dma-mapping.c 5.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254
  1. // SPDX-License-Identifier: GPL-2.0
  2. // Copyright (C) 2018 Hangzhou C-SKY Microsystems co.,ltd.
  3. #include <linux/cache.h>
  4. #include <linux/dma-mapping.h>
  5. #include <linux/dma-contiguous.h>
  6. #include <linux/dma-noncoherent.h>
  7. #include <linux/genalloc.h>
  8. #include <linux/highmem.h>
  9. #include <linux/io.h>
  10. #include <linux/mm.h>
  11. #include <linux/scatterlist.h>
  12. #include <linux/types.h>
  13. #include <linux/version.h>
  14. #include <asm/cache.h>
  15. static struct gen_pool *atomic_pool;
  16. static size_t atomic_pool_size __initdata = SZ_256K;
  17. static int __init early_coherent_pool(char *p)
  18. {
  19. atomic_pool_size = memparse(p, &p);
  20. return 0;
  21. }
  22. early_param("coherent_pool", early_coherent_pool);
  23. static int __init atomic_pool_init(void)
  24. {
  25. struct page *page;
  26. size_t size = atomic_pool_size;
  27. void *ptr;
  28. int ret;
  29. atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
  30. if (!atomic_pool)
  31. BUG();
  32. page = alloc_pages(GFP_KERNEL | GFP_DMA, get_order(size));
  33. if (!page)
  34. BUG();
  35. ptr = dma_common_contiguous_remap(page, size, VM_ALLOC,
  36. pgprot_noncached(PAGE_KERNEL),
  37. __builtin_return_address(0));
  38. if (!ptr)
  39. BUG();
  40. ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
  41. page_to_phys(page), atomic_pool_size, -1);
  42. if (ret)
  43. BUG();
  44. gen_pool_set_algo(atomic_pool, gen_pool_first_fit_order_align, NULL);
  45. pr_info("DMA: preallocated %zu KiB pool for atomic coherent pool\n",
  46. atomic_pool_size / 1024);
  47. pr_info("DMA: vaddr: 0x%x phy: 0x%lx,\n", (unsigned int)ptr,
  48. page_to_phys(page));
  49. return 0;
  50. }
  51. postcore_initcall(atomic_pool_init);
  52. static void *csky_dma_alloc_atomic(struct device *dev, size_t size,
  53. dma_addr_t *dma_handle)
  54. {
  55. unsigned long addr;
  56. addr = gen_pool_alloc(atomic_pool, size);
  57. if (addr)
  58. *dma_handle = gen_pool_virt_to_phys(atomic_pool, addr);
  59. return (void *)addr;
  60. }
  61. static void csky_dma_free_atomic(struct device *dev, size_t size, void *vaddr,
  62. dma_addr_t dma_handle, unsigned long attrs)
  63. {
  64. gen_pool_free(atomic_pool, (unsigned long)vaddr, size);
  65. }
  66. static void __dma_clear_buffer(struct page *page, size_t size)
  67. {
  68. if (PageHighMem(page)) {
  69. unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
  70. do {
  71. void *ptr = kmap_atomic(page);
  72. size_t _size = (size < PAGE_SIZE) ? size : PAGE_SIZE;
  73. memset(ptr, 0, _size);
  74. dma_wbinv_range((unsigned long)ptr,
  75. (unsigned long)ptr + _size);
  76. kunmap_atomic(ptr);
  77. page++;
  78. size -= PAGE_SIZE;
  79. count--;
  80. } while (count);
  81. } else {
  82. void *ptr = page_address(page);
  83. memset(ptr, 0, size);
  84. dma_wbinv_range((unsigned long)ptr, (unsigned long)ptr + size);
  85. }
  86. }
  87. static void *csky_dma_alloc_nonatomic(struct device *dev, size_t size,
  88. dma_addr_t *dma_handle, gfp_t gfp,
  89. unsigned long attrs)
  90. {
  91. void *vaddr;
  92. struct page *page;
  93. unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
  94. if (DMA_ATTR_NON_CONSISTENT & attrs) {
  95. pr_err("csky %s can't support DMA_ATTR_NON_CONSISTENT.\n", __func__);
  96. return NULL;
  97. }
  98. if (IS_ENABLED(CONFIG_DMA_CMA))
  99. page = dma_alloc_from_contiguous(dev, count, get_order(size),
  100. gfp);
  101. else
  102. page = alloc_pages(gfp, get_order(size));
  103. if (!page) {
  104. pr_err("csky %s no more free pages.\n", __func__);
  105. return NULL;
  106. }
  107. *dma_handle = page_to_phys(page);
  108. __dma_clear_buffer(page, size);
  109. if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
  110. return page;
  111. vaddr = dma_common_contiguous_remap(page, PAGE_ALIGN(size), VM_USERMAP,
  112. pgprot_noncached(PAGE_KERNEL), __builtin_return_address(0));
  113. if (!vaddr)
  114. BUG();
  115. return vaddr;
  116. }
  117. static void csky_dma_free_nonatomic(
  118. struct device *dev,
  119. size_t size,
  120. void *vaddr,
  121. dma_addr_t dma_handle,
  122. unsigned long attrs
  123. )
  124. {
  125. struct page *page = phys_to_page(dma_handle);
  126. unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
  127. if ((unsigned int)vaddr >= VMALLOC_START)
  128. dma_common_free_remap(vaddr, size, VM_USERMAP);
  129. if (IS_ENABLED(CONFIG_DMA_CMA))
  130. dma_release_from_contiguous(dev, page, count);
  131. else
  132. __free_pages(page, get_order(size));
  133. }
  134. void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
  135. gfp_t gfp, unsigned long attrs)
  136. {
  137. if (gfpflags_allow_blocking(gfp))
  138. return csky_dma_alloc_nonatomic(dev, size, dma_handle, gfp,
  139. attrs);
  140. else
  141. return csky_dma_alloc_atomic(dev, size, dma_handle);
  142. }
  143. void arch_dma_free(struct device *dev, size_t size, void *vaddr,
  144. dma_addr_t dma_handle, unsigned long attrs)
  145. {
  146. if (!addr_in_gen_pool(atomic_pool, (unsigned int) vaddr, size))
  147. csky_dma_free_nonatomic(dev, size, vaddr, dma_handle, attrs);
  148. else
  149. csky_dma_free_atomic(dev, size, vaddr, dma_handle, attrs);
  150. }
  151. static inline void cache_op(phys_addr_t paddr, size_t size,
  152. void (*fn)(unsigned long start, unsigned long end))
  153. {
  154. struct page *page = pfn_to_page(paddr >> PAGE_SHIFT);
  155. unsigned int offset = paddr & ~PAGE_MASK;
  156. size_t left = size;
  157. unsigned long start;
  158. do {
  159. size_t len = left;
  160. if (PageHighMem(page)) {
  161. void *addr;
  162. if (offset + len > PAGE_SIZE) {
  163. if (offset >= PAGE_SIZE) {
  164. page += offset >> PAGE_SHIFT;
  165. offset &= ~PAGE_MASK;
  166. }
  167. len = PAGE_SIZE - offset;
  168. }
  169. addr = kmap_atomic(page);
  170. start = (unsigned long)(addr + offset);
  171. fn(start, start + len);
  172. kunmap_atomic(addr);
  173. } else {
  174. start = (unsigned long)phys_to_virt(paddr);
  175. fn(start, start + size);
  176. }
  177. offset = 0;
  178. page++;
  179. left -= len;
  180. } while (left);
  181. }
  182. void arch_sync_dma_for_device(struct device *dev, phys_addr_t paddr,
  183. size_t size, enum dma_data_direction dir)
  184. {
  185. switch (dir) {
  186. case DMA_TO_DEVICE:
  187. cache_op(paddr, size, dma_wb_range);
  188. break;
  189. case DMA_FROM_DEVICE:
  190. case DMA_BIDIRECTIONAL:
  191. cache_op(paddr, size, dma_wbinv_range);
  192. break;
  193. default:
  194. BUG();
  195. }
  196. }
  197. void arch_sync_dma_for_cpu(struct device *dev, phys_addr_t paddr,
  198. size_t size, enum dma_data_direction dir)
  199. {
  200. switch (dir) {
  201. case DMA_TO_DEVICE:
  202. cache_op(paddr, size, dma_wb_range);
  203. break;
  204. case DMA_FROM_DEVICE:
  205. case DMA_BIDIRECTIONAL:
  206. cache_op(paddr, size, dma_wbinv_range);
  207. break;
  208. default:
  209. BUG();
  210. }
  211. }