. else if ((unsigned long)v1 > (unsigned long)v2)
  1044. ret |= 0x01;
  1045. return ret;
  1046. }
  1047. /*
  1048. * Elements of 32-bit rotate and mask instructions.
  1049. */
  1050. #define MASK32(mb, me) ((0xffffffffUL >> (mb)) + \
  1051. ((signed long)-0x80000000L >> (me)) + ((me) >= (mb)))
  1052. #ifdef __powerpc64__
  1053. #define MASK64_L(mb) (~0UL >> (mb))
  1054. #define MASK64_R(me) ((signed long)-0x8000000000000000L >> (me))
  1055. #define MASK64(mb, me) (MASK64_L(mb) + MASK64_R(me) + ((me) >= (mb)))
  1056. #define DATA32(x) (((x) & 0xffffffffUL) | (((x) & 0xffffffffUL) << 32))
  1057. #else
  1058. #define DATA32(x) (x)
  1059. #endif
  1060. #define ROTATE(x, n) ((n) ? (((x) << (n)) | ((x) >> (8 * sizeof(long) - (n)))) : (x))
  1061. /*
  1062. * Decode an instruction, and return information about it in *op
  1063. * without changing *regs.
  1064. * Integer arithmetic and logical instructions, branches, and barrier
  1065. * instructions can be emulated just using the information in *op.
  1066. *
  1067. * Return value is 1 if the instruction can be emulated just by
  1068. * updating *regs with the information in *op, -1 if we need the
  1069. * GPRs but *regs doesn't contain the full register set, or 0
  1070. * otherwise.
  1071. */
  1072. int analyse_instr(struct instruction_op *op, const struct pt_regs *regs,
  1073. unsigned int instr)
  1074. {
  1075. unsigned int opcode, ra, rb, rd, spr, u;
  1076. unsigned long int imm;
  1077. unsigned long int val, val2;
  1078. unsigned int mb, me, sh;
  1079. long ival;
  1080. op->type = COMPUTE;
  1081. opcode = instr >> 26;
  1082. switch (opcode) {
  1083. case 16: /* bc */
  1084. op->type = BRANCH;
  1085. imm = (signed short)(instr & 0xfffc);
  1086. if ((instr & 2) == 0)
  1087. imm += regs->nip;
  1088. op->val = truncate_if_32bit(regs->msr, imm);
  1089. if (instr & 1)
  1090. op->type |= SETLK;
  1091. if (branch_taken(instr, regs, op))
  1092. op->type |= BRTAKEN;
  1093. return 1;
  1094. #ifdef CONFIG_PPC64
  1095. case 17: /* sc */
  1096. if ((instr & 0xfe2) == 2)
  1097. op->type = SYSCALL;
  1098. else
  1099. op->type = UNKNOWN;
  1100. return 0;
  1101. #endif
  1102. case 18: /* b */
  1103. op->type = BRANCH | BRTAKEN;
  1104. imm = instr & 0x03fffffc;
  1105. if (imm & 0x02000000)
  1106. imm -= 0x04000000;
  1107. if ((instr & 2) == 0)
  1108. imm += regs->nip;
  1109. op->val = truncate_if_32bit(regs->msr, imm);
  1110. if (instr & 1)
  1111. op->type |= SETLK;
  1112. return 1;
  1113. case 19:
  1114. switch ((instr >> 1) & 0x3ff) {
  1115. case 0: /* mcrf */
  1116. op->type = COMPUTE + SETCC;
  1117. rd = 7 - ((instr >> 23) & 0x7);
  1118. ra = 7 - ((instr >> 18) & 0x7);
  1119. rd *= 4;
  1120. ra *= 4;
  1121. val = (regs->ccr >> ra) & 0xf;
  1122. op->ccval = (regs->ccr & ~(0xfUL << rd)) | (val << rd);
  1123. return 1;
  1124. case 16: /* bclr */
  1125. case 528: /* bcctr */
  1126. op->type = BRANCH;
  1127. imm = (instr & 0x400)? regs->ctr: regs->link;
  1128. op->val = truncate_if_32bit(regs->msr, imm);
  1129. if (instr & 1)
  1130. op->type |= SETLK;
  1131. if (branch_taken(instr, regs, op))
  1132. op->type |= BRTAKEN;
  1133. return 1;
  1134. case 18: /* rfid, scary */
  1135. if (regs->msr & MSR_PR)
  1136. goto priv;
  1137. op->type = RFI;
  1138. return 0;
  1139. case 150: /* isync */
  1140. op->type = BARRIER | BARRIER_ISYNC;
  1141. return 1;
  1142. case 33: /* crnor */
  1143. case 129: /* crandc */
  1144. case 193: /* crxor */
  1145. case 225: /* crnand */
  1146. case 257: /* crand */
  1147. case 289: /* creqv */
  1148. case 417: /* crorc */
  1149. case 449: /* cror */
  1150. op->type = COMPUTE + SETCC;
  1151. ra = (instr >> 16) & 0x1f;
  1152. rb = (instr >> 11) & 0x1f;
  1153. rd = (instr >> 21) & 0x1f;
  1154. ra = (regs->ccr >> (31 - ra)) & 1;
  1155. rb = (regs->ccr >> (31 - rb)) & 1;
  1156. val = (instr >> (6 + ra * 2 + rb)) & 1;
  1157. op->ccval = (regs->ccr & ~(1UL << (31 - rd))) |
  1158. (val << (31 - rd));
  1159. return 1;
  1160. }
  1161. break;
  1162. case 31:
  1163. switch ((instr >> 1) & 0x3ff) {
  1164. case 598: /* sync */
  1165. op->type = BARRIER + BARRIER_SYNC;
  1166. #ifdef __powerpc64__
  1167. switch ((instr >> 21) & 3) {
  1168. case 1: /* lwsync */
  1169. op->type = BARRIER + BARRIER_LWSYNC;
  1170. break;
  1171. case 2: /* ptesync */
  1172. op->type = BARRIER + BARRIER_PTESYNC;
  1173. break;
  1174. }
  1175. #endif
  1176. return 1;
  1177. case 854: /* eieio */
  1178. op->type = BARRIER + BARRIER_EIEIO;
  1179. return 1;
  1180. }
  1181. break;
  1182. }
  1183. /* Following cases refer to regs->gpr[], so we need all regs */
  1184. if (!FULL_REGS(regs))
  1185. return -1;
  1186. rd = (instr >> 21) & 0x1f;
  1187. ra = (instr >> 16) & 0x1f;
  1188. rb = (instr >> 11) & 0x1f;
  1189. switch (opcode) {
  1190. #ifdef __powerpc64__
  1191. case 2: /* tdi */
  1192. if (rd & trap_compare(regs->gpr[ra], (short) instr))
  1193. goto trap;
  1194. return 1;
  1195. #endif
  1196. case 3: /* twi */
  1197. if (rd & trap_compare((int)regs->gpr[ra], (short) instr))
  1198. goto trap;
  1199. return 1;
  1200. case 7: /* mulli */
  1201. op->val = regs->gpr[ra] * (short) instr;
  1202. goto compute_done;
  1203. case 8: /* subfic */
  1204. imm = (short) instr;
  1205. add_with_carry(regs, op, rd, ~regs->gpr[ra], imm, 1);
  1206. return 1;
  1207. case 10: /* cmpli */
  1208. imm = (unsigned short) instr;
  1209. val = regs->gpr[ra];
  1210. #ifdef __powerpc64__
  1211. if ((rd & 1) == 0)
  1212. val = (unsigned int) val;
  1213. #endif
  1214. do_cmp_unsigned(regs, op, val, imm, rd >> 2);
  1215. return 1;
  1216. case 11: /* cmpi */
  1217. imm = (short) instr;
  1218. val = regs->gpr[ra];
  1219. #ifdef __powerpc64__
  1220. if ((rd & 1) == 0)
  1221. val = (int) val;
  1222. #endif
  1223. do_cmp_signed(regs, op, val, imm, rd >> 2);
  1224. return 1;
  1225. case 12: /* addic */
  1226. imm = (short) instr;
  1227. add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
  1228. return 1;
  1229. case 13: /* addic. */
  1230. imm = (short) instr;
  1231. add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
  1232. set_cr0(regs, op);
  1233. return 1;
  1234. case 14: /* addi */
  1235. imm = (short) instr;
  1236. if (ra)
  1237. imm += regs->gpr[ra];
  1238. op->val = imm;
  1239. goto compute_done;
  1240. case 15: /* addis */
  1241. imm = ((short) instr) << 16;
  1242. if (ra)
  1243. imm += regs->gpr[ra];
  1244. op->val = imm;
  1245. goto compute_done;
  1246. case 19:
  1247. if (((instr >> 1) & 0x1f) == 2) {
  1248. /* addpcis */
  1249. imm = (short) (instr & 0xffc1); /* d0 + d2 fields */
  1250. imm |= (instr >> 15) & 0x3e; /* d1 field */
  1251. op->val = regs->nip + (imm << 16) + 4;
  1252. goto compute_done;
  1253. }
  1254. op->type = UNKNOWN;
  1255. return 0;
  1256. case 20: /* rlwimi */
  1257. mb = (instr >> 6) & 0x1f;
  1258. me = (instr >> 1) & 0x1f;
  1259. val = DATA32(regs->gpr[rd]);
  1260. imm = MASK32(mb, me);
  1261. op->val = (regs->gpr[ra] & ~imm) | (ROTATE(val, rb) & imm);
  1262. goto logical_done;
  1263. case 21: /* rlwinm */
  1264. mb = (instr >> 6) & 0x1f;
  1265. me = (instr >> 1) & 0x1f;
  1266. val = DATA32(regs->gpr[rd]);
  1267. op->val = ROTATE(val, rb) & MASK32(mb, me);
  1268. goto logical_done;
  1269. case 23: /* rlwnm */
  1270. mb = (instr >> 6) & 0x1f;
  1271. me = (instr >> 1) & 0x1f;
  1272. rb = regs->gpr[rb] & 0x1f;
  1273. val = DATA32(regs->gpr[rd]);
  1274. op->val = ROTATE(val, rb) & MASK32(mb, me);
  1275. goto logical_done;
  1276. case 24: /* ori */
  1277. op->val = regs->gpr[rd] | (unsigned short) instr;
  1278. goto logical_done_nocc;
  1279. case 25: /* oris */
  1280. imm = (unsigned short) instr;
  1281. op->val = regs->gpr[rd] | (imm << 16);
  1282. goto logical_done_nocc;
  1283. case 26: /* xori */
  1284. op->val = regs->gpr[rd] ^ (unsigned short) instr;
  1285. goto logical_done_nocc;
  1286. case 27: /* xoris */
  1287. imm = (unsigned short) instr;
  1288. op->val = regs->gpr[rd] ^ (imm << 16);
  1289. goto logical_done_nocc;
  1290. case 28: /* andi. */
  1291. op->val = regs->gpr[rd] & (unsigned short) instr;
  1292. set_cr0(regs, op);
  1293. goto logical_done_nocc;
  1294. case 29: /* andis. */
  1295. imm = (unsigned short) instr;
  1296. op->val = regs->gpr[rd] & (imm << 16);
  1297. set_cr0(regs, op);
  1298. goto logical_done_nocc;
  1299. #ifdef __powerpc64__
  1300. case 30: /* rld* */
  1301. mb = ((instr >> 6) & 0x1f) | (instr & 0x20);
  1302. val = regs->gpr[rd];
  1303. if ((instr & 0x10) == 0) {
  1304. sh = rb | ((instr & 2) << 4);
  1305. val = ROTATE(val, sh);
  1306. switch ((instr >> 2) & 3) {
  1307. case 0: /* rldicl */
  1308. val &= MASK64_L(mb);
  1309. break;
  1310. case 1: /* rldicr */
  1311. val &= MASK64_R(mb);
  1312. break;
  1313. case 2: /* rldic */
  1314. val &= MASK64(mb, 63 - sh);
  1315. break;
  1316. case 3: /* rldimi */
  1317. imm = MASK64(mb, 63 - sh);
  1318. val = (regs->gpr[ra] & ~imm) |
  1319. (val & imm);
  1320. }
  1321. op->val = val;
  1322. goto logical_done;
  1323. } else {
  1324. sh = regs->gpr[rb] & 0x3f;
  1325. val = ROTATE(val, sh);
  1326. switch ((instr >> 1) & 7) {
  1327. case 0: /* rldcl */
  1328. op->val = val & MASK64_L(mb);
  1329. goto logical_done;
  1330. case 1: /* rldcr */
  1331. op->val = val & MASK64_R(mb);
  1332. goto logical_done;
  1333. }
  1334. }
  1335. #endif
  1336. op->type = UNKNOWN; /* illegal instruction */
  1337. return 0;
  1338. case 31:
  1339. /* isel occupies 32 minor opcodes */
  1340. if (((instr >> 1) & 0x1f) == 15) {
  1341. mb = (instr >> 6) & 0x1f; /* bc field */
  1342. val = (regs->ccr >> (31 - mb)) & 1;
  1343. val2 = (ra) ? regs->gpr[ra] : 0;
  1344. op->val = (val) ? val2 : regs->gpr[rb];
  1345. goto compute_done;
  1346. }
  1347. switch ((instr >> 1) & 0x3ff) {
  1348. case 4: /* tw */
  1349. if (rd == 0x1f ||
  1350. (rd & trap_compare((int)regs->gpr[ra],
  1351. (int)regs->gpr[rb])))
  1352. goto trap;
  1353. return 1;
  1354. #ifdef __powerpc64__
  1355. case 68: /* td */
  1356. if (rd & trap_compare(regs->gpr[ra], regs->gpr[rb]))
  1357. goto trap;
  1358. return 1;
  1359. #endif
  1360. case 83: /* mfmsr */
  1361. if (regs->msr & MSR_PR)
  1362. goto priv;
  1363. op->type = MFMSR;
  1364. op->reg = rd;
  1365. return 0;
  1366. case 146: /* mtmsr */
  1367. if (regs->msr & MSR_PR)
  1368. goto priv;
  1369. op->type = MTMSR;
  1370. op->reg = rd;
  1371. op->val = 0xffffffff & ~(MSR_ME | MSR_LE);
  1372. return 0;
  1373. #ifdef CONFIG_PPC64
  1374. case 178: /* mtmsrd */
  1375. if (regs->msr & MSR_PR)
  1376. goto priv;
  1377. op->type = MTMSR;
  1378. op->reg = rd;
  1379. /* only MSR_EE and MSR_RI get changed if bit 15 set */
  1380. /* mtmsrd doesn't change MSR_HV, MSR_ME or MSR_LE */
  1381. imm = (instr & 0x10000)? 0x8002: 0xefffffffffffeffeUL;
  1382. op->val = imm;
  1383. return 0;
  1384. #endif
  1385. case 19: /* mfcr */
  1386. imm = 0xffffffffUL;
  1387. if ((instr >> 20) & 1) {
  1388. imm = 0xf0000000UL;
  1389. for (sh = 0; sh < 8; ++sh) {
  1390. if (instr & (0x80000 >> sh))
  1391. break;
  1392. imm >>= 4;
  1393. }
  1394. }
  1395. op->val = regs->ccr & imm;
  1396. goto compute_done;
  1397. case 144: /* mtcrf */
  1398. op->type = COMPUTE + SETCC;
  1399. imm = 0xf0000000UL;
  1400. val = regs->gpr[rd];
  1401. op->ccval = regs->ccr;
  1402. for (sh = 0; sh < 8; ++sh) {
  1403. if (instr & (0x80000 >> sh))
  1404. op->ccval = (op->ccval & ~imm) |
  1405. (val & imm);
  1406. imm >>= 4;
  1407. }
  1408. return 1;
  1409. case 339: /* mfspr */
  1410. spr = ((instr >> 16) & 0x1f) | ((instr >> 6) & 0x3e0);
  1411. op->type = MFSPR;
  1412. op->reg = rd;
  1413. op->spr = spr;
  1414. if (spr == SPRN_XER || spr == SPRN_LR ||
  1415. spr == SPRN_CTR)
  1416. return 1;
  1417. return 0;
  1418. case 467: /* mtspr */
  1419. spr = ((instr >> 16) & 0x1f) | ((instr >> 6) & 0x3e0);
  1420. op->type = MTSPR;
  1421. op->val = regs->gpr[rd];
  1422. op->spr = spr;
  1423. if (spr == SPRN_XER || spr == SPRN_LR ||
  1424. spr == SPRN_CTR)
  1425. return 1;
  1426. return 0;
  1427. /*
  1428. * Compare instructions
  1429. */
  1430. case 0: /* cmp */
  1431. val = regs->gpr[ra];
  1432. val2 = regs->gpr[rb];
  1433. #ifdef __powerpc64__
  1434. if ((rd & 1) == 0) {
  1435. /* word (32-bit) compare */
  1436. val = (int) val;
  1437. val2 = (int) val2;
  1438. }
  1439. #endif
  1440. do_cmp_signed(regs, op, val, val2, rd >> 2);
  1441. return 1;
  1442. case 32: /* cmpl */
  1443. val = regs->gpr[ra];
  1444. val2 = regs->gpr[rb];
  1445. #ifdef __powerpc64__
  1446. if ((rd & 1) == 0) {
  1447. /* word (32-bit) compare */
  1448. val = (unsigned int) val;
  1449. val2 = (unsigned int) val2;
  1450. }
  1451. #endif
  1452. do_cmp_unsigned(regs, op, val, val2, rd >> 2);
  1453. return 1;
  1454. case 508: /* cmpb */
  1455. do_cmpb(regs, op, regs->gpr[rd], regs->gpr[rb]);
  1456. goto logical_done_nocc;
  1457. /*
  1458. * Arithmetic instructions
  1459. */
  1460. case 8: /* subfc */
  1461. add_with_carry(regs, op, rd, ~regs->gpr[ra],
  1462. regs->gpr[rb], 1);
  1463. goto arith_done;
  1464. #ifdef __powerpc64__
  1465. case 9: /* mulhdu */
  1466. asm("mulhdu %0,%1,%2" : "=r" (op->val) :
  1467. "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
  1468. goto arith_done;
  1469. #endif
  1470. case 10: /* addc */
  1471. add_with_carry(regs, op, rd, regs->gpr[ra],
  1472. regs->gpr[rb], 0);
  1473. goto arith_done;
  1474. case 11: /* mulhwu */
  1475. asm("mulhwu %0,%1,%2" : "=r" (op->val) :
  1476. "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
  1477. goto arith_done;
  1478. case 40: /* subf */
  1479. op->val = regs->gpr[rb] - regs->gpr[ra];
  1480. goto arith_done;
  1481. #ifdef __powerpc64__
  1482. case 73: /* mulhd */
  1483. asm("mulhd %0,%1,%2" : "=r" (op->val) :
  1484. "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
  1485. goto arith_done;
  1486. #endif
  1487. case 75: /* mulhw */
  1488. asm("mulhw %0,%1,%2" : "=r" (op->val) :
  1489. "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
  1490. goto arith_done;
  1491. case 104: /* neg */
  1492. op->val = -regs->gpr[ra];
  1493. goto arith_done;
  1494. case 136: /* subfe */
  1495. add_with_carry(regs, op, rd, ~regs->gpr[ra],
  1496. regs->gpr[rb], regs->xer & XER_CA);
  1497. goto arith_done;
  1498. case 138: /* adde */
  1499. add_with_carry(regs, op, rd, regs->gpr[ra],
  1500. regs->gpr[rb], regs->xer & XER_CA);
  1501. goto arith_done;
  1502. case 200: /* subfze */
  1503. add_with_carry(regs, op, rd, ~regs->gpr[ra], 0L,
  1504. regs->xer & XER_CA);
  1505. goto arith_done;
  1506. case 202: /* addze */
  1507. add_with_carry(regs, op, rd, regs->gpr[ra], 0L,
  1508. regs->xer & XER_CA);
  1509. goto arith_done;
  1510. case 232: /* subfme */
  1511. add_with_carry(regs, op, rd, ~regs->gpr[ra], -1L,
  1512. regs->xer & XER_CA);
  1513. goto arith_done;
  1514. #ifdef __powerpc64__
  1515. case 233: /* mulld */
  1516. op->val = regs->gpr[ra] * regs->gpr[rb];
  1517. goto arith_done;
  1518. #endif
  1519. case 234: /* addme */
  1520. add_with_carry(regs, op, rd, regs->gpr[ra], -1L,
  1521. regs->xer & XER_CA);
  1522. goto arith_done;
  1523. case 235: /* mullw */
  1524. op->val = (long)(int) regs->gpr[ra] *
  1525. (int) regs->gpr[rb];
  1526. goto arith_done;
  1527. case 266: /* add */
  1528. op->val = regs->gpr[ra] + regs->gpr[rb];
  1529. goto arith_done;
  1530. #ifdef __powerpc64__
  1531. case 457: /* divdu */
  1532. op->val = regs->gpr[ra] / regs->gpr[rb];
  1533. goto arith_done;
  1534. #endif
  1535. case 459: /* divwu */
  1536. op->val = (unsigned int) regs->gpr[ra] /
  1537. (unsigned int) regs->gpr[rb];
  1538. goto arith_done;
  1539. #ifdef __powerpc64__
  1540. case 489: /* divd */
  1541. op->val = (long int) regs->gpr[ra] /
  1542. (long int) regs->gpr[rb];
  1543. goto arith_done;
  1544. #endif
  1545. case 491: /* divw */
  1546. op->val = (int) regs->gpr[ra] /
  1547. (int) regs->gpr[rb];
  1548. goto arith_done;
  1549. /*
  1550. * Logical instructions
  1551. */
  1552. case 26: /* cntlzw */
  1553. val = (unsigned int) regs->gpr[rd];
  1554. op->val = ( val ? __builtin_clz(val) : 32 );
  1555. goto logical_done;
  1556. #ifdef __powerpc64__
  1557. case 58: /* cntlzd */
  1558. val = regs->gpr[rd];
  1559. op->val = ( val ? __builtin_clzl(val) : 64 );
  1560. goto logical_done;
  1561. #endif
  1562. case 28: /* and */
  1563. op->val = regs->gpr[rd] & regs->gpr[rb];
  1564. goto logical_done;
  1565. case 60: /* andc */
  1566. op->val = regs->gpr[rd] & ~regs->gpr[rb];
  1567. goto logical_done;
  1568. case 122: /* popcntb */
  1569. do_popcnt(regs, op, regs->gpr[rd], 8);
  1570. goto logical_done_nocc;
  1571. case 124: /* nor */
  1572. op->val = ~(regs->gpr[rd] | regs->gpr[rb]);
  1573. goto logical_done;
  1574. case 154: /* prtyw */
  1575. do_prty(regs, op, regs->gpr[rd], 32);
  1576. goto logical_done_nocc;
  1577. case 186: /* prtyd */
  1578. do_prty(regs, op, regs->gpr[rd], 64);
  1579. goto logical_done_nocc;
  1580. #ifdef CONFIG_PPC64
  1581. case 252: /* bpermd */
  1582. do_bpermd(regs, op, regs->gpr[rd], regs->gpr[rb]);
  1583. goto logical_done_nocc;
  1584. #endif
  1585. case 284: /* xor */
  1586. op->val = ~(regs->gpr[rd] ^ regs->gpr[rb]);
  1587. goto logical_done;
  1588. case 316: /* xor */
  1589. op->val = regs->gpr[rd] ^ regs->gpr[rb];
  1590. goto logical_done;
  1591. case 378: /* popcntw */
  1592. do_popcnt(regs, op, regs->gpr[rd], 32);
  1593. goto logical_done_nocc;
  1594. case 412: /* orc */
  1595. op->val = regs->gpr[rd] | ~regs->gpr[rb];
  1596. goto logical_done;
  1597. case 444: /* or */
  1598. op->val = regs->gpr[rd] | regs->gpr[rb];
  1599. goto logical_done;
  1600. case 476: /* nand */
  1601. op->val = ~(regs->gpr[rd] & regs->gpr[rb]);
  1602. goto logical_done;
  1603. #ifdef CONFIG_PPC64
  1604. case 506: /* popcntd */
  1605. do_popcnt(regs, op, regs->gpr[rd], 64);
  1606. goto logical_done_nocc;
  1607. #endif
  1608. case 922: /* extsh */
  1609. op->val = (signed short) regs->gpr[rd];
  1610. goto logical_done;
  1611. case 954: /* extsb */
  1612. op->val = (signed char) regs->gpr[rd];
  1613. goto logical_done;
  1614. #ifdef __powerpc64__
  1615. case 986: /* extsw */
  1616. op->val = (signed int) regs->gpr[rd];
  1617. goto logical_done;
  1618. #endif
  1619. /*
  1620. * Shift instructions
  1621. */
  1622. case 24: /* slw */
  1623. sh = regs->gpr[rb] & 0x3f;
  1624. if (sh < 32)
  1625. op->val = (regs->gpr[rd] << sh) & 0xffffffffUL;
  1626. else
  1627. op->val = 0;
  1628. goto logical_done;
  1629. case 536: /* srw */
  1630. sh = regs->gpr[rb] & 0x3f;
  1631. if (sh < 32)
  1632. op->val = (regs->gpr[rd] & 0xffffffffUL) >> sh;
  1633. else
  1634. op->val = 0;
  1635. goto logical_done;
  1636. case 792: /* sraw */
  1637. op->type = COMPUTE + SETREG + SETXER;
  1638. sh = regs->gpr[rb] & 0x3f;
  1639. ival = (signed int) regs->gpr[rd];
  1640. op->val = ival >> (sh < 32 ? sh : 31);
  1641. op->xerval = regs->xer;
  1642. if (ival < 0 && (sh >= 32 || (ival & ((1ul << sh) - 1)) != 0))
  1643. op->xerval |= XER_CA;
  1644. else
  1645. op->xerval &= ~XER_CA;
  1646. set_ca32(op, op->xerval & XER_CA);
  1647. goto logical_done;
  1648. case 824: /* srawi */
  1649. op->type = COMPUTE + SETREG + SETXER;
  1650. sh = rb;
  1651. ival = (signed int) regs->gpr[rd];
  1652. op->val = ival >> sh;
  1653. op->xerval = regs->xer;
  1654. if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
  1655. op->xerval |= XER_CA;
  1656. else
  1657. op->xerval &= ~XER_CA;
  1658. set_ca32(op, op->xerval & XER_CA);
  1659. goto logical_done;
  1660. #ifdef __powerpc64__
  1661. case 27: /* sld */
  1662. sh = regs->gpr[rb] & 0x7f;
  1663. if (sh < 64)
  1664. op->val = regs->gpr[rd] << sh;
  1665. else
  1666. op->val = 0;
  1667. goto logical_done;
  1668. case 539: /* srd */
  1669. sh = regs->gpr[rb] & 0x7f;
  1670. if (sh < 64)
  1671. op->val = regs->gpr[rd] >> sh;
  1672. else
  1673. op->val = 0;
  1674. goto logical_done;
  1675. case 794: /* srad */
  1676. op->type = COMPUTE + SETREG + SETXER;
  1677. sh = regs->gpr[rb] & 0x7f;
  1678. ival = (signed long int) regs->gpr[rd];
  1679. op->val = ival >> (sh < 64 ? sh : 63);
  1680. op->xerval = regs->xer;
  1681. if (ival < 0 && (sh >= 64 || (ival & ((1ul << sh) - 1)) != 0))
  1682. op->xerval |= XER_CA;
  1683. else
  1684. op->xerval &= ~XER_CA;
  1685. set_ca32(op, op->xerval & XER_CA);
  1686. goto logical_done;
  1687. case 826: /* sradi with sh_5 = 0 */
  1688. case 827: /* sradi with sh_5 = 1 */
  1689. op->type = COMPUTE + SETREG + SETXER;
  1690. sh = rb | ((instr & 2) << 4);
  1691. ival = (signed long int) regs->gpr[rd];
  1692. op->val = ival >> sh;
  1693. op->xerval = regs->xer;
  1694. if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
  1695. op->xerval |= XER_CA;
  1696. else
  1697. op->xerval &= ~XER_CA;
  1698. set_ca32(op, op->xerval & XER_CA);
  1699. goto logical_done;
  1700. #endif /* __powerpc64__ */
  1701. /*
  1702. * Cache instructions
  1703. */
  1704. case 54: /* dcbst */
  1705. op->type = MKOP(CACHEOP, DCBST, 0);
  1706. op->ea = xform_ea(instr, regs);
  1707. return 0;
  1708. case 86: /* dcbf */
  1709. op->type = MKOP(CACHEOP, DCBF, 0);
  1710. op->ea = xform_ea(instr, regs);
  1711. return 0;
  1712. case 246: /* dcbtst */
  1713. op->type = MKOP(CACHEOP, DCBTST, 0);
  1714. op->ea = xform_ea(instr, regs);
  1715. op->reg = rd;
  1716. return 0;
  1717. case 278: /* dcbt */
  1718. op->type = MKOP(CACHEOP, DCBTST, 0);
  1719. op->ea = xform_ea(instr, regs);
  1720. op->reg = rd;
  1721. return 0;
  1722. case 982: /* icbi */
  1723. op->type = MKOP(CACHEOP, ICBI, 0);
  1724. op->ea = xform_ea(instr, regs);
  1725. return 0;
  1726. case 1014: /* dcbz */
  1727. op->type = MKOP(CACHEOP, DCBZ, 0);
  1728. op->ea = xform_ea(instr, regs);
  1729. return 0;
  1730. }
  1731. break;
  1732. }
  1733. /*
  1734. * Loads and stores.
  1735. */
  1736. op->type = UNKNOWN;
  1737. op->update_reg = ra;
  1738. op->reg = rd;
  1739. op->val = regs->gpr[rd];
  1740. u = (instr >> 20) & UPDATE;
  1741. op->vsx_flags = 0;
  1742. switch (opcode) {
  1743. case 31:
  1744. u = instr & UPDATE;
  1745. op->ea = xform_ea(instr, regs);
  1746. switch ((instr >> 1) & 0x3ff) {
  1747. case 20: /* lwarx */
  1748. op->type = MKOP(LARX, 0, 4);
  1749. break;
  1750. case 150: /* stwcx. */
  1751. op->type = MKOP(STCX, 0, 4);
  1752. break;
  1753. #ifdef __powerpc64__
  1754. case 84: /* ldarx */
  1755. op->type = MKOP(LARX, 0, 8);
  1756. break;
  1757. case 214: /* stdcx. */
  1758. op->type = MKOP(STCX, 0, 8);
  1759. break;
  1760. case 52: /* lbarx */
  1761. op->type = MKOP(LARX, 0, 1);
  1762. break;
  1763. case 694: /* stbcx. */
  1764. op->type = MKOP(STCX, 0, 1);
  1765. break;
  1766. case 116: /* lharx */
  1767. op->type = MKOP(LARX, 0, 2);
  1768. break;
  1769. case 726: /* sthcx. */
  1770. op->type = MKOP(STCX, 0, 2);
  1771. break;
  1772. case 276: /* lqarx */
  1773. if (!((rd & 1) || rd == ra || rd == rb))
  1774. op->type = MKOP(LARX, 0, 16);
  1775. break;
  1776. case 182: /* stqcx. */
  1777. if (!(rd & 1))
  1778. op->type = MKOP(STCX, 0, 16);
  1779. break;
  1780. #endif
  1781. case 23: /* lwzx */
  1782. case 55: /* lwzux */
  1783. op->type = MKOP(LOAD, u, 4);
  1784. break;
  1785. case 87: /* lbzx */
  1786. case 119: /* lbzux */
  1787. op->type = MKOP(LOAD, u, 1);
  1788. break;
  1789. #ifdef CONFIG_ALTIVEC
  1790. /*
  1791. * Note: for the load/store vector element instructions,
  1792. * bits of the EA say which field of the VMX register to use.
  1793. */
  1794. case 7: /* lvebx */
  1795. op->type = MKOP(LOAD_VMX, 0, 1);
  1796. op->element_size = 1;
  1797. break;
  1798. case 39: /* lvehx */
  1799. op->type = MKOP(LOAD_VMX, 0, 2);
  1800. op->element_size = 2;
  1801. break;
  1802. case 71: /* lvewx */
  1803. op->type = MKOP(LOAD_VMX, 0, 4);
  1804. op->element_size = 4;
  1805. break;
  1806. case 103: /* lvx */
  1807. case 359: /* lvxl */
  1808. op->type = MKOP(LOAD_VMX, 0, 16);
  1809. op->element_size = 16;
  1810. break;
  1811. case 135: /* stvebx */
  1812. op->type = MKOP(STORE_VMX, 0, 1);
  1813. op->element_size = 1;
  1814. break;
  1815. case 167: /* stvehx */
  1816. op->type = MKOP(STORE_VMX, 0, 2);
  1817. op->element_size = 2;
  1818. break;
  1819. case 199: /* stvewx */
  1820. op->type = MKOP(STORE_VMX, 0, 4);
  1821. op->element_size = 4;
  1822. break;
  1823. case 231: /* stvx */
  1824. case 487: /* stvxl */
  1825. op->type = MKOP(STORE_VMX, 0, 16);
  1826. break;
  1827. #endif /* CONFIG_ALTIVEC */
  1828. #ifdef __powerpc64__
  1829. case 21: /* ldx */
  1830. case 53: /* ldux */
  1831. op->type = MKOP(LOAD, u, 8);
  1832. break;
  1833. case 149: /* stdx */
  1834. case 181: /* stdux */
  1835. op->type = MKOP(STORE, u, 8);
  1836. break;
  1837. #endif
  1838. case 151: /* stwx */
  1839. case 183: /* stwux */
  1840. op->type = MKOP(STORE, u, 4);
  1841. break;
  1842. case 215: /* stbx */
  1843. case 247: /* stbux */
  1844. op->type = MKOP(STORE, u, 1);
  1845. break;
  1846. case 279: /* lhzx */
  1847. case 311: /* lhzux */
  1848. op->type = MKOP(LOAD, u, 2);
  1849. break;
  1850. #ifdef __powerpc64__
  1851. case 341: /* lwax */
  1852. case 373: /* lwaux */
  1853. op->type = MKOP(LOAD, SIGNEXT | u, 4);
  1854. break;
  1855. #endif
  1856. case 343: /* lhax */
  1857. case 375: /* lhaux */
  1858. op->type = MKOP(LOAD, SIGNEXT | u, 2);
  1859. break;
  1860. case 407: /* sthx */
  1861. case 439: /* sthux */
  1862. op->type = MKOP(STORE, u, 2);
  1863. break;
  1864. #ifdef __powerpc64__
  1865. case 532: /* ldbrx */
  1866. op->type = MKOP(LOAD, BYTEREV, 8);
  1867. break;
  1868. #endif
  1869. case 533: /* lswx */
  1870. op->type = MKOP(LOAD_MULTI, 0, regs->xer & 0x7f);
  1871. break;
  1872. case 534: /* lwbrx */
  1873. op->type = MKOP(LOAD, BYTEREV, 4);
  1874. break;
  1875. case 597: /* lswi */
  1876. if (rb == 0)
  1877. rb = 32; /* # bytes to load */
  1878. op->type = MKOP(LOAD_MULTI, 0, rb);
  1879. op->ea = ra ? regs->gpr[ra] : 0;
  1880. break;
  1881. #ifdef CONFIG_PPC_FPU
  1882. case 535: /* lfsx */
  1883. case 567: /* lfsux */
  1884. op->type = MKOP(LOAD_FP, u | FPCONV, 4);
  1885. break;
  1886. case 599: /* lfdx */
  1887. case 631: /* lfdux */
  1888. op->type = MKOP(LOAD_FP, u, 8);
  1889. break;
  1890. case 663: /* stfsx */
  1891. case 695: /* stfsux */
  1892. op->type = MKOP(STORE_FP, u | FPCONV, 4);
  1893. break;
  1894. case 727: /* stfdx */
  1895. case 759: /* stfdux */
  1896. op->type = MKOP(STORE_FP, u, 8);
  1897. break;
  1898. #ifdef __powerpc64__
  1899. case 791: /* lfdpx */
  1900. op->type = MKOP(LOAD_FP, 0, 16);
  1901. break;
  1902. case 855: /* lfiwax */
  1903. op->type = MKOP(LOAD_FP, SIGNEXT, 4);
  1904. break;
  1905. case 887: /* lfiwzx */
  1906. op->type = MKOP(LOAD_FP, 0, 4);
  1907. break;
  1908. case 919: /* stfdpx */
  1909. op->type = MKOP(STORE_FP, 0, 16);
  1910. break;
  1911. case 983: /* stfiwx */
  1912. op->type = MKOP(STORE_FP, 0, 4);
  1913. break;
  1914. #endif /* __powerpc64 */
  1915. #endif /* CONFIG_PPC_FPU */
  1916. #ifdef __powerpc64__
  1917. case 660: /* stdbrx */
  1918. op->type = MKOP(STORE, BYTEREV, 8);
  1919. op->val = byterev_8(regs->gpr[rd]);
  1920. break;
  1921. #endif
  1922. case 661: /* stswx */
  1923. op->type = MKOP(STORE_MULTI, 0, regs->xer & 0x7f);
  1924. break;
  1925. case 662: /* stwbrx */
  1926. op->type = MKOP(STORE, BYTEREV, 4);
  1927. op->val = byterev_4(regs->gpr[rd]);
  1928. break;
  1929. case 725: /* stswi */
  1930. if (rb == 0)
  1931. rb = 32; /* # bytes to store */
  1932. op->type = MKOP(STORE_MULTI, 0, rb);
  1933. op->ea = ra ? regs->gpr[ra] : 0;
  1934. break;
  1935. case 790: /* lhbrx */
  1936. op->type = MKOP(LOAD, BYTEREV, 2);
  1937. break;
  1938. case 918: /* sthbrx */
  1939. op->type = MKOP(STORE, BYTEREV, 2);
  1940. op->val = byterev_2(regs->gpr[rd]);
  1941. break;
  1942. #ifdef CONFIG_VSX
  1943. case 12: /* lxsiwzx */
  1944. op->reg = rd | ((instr & 1) << 5);
  1945. op->type = MKOP(LOAD_VSX, 0, 4);
  1946. op->element_size = 8;
  1947. break;
  1948. case 76: /* lxsiwax */
  1949. op->reg = rd | ((instr & 1) << 5);
  1950. op->type = MKOP(LOAD_VSX, SIGNEXT, 4);
  1951. op->element_size = 8;
  1952. break;
  1953. case 140: /* stxsiwx */
  1954. op->reg = rd | ((instr & 1) << 5);
  1955. op->type = MKOP(STORE_VSX, 0, 4);
  1956. op->element_size = 8;
  1957. break;
  1958. case 268: /* lxvx */
  1959. op->reg = rd | ((instr & 1) << 5);
  1960. op->type = MKOP(LOAD_VSX, 0, 16);
  1961. op->element_size = 16;
  1962. op->vsx_flags = VSX_CHECK_VEC;
  1963. break;
  1964. case 269: /* lxvl */
  1965. case 301: { /* lxvll */
  1966. int nb;
  1967. op->reg = rd | ((instr & 1) << 5);
  1968. op->ea = ra ? regs->gpr[ra] : 0;
  1969. nb = regs->gpr[rb] & 0xff;
  1970. if (nb > 16)
  1971. nb = 16;
  1972. op->type = MKOP(LOAD_VSX, 0, nb);
  1973. op->element_size = 16;
  1974. op->vsx_flags = ((instr & 0x20) ? VSX_LDLEFT : 0) |
  1975. VSX_CHECK_VEC;
  1976. break;
  1977. }
  1978. case 332: /* lxvdsx */
  1979. op->reg = rd | ((instr & 1) << 5);
  1980. op->type = MKOP(LOAD_VSX, 0, 8);
  1981. op->element_size = 8;
  1982. op->vsx_flags = VSX_SPLAT;
  1983. break;
  1984. case 364: /* lxvwsx */
  1985. op->reg = rd | ((instr & 1) << 5);
  1986. op->type = MKOP(LOAD_VSX, 0, 4);
  1987. op->element_size = 4;
  1988. op->vsx_flags = VSX_SPLAT | VSX_CHECK_VEC;
  1989. break;
  1990. case 396: /* stxvx */
  1991. op->reg = rd | ((instr & 1) << 5);
  1992. op->type = MKOP(STORE_VSX, 0, 16);
  1993. op->element_size = 16;
  1994. op->vsx_flags = VSX_CHECK_VEC;
  1995. break;
  1996. case 397: /* stxvl */
  1997. case 429: { /* stxvll */
  1998. int nb;
  1999. op->reg = rd | ((instr & 1) << 5);
  2000. op->ea = ra ? regs->gpr[ra] : 0;
  2001. nb = regs->gpr[rb] & 0xff;
  2002. if (nb > 16)
  2003. nb = 16;
  2004. op->type = MKOP(STORE_VSX, 0, nb);
  2005. op->element_size = 16;
  2006. op->vsx_flags = ((instr & 0x20) ? VSX_LDLEFT : 0) |
  2007. VSX_CHECK_VEC;
  2008. break;
  2009. }
  2010. case 524: /* lxsspx */
  2011. op->reg = rd | ((instr & 1) << 5);
  2012. op->type = MKOP(LOAD_VSX, 0, 4);
  2013. op->element_size = 8;
  2014. op->vsx_flags = VSX_FPCONV;
  2015. break;
  2016. case 588: /* lxsdx */
  2017. op->reg = rd | ((instr & 1) << 5);
  2018. op->type = MKOP(LOAD_VSX, 0, 8);
  2019. op->element_size = 8;
  2020. break;
  2021. case 652: /* stxsspx */
  2022. op->reg = rd | ((instr & 1) << 5);
  2023. op->type = MKOP(STORE_VSX, 0, 4);
  2024. op->element_size = 8;
  2025. op->vsx_flags = VSX_FPCONV;
  2026. break;
  2027. case 716: /* stxsdx */
  2028. op->reg = rd | ((instr & 1) << 5);
  2029. op->type = MKOP(STORE_VSX, 0, 8);
  2030. op->element_size = 8;
  2031. break;
  2032. case 780: /* lxvw4x */
  2033. op->reg = rd | ((instr & 1) << 5);
  2034. op->type = MKOP(LOAD_VSX, 0, 16);
  2035. op->element_size = 4;
  2036. break;
  2037. case 781: /* lxsibzx */
  2038. op->reg = rd | ((instr & 1) << 5);
  2039. op->type = MKOP(LOAD_VSX, 0, 1);
  2040. op->element_size = 8;
  2041. op->vsx_flags = VSX_CHECK_VEC;
  2042. break;
  2043. case 812: /* lxvh8x */
  2044. op->reg = rd | ((instr & 1) << 5);
  2045. op->type = MKOP(LOAD_VSX, 0, 16);
  2046. op->element_size = 2;
  2047. op->vsx_flags = VSX_CHECK_VEC;
  2048. break;
  2049. case 813: /* lxsihzx */
  2050. op->reg = rd | ((instr & 1) << 5);
  2051. op->type = MKOP(LOAD_VSX, 0, 2);
  2052. op->element_size = 8;
  2053. op->vsx_flags = VSX_CHECK_VEC;
  2054. break;
  2055. case 844: /* lxvd2x */
  2056. op->reg = rd | ((instr & 1) << 5);
  2057. op->type = MKOP(LOAD_VSX, 0, 16);
  2058. op->element_size = 8;
  2059. break;
  2060. case 876: /* lxvb16x */
  2061. op->reg = rd | ((instr & 1) << 5);
  2062. op->type = MKOP(LOAD_VSX, 0, 16);
  2063. op->element_size = 1;
  2064. op->vsx_flags = VSX_CHECK_VEC;
  2065. break;
  2066. case 908: /* stxvw4x */
  2067. op->reg = rd | ((instr & 1) << 5);
  2068. op->type = MKOP(STORE_VSX, 0, 16);
  2069. op->element_size = 4;
  2070. break;
  2071. case 909: /* stxsibx */
  2072. op->reg = rd | ((instr & 1) << 5);
  2073. op->type = MKOP(STORE_VSX, 0, 1);
  2074. op->element_size = 8;
  2075. op->vsx_flags = VSX_CHECK_VEC;
  2076. break;
  2077. case 940: /* stxvh8x */
  2078. op->reg = rd | ((instr & 1) << 5);
  2079. op->type = MKOP(STORE_VSX, 0, 16);
  2080. op->element_size = 2;
  2081. op->vsx_flags = VSX_CHECK_VEC;
  2082. break;
  2083. case 941: /* stxsihx */
  2084. op->reg = rd | ((instr & 1) << 5);
  2085. op->type = MKOP(STORE_VSX, 0, 2);
  2086. op->element_size = 8;
  2087. op->vsx_flags = VSX_CHECK_VEC;
  2088. break;
  2089. case 972: /* stxvd2x */
  2090. op->reg = rd | ((instr & 1) << 5);
  2091. op->type = MKOP(STORE_VSX, 0, 16);
  2092. op->element_size = 8;
  2093. break;
  2094. case 1004: /* stxvb16x */
  2095. op->reg = rd | ((instr & 1) << 5);
  2096. op->type = MKOP(STORE_VSX, 0, 16);
  2097. op->element_size = 1;
  2098. op->vsx_flags = VSX_CHECK_VEC;
  2099. break;
  2100. #endif /* CONFIG_VSX */
  2101. }
  2102. break;
  2103. case 32: /* lwz */
  2104. case 33: /* lwzu */
  2105. op->type = MKOP(LOAD, u, 4);
  2106. op->ea = dform_ea(instr, regs);
  2107. break;
  2108. case 34: /* lbz */
  2109. case 35: /* lbzu */
  2110. op->type = MKOP(LOAD, u, 1);
  2111. op->ea = dform_ea(instr, regs);
  2112. break;
  2113. case 36: /* stw */
  2114. case 37: /* stwu */
  2115. op->type = MKOP(STORE, u, 4);
  2116. op->ea = dform_ea(instr, regs);
  2117. break;
  2118. case 38: /* stb */
  2119. case 39: /* stbu */
  2120. op->type = MKOP(STORE, u, 1);
  2121. op->ea = dform_ea(instr, regs);
  2122. break;
  2123. case 40: /* lhz */
  2124. case 41: /* lhzu */
  2125. op->type = MKOP(LOAD, u, 2);
  2126. op->ea = dform_ea(instr, regs);
  2127. break;
  2128. case 42: /* lha */
  2129. case 43: /* lhau */
  2130. op->type = MKOP(LOAD, SIGNEXT | u, 2);
  2131. op->ea = dform_ea(instr, regs);
  2132. break;
  2133. case 44: /* sth */
  2134. case 45: /* sthu */
  2135. op->type = MKOP(STORE, u, 2);
  2136. op->ea = dform_ea(instr, regs);
  2137. break;
  2138. case 46: /* lmw */
  2139. if (ra >= rd)
  2140. break; /* invalid form, ra in range to load */
  2141. op->type = MKOP(LOAD_MULTI, 0, 4 * (32 - rd));
  2142. op->ea = dform_ea(instr, regs);
  2143. break;
  2144. case 47: /* stmw */
  2145. op->type = MKOP(STORE_MULTI, 0, 4 * (32 - rd));
  2146. op->ea = dform_ea(instr, regs);
  2147. break;
  2148. #ifdef CONFIG_PPC_FPU
  2149. case 48: /* lfs */
  2150. case 49: /* lfsu */
  2151. op->type = MKOP(LOAD_FP, u | FPCONV, 4);
  2152. op->ea = dform_ea(instr, regs);
  2153. break;
  2154. case 50: /* lfd */
  2155. case 51: /* lfdu */
  2156. op->type = MKOP(LOAD_FP, u, 8);
  2157. op->ea = dform_ea(instr, regs);
  2158. break;
  2159. case 52: /* stfs */
  2160. case 53: /* stfsu */
  2161. op->type = MKOP(STORE_FP, u | FPCONV, 4);
  2162. op->ea = dform_ea(instr, regs);
  2163. break;
  2164. case 54: /* stfd */
  2165. case 55: /* stfdu */
  2166. op->type = MKOP(STORE_FP, u, 8);
  2167. op->ea = dform_ea(instr, regs);
  2168. break;
  2169. #endif
  2170. #ifdef __powerpc64__
  2171. case 56: /* lq */
  2172. if (!((rd & 1) || (rd == ra)))
  2173. op->type = MKOP(LOAD, 0, 16);
  2174. op->ea = dqform_ea(instr, regs);
  2175. break;
  2176. #endif
  2177. #ifdef CONFIG_VSX
  2178. case 57: /* lfdp, lxsd, lxssp */
  2179. op->ea = dsform_ea(instr, regs);
  2180. switch (instr & 3) {
  2181. case 0: /* lfdp */
  2182. if (rd & 1)
  2183. break; /* reg must be even */
  2184. op->type = MKOP(LOAD_FP, 0, 16);
  2185. break;
  2186. case 2: /* lxsd */
  2187. op->reg = rd + 32;
  2188. op->type = MKOP(LOAD_VSX, 0, 8);
  2189. op->element_size = 8;
  2190. op->vsx_flags = VSX_CHECK_VEC;
  2191. break;
  2192. case 3: /* lxssp */
  2193. op->reg = rd + 32;
  2194. op->type = MKOP(LOAD_VSX, 0, 4);
  2195. op->element_size = 8;
  2196. op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
  2197. break;
  2198. }
  2199. break;
  2200. #endif /* CONFIG_VSX */
  2201. #ifdef __powerpc64__
  2202. case 58: /* ld[u], lwa */
  2203. op->ea = dsform_ea(instr, regs);
  2204. switch (instr & 3) {
  2205. case 0: /* ld */
  2206. op->type = MKOP(LOAD, 0, 8);
  2207. break;
  2208. case 1: /* ldu */
  2209. op->type = MKOP(LOAD, UPDATE, 8);
  2210. break;
  2211. case 2: /* lwa */
  2212. op->type = MKOP(LOAD, SIGNEXT, 4);
  2213. break;
  2214. }
  2215. break;
  2216. #endif
  2217. #ifdef CONFIG_VSX
  2218. case 61: /* stfdp, lxv, stxsd, stxssp, stxv */
  2219. switch (instr & 7) {
  2220. case 0: /* stfdp with LSB of DS field = 0 */
  2221. case 4: /* stfdp with LSB of DS field = 1 */
  2222. op->ea = dsform_ea(instr, regs);
  2223. op->type = MKOP(STORE_FP, 0, 16);
  2224. break;
  2225. case 1: /* lxv */
  2226. op->ea = dqform_ea(instr, regs);
  2227. if (instr & 8)
  2228. op->reg = rd + 32;
  2229. op->type = MKOP(LOAD_VSX, 0, 16);
  2230. op->element_size = 16;
  2231. op->vsx_flags = VSX_CHECK_VEC;
  2232. break;
  2233. case 2: /* stxsd with LSB of DS field = 0 */
  2234. case 6: /* stxsd with LSB of DS field = 1 */
  2235. op->ea = dsform_ea(instr, regs);
  2236. op->reg = rd + 32;
  2237. op->type = MKOP(STORE_VSX, 0, 8);
  2238. op->element_size = 8;
  2239. op->vsx_flags = VSX_CHECK_VEC;
  2240. break;
  2241. case 3: /* stxssp with LSB of DS field = 0 */
  2242. case 7: /* stxssp with LSB of DS field = 1 */
  2243. op->ea = dsform_ea(instr, regs);
  2244. op->reg = rd + 32;
  2245. op->type = MKOP(STORE_VSX, 0, 4);
  2246. op->element_size = 8;
  2247. op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
  2248. break;
  2249. case 5: /* stxv */
  2250. op->ea = dqform_ea(instr, regs);
  2251. if (instr & 8)
  2252. op->reg = rd + 32;
  2253. op->type = MKOP(STORE_VSX, 0, 16);
  2254. op->element_size = 16;
  2255. op->vsx_flags = VSX_CHECK_VEC;
  2256. break;
  2257. }
  2258. break;
  2259. #endif /* CONFIG_VSX */
  2260. #ifdef __powerpc64__
  2261. case 62: /* std[u] */
  2262. op->ea = dsform_ea(instr, regs);
  2263. switch (instr & 3) {
  2264. case 0: /* std */
  2265. op->type = MKOP(STORE, 0, 8);
  2266. break;
  2267. case 1: /* stdu */
  2268. op->type = MKOP(STORE, UPDATE, 8);
  2269. break;
  2270. case 2: /* stq */
  2271. if (!(rd & 1))
  2272. op->type = MKOP(STORE, 0, 16);
  2273. break;
  2274. }
  2275. break;
  2276. #endif /* __powerpc64__ */
  2277. }
  2278. #ifdef CONFIG_VSX
  2279. if ((GETTYPE(op->type) == LOAD_VSX ||
  2280. GETTYPE(op->type) == STORE_VSX) &&
  2281. !cpu_has_feature(CPU_FTR_VSX)) {
  2282. return -1;
  2283. }
  2284. #endif /* CONFIG_VSX */
  2285. return 0;
  2286. logical_done:
  2287. if (instr & 1)
  2288. set_cr0(regs, op);
  2289. logical_done_nocc:
  2290. op->reg = ra;
  2291. op->type |= SETREG;
  2292. return 1;
  2293. arith_done:
  2294. if (instr & 1)
  2295. set_cr0(regs, op);
  2296. compute_done:
  2297. op->reg = rd;
  2298. op->type |= SETREG;
  2299. return 1;
  2300. priv:
  2301. op->type = INTERRUPT | 0x700;
  2302. op->val = SRR1_PROGPRIV;
  2303. return 0;
  2304. trap:
  2305. op->type = INTERRUPT | 0x700;
  2306. op->val = SRR1_PROGTRAP;
  2307. return 0;
  2308. }
  2309. EXPORT_SYMBOL_GPL(analyse_instr);
  2310. NOKPROBE_SYMBOL(analyse_instr);
  2311. /*
  2312. * For PPC32 we always use stwu with r1 to change the stack pointer.
  2313. * So this emulated store may corrupt the exception frame, now we
  2314. * have to provide the exception frame trampoline, which is pushed
  2315. * below the kprobed function stack. So we only update gpr[1] but
  2316. * don't emulate the real store operation. We will do real store
  2317. * operation safely in exception return code by checking this flag.
  2318. */
  2319. static nokprobe_inline int handle_stack_update(unsigned long ea, struct pt_regs *regs)
  2320. {
  2321. #ifdef CONFIG_PPC32
  2322. /*
  2323. * Check if we will touch kernel stack overflow
  2324. */
  2325. if (ea - STACK_INT_FRAME_SIZE <= current->thread.ksp_limit) {
  2326. printk(KERN_CRIT "Can't kprobe this since kernel stack would overflow.\n");
  2327. return -EINVAL;
  2328. }
  2329. #endif /* CONFIG_PPC32 */
  2330. /*
  2331. * Check if we already set since that means we'll
  2332. * lose the previous value.
  2333. */
  2334. WARN_ON(test_thread_flag(TIF_EMULATE_STACK_STORE));
  2335. set_thread_flag(TIF_EMULATE_STACK_STORE);
  2336. return 0;
  2337. }
  2338. static nokprobe_inline void do_signext(unsigned long *valp, int size)
  2339. {
  2340. switch (size) {
  2341. case 2:
  2342. *valp = (signed short) *valp;
  2343. break;
  2344. case 4:
  2345. *valp = (signed int) *valp;
  2346. break;
  2347. }
  2348. }
  2349. static nokprobe_inline void do_byterev(unsigned long *valp, int size)
  2350. {
  2351. switch (size) {
  2352. case 2:
  2353. *valp = byterev_2(*valp);
  2354. break;
  2355. case 4:
  2356. *valp = byterev_4(*valp);
  2357. break;
  2358. #ifdef __powerpc64__
  2359. case 8:
  2360. *valp = byterev_8(*valp);
  2361. break;
  2362. #endif
  2363. }
  2364. }
  2365. /*
  2366. * Emulate an instruction that can be executed just by updating
  2367. * fields in *regs.
  2368. */
  2369. void emulate_update_regs(struct pt_regs *regs, struct instruction_op *op)
  2370. {
  2371. unsigned long next_pc;
  2372. next_pc = truncate_if_32bit(regs->msr, regs->nip + 4);
  2373. switch (GETTYPE(op->type)) {
  2374. case COMPUTE:
  2375. if (op->type & SETREG)
  2376. regs->gpr[op->reg] = op->val;
  2377. if (op->type & SETCC)
  2378. regs->ccr = op->ccval;
  2379. if (op->type & SETXER)
  2380. regs->xer = op->xerval;
  2381. break;
  2382. case BRANCH:
  2383. if (op->type & SETLK)
  2384. regs->link = next_pc;
  2385. if (op->type & BRTAKEN)
  2386. next_pc = op->val;
  2387. if (op->type & DECCTR)
  2388. --regs->ctr;
  2389. break;
  2390. case BARRIER:
  2391. switch (op->type & BARRIER_MASK) {
  2392. case BARRIER_SYNC:
  2393. mb();
  2394. break;
  2395. case BARRIER_ISYNC:
  2396. isync();
  2397. break;
  2398. case BARRIER_EIEIO:
  2399. eieio();
  2400. break;
  2401. case BARRIER_LWSYNC:
  2402. asm volatile("lwsync" : : : "memory");
  2403. break;
  2404. case BARRIER_PTESYNC:
  2405. asm volatile("ptesync" : : : "memory");
  2406. break;
  2407. }
  2408. break;
  2409. case MFSPR:
  2410. switch (op->spr) {
  2411. case SPRN_XER:
  2412. regs->gpr[op->reg] = regs->xer & 0xffffffffUL;
  2413. break;
  2414. case SPRN_LR:
  2415. regs->gpr[op->reg] = regs->link;
  2416. break;
  2417. case SPRN_CTR:
  2418. regs->gpr[op->reg] = regs->ctr;
  2419. break;
  2420. default:
  2421. WARN_ON_ONCE(1);
  2422. }
  2423. break;
  2424. case MTSPR:
  2425. switch (op->spr) {
  2426. case SPRN_XER:
  2427. regs->xer = op->val & 0xffffffffUL;
  2428. break;
  2429. case SPRN_LR:
  2430. regs->link = op->val;
  2431. break;
  2432. case SPRN_CTR:
  2433. regs->ctr = op->val;
  2434. break;
  2435. default:
  2436. WARN_ON_ONCE(1);
  2437. }
  2438. break;
  2439. default:
  2440. WARN_ON_ONCE(1);
  2441. }
  2442. regs->nip = next_pc;
  2443. }
  2444. NOKPROBE_SYMBOL(emulate_update_regs);
  2445. /*
  2446. * Emulate a previously-analysed load or store instruction.
  2447. * Return values are:
  2448. * 0 = instruction emulated successfully
  2449. * -EFAULT = address out of range or access faulted (regs->dar
  2450. * contains the faulting address)
  2451. * -EACCES = misaligned access, instruction requires alignment
  2452. * -EINVAL = unknown operation in *op
  2453. */
  2454. int emulate_loadstore(struct pt_regs *regs, struct instruction_op *op)
  2455. {
  2456. int err, size, type;
  2457. int i, rd, nb;
  2458. unsigned int cr;
  2459. unsigned long val;
  2460. unsigned long ea;
  2461. bool cross_endian;
  2462. err = 0;
  2463. size = GETSIZE(op->type);
  2464. type = GETTYPE(op->type);
  2465. cross_endian = (regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
  2466. ea = truncate_if_32bit(regs->msr, op->ea);
  2467. switch (type) {
  2468. case LARX:
  2469. if (ea & (size - 1))
  2470. return -EACCES; /* can't handle misaligned */
  2471. if (!address_ok(regs, ea, size))
  2472. return -EFAULT;
  2473. err = 0;
  2474. val = 0;
  2475. switch (size) {
  2476. #ifdef __powerpc64__
  2477. case 1:
  2478. __get_user_asmx(val, ea, err, "lbarx");
  2479. break;
  2480. case 2:
  2481. __get_user_asmx(val, ea, err, "lharx");
  2482. break;
  2483. #endif
  2484. case 4:
  2485. __get_user_asmx(val, ea, err, "lwarx");
  2486. break;
  2487. #ifdef __powerpc64__
  2488. case 8:
  2489. __get_user_asmx(val, ea, err, "ldarx");
  2490. break;
  2491. case 16:
  2492. err = do_lqarx(ea, &regs->gpr[op->reg]);
  2493. break;
  2494. #endif
  2495. default:
  2496. return -EINVAL;
  2497. }
  2498. if (err) {
  2499. regs->dar = ea;
  2500. break;
  2501. }
  2502. if (size < 16)
  2503. regs->gpr[op->reg] = val;
  2504. break;
  2505. case STCX:
  2506. if (ea & (size - 1))
  2507. return -EACCES; /* can't handle misaligned */
  2508. if (!address_ok(regs, ea, size))
  2509. return -EFAULT;
  2510. err = 0;
  2511. switch (size) {
  2512. #ifdef __powerpc64__
  2513. case 1:
  2514. __put_user_asmx(op->val, ea, err, "stbcx.", cr);
  2515. break;
  2516. case 2:
  2517. __put_user_asmx(op->val, ea, err, "stbcx.", cr);
  2518. break;
  2519. #endif
  2520. case 4:
  2521. __put_user_asmx(op->val, ea, err, "stwcx.", cr);
  2522. break;
  2523. #ifdef __powerpc64__
  2524. case 8:
  2525. __put_user_asmx(op->val, ea, err, "stdcx.", cr);
  2526. break;
  2527. case 16:
  2528. err = do_stqcx(ea, regs->gpr[op->reg],
  2529. regs->gpr[op->reg + 1], &cr);
  2530. break;
  2531. #endif
  2532. default:
  2533. return -EINVAL;
  2534. }
  2535. if (!err)
  2536. regs->ccr = (regs->ccr & 0x0fffffff) |
  2537. (cr & 0xe0000000) |
  2538. ((regs->xer >> 3) & 0x10000000);
  2539. else
  2540. regs->dar = ea;
  2541. break;
  2542. case LOAD:
  2543. #ifdef __powerpc64__
  2544. if (size == 16) {
  2545. err = emulate_lq(regs, ea, op->reg, cross_endian);
  2546. break;
  2547. }
  2548. #endif
  2549. err = read_mem(&regs->gpr[op->reg], ea, size, regs);
  2550. if (!err) {
  2551. if (op->type & SIGNEXT)
  2552. do_signext(&regs->gpr[op->reg], size);
  2553. if ((op->type & BYTEREV) == (cross_endian ? 0 : BYTEREV))
  2554. do_byterev(&regs->gpr[op->reg], size);
  2555. }
  2556. break;
  2557. #ifdef CONFIG_PPC_FPU
  2558. case LOAD_FP:
  2559. /*
  2560. * If the instruction is in userspace, we can emulate it even
  2561. * if the VMX state is not live, because we have the state
  2562. * stored in the thread_struct. If the instruction is in
  2563. * the kernel, we must not touch the state in the thread_struct.
  2564. */
  2565. if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
  2566. return 0;
  2567. err = do_fp_load(op, ea, regs, cross_endian);
  2568. break;
  2569. #endif
  2570. #ifdef CONFIG_ALTIVEC
  2571. case LOAD_VMX:
  2572. if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
  2573. return 0;
  2574. err = do_vec_load(op->reg, ea, size, regs, cross_endian);
  2575. break;
  2576. #endif
  2577. #ifdef CONFIG_VSX
  2578. case LOAD_VSX: {
  2579. unsigned long msrbit = MSR_VSX;
  2580. /*
  2581. * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
  2582. * when the target of the instruction is a vector register.
  2583. */
  2584. if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
  2585. msrbit = MSR_VEC;
  2586. if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
  2587. return 0;
  2588. err = do_vsx_load(op, ea, regs, cross_endian);
  2589. break;
  2590. }
  2591. #endif
  2592. case LOAD_MULTI:
  2593. if (!address_ok(regs, ea, size))
  2594. return -EFAULT;
  2595. rd = op->reg;
  2596. for (i = 0; i < size; i += 4) {
  2597. unsigned int v32 = 0;
  2598. nb = size - i;
  2599. if (nb > 4)
  2600. nb = 4;
  2601. err = copy_mem_in((u8 *) &v32, ea, nb, regs);
  2602. if (err)
  2603. break;
  2604. if (unlikely(cross_endian))
  2605. v32 = byterev_4(v32);
  2606. regs->gpr[rd] = v32;
  2607. ea += 4;
  2608. /* reg number wraps from 31 to 0 for lsw[ix] */
  2609. rd = (rd + 1) & 0x1f;
  2610. }
  2611. break;
  2612. case STORE:
  2613. #ifdef __powerpc64__
  2614. if (size == 16) {
  2615. err = emulate_stq(regs, ea, op->reg, cross_endian);
  2616. break;
  2617. }
  2618. #endif
  2619. if ((op->type & UPDATE) && size == sizeof(long) &&
  2620. op->reg == 1 && op->update_reg == 1 &&
  2621. !(regs->msr & MSR_PR) &&
  2622. ea >= regs->gpr[1] - STACK_INT_FRAME_SIZE) {
  2623. err = handle_stack_update(ea, regs);
  2624. break;
  2625. }
  2626. if (unlikely(cross_endian))
  2627. do_byterev(&op->val, size);
  2628. err = write_mem(op->val, ea, size, regs);
  2629. break;
  2630. #ifdef CONFIG_PPC_FPU
  2631. case STORE_FP:
  2632. if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
  2633. return 0;
  2634. err = do_fp_store(op, ea, regs, cross_endian);
  2635. break;
  2636. #endif
  2637. #ifdef CONFIG_ALTIVEC
  2638. case STORE_VMX:
  2639. if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
  2640. return 0;
  2641. err = do_vec_store(op->reg, ea, size, regs, cross_endian);
  2642. break;
  2643. #endif
  2644. #ifdef CONFIG_VSX
  2645. case STORE_VSX: {
  2646. unsigned long msrbit = MSR_VSX;
  2647. /*
  2648. * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
  2649. * when the target of the instruction is a vector register.
  2650. */
  2651. if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
  2652. msrbit = MSR_VEC;
  2653. if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
  2654. return 0;
  2655. err = do_vsx_store(op, ea, regs, cross_endian);
  2656. break;
  2657. }
  2658. #endif
  2659. case STORE_MULTI:
  2660. if (!address_ok(regs, ea, size))
  2661. return -EFAULT;
  2662. rd = op->reg;
  2663. for (i = 0; i < size; i += 4) {
  2664. unsigned int v32 = regs->gpr[rd];
  2665. nb = size - i;
  2666. if (nb > 4)
  2667. nb = 4;
  2668. if (unlikely(cross_endian))
  2669. v32 = byterev_4(v32);
  2670. err = copy_mem_out((u8 *) &v32, ea, nb, regs);
  2671. if (err)
  2672. break;
  2673. ea += 4;
  2674. /* reg number wraps from 31 to 0 for stsw[ix] */
  2675. rd = (rd + 1) & 0x1f;
  2676. }
  2677. break;
  2678. default:
  2679. return -EINVAL;
  2680. }
  2681. if (err)
  2682. return err;
  2683. if (op->type & UPDATE)
  2684. regs->gpr[op->update_reg] = op->ea;
  2685. return 0;
  2686. }
  2687. NOKPROBE_SYMBOL(emulate_loadstore);
  2688. /*
  2689. * Emulate instructions that cause a transfer of control,
  2690. * loads and stores, and a few other instructions.
  2691. * Returns 1 if the step was emulated, 0 if not,
  2692. * or -1 if the instruction is one that should not be stepped,
  2693. * such as an rfid, or a mtmsrd that would clear MSR_RI.
  2694. */
  2695. int emulate_step(struct pt_regs *regs, unsigned int instr)
  2696. {
  2697. struct instruction_op op;
  2698. int r, err, type;
  2699. unsigned long val;
  2700. unsigned long ea;
  2701. r = analyse_instr(&op, regs, instr);
  2702. if (r < 0)
  2703. return r;
  2704. if (r > 0) {
  2705. emulate_update_regs(regs, &op);
  2706. return 1;
  2707. }
  2708. err = 0;
  2709. type = GETTYPE(op.type);
  2710. if (OP_IS_LOAD_STORE(type)) {
  2711. err = emulate_loadstore(regs, &op);
  2712. if (err)
  2713. return 0;
  2714. goto instr_done;
  2715. }
  2716. switch (type) {
  2717. case CACHEOP:
  2718. ea = truncate_if_32bit(regs->msr, op.ea);
  2719. if (!address_ok(regs, ea, 8))
  2720. return 0;
  2721. switch (op.type & CACHEOP_MASK) {
  2722. case DCBST:
  2723. __cacheop_user_asmx(ea, err, "dcbst");
  2724. break;
  2725. case DCBF:
  2726. __cacheop_user_asmx(ea, err, "dcbf");
  2727. break;
  2728. case DCBTST:
  2729. if (op.reg == 0)
  2730. prefetchw((void *) ea);
  2731. break;
  2732. case DCBT:
  2733. if (op.reg == 0)
  2734. prefetch((void *) ea);
  2735. break;
  2736. case ICBI:
  2737. __cacheop_user_asmx(ea, err, "icbi");
  2738. break;
  2739. case DCBZ:
  2740. err = emulate_dcbz(ea, regs);
  2741. break;
  2742. }
  2743. if (err) {
  2744. regs->dar = ea;
  2745. return 0;
  2746. }
  2747. goto instr_done;
  2748. case MFMSR:
  2749. regs->gpr[op.reg] = regs->msr & MSR_MASK;
  2750. goto instr_done;
  2751. case MTMSR:
  2752. val = regs->gpr[op.reg];
  2753. if ((val & MSR_RI) == 0)
  2754. /* can't step mtmsr[d] that would clear MSR_RI */
  2755. return -1;
  2756. /* here op.val is the mask of bits to change */
  2757. regs->msr = (regs->msr & ~op.val) | (val & op.val);
  2758. goto instr_done;
  2759. #ifdef CONFIG_PPC64
  2760. case SYSCALL: /* sc */
  2761. /*
  2762. * N.B. this uses knowledge about how the syscall
  2763. * entry code works. If that is changed, this will
  2764. * need to be changed also.
  2765. */
  2766. if (regs->gpr[0] == 0x1ebe &&
  2767. cpu_has_feature(CPU_FTR_REAL_LE)) {
  2768. regs->msr ^= MSR_LE;
  2769. goto instr_done;
  2770. }
  2771. regs->gpr[9] = regs->gpr[13];
  2772. regs->gpr[10] = MSR_KERNEL;
  2773. regs->gpr[11] = regs->nip + 4;
  2774. regs->gpr[12] = regs->msr & MSR_MASK;
  2775. regs->gpr[13] = (unsigned long) get_paca();
  2776. regs->nip = (unsigned long) &system_call_common;
  2777. regs->msr = MSR_KERNEL;
  2778. return 1;
  2779. case RFI:
  2780. return -1;
  2781. #endif
  2782. }
  2783. return 0;
  2784. instr_done:
  2785. regs->nip = truncate_if_32bit(regs->msr, regs->nip + 4);
  2786. return 1;
  2787. }
  2788. NOKPROBE_SYMBOL(emulate_step);