insn.c 39 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605
  1. /*
  2. * Copyright (C) 2013 Huawei Ltd.
  3. * Author: Jiang Liu <liuj97@gmail.com>
  4. *
  5. * Copyright (C) 2014-2016 Zi Shen Lim <zlim.lnx@gmail.com>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  18. */
  19. #include <linux/bitops.h>
  20. #include <linux/bug.h>
  21. #include <linux/compiler.h>
  22. #include <linux/kernel.h>
  23. #include <linux/mm.h>
  24. #include <linux/smp.h>
  25. #include <linux/spinlock.h>
  26. #include <linux/stop_machine.h>
  27. #include <linux/types.h>
  28. #include <linux/uaccess.h>
  29. #include <asm/cacheflush.h>
  30. #include <asm/debug-monitors.h>
  31. #include <asm/fixmap.h>
  32. #include <asm/insn.h>
  33. #include <asm/kprobes.h>
  34. #define AARCH64_INSN_SF_BIT BIT(31)
  35. #define AARCH64_INSN_N_BIT BIT(22)
  36. #define AARCH64_INSN_LSL_12 BIT(22)
  37. static int aarch64_insn_encoding_class[] = {
  38. AARCH64_INSN_CLS_UNKNOWN,
  39. AARCH64_INSN_CLS_UNKNOWN,
  40. AARCH64_INSN_CLS_UNKNOWN,
  41. AARCH64_INSN_CLS_UNKNOWN,
  42. AARCH64_INSN_CLS_LDST,
  43. AARCH64_INSN_CLS_DP_REG,
  44. AARCH64_INSN_CLS_LDST,
  45. AARCH64_INSN_CLS_DP_FPSIMD,
  46. AARCH64_INSN_CLS_DP_IMM,
  47. AARCH64_INSN_CLS_DP_IMM,
  48. AARCH64_INSN_CLS_BR_SYS,
  49. AARCH64_INSN_CLS_BR_SYS,
  50. AARCH64_INSN_CLS_LDST,
  51. AARCH64_INSN_CLS_DP_REG,
  52. AARCH64_INSN_CLS_LDST,
  53. AARCH64_INSN_CLS_DP_FPSIMD,
  54. };
  55. enum aarch64_insn_encoding_class __kprobes aarch64_get_insn_class(u32 insn)
  56. {
  57. return aarch64_insn_encoding_class[(insn >> 25) & 0xf];
  58. }
  59. /* NOP is an alias of HINT */
  60. bool __kprobes aarch64_insn_is_nop(u32 insn)
  61. {
  62. if (!aarch64_insn_is_hint(insn))
  63. return false;
  64. switch (insn & 0xFE0) {
  65. case AARCH64_INSN_HINT_YIELD:
  66. case AARCH64_INSN_HINT_WFE:
  67. case AARCH64_INSN_HINT_WFI:
  68. case AARCH64_INSN_HINT_SEV:
  69. case AARCH64_INSN_HINT_SEVL:
  70. return false;
  71. default:
  72. return true;
  73. }
  74. }
  75. bool aarch64_insn_is_branch_imm(u32 insn)
  76. {
  77. return (aarch64_insn_is_b(insn) || aarch64_insn_is_bl(insn) ||
  78. aarch64_insn_is_tbz(insn) || aarch64_insn_is_tbnz(insn) ||
  79. aarch64_insn_is_cbz(insn) || aarch64_insn_is_cbnz(insn) ||
  80. aarch64_insn_is_bcond(insn));
  81. }
  82. static DEFINE_RAW_SPINLOCK(patch_lock);
  83. static void __kprobes *patch_map(void *addr, int fixmap)
  84. {
  85. unsigned long uintaddr = (uintptr_t) addr;
  86. bool module = !core_kernel_text(uintaddr);
  87. struct page *page;
  88. if (module && IS_ENABLED(CONFIG_STRICT_MODULE_RWX))
  89. page = vmalloc_to_page(addr);
  90. else if (!module)
  91. page = phys_to_page(__pa_symbol(addr));
  92. else
  93. return addr;
  94. BUG_ON(!page);
  95. return (void *)set_fixmap_offset(fixmap, page_to_phys(page) +
  96. (uintaddr & ~PAGE_MASK));
  97. }
  98. static void __kprobes patch_unmap(int fixmap)
  99. {
  100. clear_fixmap(fixmap);
  101. }
  102. /*
  103. * In ARMv8-A, A64 instructions have a fixed length of 32 bits and are always
  104. * little-endian.
  105. */
  106. int __kprobes aarch64_insn_read(void *addr, u32 *insnp)
  107. {
  108. int ret;
  109. __le32 val;
  110. ret = probe_kernel_read(&val, addr, AARCH64_INSN_SIZE);
  111. if (!ret)
  112. *insnp = le32_to_cpu(val);
  113. return ret;
  114. }
  115. static int __kprobes __aarch64_insn_write(void *addr, __le32 insn)
  116. {
  117. void *waddr = addr;
  118. unsigned long flags = 0;
  119. int ret;
  120. raw_spin_lock_irqsave(&patch_lock, flags);
  121. waddr = patch_map(addr, FIX_TEXT_POKE0);
  122. ret = probe_kernel_write(waddr, &insn, AARCH64_INSN_SIZE);
  123. patch_unmap(FIX_TEXT_POKE0);
  124. raw_spin_unlock_irqrestore(&patch_lock, flags);
  125. return ret;
  126. }
  127. int __kprobes aarch64_insn_write(void *addr, u32 insn)
  128. {
  129. return __aarch64_insn_write(addr, cpu_to_le32(insn));
  130. }
  131. bool __kprobes aarch64_insn_uses_literal(u32 insn)
  132. {
  133. /* ldr/ldrsw (literal), prfm */
  134. return aarch64_insn_is_ldr_lit(insn) ||
  135. aarch64_insn_is_ldrsw_lit(insn) ||
  136. aarch64_insn_is_adr_adrp(insn) ||
  137. aarch64_insn_is_prfm_lit(insn);
  138. }
  139. bool __kprobes aarch64_insn_is_branch(u32 insn)
  140. {
  141. /* b, bl, cb*, tb*, b.cond, br, blr */
  142. return aarch64_insn_is_b(insn) ||
  143. aarch64_insn_is_bl(insn) ||
  144. aarch64_insn_is_cbz(insn) ||
  145. aarch64_insn_is_cbnz(insn) ||
  146. aarch64_insn_is_tbz(insn) ||
  147. aarch64_insn_is_tbnz(insn) ||
  148. aarch64_insn_is_ret(insn) ||
  149. aarch64_insn_is_br(insn) ||
  150. aarch64_insn_is_blr(insn) ||
  151. aarch64_insn_is_bcond(insn);
  152. }
  153. int __kprobes aarch64_insn_patch_text_nosync(void *addr, u32 insn)
  154. {
  155. u32 *tp = addr;
  156. int ret;
  157. /* A64 instructions must be word aligned */
  158. if ((uintptr_t)tp & 0x3)
  159. return -EINVAL;
  160. ret = aarch64_insn_write(tp, insn);
  161. if (ret == 0)
  162. __flush_icache_range((uintptr_t)tp,
  163. (uintptr_t)tp + AARCH64_INSN_SIZE);
  164. return ret;
  165. }
  166. struct aarch64_insn_patch {
  167. void **text_addrs;
  168. u32 *new_insns;
  169. int insn_cnt;
  170. atomic_t cpu_count;
  171. };
  172. static int __kprobes aarch64_insn_patch_text_cb(void *arg)
  173. {
  174. int i, ret = 0;
  175. struct aarch64_insn_patch *pp = arg;
  176. /* The first CPU becomes master */
  177. if (atomic_inc_return(&pp->cpu_count) == 1) {
  178. for (i = 0; ret == 0 && i < pp->insn_cnt; i++)
  179. ret = aarch64_insn_patch_text_nosync(pp->text_addrs[i],
  180. pp->new_insns[i]);
  181. /* Notify other processors with an additional increment. */
  182. atomic_inc(&pp->cpu_count);
  183. } else {
  184. while (atomic_read(&pp->cpu_count) <= num_online_cpus())
  185. cpu_relax();
  186. isb();
  187. }
  188. return ret;
  189. }
  190. int __kprobes aarch64_insn_patch_text(void *addrs[], u32 insns[], int cnt)
  191. {
  192. struct aarch64_insn_patch patch = {
  193. .text_addrs = addrs,
  194. .new_insns = insns,
  195. .insn_cnt = cnt,
  196. .cpu_count = ATOMIC_INIT(0),
  197. };
  198. if (cnt <= 0)
  199. return -EINVAL;
  200. return stop_machine_cpuslocked(aarch64_insn_patch_text_cb, &patch,
  201. cpu_online_mask);
  202. }
  203. static int __kprobes aarch64_get_imm_shift_mask(enum aarch64_insn_imm_type type,
  204. u32 *maskp, int *shiftp)
  205. {
  206. u32 mask;
  207. int shift;
  208. switch (type) {
  209. case AARCH64_INSN_IMM_26:
  210. mask = BIT(26) - 1;
  211. shift = 0;
  212. break;
  213. case AARCH64_INSN_IMM_19:
  214. mask = BIT(19) - 1;
  215. shift = 5;
  216. break;
  217. case AARCH64_INSN_IMM_16:
  218. mask = BIT(16) - 1;
  219. shift = 5;
  220. break;
  221. case AARCH64_INSN_IMM_14:
  222. mask = BIT(14) - 1;
  223. shift = 5;
  224. break;
  225. case AARCH64_INSN_IMM_12:
  226. mask = BIT(12) - 1;
  227. shift = 10;
  228. break;
  229. case AARCH64_INSN_IMM_9:
  230. mask = BIT(9) - 1;
  231. shift = 12;
  232. break;
  233. case AARCH64_INSN_IMM_7:
  234. mask = BIT(7) - 1;
  235. shift = 15;
  236. break;
  237. case AARCH64_INSN_IMM_6:
  238. case AARCH64_INSN_IMM_S:
  239. mask = BIT(6) - 1;
  240. shift = 10;
  241. break;
  242. case AARCH64_INSN_IMM_R:
  243. mask = BIT(6) - 1;
  244. shift = 16;
  245. break;
  246. case AARCH64_INSN_IMM_N:
  247. mask = 1;
  248. shift = 22;
  249. break;
  250. default:
  251. return -EINVAL;
  252. }
  253. *maskp = mask;
  254. *shiftp = shift;
  255. return 0;
  256. }
  257. #define ADR_IMM_HILOSPLIT 2
  258. #define ADR_IMM_SIZE SZ_2M
  259. #define ADR_IMM_LOMASK ((1 << ADR_IMM_HILOSPLIT) - 1)
  260. #define ADR_IMM_HIMASK ((ADR_IMM_SIZE >> ADR_IMM_HILOSPLIT) - 1)
  261. #define ADR_IMM_LOSHIFT 29
  262. #define ADR_IMM_HISHIFT 5
  263. u64 aarch64_insn_decode_immediate(enum aarch64_insn_imm_type type, u32 insn)
  264. {
  265. u32 immlo, immhi, mask;
  266. int shift;
  267. switch (type) {
  268. case AARCH64_INSN_IMM_ADR:
  269. shift = 0;
  270. immlo = (insn >> ADR_IMM_LOSHIFT) & ADR_IMM_LOMASK;
  271. immhi = (insn >> ADR_IMM_HISHIFT) & ADR_IMM_HIMASK;
  272. insn = (immhi << ADR_IMM_HILOSPLIT) | immlo;
  273. mask = ADR_IMM_SIZE - 1;
  274. break;
  275. default:
  276. if (aarch64_get_imm_shift_mask(type, &mask, &shift) < 0) {
  277. pr_err("aarch64_insn_decode_immediate: unknown immediate encoding %d\n",
  278. type);
  279. return 0;
  280. }
  281. }
  282. return (insn >> shift) & mask;
  283. }
  284. u32 __kprobes aarch64_insn_encode_immediate(enum aarch64_insn_imm_type type,
  285. u32 insn, u64 imm)
  286. {
  287. u32 immlo, immhi, mask;
  288. int shift;
  289. if (insn == AARCH64_BREAK_FAULT)
  290. return AARCH64_BREAK_FAULT;
  291. switch (type) {
  292. case AARCH64_INSN_IMM_ADR:
  293. shift = 0;
  294. immlo = (imm & ADR_IMM_LOMASK) << ADR_IMM_LOSHIFT;
  295. imm >>= ADR_IMM_HILOSPLIT;
  296. immhi = (imm & ADR_IMM_HIMASK) << ADR_IMM_HISHIFT;
  297. imm = immlo | immhi;
  298. mask = ((ADR_IMM_LOMASK << ADR_IMM_LOSHIFT) |
  299. (ADR_IMM_HIMASK << ADR_IMM_HISHIFT));
  300. break;
  301. default:
  302. if (aarch64_get_imm_shift_mask(type, &mask, &shift) < 0) {
  303. pr_err("aarch64_insn_encode_immediate: unknown immediate encoding %d\n",
  304. type);
  305. return AARCH64_BREAK_FAULT;
  306. }
  307. }
  308. /* Update the immediate field. */
  309. insn &= ~(mask << shift);
  310. insn |= (imm & mask) << shift;
  311. return insn;
  312. }
  313. u32 aarch64_insn_decode_register(enum aarch64_insn_register_type type,
  314. u32 insn)
  315. {
  316. int shift;
  317. switch (type) {
  318. case AARCH64_INSN_REGTYPE_RT:
  319. case AARCH64_INSN_REGTYPE_RD:
  320. shift = 0;
  321. break;
  322. case AARCH64_INSN_REGTYPE_RN:
  323. shift = 5;
  324. break;
  325. case AARCH64_INSN_REGTYPE_RT2:
  326. case AARCH64_INSN_REGTYPE_RA:
  327. shift = 10;
  328. break;
  329. case AARCH64_INSN_REGTYPE_RM:
  330. shift = 16;
  331. break;
  332. default:
  333. pr_err("%s: unknown register type encoding %d\n", __func__,
  334. type);
  335. return 0;
  336. }
  337. return (insn >> shift) & GENMASK(4, 0);
  338. }
  339. static u32 aarch64_insn_encode_register(enum aarch64_insn_register_type type,
  340. u32 insn,
  341. enum aarch64_insn_register reg)
  342. {
  343. int shift;
  344. if (insn == AARCH64_BREAK_FAULT)
  345. return AARCH64_BREAK_FAULT;
  346. if (reg < AARCH64_INSN_REG_0 || reg > AARCH64_INSN_REG_SP) {
  347. pr_err("%s: unknown register encoding %d\n", __func__, reg);
  348. return AARCH64_BREAK_FAULT;
  349. }
  350. switch (type) {
  351. case AARCH64_INSN_REGTYPE_RT:
  352. case AARCH64_INSN_REGTYPE_RD:
  353. shift = 0;
  354. break;
  355. case AARCH64_INSN_REGTYPE_RN:
  356. shift = 5;
  357. break;
  358. case AARCH64_INSN_REGTYPE_RT2:
  359. case AARCH64_INSN_REGTYPE_RA:
  360. shift = 10;
  361. break;
  362. case AARCH64_INSN_REGTYPE_RM:
  363. case AARCH64_INSN_REGTYPE_RS:
  364. shift = 16;
  365. break;
  366. default:
  367. pr_err("%s: unknown register type encoding %d\n", __func__,
  368. type);
  369. return AARCH64_BREAK_FAULT;
  370. }
  371. insn &= ~(GENMASK(4, 0) << shift);
  372. insn |= reg << shift;
  373. return insn;
  374. }
  375. static u32 aarch64_insn_encode_ldst_size(enum aarch64_insn_size_type type,
  376. u32 insn)
  377. {
  378. u32 size;
  379. switch (type) {
  380. case AARCH64_INSN_SIZE_8:
  381. size = 0;
  382. break;
  383. case AARCH64_INSN_SIZE_16:
  384. size = 1;
  385. break;
  386. case AARCH64_INSN_SIZE_32:
  387. size = 2;
  388. break;
  389. case AARCH64_INSN_SIZE_64:
  390. size = 3;
  391. break;
  392. default:
  393. pr_err("%s: unknown size encoding %d\n", __func__, type);
  394. return AARCH64_BREAK_FAULT;
  395. }
  396. insn &= ~GENMASK(31, 30);
  397. insn |= size << 30;
  398. return insn;
  399. }
  400. static inline long branch_imm_common(unsigned long pc, unsigned long addr,
  401. long range)
  402. {
  403. long offset;
  404. if ((pc & 0x3) || (addr & 0x3)) {
  405. pr_err("%s: A64 instructions must be word aligned\n", __func__);
  406. return range;
  407. }
  408. offset = ((long)addr - (long)pc);
  409. if (offset < -range || offset >= range) {
  410. pr_err("%s: offset out of range\n", __func__);
  411. return range;
  412. }
  413. return offset;
  414. }
  415. u32 __kprobes aarch64_insn_gen_branch_imm(unsigned long pc, unsigned long addr,
  416. enum aarch64_insn_branch_type type)
  417. {
  418. u32 insn;
  419. long offset;
  420. /*
  421. * B/BL support [-128M, 128M) offset
  422. * ARM64 virtual address arrangement guarantees all kernel and module
  423. * texts are within +/-128M.
  424. */
  425. offset = branch_imm_common(pc, addr, SZ_128M);
  426. if (offset >= SZ_128M)
  427. return AARCH64_BREAK_FAULT;
  428. switch (type) {
  429. case AARCH64_INSN_BRANCH_LINK:
  430. insn = aarch64_insn_get_bl_value();
  431. break;
  432. case AARCH64_INSN_BRANCH_NOLINK:
  433. insn = aarch64_insn_get_b_value();
  434. break;
  435. default:
  436. pr_err("%s: unknown branch encoding %d\n", __func__, type);
  437. return AARCH64_BREAK_FAULT;
  438. }
  439. return aarch64_insn_encode_immediate(AARCH64_INSN_IMM_26, insn,
  440. offset >> 2);
  441. }
  442. u32 aarch64_insn_gen_comp_branch_imm(unsigned long pc, unsigned long addr,
  443. enum aarch64_insn_register reg,
  444. enum aarch64_insn_variant variant,
  445. enum aarch64_insn_branch_type type)
  446. {
  447. u32 insn;
  448. long offset;
  449. offset = branch_imm_common(pc, addr, SZ_1M);
  450. if (offset >= SZ_1M)
  451. return AARCH64_BREAK_FAULT;
  452. switch (type) {
  453. case AARCH64_INSN_BRANCH_COMP_ZERO:
  454. insn = aarch64_insn_get_cbz_value();
  455. break;
  456. case AARCH64_INSN_BRANCH_COMP_NONZERO:
  457. insn = aarch64_insn_get_cbnz_value();
  458. break;
  459. default:
  460. pr_err("%s: unknown branch encoding %d\n", __func__, type);
  461. return AARCH64_BREAK_FAULT;
  462. }
  463. switch (variant) {
  464. case AARCH64_INSN_VARIANT_32BIT:
  465. break;
  466. case AARCH64_INSN_VARIANT_64BIT:
  467. insn |= AARCH64_INSN_SF_BIT;
  468. break;
  469. default:
  470. pr_err("%s: unknown variant encoding %d\n", __func__, variant);
  471. return AARCH64_BREAK_FAULT;
  472. }
  473. insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RT, insn, reg);
  474. return aarch64_insn_encode_immediate(AARCH64_INSN_IMM_19, insn,
  475. offset >> 2);
  476. }
  477. u32 aarch64_insn_gen_cond_branch_imm(unsigned long pc, unsigned long addr,
  478. enum aarch64_insn_condition cond)
  479. {
  480. u32 insn;
  481. long offset;
  482. offset = branch_imm_common(pc, addr, SZ_1M);
  483. insn = aarch64_insn_get_bcond_value();
  484. if (cond < AARCH64_INSN_COND_EQ || cond > AARCH64_INSN_COND_AL) {
  485. pr_err("%s: unknown condition encoding %d\n", __func__, cond);
  486. return AARCH64_BREAK_FAULT;
  487. }
  488. insn |= cond;
  489. return aarch64_insn_encode_immediate(AARCH64_INSN_IMM_19, insn,
  490. offset >> 2);
  491. }
  492. u32 __kprobes aarch64_insn_gen_hint(enum aarch64_insn_hint_op op)
  493. {
  494. return aarch64_insn_get_hint_value() | op;
  495. }
  496. u32 __kprobes aarch64_insn_gen_nop(void)
  497. {
  498. return aarch64_insn_gen_hint(AARCH64_INSN_HINT_NOP);
  499. }
  500. u32 aarch64_insn_gen_branch_reg(enum aarch64_insn_register reg,
  501. enum aarch64_insn_branch_type type)
  502. {
  503. u32 insn;
  504. switch (type) {
  505. case AARCH64_INSN_BRANCH_NOLINK:
  506. insn = aarch64_insn_get_br_value();
  507. break;
  508. case AARCH64_INSN_BRANCH_LINK:
  509. insn = aarch64_insn_get_blr_value();
  510. break;
  511. case AARCH64_INSN_BRANCH_RETURN:
  512. insn = aarch64_insn_get_ret_value();
  513. break;
  514. default:
  515. pr_err("%s: unknown branch encoding %d\n", __func__, type);
  516. return AARCH64_BREAK_FAULT;
  517. }
  518. return aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RN, insn, reg);
  519. }
  520. u32 aarch64_insn_gen_load_store_reg(enum aarch64_insn_register reg,
  521. enum aarch64_insn_register base,
  522. enum aarch64_insn_register offset,
  523. enum aarch64_insn_size_type size,
  524. enum aarch64_insn_ldst_type type)
  525. {
  526. u32 insn;
  527. switch (type) {
  528. case AARCH64_INSN_LDST_LOAD_REG_OFFSET:
  529. insn = aarch64_insn_get_ldr_reg_value();
  530. break;
  531. case AARCH64_INSN_LDST_STORE_REG_OFFSET:
  532. insn = aarch64_insn_get_str_reg_value();
  533. break;
  534. default:
  535. pr_err("%s: unknown load/store encoding %d\n", __func__, type);
  536. return AARCH64_BREAK_FAULT;
  537. }
  538. insn = aarch64_insn_encode_ldst_size(size, insn);
  539. insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RT, insn, reg);
  540. insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RN, insn,
  541. base);
  542. return aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RM, insn,
  543. offset);
  544. }
  545. u32 aarch64_insn_gen_load_store_pair(enum aarch64_insn_register reg1,
  546. enum aarch64_insn_register reg2,
  547. enum aarch64_insn_register base,
  548. int offset,
  549. enum aarch64_insn_variant variant,
  550. enum aarch64_insn_ldst_type type)
  551. {
  552. u32 insn;
  553. int shift;
  554. switch (type) {
  555. case AARCH64_INSN_LDST_LOAD_PAIR_PRE_INDEX:
  556. insn = aarch64_insn_get_ldp_pre_value();
  557. break;
  558. case AARCH64_INSN_LDST_STORE_PAIR_PRE_INDEX:
  559. insn = aarch64_insn_get_stp_pre_value();
  560. break;
  561. case AARCH64_INSN_LDST_LOAD_PAIR_POST_INDEX:
  562. insn = aarch64_insn_get_ldp_post_value();
  563. break;
  564. case AARCH64_INSN_LDST_STORE_PAIR_POST_INDEX:
  565. insn = aarch64_insn_get_stp_post_value();
  566. break;
  567. default:
  568. pr_err("%s: unknown load/store encoding %d\n", __func__, type);
  569. return AARCH64_BREAK_FAULT;
  570. }
  571. switch (variant) {
  572. case AARCH64_INSN_VARIANT_32BIT:
  573. if ((offset & 0x3) || (offset < -256) || (offset > 252)) {
  574. pr_err("%s: offset must be multiples of 4 in the range of [-256, 252] %d\n",
  575. __func__, offset);
  576. return AARCH64_BREAK_FAULT;
  577. }
  578. shift = 2;
  579. break;
  580. case AARCH64_INSN_VARIANT_64BIT:
  581. if ((offset & 0x7) || (offset < -512) || (offset > 504)) {
  582. pr_err("%s: offset must be multiples of 8 in the range of [-512, 504] %d\n",
  583. __func__, offset);
  584. return AARCH64_BREAK_FAULT;
  585. }
  586. shift = 3;
  587. insn |= AARCH64_INSN_SF_BIT;
  588. break;
  589. default:
  590. pr_err("%s: unknown variant encoding %d\n", __func__, variant);
  591. return AARCH64_BREAK_FAULT;
  592. }
  593. insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RT, insn,
  594. reg1);
  595. insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RT2, insn,
  596. reg2);
  597. insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RN, insn,
  598. base);
  599. return aarch64_insn_encode_immediate(AARCH64_INSN_IMM_7, insn,
  600. offset >> shift);
  601. }
  602. u32 aarch64_insn_gen_load_store_ex(enum aarch64_insn_register reg,
  603. enum aarch64_insn_register base,
  604. enum aarch64_insn_register state,
  605. enum aarch64_insn_size_type size,
  606. enum aarch64_insn_ldst_type type)
  607. {
  608. u32 insn;
  609. switch (type) {
  610. case AARCH64_INSN_LDST_LOAD_EX:
  611. insn = aarch64_insn_get_load_ex_value();
  612. break;
  613. case AARCH64_INSN_LDST_STORE_EX:
  614. insn = aarch64_insn_get_store_ex_value();
  615. break;
  616. default:
  617. pr_err("%s: unknown load/store exclusive encoding %d\n", __func__, type);
  618. return AARCH64_BREAK_FAULT;
  619. }
  620. insn = aarch64_insn_encode_ldst_size(size, insn);
  621. insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RT, insn,
  622. reg);
  623. insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RN, insn,
  624. base);
  625. insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RT2, insn,
  626. AARCH64_INSN_REG_ZR);
  627. return aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RS, insn,
  628. state);
  629. }
  630. static u32 aarch64_insn_encode_prfm_imm(enum aarch64_insn_prfm_type type,
  631. enum aarch64_insn_prfm_target target,
  632. enum aarch64_insn_prfm_policy policy,
  633. u32 insn)
  634. {
  635. u32 imm_type = 0, imm_target = 0, imm_policy = 0;
  636. switch (type) {
  637. case AARCH64_INSN_PRFM_TYPE_PLD:
  638. break;
  639. case AARCH64_INSN_PRFM_TYPE_PLI:
  640. imm_type = BIT(0);
  641. break;
  642. case AARCH64_INSN_PRFM_TYPE_PST:
  643. imm_type = BIT(1);
  644. break;
  645. default:
  646. pr_err("%s: unknown prfm type encoding %d\n", __func__, type);
  647. return AARCH64_BREAK_FAULT;
  648. }
  649. switch (target) {
  650. case AARCH64_INSN_PRFM_TARGET_L1:
  651. break;
  652. case AARCH64_INSN_PRFM_TARGET_L2:
  653. imm_target = BIT(0);
  654. break;
  655. case AARCH64_INSN_PRFM_TARGET_L3:
  656. imm_target = BIT(1);
  657. break;
  658. default:
  659. pr_err("%s: unknown prfm target encoding %d\n", __func__, target);
  660. return AARCH64_BREAK_FAULT;
  661. }
  662. switch (policy) {
  663. case AARCH64_INSN_PRFM_POLICY_KEEP:
  664. break;
  665. case AARCH64_INSN_PRFM_POLICY_STRM:
  666. imm_policy = BIT(0);
  667. break;
  668. default:
  669. pr_err("%s: unknown prfm policy encoding %d\n", __func__, policy);
  670. return AARCH64_BREAK_FAULT;
  671. }
  672. /* In this case, imm5 is encoded into Rt field. */
  673. insn &= ~GENMASK(4, 0);
  674. insn |= imm_policy | (imm_target << 1) | (imm_type << 3);
  675. return insn;
  676. }
  677. u32 aarch64_insn_gen_prefetch(enum aarch64_insn_register base,
  678. enum aarch64_insn_prfm_type type,
  679. enum aarch64_insn_prfm_target target,
  680. enum aarch64_insn_prfm_policy policy)
  681. {
  682. u32 insn = aarch64_insn_get_prfm_value();
  683. insn = aarch64_insn_encode_ldst_size(AARCH64_INSN_SIZE_64, insn);
  684. insn = aarch64_insn_encode_prfm_imm(type, target, policy, insn);
  685. insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RN, insn,
  686. base);
  687. return aarch64_insn_encode_immediate(AARCH64_INSN_IMM_12, insn, 0);
  688. }
  689. u32 aarch64_insn_gen_add_sub_imm(enum aarch64_insn_register dst,
  690. enum aarch64_insn_register src,
  691. int imm, enum aarch64_insn_variant variant,
  692. enum aarch64_insn_adsb_type type)
  693. {
  694. u32 insn;
  695. switch (type) {
  696. case AARCH64_INSN_ADSB_ADD:
  697. insn = aarch64_insn_get_add_imm_value();
  698. break;
  699. case AARCH64_INSN_ADSB_SUB:
  700. insn = aarch64_insn_get_sub_imm_value();
  701. break;
  702. case AARCH64_INSN_ADSB_ADD_SETFLAGS:
  703. insn = aarch64_insn_get_adds_imm_value();
  704. break;
  705. case AARCH64_INSN_ADSB_SUB_SETFLAGS:
  706. insn = aarch64_insn_get_subs_imm_value();
  707. break;
  708. default:
  709. pr_err("%s: unknown add/sub encoding %d\n", __func__, type);
  710. return AARCH64_BREAK_FAULT;
  711. }
  712. switch (variant) {
  713. case AARCH64_INSN_VARIANT_32BIT:
  714. break;
  715. case AARCH64_INSN_VARIANT_64BIT:
  716. insn |= AARCH64_INSN_SF_BIT;
  717. break;
  718. default:
  719. pr_err("%s: unknown variant encoding %d\n", __func__, variant);
  720. return AARCH64_BREAK_FAULT;
  721. }
  722. /* We can't encode more than a 24bit value (12bit + 12bit shift) */
  723. if (imm & ~(BIT(24) - 1))
  724. goto out;
  725. /* If we have something in the top 12 bits... */
  726. if (imm & ~(SZ_4K - 1)) {
  727. /* ... and in the low 12 bits -> error */
  728. if (imm & (SZ_4K - 1))
  729. goto out;
  730. imm >>= 12;
  731. insn |= AARCH64_INSN_LSL_12;
  732. }
  733. insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RD, insn, dst);
  734. insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RN, insn, src);
  735. return aarch64_insn_encode_immediate(AARCH64_INSN_IMM_12, insn, imm);
  736. out:
  737. pr_err("%s: invalid immediate encoding %d\n", __func__, imm);
  738. return AARCH64_BREAK_FAULT;
  739. }
  740. u32 aarch64_insn_gen_bitfield(enum aarch64_insn_register dst,
  741. enum aarch64_insn_register src,
  742. int immr, int imms,
  743. enum aarch64_insn_variant variant,
  744. enum aarch64_insn_bitfield_type type)
  745. {
  746. u32 insn;
  747. u32 mask;
  748. switch (type) {
  749. case AARCH64_INSN_BITFIELD_MOVE:
  750. insn = aarch64_insn_get_bfm_value();
  751. break;
  752. case AARCH64_INSN_BITFIELD_MOVE_UNSIGNED:
  753. insn = aarch64_insn_get_ubfm_value();
  754. break;
  755. case AARCH64_INSN_BITFIELD_MOVE_SIGNED:
  756. insn = aarch64_insn_get_sbfm_value();
  757. break;
  758. default:
  759. pr_err("%s: unknown bitfield encoding %d\n", __func__, type);
  760. return AARCH64_BREAK_FAULT;
  761. }
  762. switch (variant) {
  763. case AARCH64_INSN_VARIANT_32BIT:
  764. mask = GENMASK(4, 0);
  765. break;
  766. case AARCH64_INSN_VARIANT_64BIT:
  767. insn |= AARCH64_INSN_SF_BIT | AARCH64_INSN_N_BIT;
  768. mask = GENMASK(5, 0);
  769. break;
  770. default:
  771. pr_err("%s: unknown variant encoding %d\n", __func__, variant);
  772. return AARCH64_BREAK_FAULT;
  773. }
  774. if (immr & ~mask) {
  775. pr_err("%s: invalid immr encoding %d\n", __func__, immr);
  776. return AARCH64_BREAK_FAULT;
  777. }
  778. if (imms & ~mask) {
  779. pr_err("%s: invalid imms encoding %d\n", __func__, imms);
  780. return AARCH64_BREAK_FAULT;
  781. }
  782. insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RD, insn, dst);
  783. insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RN, insn, src);
  784. insn = aarch64_insn_encode_immediate(AARCH64_INSN_IMM_R, insn, immr);
  785. return aarch64_insn_encode_immediate(AARCH64_INSN_IMM_S, insn, imms);
  786. }
  787. u32 aarch64_insn_gen_movewide(enum aarch64_insn_register dst,
  788. int imm, int shift,
  789. enum aarch64_insn_variant variant,
  790. enum aarch64_insn_movewide_type type)
  791. {
  792. u32 insn;
  793. switch (type) {
  794. case AARCH64_INSN_MOVEWIDE_ZERO:
  795. insn = aarch64_insn_get_movz_value();
  796. break;
  797. case AARCH64_INSN_MOVEWIDE_KEEP:
  798. insn = aarch64_insn_get_movk_value();
  799. break;
  800. case AARCH64_INSN_MOVEWIDE_INVERSE:
  801. insn = aarch64_insn_get_movn_value();
  802. break;
  803. default:
  804. pr_err("%s: unknown movewide encoding %d\n", __func__, type);
  805. return AARCH64_BREAK_FAULT;
  806. }
  807. if (imm & ~(SZ_64K - 1)) {
  808. pr_err("%s: invalid immediate encoding %d\n", __func__, imm);
  809. return AARCH64_BREAK_FAULT;
  810. }
  811. switch (variant) {
  812. case AARCH64_INSN_VARIANT_32BIT:
  813. if (shift != 0 && shift != 16) {
  814. pr_err("%s: invalid shift encoding %d\n", __func__,
  815. shift);
  816. return AARCH64_BREAK_FAULT;
  817. }
  818. break;
  819. case AARCH64_INSN_VARIANT_64BIT:
  820. insn |= AARCH64_INSN_SF_BIT;
  821. if (shift != 0 && shift != 16 && shift != 32 && shift != 48) {
  822. pr_err("%s: invalid shift encoding %d\n", __func__,
  823. shift);
  824. return AARCH64_BREAK_FAULT;
  825. }
  826. break;
  827. default:
  828. pr_err("%s: unknown variant encoding %d\n", __func__, variant);
  829. return AARCH64_BREAK_FAULT;
  830. }
  831. insn |= (shift >> 4) << 21;
  832. insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RD, insn, dst);
  833. return aarch64_insn_encode_immediate(AARCH64_INSN_IMM_16, insn, imm);
  834. }
  835. u32 aarch64_insn_gen_add_sub_shifted_reg(enum aarch64_insn_register dst,
  836. enum aarch64_insn_register src,
  837. enum aarch64_insn_register reg,
  838. int shift,
  839. enum aarch64_insn_variant variant,
  840. enum aarch64_insn_adsb_type type)
  841. {
  842. u32 insn;
  843. switch (type) {
  844. case AARCH64_INSN_ADSB_ADD:
  845. insn = aarch64_insn_get_add_value();
  846. break;
  847. case AARCH64_INSN_ADSB_SUB:
  848. insn = aarch64_insn_get_sub_value();
  849. break;
  850. case AARCH64_INSN_ADSB_ADD_SETFLAGS:
  851. insn = aarch64_insn_get_adds_value();
  852. break;
  853. case AARCH64_INSN_ADSB_SUB_SETFLAGS:
  854. insn = aarch64_insn_get_subs_value();
  855. break;
  856. default:
  857. pr_err("%s: unknown add/sub encoding %d\n", __func__, type);
  858. return AARCH64_BREAK_FAULT;
  859. }
  860. switch (variant) {
  861. case AARCH64_INSN_VARIANT_32BIT:
  862. if (shift & ~(SZ_32 - 1)) {
  863. pr_err("%s: invalid shift encoding %d\n", __func__,
  864. shift);
  865. return AARCH64_BREAK_FAULT;
  866. }
  867. break;
  868. case AARCH64_INSN_VARIANT_64BIT:
  869. insn |= AARCH64_INSN_SF_BIT;
  870. if (shift & ~(SZ_64 - 1)) {
  871. pr_err("%s: invalid shift encoding %d\n", __func__,
  872. shift);
  873. return AARCH64_BREAK_FAULT;
  874. }
  875. break;
  876. default:
  877. pr_err("%s: unknown variant encoding %d\n", __func__, variant);
  878. return AARCH64_BREAK_FAULT;
  879. }
  880. insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RD, insn, dst);
  881. insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RN, insn, src);
  882. insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RM, insn, reg);
  883. return aarch64_insn_encode_immediate(AARCH64_INSN_IMM_6, insn, shift);
  884. }
  885. u32 aarch64_insn_gen_data1(enum aarch64_insn_register dst,
  886. enum aarch64_insn_register src,
  887. enum aarch64_insn_variant variant,
  888. enum aarch64_insn_data1_type type)
  889. {
  890. u32 insn;
  891. switch (type) {
  892. case AARCH64_INSN_DATA1_REVERSE_16:
  893. insn = aarch64_insn_get_rev16_value();
  894. break;
  895. case AARCH64_INSN_DATA1_REVERSE_32:
  896. insn = aarch64_insn_get_rev32_value();
  897. break;
  898. case AARCH64_INSN_DATA1_REVERSE_64:
  899. if (variant != AARCH64_INSN_VARIANT_64BIT) {
  900. pr_err("%s: invalid variant for reverse64 %d\n",
  901. __func__, variant);
  902. return AARCH64_BREAK_FAULT;
  903. }
  904. insn = aarch64_insn_get_rev64_value();
  905. break;
  906. default:
  907. pr_err("%s: unknown data1 encoding %d\n", __func__, type);
  908. return AARCH64_BREAK_FAULT;
  909. }
  910. switch (variant) {
  911. case AARCH64_INSN_VARIANT_32BIT:
  912. break;
  913. case AARCH64_INSN_VARIANT_64BIT:
  914. insn |= AARCH64_INSN_SF_BIT;
  915. break;
  916. default:
  917. pr_err("%s: unknown variant encoding %d\n", __func__, variant);
  918. return AARCH64_BREAK_FAULT;
  919. }
  920. insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RD, insn, dst);
  921. return aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RN, insn, src);
  922. }
  923. u32 aarch64_insn_gen_data2(enum aarch64_insn_register dst,
  924. enum aarch64_insn_register src,
  925. enum aarch64_insn_register reg,
  926. enum aarch64_insn_variant variant,
  927. enum aarch64_insn_data2_type type)
  928. {
  929. u32 insn;
  930. switch (type) {
  931. case AARCH64_INSN_DATA2_UDIV:
  932. insn = aarch64_insn_get_udiv_value();
  933. break;
  934. case AARCH64_INSN_DATA2_SDIV:
  935. insn = aarch64_insn_get_sdiv_value();
  936. break;
  937. case AARCH64_INSN_DATA2_LSLV:
  938. insn = aarch64_insn_get_lslv_value();
  939. break;
  940. case AARCH64_INSN_DATA2_LSRV:
  941. insn = aarch64_insn_get_lsrv_value();
  942. break;
  943. case AARCH64_INSN_DATA2_ASRV:
  944. insn = aarch64_insn_get_asrv_value();
  945. break;
  946. case AARCH64_INSN_DATA2_RORV:
  947. insn = aarch64_insn_get_rorv_value();
  948. break;
  949. default:
  950. pr_err("%s: unknown data2 encoding %d\n", __func__, type);
  951. return AARCH64_BREAK_FAULT;
  952. }
  953. switch (variant) {
  954. case AARCH64_INSN_VARIANT_32BIT:
  955. break;
  956. case AARCH64_INSN_VARIANT_64BIT:
  957. insn |= AARCH64_INSN_SF_BIT;
  958. break;
  959. default:
  960. pr_err("%s: unknown variant encoding %d\n", __func__, variant);
  961. return AARCH64_BREAK_FAULT;
  962. }
  963. insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RD, insn, dst);
  964. insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RN, insn, src);
  965. return aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RM, insn, reg);
  966. }
  967. u32 aarch64_insn_gen_data3(enum aarch64_insn_register dst,
  968. enum aarch64_insn_register src,
  969. enum aarch64_insn_register reg1,
  970. enum aarch64_insn_register reg2,
  971. enum aarch64_insn_variant variant,
  972. enum aarch64_insn_data3_type type)
  973. {
  974. u32 insn;
  975. switch (type) {
  976. case AARCH64_INSN_DATA3_MADD:
  977. insn = aarch64_insn_get_madd_value();
  978. break;
  979. case AARCH64_INSN_DATA3_MSUB:
  980. insn = aarch64_insn_get_msub_value();
  981. break;
  982. default:
  983. pr_err("%s: unknown data3 encoding %d\n", __func__, type);
  984. return AARCH64_BREAK_FAULT;
  985. }
  986. switch (variant) {
  987. case AARCH64_INSN_VARIANT_32BIT:
  988. break;
  989. case AARCH64_INSN_VARIANT_64BIT:
  990. insn |= AARCH64_INSN_SF_BIT;
  991. break;
  992. default:
  993. pr_err("%s: unknown variant encoding %d\n", __func__, variant);
  994. return AARCH64_BREAK_FAULT;
  995. }
  996. insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RD, insn, dst);
  997. insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RA, insn, src);
  998. insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RN, insn,
  999. reg1);
  1000. return aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RM, insn,
  1001. reg2);
  1002. }
  1003. u32 aarch64_insn_gen_logical_shifted_reg(enum aarch64_insn_register dst,
  1004. enum aarch64_insn_register src,
  1005. enum aarch64_insn_register reg,
  1006. int shift,
  1007. enum aarch64_insn_variant variant,
  1008. enum aarch64_insn_logic_type type)
  1009. {
  1010. u32 insn;
  1011. switch (type) {
  1012. case AARCH64_INSN_LOGIC_AND:
  1013. insn = aarch64_insn_get_and_value();
  1014. break;
  1015. case AARCH64_INSN_LOGIC_BIC:
  1016. insn = aarch64_insn_get_bic_value();
  1017. break;
  1018. case AARCH64_INSN_LOGIC_ORR:
  1019. insn = aarch64_insn_get_orr_value();
  1020. break;
  1021. case AARCH64_INSN_LOGIC_ORN:
  1022. insn = aarch64_insn_get_orn_value();
  1023. break;
  1024. case AARCH64_INSN_LOGIC_EOR:
  1025. insn = aarch64_insn_get_eor_value();
  1026. break;
  1027. case AARCH64_INSN_LOGIC_EON:
  1028. insn = aarch64_insn_get_eon_value();
  1029. break;
  1030. case AARCH64_INSN_LOGIC_AND_SETFLAGS:
  1031. insn = aarch64_insn_get_ands_value();
  1032. break;
  1033. case AARCH64_INSN_LOGIC_BIC_SETFLAGS:
  1034. insn = aarch64_insn_get_bics_value();
  1035. break;
  1036. default:
  1037. pr_err("%s: unknown logical encoding %d\n", __func__, type);
  1038. return AARCH64_BREAK_FAULT;
  1039. }
  1040. switch (variant) {
  1041. case AARCH64_INSN_VARIANT_32BIT:
  1042. if (shift & ~(SZ_32 - 1)) {
  1043. pr_err("%s: invalid shift encoding %d\n", __func__,
  1044. shift);
  1045. return AARCH64_BREAK_FAULT;
  1046. }
  1047. break;
  1048. case AARCH64_INSN_VARIANT_64BIT:
  1049. insn |= AARCH64_INSN_SF_BIT;
  1050. if (shift & ~(SZ_64 - 1)) {
  1051. pr_err("%s: invalid shift encoding %d\n", __func__,
  1052. shift);
  1053. return AARCH64_BREAK_FAULT;
  1054. }
  1055. break;
  1056. default:
  1057. pr_err("%s: unknown variant encoding %d\n", __func__, variant);
  1058. return AARCH64_BREAK_FAULT;
  1059. }
  1060. insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RD, insn, dst);
  1061. insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RN, insn, src);
  1062. insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RM, insn, reg);
  1063. return aarch64_insn_encode_immediate(AARCH64_INSN_IMM_6, insn, shift);
  1064. }
  1065. /*
  1066. * Decode the imm field of a branch, and return the byte offset as a
  1067. * signed value (so it can be used when computing a new branch
  1068. * target).
  1069. */
  1070. s32 aarch64_get_branch_offset(u32 insn)
  1071. {
  1072. s32 imm;
  1073. if (aarch64_insn_is_b(insn) || aarch64_insn_is_bl(insn)) {
  1074. imm = aarch64_insn_decode_immediate(AARCH64_INSN_IMM_26, insn);
  1075. return (imm << 6) >> 4;
  1076. }
  1077. if (aarch64_insn_is_cbz(insn) || aarch64_insn_is_cbnz(insn) ||
  1078. aarch64_insn_is_bcond(insn)) {
  1079. imm = aarch64_insn_decode_immediate(AARCH64_INSN_IMM_19, insn);
  1080. return (imm << 13) >> 11;
  1081. }
  1082. if (aarch64_insn_is_tbz(insn) || aarch64_insn_is_tbnz(insn)) {
  1083. imm = aarch64_insn_decode_immediate(AARCH64_INSN_IMM_14, insn);
  1084. return (imm << 18) >> 16;
  1085. }
  1086. /* Unhandled instruction */
  1087. BUG();
  1088. }
  1089. /*
  1090. * Encode the displacement of a branch in the imm field and return the
  1091. * updated instruction.
  1092. */
  1093. u32 aarch64_set_branch_offset(u32 insn, s32 offset)
  1094. {
  1095. if (aarch64_insn_is_b(insn) || aarch64_insn_is_bl(insn))
  1096. return aarch64_insn_encode_immediate(AARCH64_INSN_IMM_26, insn,
  1097. offset >> 2);
  1098. if (aarch64_insn_is_cbz(insn) || aarch64_insn_is_cbnz(insn) ||
  1099. aarch64_insn_is_bcond(insn))
  1100. return aarch64_insn_encode_immediate(AARCH64_INSN_IMM_19, insn,
  1101. offset >> 2);
  1102. if (aarch64_insn_is_tbz(insn) || aarch64_insn_is_tbnz(insn))
  1103. return aarch64_insn_encode_immediate(AARCH64_INSN_IMM_14, insn,
  1104. offset >> 2);
  1105. /* Unhandled instruction */
  1106. BUG();
  1107. }
  1108. s32 aarch64_insn_adrp_get_offset(u32 insn)
  1109. {
  1110. BUG_ON(!aarch64_insn_is_adrp(insn));
  1111. return aarch64_insn_decode_immediate(AARCH64_INSN_IMM_ADR, insn) << 12;
  1112. }
  1113. u32 aarch64_insn_adrp_set_offset(u32 insn, s32 offset)
  1114. {
  1115. BUG_ON(!aarch64_insn_is_adrp(insn));
  1116. return aarch64_insn_encode_immediate(AARCH64_INSN_IMM_ADR, insn,
  1117. offset >> 12);
  1118. }
  1119. /*
  1120. * Extract the Op/CR data from a msr/mrs instruction.
  1121. */
  1122. u32 aarch64_insn_extract_system_reg(u32 insn)
  1123. {
  1124. return (insn & 0x1FFFE0) >> 5;
  1125. }
  1126. bool aarch32_insn_is_wide(u32 insn)
  1127. {
  1128. return insn >= 0xe800;
  1129. }
  1130. /*
  1131. * Macros/defines for extracting register numbers from instruction.
  1132. */
  1133. u32 aarch32_insn_extract_reg_num(u32 insn, int offset)
  1134. {
  1135. return (insn & (0xf << offset)) >> offset;
  1136. }
  1137. #define OPC2_MASK 0x7
  1138. #define OPC2_OFFSET 5
  1139. u32 aarch32_insn_mcr_extract_opc2(u32 insn)
  1140. {
  1141. return (insn & (OPC2_MASK << OPC2_OFFSET)) >> OPC2_OFFSET;
  1142. }
  1143. #define CRM_MASK 0xf
  1144. u32 aarch32_insn_mcr_extract_crm(u32 insn)
  1145. {
  1146. return insn & CRM_MASK;
  1147. }
  1148. static bool __kprobes __check_eq(unsigned long pstate)
  1149. {
  1150. return (pstate & PSR_Z_BIT) != 0;
  1151. }
  1152. static bool __kprobes __check_ne(unsigned long pstate)
  1153. {
  1154. return (pstate & PSR_Z_BIT) == 0;
  1155. }
  1156. static bool __kprobes __check_cs(unsigned long pstate)
  1157. {
  1158. return (pstate & PSR_C_BIT) != 0;
  1159. }
  1160. static bool __kprobes __check_cc(unsigned long pstate)
  1161. {
  1162. return (pstate & PSR_C_BIT) == 0;
  1163. }
  1164. static bool __kprobes __check_mi(unsigned long pstate)
  1165. {
  1166. return (pstate & PSR_N_BIT) != 0;
  1167. }
  1168. static bool __kprobes __check_pl(unsigned long pstate)
  1169. {
  1170. return (pstate & PSR_N_BIT) == 0;
  1171. }
  1172. static bool __kprobes __check_vs(unsigned long pstate)
  1173. {
  1174. return (pstate & PSR_V_BIT) != 0;
  1175. }
  1176. static bool __kprobes __check_vc(unsigned long pstate)
  1177. {
  1178. return (pstate & PSR_V_BIT) == 0;
  1179. }
  1180. static bool __kprobes __check_hi(unsigned long pstate)
  1181. {
  1182. pstate &= ~(pstate >> 1); /* PSR_C_BIT &= ~PSR_Z_BIT */
  1183. return (pstate & PSR_C_BIT) != 0;
  1184. }
  1185. static bool __kprobes __check_ls(unsigned long pstate)
  1186. {
  1187. pstate &= ~(pstate >> 1); /* PSR_C_BIT &= ~PSR_Z_BIT */
  1188. return (pstate & PSR_C_BIT) == 0;
  1189. }
  1190. static bool __kprobes __check_ge(unsigned long pstate)
  1191. {
  1192. pstate ^= (pstate << 3); /* PSR_N_BIT ^= PSR_V_BIT */
  1193. return (pstate & PSR_N_BIT) == 0;
  1194. }
  1195. static bool __kprobes __check_lt(unsigned long pstate)
  1196. {
  1197. pstate ^= (pstate << 3); /* PSR_N_BIT ^= PSR_V_BIT */
  1198. return (pstate & PSR_N_BIT) != 0;
  1199. }
  1200. static bool __kprobes __check_gt(unsigned long pstate)
  1201. {
  1202. /*PSR_N_BIT ^= PSR_V_BIT */
  1203. unsigned long temp = pstate ^ (pstate << 3);
  1204. temp |= (pstate << 1); /*PSR_N_BIT |= PSR_Z_BIT */
  1205. return (temp & PSR_N_BIT) == 0;
  1206. }
  1207. static bool __kprobes __check_le(unsigned long pstate)
  1208. {
  1209. /*PSR_N_BIT ^= PSR_V_BIT */
  1210. unsigned long temp = pstate ^ (pstate << 3);
  1211. temp |= (pstate << 1); /*PSR_N_BIT |= PSR_Z_BIT */
  1212. return (temp & PSR_N_BIT) != 0;
  1213. }
  1214. static bool __kprobes __check_al(unsigned long pstate)
  1215. {
  1216. return true;
  1217. }
  1218. /*
  1219. * Note that the ARMv8 ARM calls condition code 0b1111 "nv", but states that
  1220. * it behaves identically to 0b1110 ("al").
  1221. */
  1222. pstate_check_t * const aarch32_opcode_cond_checks[16] = {
  1223. __check_eq, __check_ne, __check_cs, __check_cc,
  1224. __check_mi, __check_pl, __check_vs, __check_vc,
  1225. __check_hi, __check_ls, __check_ge, __check_lt,
  1226. __check_gt, __check_le, __check_al, __check_al
  1227. };
  1228. static bool range_of_ones(u64 val)
  1229. {
  1230. /* Doesn't handle full ones or full zeroes */
  1231. u64 sval = val >> __ffs64(val);
  1232. /* One of Sean Eron Anderson's bithack tricks */
  1233. return ((sval + 1) & (sval)) == 0;
  1234. }
  1235. static u32 aarch64_encode_immediate(u64 imm,
  1236. enum aarch64_insn_variant variant,
  1237. u32 insn)
  1238. {
  1239. unsigned int immr, imms, n, ones, ror, esz, tmp;
  1240. u64 mask = ~0UL;
  1241. /* Can't encode full zeroes or full ones */
  1242. if (!imm || !~imm)
  1243. return AARCH64_BREAK_FAULT;
  1244. switch (variant) {
  1245. case AARCH64_INSN_VARIANT_32BIT:
  1246. if (upper_32_bits(imm))
  1247. return AARCH64_BREAK_FAULT;
  1248. esz = 32;
  1249. break;
  1250. case AARCH64_INSN_VARIANT_64BIT:
  1251. insn |= AARCH64_INSN_SF_BIT;
  1252. esz = 64;
  1253. break;
  1254. default:
  1255. pr_err("%s: unknown variant encoding %d\n", __func__, variant);
  1256. return AARCH64_BREAK_FAULT;
  1257. }
  1258. /*
  1259. * Inverse of Replicate(). Try to spot a repeating pattern
  1260. * with a pow2 stride.
  1261. */
  1262. for (tmp = esz / 2; tmp >= 2; tmp /= 2) {
  1263. u64 emask = BIT(tmp) - 1;
  1264. if ((imm & emask) != ((imm >> tmp) & emask))
  1265. break;
  1266. esz = tmp;
  1267. mask = emask;
  1268. }
  1269. /* N is only set if we're encoding a 64bit value */
  1270. n = esz == 64;
  1271. /* Trim imm to the element size */
  1272. imm &= mask;
  1273. /* That's how many ones we need to encode */
  1274. ones = hweight64(imm);
  1275. /*
  1276. * imms is set to (ones - 1), prefixed with a string of ones
  1277. * and a zero if they fit. Cap it to 6 bits.
  1278. */
  1279. imms = ones - 1;
  1280. imms |= 0xf << ffs(esz);
  1281. imms &= BIT(6) - 1;
  1282. /* Compute the rotation */
  1283. if (range_of_ones(imm)) {
  1284. /*
  1285. * Pattern: 0..01..10..0
  1286. *
  1287. * Compute how many rotate we need to align it right
  1288. */
  1289. ror = __ffs64(imm);
  1290. } else {
  1291. /*
  1292. * Pattern: 0..01..10..01..1
  1293. *
  1294. * Fill the unused top bits with ones, and check if
  1295. * the result is a valid immediate (all ones with a
  1296. * contiguous ranges of zeroes).
  1297. */
  1298. imm |= ~mask;
  1299. if (!range_of_ones(~imm))
  1300. return AARCH64_BREAK_FAULT;
  1301. /*
  1302. * Compute the rotation to get a continuous set of
  1303. * ones, with the first bit set at position 0
  1304. */
  1305. ror = fls(~imm);
  1306. }
  1307. /*
  1308. * immr is the number of bits we need to rotate back to the
  1309. * original set of ones. Note that this is relative to the
  1310. * element size...
  1311. */
  1312. immr = (esz - ror) % esz;
  1313. insn = aarch64_insn_encode_immediate(AARCH64_INSN_IMM_N, insn, n);
  1314. insn = aarch64_insn_encode_immediate(AARCH64_INSN_IMM_R, insn, immr);
  1315. return aarch64_insn_encode_immediate(AARCH64_INSN_IMM_S, insn, imms);
  1316. }
  1317. u32 aarch64_insn_gen_logical_immediate(enum aarch64_insn_logic_type type,
  1318. enum aarch64_insn_variant variant,
  1319. enum aarch64_insn_register Rn,
  1320. enum aarch64_insn_register Rd,
  1321. u64 imm)
  1322. {
  1323. u32 insn;
  1324. switch (type) {
  1325. case AARCH64_INSN_LOGIC_AND:
  1326. insn = aarch64_insn_get_and_imm_value();
  1327. break;
  1328. case AARCH64_INSN_LOGIC_ORR:
  1329. insn = aarch64_insn_get_orr_imm_value();
  1330. break;
  1331. case AARCH64_INSN_LOGIC_EOR:
  1332. insn = aarch64_insn_get_eor_imm_value();
  1333. break;
  1334. case AARCH64_INSN_LOGIC_AND_SETFLAGS:
  1335. insn = aarch64_insn_get_ands_imm_value();
  1336. break;
  1337. default:
  1338. pr_err("%s: unknown logical encoding %d\n", __func__, type);
  1339. return AARCH64_BREAK_FAULT;
  1340. }
  1341. insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RD, insn, Rd);
  1342. insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RN, insn, Rn);
  1343. return aarch64_encode_immediate(imm, variant, insn);
  1344. }
  1345. u32 aarch64_insn_gen_extr(enum aarch64_insn_variant variant,
  1346. enum aarch64_insn_register Rm,
  1347. enum aarch64_insn_register Rn,
  1348. enum aarch64_insn_register Rd,
  1349. u8 lsb)
  1350. {
  1351. u32 insn;
  1352. insn = aarch64_insn_get_extr_value();
  1353. switch (variant) {
  1354. case AARCH64_INSN_VARIANT_32BIT:
  1355. if (lsb > 31)
  1356. return AARCH64_BREAK_FAULT;
  1357. break;
  1358. case AARCH64_INSN_VARIANT_64BIT:
  1359. if (lsb > 63)
  1360. return AARCH64_BREAK_FAULT;
  1361. insn |= AARCH64_INSN_SF_BIT;
  1362. insn = aarch64_insn_encode_immediate(AARCH64_INSN_IMM_N, insn, 1);
  1363. break;
  1364. default:
  1365. pr_err("%s: unknown variant encoding %d\n", __func__, variant);
  1366. return AARCH64_BREAK_FAULT;
  1367. }
  1368. insn = aarch64_insn_encode_immediate(AARCH64_INSN_IMM_S, insn, lsb);
  1369. insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RD, insn, Rd);
  1370. insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RN, insn, Rn);
  1371. return aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RM, insn, Rm);
  1372. }