process.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499
  1. /*
  2. * Based on arch/arm/kernel/process.c
  3. *
  4. * Original Copyright (C) 1995 Linus Torvalds
  5. * Copyright (C) 1996-2000 Russell King - Converted to ARM.
  6. * Copyright (C) 2012 ARM Ltd.
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  19. */
  20. #include <stdarg.h>
  21. #include <linux/compat.h>
  22. #include <linux/efi.h>
  23. #include <linux/export.h>
  24. #include <linux/sched.h>
  25. #include <linux/sched/debug.h>
  26. #include <linux/sched/task.h>
  27. #include <linux/sched/task_stack.h>
  28. #include <linux/kernel.h>
  29. #include <linux/mm.h>
  30. #include <linux/stddef.h>
  31. #include <linux/unistd.h>
  32. #include <linux/user.h>
  33. #include <linux/delay.h>
  34. #include <linux/reboot.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/init.h>
  37. #include <linux/cpu.h>
  38. #include <linux/elfcore.h>
  39. #include <linux/pm.h>
  40. #include <linux/tick.h>
  41. #include <linux/utsname.h>
  42. #include <linux/uaccess.h>
  43. #include <linux/random.h>
  44. #include <linux/hw_breakpoint.h>
  45. #include <linux/personality.h>
  46. #include <linux/notifier.h>
  47. #include <trace/events/power.h>
  48. #include <linux/percpu.h>
  49. #include <linux/thread_info.h>
  50. #include <asm/alternative.h>
  51. #include <asm/compat.h>
  52. #include <asm/cacheflush.h>
  53. #include <asm/exec.h>
  54. #include <asm/fpsimd.h>
  55. #include <asm/mmu_context.h>
  56. #include <asm/processor.h>
  57. #include <asm/stacktrace.h>
  58. #ifdef CONFIG_STACKPROTECTOR
  59. #include <linux/stackprotector.h>
  60. unsigned long __stack_chk_guard __read_mostly;
  61. EXPORT_SYMBOL(__stack_chk_guard);
  62. #endif
  63. /*
  64. * Function pointers to optional machine specific functions
  65. */
  66. void (*pm_power_off)(void);
  67. EXPORT_SYMBOL_GPL(pm_power_off);
  68. void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
  69. /*
  70. * This is our default idle handler.
  71. */
  72. void arch_cpu_idle(void)
  73. {
  74. /*
  75. * This should do all the clock switching and wait for interrupt
  76. * tricks
  77. */
  78. trace_cpu_idle_rcuidle(1, smp_processor_id());
  79. cpu_do_idle();
  80. local_irq_enable();
  81. trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
  82. }
  83. #ifdef CONFIG_HOTPLUG_CPU
  84. void arch_cpu_idle_dead(void)
  85. {
  86. cpu_die();
  87. }
  88. #endif
  89. /*
  90. * Called by kexec, immediately prior to machine_kexec().
  91. *
  92. * This must completely disable all secondary CPUs; simply causing those CPUs
  93. * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
  94. * kexec'd kernel to use any and all RAM as it sees fit, without having to
  95. * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
  96. * functionality embodied in disable_nonboot_cpus() to achieve this.
  97. */
  98. void machine_shutdown(void)
  99. {
  100. disable_nonboot_cpus();
  101. }
  102. /*
  103. * Halting simply requires that the secondary CPUs stop performing any
  104. * activity (executing tasks, handling interrupts). smp_send_stop()
  105. * achieves this.
  106. */
  107. void machine_halt(void)
  108. {
  109. local_irq_disable();
  110. smp_send_stop();
  111. while (1);
  112. }
  113. /*
  114. * Power-off simply requires that the secondary CPUs stop performing any
  115. * activity (executing tasks, handling interrupts). smp_send_stop()
  116. * achieves this. When the system power is turned off, it will take all CPUs
  117. * with it.
  118. */
  119. void machine_power_off(void)
  120. {
  121. local_irq_disable();
  122. smp_send_stop();
  123. if (pm_power_off)
  124. pm_power_off();
  125. }
  126. /*
  127. * Restart requires that the secondary CPUs stop performing any activity
  128. * while the primary CPU resets the system. Systems with multiple CPUs must
  129. * provide a HW restart implementation, to ensure that all CPUs reset at once.
  130. * This is required so that any code running after reset on the primary CPU
  131. * doesn't have to co-ordinate with other CPUs to ensure they aren't still
  132. * executing pre-reset code, and using RAM that the primary CPU's code wishes
  133. * to use. Implementing such co-ordination would be essentially impossible.
  134. */
  135. void machine_restart(char *cmd)
  136. {
  137. /* Disable interrupts first */
  138. local_irq_disable();
  139. smp_send_stop();
  140. /*
  141. * UpdateCapsule() depends on the system being reset via
  142. * ResetSystem().
  143. */
  144. if (efi_enabled(EFI_RUNTIME_SERVICES))
  145. efi_reboot(reboot_mode, NULL);
  146. /* Now call the architecture specific reboot code. */
  147. if (arm_pm_restart)
  148. arm_pm_restart(reboot_mode, cmd);
  149. else
  150. do_kernel_restart(cmd);
  151. /*
  152. * Whoops - the architecture was unable to reboot.
  153. */
  154. printk("Reboot failed -- System halted\n");
  155. while (1);
  156. }
  157. static void print_pstate(struct pt_regs *regs)
  158. {
  159. u64 pstate = regs->pstate;
  160. if (compat_user_mode(regs)) {
  161. printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c)\n",
  162. pstate,
  163. pstate & PSR_AA32_N_BIT ? 'N' : 'n',
  164. pstate & PSR_AA32_Z_BIT ? 'Z' : 'z',
  165. pstate & PSR_AA32_C_BIT ? 'C' : 'c',
  166. pstate & PSR_AA32_V_BIT ? 'V' : 'v',
  167. pstate & PSR_AA32_Q_BIT ? 'Q' : 'q',
  168. pstate & PSR_AA32_T_BIT ? "T32" : "A32",
  169. pstate & PSR_AA32_E_BIT ? "BE" : "LE",
  170. pstate & PSR_AA32_A_BIT ? 'A' : 'a',
  171. pstate & PSR_AA32_I_BIT ? 'I' : 'i',
  172. pstate & PSR_AA32_F_BIT ? 'F' : 'f');
  173. } else {
  174. printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO)\n",
  175. pstate,
  176. pstate & PSR_N_BIT ? 'N' : 'n',
  177. pstate & PSR_Z_BIT ? 'Z' : 'z',
  178. pstate & PSR_C_BIT ? 'C' : 'c',
  179. pstate & PSR_V_BIT ? 'V' : 'v',
  180. pstate & PSR_D_BIT ? 'D' : 'd',
  181. pstate & PSR_A_BIT ? 'A' : 'a',
  182. pstate & PSR_I_BIT ? 'I' : 'i',
  183. pstate & PSR_F_BIT ? 'F' : 'f',
  184. pstate & PSR_PAN_BIT ? '+' : '-',
  185. pstate & PSR_UAO_BIT ? '+' : '-');
  186. }
  187. }
  188. void __show_regs(struct pt_regs *regs)
  189. {
  190. int i, top_reg;
  191. u64 lr, sp;
  192. if (compat_user_mode(regs)) {
  193. lr = regs->compat_lr;
  194. sp = regs->compat_sp;
  195. top_reg = 12;
  196. } else {
  197. lr = regs->regs[30];
  198. sp = regs->sp;
  199. top_reg = 29;
  200. }
  201. show_regs_print_info(KERN_DEFAULT);
  202. print_pstate(regs);
  203. if (!user_mode(regs)) {
  204. printk("pc : %pS\n", (void *)regs->pc);
  205. printk("lr : %pS\n", (void *)lr);
  206. } else {
  207. printk("pc : %016llx\n", regs->pc);
  208. printk("lr : %016llx\n", lr);
  209. }
  210. printk("sp : %016llx\n", sp);
  211. i = top_reg;
  212. while (i >= 0) {
  213. printk("x%-2d: %016llx ", i, regs->regs[i]);
  214. i--;
  215. if (i % 2 == 0) {
  216. pr_cont("x%-2d: %016llx ", i, regs->regs[i]);
  217. i--;
  218. }
  219. pr_cont("\n");
  220. }
  221. }
  222. void show_regs(struct pt_regs * regs)
  223. {
  224. __show_regs(regs);
  225. dump_backtrace(regs, NULL);
  226. }
  227. static void tls_thread_flush(void)
  228. {
  229. write_sysreg(0, tpidr_el0);
  230. if (is_compat_task()) {
  231. current->thread.uw.tp_value = 0;
  232. /*
  233. * We need to ensure ordering between the shadow state and the
  234. * hardware state, so that we don't corrupt the hardware state
  235. * with a stale shadow state during context switch.
  236. */
  237. barrier();
  238. write_sysreg(0, tpidrro_el0);
  239. }
  240. }
  241. void flush_thread(void)
  242. {
  243. fpsimd_flush_thread();
  244. tls_thread_flush();
  245. flush_ptrace_hw_breakpoint(current);
  246. }
  247. void release_thread(struct task_struct *dead_task)
  248. {
  249. }
  250. void arch_release_task_struct(struct task_struct *tsk)
  251. {
  252. fpsimd_release_task(tsk);
  253. }
  254. /*
  255. * src and dst may temporarily have aliased sve_state after task_struct
  256. * is copied. We cannot fix this properly here, because src may have
  257. * live SVE state and dst's thread_info may not exist yet, so tweaking
  258. * either src's or dst's TIF_SVE is not safe.
  259. *
  260. * The unaliasing is done in copy_thread() instead. This works because
  261. * dst is not schedulable or traceable until both of these functions
  262. * have been called.
  263. */
  264. int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
  265. {
  266. if (current->mm)
  267. fpsimd_preserve_current_state();
  268. *dst = *src;
  269. return 0;
  270. }
  271. asmlinkage void ret_from_fork(void) asm("ret_from_fork");
  272. int copy_thread(unsigned long clone_flags, unsigned long stack_start,
  273. unsigned long stk_sz, struct task_struct *p)
  274. {
  275. struct pt_regs *childregs = task_pt_regs(p);
  276. memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
  277. /*
  278. * Unalias p->thread.sve_state (if any) from the parent task
  279. * and disable discard SVE state for p:
  280. */
  281. clear_tsk_thread_flag(p, TIF_SVE);
  282. p->thread.sve_state = NULL;
  283. /*
  284. * In case p was allocated the same task_struct pointer as some
  285. * other recently-exited task, make sure p is disassociated from
  286. * any cpu that may have run that now-exited task recently.
  287. * Otherwise we could erroneously skip reloading the FPSIMD
  288. * registers for p.
  289. */
  290. fpsimd_flush_task_state(p);
  291. if (likely(!(p->flags & PF_KTHREAD))) {
  292. *childregs = *current_pt_regs();
  293. childregs->regs[0] = 0;
  294. /*
  295. * Read the current TLS pointer from tpidr_el0 as it may be
  296. * out-of-sync with the saved value.
  297. */
  298. *task_user_tls(p) = read_sysreg(tpidr_el0);
  299. if (stack_start) {
  300. if (is_compat_thread(task_thread_info(p)))
  301. childregs->compat_sp = stack_start;
  302. else
  303. childregs->sp = stack_start;
  304. }
  305. /*
  306. * If a TLS pointer was passed to clone (4th argument), use it
  307. * for the new thread.
  308. */
  309. if (clone_flags & CLONE_SETTLS)
  310. p->thread.uw.tp_value = childregs->regs[3];
  311. } else {
  312. memset(childregs, 0, sizeof(struct pt_regs));
  313. childregs->pstate = PSR_MODE_EL1h;
  314. if (IS_ENABLED(CONFIG_ARM64_UAO) &&
  315. cpus_have_const_cap(ARM64_HAS_UAO))
  316. childregs->pstate |= PSR_UAO_BIT;
  317. if (arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE)
  318. childregs->pstate |= PSR_SSBS_BIT;
  319. p->thread.cpu_context.x19 = stack_start;
  320. p->thread.cpu_context.x20 = stk_sz;
  321. }
  322. p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
  323. p->thread.cpu_context.sp = (unsigned long)childregs;
  324. ptrace_hw_copy_thread(p);
  325. return 0;
  326. }
  327. void tls_preserve_current_state(void)
  328. {
  329. *task_user_tls(current) = read_sysreg(tpidr_el0);
  330. }
  331. static void tls_thread_switch(struct task_struct *next)
  332. {
  333. tls_preserve_current_state();
  334. if (is_compat_thread(task_thread_info(next)))
  335. write_sysreg(next->thread.uw.tp_value, tpidrro_el0);
  336. else if (!arm64_kernel_unmapped_at_el0())
  337. write_sysreg(0, tpidrro_el0);
  338. write_sysreg(*task_user_tls(next), tpidr_el0);
  339. }
  340. /* Restore the UAO state depending on next's addr_limit */
  341. void uao_thread_switch(struct task_struct *next)
  342. {
  343. if (IS_ENABLED(CONFIG_ARM64_UAO)) {
  344. if (task_thread_info(next)->addr_limit == KERNEL_DS)
  345. asm(ALTERNATIVE("nop", SET_PSTATE_UAO(1), ARM64_HAS_UAO));
  346. else
  347. asm(ALTERNATIVE("nop", SET_PSTATE_UAO(0), ARM64_HAS_UAO));
  348. }
  349. }
  350. /*
  351. * We store our current task in sp_el0, which is clobbered by userspace. Keep a
  352. * shadow copy so that we can restore this upon entry from userspace.
  353. *
  354. * This is *only* for exception entry from EL0, and is not valid until we
  355. * __switch_to() a user task.
  356. */
  357. DEFINE_PER_CPU(struct task_struct *, __entry_task);
  358. static void entry_task_switch(struct task_struct *next)
  359. {
  360. __this_cpu_write(__entry_task, next);
  361. }
  362. /*
  363. * Thread switching.
  364. */
  365. __notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev,
  366. struct task_struct *next)
  367. {
  368. struct task_struct *last;
  369. fpsimd_thread_switch(next);
  370. tls_thread_switch(next);
  371. hw_breakpoint_thread_switch(next);
  372. contextidr_thread_switch(next);
  373. entry_task_switch(next);
  374. uao_thread_switch(next);
  375. /*
  376. * Complete any pending TLB or cache maintenance on this CPU in case
  377. * the thread migrates to a different CPU.
  378. * This full barrier is also required by the membarrier system
  379. * call.
  380. */
  381. dsb(ish);
  382. /* the actual thread switch */
  383. last = cpu_switch_to(prev, next);
  384. return last;
  385. }
  386. unsigned long get_wchan(struct task_struct *p)
  387. {
  388. struct stackframe frame;
  389. unsigned long stack_page, ret = 0;
  390. int count = 0;
  391. if (!p || p == current || p->state == TASK_RUNNING)
  392. return 0;
  393. stack_page = (unsigned long)try_get_task_stack(p);
  394. if (!stack_page)
  395. return 0;
  396. frame.fp = thread_saved_fp(p);
  397. frame.pc = thread_saved_pc(p);
  398. #ifdef CONFIG_FUNCTION_GRAPH_TRACER
  399. frame.graph = p->curr_ret_stack;
  400. #endif
  401. do {
  402. if (unwind_frame(p, &frame))
  403. goto out;
  404. if (!in_sched_functions(frame.pc)) {
  405. ret = frame.pc;
  406. goto out;
  407. }
  408. } while (count ++ < 16);
  409. out:
  410. put_task_stack(p);
  411. return ret;
  412. }
  413. unsigned long arch_align_stack(unsigned long sp)
  414. {
  415. if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
  416. sp -= get_random_int() & ~PAGE_MASK;
  417. return sp & ~0xf;
  418. }
  419. unsigned long arch_randomize_brk(struct mm_struct *mm)
  420. {
  421. if (is_compat_task())
  422. return randomize_page(mm->brk, SZ_32M);
  423. else
  424. return randomize_page(mm->brk, SZ_1G);
  425. }
  426. /*
  427. * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
  428. */
  429. void arch_setup_new_exec(void)
  430. {
  431. current->mm->context.flags = is_compat_task() ? MMCF_AARCH32 : 0;
  432. }