smp-bmips.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
  7. *
  8. * SMP support for BMIPS
  9. */
  10. #include <linux/init.h>
  11. #include <linux/sched.h>
  12. #include <linux/sched/hotplug.h>
  13. #include <linux/sched/task_stack.h>
  14. #include <linux/mm.h>
  15. #include <linux/delay.h>
  16. #include <linux/smp.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/spinlock.h>
  19. #include <linux/cpu.h>
  20. #include <linux/cpumask.h>
  21. #include <linux/reboot.h>
  22. #include <linux/io.h>
  23. #include <linux/compiler.h>
  24. #include <linux/linkage.h>
  25. #include <linux/bug.h>
  26. #include <linux/kernel.h>
  27. #include <linux/kexec.h>
  28. #include <asm/time.h>
  29. #include <asm/pgtable.h>
  30. #include <asm/processor.h>
  31. #include <asm/bootinfo.h>
  32. #include <asm/pmon.h>
  33. #include <asm/cacheflush.h>
  34. #include <asm/tlbflush.h>
  35. #include <asm/mipsregs.h>
  36. #include <asm/bmips.h>
  37. #include <asm/traps.h>
  38. #include <asm/barrier.h>
  39. #include <asm/cpu-features.h>
  40. static int __maybe_unused max_cpus = 1;
  41. /* these may be configured by the platform code */
  42. int bmips_smp_enabled = 1;
  43. int bmips_cpu_offset;
  44. cpumask_t bmips_booted_mask;
  45. unsigned long bmips_tp1_irqs = IE_IRQ1;
  46. #define RESET_FROM_KSEG0 0x80080800
  47. #define RESET_FROM_KSEG1 0xa0080800
  48. static void bmips_set_reset_vec(int cpu, u32 val);
  49. #ifdef CONFIG_SMP
  50. /* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
  51. unsigned long bmips_smp_boot_sp;
  52. unsigned long bmips_smp_boot_gp;
  53. static void bmips43xx_send_ipi_single(int cpu, unsigned int action);
  54. static void bmips5000_send_ipi_single(int cpu, unsigned int action);
  55. static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id);
  56. static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id);
  57. /* SW interrupts 0,1 are used for interprocessor signaling */
  58. #define IPI0_IRQ (MIPS_CPU_IRQ_BASE + 0)
  59. #define IPI1_IRQ (MIPS_CPU_IRQ_BASE + 1)
  60. #define CPUNUM(cpu, shift) (((cpu) + bmips_cpu_offset) << (shift))
  61. #define ACTION_CLR_IPI(cpu, ipi) (0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
  62. #define ACTION_SET_IPI(cpu, ipi) (0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
  63. #define ACTION_BOOT_THREAD(cpu) (0x08 | CPUNUM(cpu, 0))
  64. static void __init bmips_smp_setup(void)
  65. {
  66. int i, cpu = 1, boot_cpu = 0;
  67. int cpu_hw_intr;
  68. switch (current_cpu_type()) {
  69. case CPU_BMIPS4350:
  70. case CPU_BMIPS4380:
  71. /* arbitration priority */
  72. clear_c0_brcm_cmt_ctrl(0x30);
  73. /* NBK and weak order flags */
  74. set_c0_brcm_config_0(0x30000);
  75. /* Find out if we are running on TP0 or TP1 */
  76. boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
  77. /*
  78. * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other
  79. * thread
  80. * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
  81. * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
  82. */
  83. if (boot_cpu == 0)
  84. cpu_hw_intr = 0x02;
  85. else
  86. cpu_hw_intr = 0x1d;
  87. change_c0_brcm_cmt_intr(0xf8018000,
  88. (cpu_hw_intr << 27) | (0x03 << 15));
  89. /* single core, 2 threads (2 pipelines) */
  90. max_cpus = 2;
  91. break;
  92. case CPU_BMIPS5000:
  93. /* enable raceless SW interrupts */
  94. set_c0_brcm_config(0x03 << 22);
  95. /* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
  96. change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
  97. /* N cores, 2 threads per core */
  98. max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
  99. /* clear any pending SW interrupts */
  100. for (i = 0; i < max_cpus; i++) {
  101. write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
  102. write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
  103. }
  104. break;
  105. default:
  106. max_cpus = 1;
  107. }
  108. if (!bmips_smp_enabled)
  109. max_cpus = 1;
  110. /* this can be overridden by the BSP */
  111. if (!board_ebase_setup)
  112. board_ebase_setup = &bmips_ebase_setup;
  113. __cpu_number_map[boot_cpu] = 0;
  114. __cpu_logical_map[0] = boot_cpu;
  115. for (i = 0; i < max_cpus; i++) {
  116. if (i != boot_cpu) {
  117. __cpu_number_map[i] = cpu;
  118. __cpu_logical_map[cpu] = i;
  119. cpu++;
  120. }
  121. set_cpu_possible(i, 1);
  122. set_cpu_present(i, 1);
  123. }
  124. }
  125. /*
  126. * IPI IRQ setup - runs on CPU0
  127. */
  128. static void bmips_prepare_cpus(unsigned int max_cpus)
  129. {
  130. irqreturn_t (*bmips_ipi_interrupt)(int irq, void *dev_id);
  131. switch (current_cpu_type()) {
  132. case CPU_BMIPS4350:
  133. case CPU_BMIPS4380:
  134. bmips_ipi_interrupt = bmips43xx_ipi_interrupt;
  135. break;
  136. case CPU_BMIPS5000:
  137. bmips_ipi_interrupt = bmips5000_ipi_interrupt;
  138. break;
  139. default:
  140. return;
  141. }
  142. if (request_irq(IPI0_IRQ, bmips_ipi_interrupt,
  143. IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi0", NULL))
  144. panic("Can't request IPI0 interrupt");
  145. if (request_irq(IPI1_IRQ, bmips_ipi_interrupt,
  146. IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi1", NULL))
  147. panic("Can't request IPI1 interrupt");
  148. }
  149. /*
  150. * Tell the hardware to boot CPUx - runs on CPU0
  151. */
  152. static int bmips_boot_secondary(int cpu, struct task_struct *idle)
  153. {
  154. bmips_smp_boot_sp = __KSTK_TOS(idle);
  155. bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
  156. mb();
  157. /*
  158. * Initial boot sequence for secondary CPU:
  159. * bmips_reset_nmi_vec @ a000_0000 ->
  160. * bmips_smp_entry ->
  161. * plat_wired_tlb_setup (cached function call; optional) ->
  162. * start_secondary (cached jump)
  163. *
  164. * Warm restart sequence:
  165. * play_dead WAIT loop ->
  166. * bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
  167. * eret to play_dead ->
  168. * bmips_secondary_reentry ->
  169. * start_secondary
  170. */
  171. pr_info("SMP: Booting CPU%d...\n", cpu);
  172. if (cpumask_test_cpu(cpu, &bmips_booted_mask)) {
  173. /* kseg1 might not exist if this CPU enabled XKS01 */
  174. bmips_set_reset_vec(cpu, RESET_FROM_KSEG0);
  175. switch (current_cpu_type()) {
  176. case CPU_BMIPS4350:
  177. case CPU_BMIPS4380:
  178. bmips43xx_send_ipi_single(cpu, 0);
  179. break;
  180. case CPU_BMIPS5000:
  181. bmips5000_send_ipi_single(cpu, 0);
  182. break;
  183. }
  184. } else {
  185. bmips_set_reset_vec(cpu, RESET_FROM_KSEG1);
  186. switch (current_cpu_type()) {
  187. case CPU_BMIPS4350:
  188. case CPU_BMIPS4380:
  189. /* Reset slave TP1 if booting from TP0 */
  190. if (cpu_logical_map(cpu) == 1)
  191. set_c0_brcm_cmt_ctrl(0x01);
  192. break;
  193. case CPU_BMIPS5000:
  194. write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
  195. break;
  196. }
  197. cpumask_set_cpu(cpu, &bmips_booted_mask);
  198. }
  199. return 0;
  200. }
  201. /*
  202. * Early setup - runs on secondary CPU after cache probe
  203. */
  204. static void bmips_init_secondary(void)
  205. {
  206. switch (current_cpu_type()) {
  207. case CPU_BMIPS4350:
  208. case CPU_BMIPS4380:
  209. clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
  210. break;
  211. case CPU_BMIPS5000:
  212. write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
  213. cpu_set_core(&current_cpu_data, (read_c0_brcm_config() >> 25) & 3);
  214. break;
  215. }
  216. }
  217. /*
  218. * Late setup - runs on secondary CPU before entering the idle loop
  219. */
  220. static void bmips_smp_finish(void)
  221. {
  222. pr_info("SMP: CPU%d is running\n", smp_processor_id());
  223. /* make sure there won't be a timer interrupt for a little while */
  224. write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
  225. irq_enable_hazard();
  226. set_c0_status(IE_SW0 | IE_SW1 | bmips_tp1_irqs | IE_IRQ5 | ST0_IE);
  227. irq_enable_hazard();
  228. }
  229. /*
  230. * BMIPS5000 raceless IPIs
  231. *
  232. * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
  233. * IPI0 is used for SMP_RESCHEDULE_YOURSELF
  234. * IPI1 is used for SMP_CALL_FUNCTION
  235. */
  236. static void bmips5000_send_ipi_single(int cpu, unsigned int action)
  237. {
  238. write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
  239. }
  240. static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id)
  241. {
  242. int action = irq - IPI0_IRQ;
  243. write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
  244. if (action == 0)
  245. scheduler_ipi();
  246. else
  247. generic_smp_call_function_interrupt();
  248. return IRQ_HANDLED;
  249. }
  250. static void bmips5000_send_ipi_mask(const struct cpumask *mask,
  251. unsigned int action)
  252. {
  253. unsigned int i;
  254. for_each_cpu(i, mask)
  255. bmips5000_send_ipi_single(i, action);
  256. }
  257. /*
  258. * BMIPS43xx racey IPIs
  259. *
  260. * We use one inbound SW IRQ for each CPU.
  261. *
  262. * A spinlock must be held in order to keep CPUx from accidentally clearing
  263. * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy. The
  264. * same spinlock is used to protect the action masks.
  265. */
  266. static DEFINE_SPINLOCK(ipi_lock);
  267. static DEFINE_PER_CPU(int, ipi_action_mask);
  268. static void bmips43xx_send_ipi_single(int cpu, unsigned int action)
  269. {
  270. unsigned long flags;
  271. spin_lock_irqsave(&ipi_lock, flags);
  272. set_c0_cause(cpu ? C_SW1 : C_SW0);
  273. per_cpu(ipi_action_mask, cpu) |= action;
  274. irq_enable_hazard();
  275. spin_unlock_irqrestore(&ipi_lock, flags);
  276. }
  277. static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id)
  278. {
  279. unsigned long flags;
  280. int action, cpu = irq - IPI0_IRQ;
  281. spin_lock_irqsave(&ipi_lock, flags);
  282. action = __this_cpu_read(ipi_action_mask);
  283. per_cpu(ipi_action_mask, cpu) = 0;
  284. clear_c0_cause(cpu ? C_SW1 : C_SW0);
  285. spin_unlock_irqrestore(&ipi_lock, flags);
  286. if (action & SMP_RESCHEDULE_YOURSELF)
  287. scheduler_ipi();
  288. if (action & SMP_CALL_FUNCTION)
  289. generic_smp_call_function_interrupt();
  290. return IRQ_HANDLED;
  291. }
  292. static void bmips43xx_send_ipi_mask(const struct cpumask *mask,
  293. unsigned int action)
  294. {
  295. unsigned int i;
  296. for_each_cpu(i, mask)
  297. bmips43xx_send_ipi_single(i, action);
  298. }
  299. #ifdef CONFIG_HOTPLUG_CPU
  300. static int bmips_cpu_disable(void)
  301. {
  302. unsigned int cpu = smp_processor_id();
  303. if (cpu == 0)
  304. return -EBUSY;
  305. pr_info("SMP: CPU%d is offline\n", cpu);
  306. set_cpu_online(cpu, false);
  307. calculate_cpu_foreign_map();
  308. irq_cpu_offline();
  309. clear_c0_status(IE_IRQ5);
  310. local_flush_tlb_all();
  311. local_flush_icache_range(0, ~0);
  312. return 0;
  313. }
  314. static void bmips_cpu_die(unsigned int cpu)
  315. {
  316. }
  317. void __ref play_dead(void)
  318. {
  319. idle_task_exit();
  320. /* flush data cache */
  321. _dma_cache_wback_inv(0, ~0);
  322. /*
  323. * Wakeup is on SW0 or SW1; disable everything else
  324. * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
  325. * IRQ handlers; this clears ST0_IE and returns immediately.
  326. */
  327. clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
  328. change_c0_status(
  329. IE_IRQ5 | bmips_tp1_irqs | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
  330. IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
  331. irq_disable_hazard();
  332. /*
  333. * wait for SW interrupt from bmips_boot_secondary(), then jump
  334. * back to start_secondary()
  335. */
  336. __asm__ __volatile__(
  337. " wait\n"
  338. " j bmips_secondary_reentry\n"
  339. : : : "memory");
  340. }
  341. #endif /* CONFIG_HOTPLUG_CPU */
  342. const struct plat_smp_ops bmips43xx_smp_ops = {
  343. .smp_setup = bmips_smp_setup,
  344. .prepare_cpus = bmips_prepare_cpus,
  345. .boot_secondary = bmips_boot_secondary,
  346. .smp_finish = bmips_smp_finish,
  347. .init_secondary = bmips_init_secondary,
  348. .send_ipi_single = bmips43xx_send_ipi_single,
  349. .send_ipi_mask = bmips43xx_send_ipi_mask,
  350. #ifdef CONFIG_HOTPLUG_CPU
  351. .cpu_disable = bmips_cpu_disable,
  352. .cpu_die = bmips_cpu_die,
  353. #endif
  354. #ifdef CONFIG_KEXEC
  355. .kexec_nonboot_cpu = kexec_nonboot_cpu_jump,
  356. #endif
  357. };
  358. const struct plat_smp_ops bmips5000_smp_ops = {
  359. .smp_setup = bmips_smp_setup,
  360. .prepare_cpus = bmips_prepare_cpus,
  361. .boot_secondary = bmips_boot_secondary,
  362. .smp_finish = bmips_smp_finish,
  363. .init_secondary = bmips_init_secondary,
  364. .send_ipi_single = bmips5000_send_ipi_single,
  365. .send_ipi_mask = bmips5000_send_ipi_mask,
  366. #ifdef CONFIG_HOTPLUG_CPU
  367. .cpu_disable = bmips_cpu_disable,
  368. .cpu_die = bmips_cpu_die,
  369. #endif
  370. #ifdef CONFIG_KEXEC
  371. .kexec_nonboot_cpu = kexec_nonboot_cpu_jump,
  372. #endif
  373. };
  374. #endif /* CONFIG_SMP */
  375. /***********************************************************************
  376. * BMIPS vector relocation
  377. * This is primarily used for SMP boot, but it is applicable to some
  378. * UP BMIPS systems as well.
  379. ***********************************************************************/
  380. static void bmips_wr_vec(unsigned long dst, char *start, char *end)
  381. {
  382. memcpy((void *)dst, start, end - start);
  383. dma_cache_wback(dst, end - start);
  384. local_flush_icache_range(dst, dst + (end - start));
  385. instruction_hazard();
  386. }
  387. static inline void bmips_nmi_handler_setup(void)
  388. {
  389. bmips_wr_vec(BMIPS_NMI_RESET_VEC, &bmips_reset_nmi_vec,
  390. &bmips_reset_nmi_vec_end);
  391. bmips_wr_vec(BMIPS_WARM_RESTART_VEC, &bmips_smp_int_vec,
  392. &bmips_smp_int_vec_end);
  393. }
  394. struct reset_vec_info {
  395. int cpu;
  396. u32 val;
  397. };
  398. static void bmips_set_reset_vec_remote(void *vinfo)
  399. {
  400. struct reset_vec_info *info = vinfo;
  401. int shift = info->cpu & 0x01 ? 16 : 0;
  402. u32 mask = ~(0xffff << shift), val = info->val >> 16;
  403. preempt_disable();
  404. if (smp_processor_id() > 0) {
  405. smp_call_function_single(0, &bmips_set_reset_vec_remote,
  406. info, 1);
  407. } else {
  408. if (info->cpu & 0x02) {
  409. /* BMIPS5200 "should" use mask/shift, but it's buggy */
  410. bmips_write_zscm_reg(0xa0, (val << 16) | val);
  411. bmips_read_zscm_reg(0xa0);
  412. } else {
  413. write_c0_brcm_bootvec((read_c0_brcm_bootvec() & mask) |
  414. (val << shift));
  415. }
  416. }
  417. preempt_enable();
  418. }
  419. static void bmips_set_reset_vec(int cpu, u32 val)
  420. {
  421. struct reset_vec_info info;
  422. if (current_cpu_type() == CPU_BMIPS5000) {
  423. /* this needs to run from CPU0 (which is always online) */
  424. info.cpu = cpu;
  425. info.val = val;
  426. bmips_set_reset_vec_remote(&info);
  427. } else {
  428. void __iomem *cbr = BMIPS_GET_CBR();
  429. if (cpu == 0)
  430. __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
  431. else {
  432. if (current_cpu_type() != CPU_BMIPS4380)
  433. return;
  434. __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
  435. }
  436. }
  437. __sync();
  438. back_to_back_c0_hazard();
  439. }
  440. void bmips_ebase_setup(void)
  441. {
  442. unsigned long new_ebase = ebase;
  443. BUG_ON(ebase != CKSEG0);
  444. switch (current_cpu_type()) {
  445. case CPU_BMIPS4350:
  446. /*
  447. * BMIPS4350 cannot relocate the normal vectors, but it
  448. * can relocate the BEV=1 vectors. So CPU1 starts up at
  449. * the relocated BEV=1, IV=0 general exception vector @
  450. * 0xa000_0380.
  451. *
  452. * set_uncached_handler() is used here because:
  453. * - CPU1 will run this from uncached space
  454. * - None of the cacheflush functions are set up yet
  455. */
  456. set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
  457. &bmips_smp_int_vec, 0x80);
  458. __sync();
  459. return;
  460. case CPU_BMIPS3300:
  461. case CPU_BMIPS4380:
  462. /*
  463. * 0x8000_0000: reset/NMI (initially in kseg1)
  464. * 0x8000_0400: normal vectors
  465. */
  466. new_ebase = 0x80000400;
  467. bmips_set_reset_vec(0, RESET_FROM_KSEG0);
  468. break;
  469. case CPU_BMIPS5000:
  470. /*
  471. * 0x8000_0000: reset/NMI (initially in kseg1)
  472. * 0x8000_1000: normal vectors
  473. */
  474. new_ebase = 0x80001000;
  475. bmips_set_reset_vec(0, RESET_FROM_KSEG0);
  476. write_c0_ebase(new_ebase);
  477. break;
  478. default:
  479. return;
  480. }
  481. board_nmi_handler_setup = &bmips_nmi_handler_setup;
  482. ebase = new_ebase;
  483. }
  484. asmlinkage void __weak plat_wired_tlb_setup(void)
  485. {
  486. /*
  487. * Called when starting/restarting a secondary CPU.
  488. * Kernel stacks and other important data might only be accessible
  489. * once the wired entries are present.
  490. */
  491. }
  492. void bmips_cpu_setup(void)
  493. {
  494. void __iomem __maybe_unused *cbr = BMIPS_GET_CBR();
  495. u32 __maybe_unused cfg;
  496. switch (current_cpu_type()) {
  497. case CPU_BMIPS3300:
  498. /* Set BIU to async mode */
  499. set_c0_brcm_bus_pll(BIT(22));
  500. __sync();
  501. /* put the BIU back in sync mode */
  502. clear_c0_brcm_bus_pll(BIT(22));
  503. /* clear BHTD to enable branch history table */
  504. clear_c0_brcm_reset(BIT(16));
  505. /* Flush and enable RAC */
  506. cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
  507. __raw_writel(cfg | 0x100, cbr + BMIPS_RAC_CONFIG);
  508. __raw_readl(cbr + BMIPS_RAC_CONFIG);
  509. cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
  510. __raw_writel(cfg | 0xf, cbr + BMIPS_RAC_CONFIG);
  511. __raw_readl(cbr + BMIPS_RAC_CONFIG);
  512. cfg = __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
  513. __raw_writel(cfg | 0x0fff0000, cbr + BMIPS_RAC_ADDRESS_RANGE);
  514. __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
  515. break;
  516. case CPU_BMIPS4380:
  517. /* CBG workaround for early BMIPS4380 CPUs */
  518. switch (read_c0_prid()) {
  519. case 0x2a040:
  520. case 0x2a042:
  521. case 0x2a044:
  522. case 0x2a060:
  523. cfg = __raw_readl(cbr + BMIPS_L2_CONFIG);
  524. __raw_writel(cfg & ~0x07000000, cbr + BMIPS_L2_CONFIG);
  525. __raw_readl(cbr + BMIPS_L2_CONFIG);
  526. }
  527. /* clear BHTD to enable branch history table */
  528. clear_c0_brcm_config_0(BIT(21));
  529. /* XI/ROTR enable */
  530. set_c0_brcm_config_0(BIT(23));
  531. set_c0_brcm_cmt_ctrl(BIT(15));
  532. break;
  533. case CPU_BMIPS5000:
  534. /* enable RDHWR, BRDHWR */
  535. set_c0_brcm_config(BIT(17) | BIT(21));
  536. /* Disable JTB */
  537. __asm__ __volatile__(
  538. " .set noreorder\n"
  539. " li $8, 0x5a455048\n"
  540. " .word 0x4088b00f\n" /* mtc0 t0, $22, 15 */
  541. " .word 0x4008b008\n" /* mfc0 t0, $22, 8 */
  542. " li $9, 0x00008000\n"
  543. " or $8, $8, $9\n"
  544. " .word 0x4088b008\n" /* mtc0 t0, $22, 8 */
  545. " sync\n"
  546. " li $8, 0x0\n"
  547. " .word 0x4088b00f\n" /* mtc0 t0, $22, 15 */
  548. " .set reorder\n"
  549. : : : "$8", "$9");
  550. /* XI enable */
  551. set_c0_brcm_config(BIT(27));
  552. /* enable MIPS32R2 ROR instruction for XI TLB handlers */
  553. __asm__ __volatile__(
  554. " li $8, 0x5a455048\n"
  555. " .word 0x4088b00f\n" /* mtc0 $8, $22, 15 */
  556. " nop; nop; nop\n"
  557. " .word 0x4008b008\n" /* mfc0 $8, $22, 8 */
  558. " lui $9, 0x0100\n"
  559. " or $8, $9\n"
  560. " .word 0x4088b008\n" /* mtc0 $8, $22, 8 */
  561. : : : "$8", "$9");
  562. break;
  563. }
  564. }