aes-glue.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844
  1. /*
  2. * linux/arch/arm64/crypto/aes-glue.c - wrapper code for ARMv8 AES
  3. *
  4. * Copyright (C) 2013 - 2017 Linaro Ltd <ard.biesheuvel@linaro.org>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <asm/neon.h>
  11. #include <asm/hwcap.h>
  12. #include <asm/simd.h>
  13. #include <crypto/aes.h>
  14. #include <crypto/internal/hash.h>
  15. #include <crypto/internal/simd.h>
  16. #include <crypto/internal/skcipher.h>
  17. #include <crypto/scatterwalk.h>
  18. #include <linux/module.h>
  19. #include <linux/cpufeature.h>
  20. #include <crypto/xts.h>
  21. #include "aes-ce-setkey.h"
  22. #include "aes-ctr-fallback.h"
  23. #ifdef USE_V8_CRYPTO_EXTENSIONS
  24. #define MODE "ce"
  25. #define PRIO 300
  26. #define aes_setkey ce_aes_setkey
  27. #define aes_expandkey ce_aes_expandkey
  28. #define aes_ecb_encrypt ce_aes_ecb_encrypt
  29. #define aes_ecb_decrypt ce_aes_ecb_decrypt
  30. #define aes_cbc_encrypt ce_aes_cbc_encrypt
  31. #define aes_cbc_decrypt ce_aes_cbc_decrypt
  32. #define aes_cbc_cts_encrypt ce_aes_cbc_cts_encrypt
  33. #define aes_cbc_cts_decrypt ce_aes_cbc_cts_decrypt
  34. #define aes_ctr_encrypt ce_aes_ctr_encrypt
  35. #define aes_xts_encrypt ce_aes_xts_encrypt
  36. #define aes_xts_decrypt ce_aes_xts_decrypt
  37. #define aes_mac_update ce_aes_mac_update
  38. MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS using ARMv8 Crypto Extensions");
  39. #else
  40. #define MODE "neon"
  41. #define PRIO 200
  42. #define aes_setkey crypto_aes_set_key
  43. #define aes_expandkey crypto_aes_expand_key
  44. #define aes_ecb_encrypt neon_aes_ecb_encrypt
  45. #define aes_ecb_decrypt neon_aes_ecb_decrypt
  46. #define aes_cbc_encrypt neon_aes_cbc_encrypt
  47. #define aes_cbc_decrypt neon_aes_cbc_decrypt
  48. #define aes_cbc_cts_encrypt neon_aes_cbc_cts_encrypt
  49. #define aes_cbc_cts_decrypt neon_aes_cbc_cts_decrypt
  50. #define aes_ctr_encrypt neon_aes_ctr_encrypt
  51. #define aes_xts_encrypt neon_aes_xts_encrypt
  52. #define aes_xts_decrypt neon_aes_xts_decrypt
  53. #define aes_mac_update neon_aes_mac_update
  54. MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS using ARMv8 NEON");
  55. MODULE_ALIAS_CRYPTO("ecb(aes)");
  56. MODULE_ALIAS_CRYPTO("cbc(aes)");
  57. MODULE_ALIAS_CRYPTO("ctr(aes)");
  58. MODULE_ALIAS_CRYPTO("xts(aes)");
  59. MODULE_ALIAS_CRYPTO("cmac(aes)");
  60. MODULE_ALIAS_CRYPTO("xcbc(aes)");
  61. MODULE_ALIAS_CRYPTO("cbcmac(aes)");
  62. #endif
  63. MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
  64. MODULE_LICENSE("GPL v2");
  65. /* defined in aes-modes.S */
  66. asmlinkage void aes_ecb_encrypt(u8 out[], u8 const in[], u32 const rk[],
  67. int rounds, int blocks);
  68. asmlinkage void aes_ecb_decrypt(u8 out[], u8 const in[], u32 const rk[],
  69. int rounds, int blocks);
  70. asmlinkage void aes_cbc_encrypt(u8 out[], u8 const in[], u32 const rk[],
  71. int rounds, int blocks, u8 iv[]);
  72. asmlinkage void aes_cbc_decrypt(u8 out[], u8 const in[], u32 const rk[],
  73. int rounds, int blocks, u8 iv[]);
  74. asmlinkage void aes_cbc_cts_encrypt(u8 out[], u8 const in[], u32 const rk[],
  75. int rounds, int bytes, u8 const iv[]);
  76. asmlinkage void aes_cbc_cts_decrypt(u8 out[], u8 const in[], u32 const rk[],
  77. int rounds, int bytes, u8 const iv[]);
  78. asmlinkage void aes_ctr_encrypt(u8 out[], u8 const in[], u32 const rk[],
  79. int rounds, int blocks, u8 ctr[]);
  80. asmlinkage void aes_xts_encrypt(u8 out[], u8 const in[], u32 const rk1[],
  81. int rounds, int blocks, u32 const rk2[], u8 iv[],
  82. int first);
  83. asmlinkage void aes_xts_decrypt(u8 out[], u8 const in[], u32 const rk1[],
  84. int rounds, int blocks, u32 const rk2[], u8 iv[],
  85. int first);
  86. asmlinkage void aes_mac_update(u8 const in[], u32 const rk[], int rounds,
  87. int blocks, u8 dg[], int enc_before,
  88. int enc_after);
  89. struct cts_cbc_req_ctx {
  90. struct scatterlist sg_src[2];
  91. struct scatterlist sg_dst[2];
  92. struct skcipher_request subreq;
  93. };
  94. struct crypto_aes_xts_ctx {
  95. struct crypto_aes_ctx key1;
  96. struct crypto_aes_ctx __aligned(8) key2;
  97. };
  98. struct mac_tfm_ctx {
  99. struct crypto_aes_ctx key;
  100. u8 __aligned(8) consts[];
  101. };
  102. struct mac_desc_ctx {
  103. unsigned int len;
  104. u8 dg[AES_BLOCK_SIZE];
  105. };
  106. static int skcipher_aes_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
  107. unsigned int key_len)
  108. {
  109. return aes_setkey(crypto_skcipher_tfm(tfm), in_key, key_len);
  110. }
  111. static int xts_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
  112. unsigned int key_len)
  113. {
  114. struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
  115. int ret;
  116. ret = xts_verify_key(tfm, in_key, key_len);
  117. if (ret)
  118. return ret;
  119. ret = aes_expandkey(&ctx->key1, in_key, key_len / 2);
  120. if (!ret)
  121. ret = aes_expandkey(&ctx->key2, &in_key[key_len / 2],
  122. key_len / 2);
  123. if (!ret)
  124. return 0;
  125. crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
  126. return -EINVAL;
  127. }
  128. static int ecb_encrypt(struct skcipher_request *req)
  129. {
  130. struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
  131. struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
  132. int err, rounds = 6 + ctx->key_length / 4;
  133. struct skcipher_walk walk;
  134. unsigned int blocks;
  135. err = skcipher_walk_virt(&walk, req, false);
  136. while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
  137. kernel_neon_begin();
  138. aes_ecb_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
  139. ctx->key_enc, rounds, blocks);
  140. kernel_neon_end();
  141. err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
  142. }
  143. return err;
  144. }
  145. static int ecb_decrypt(struct skcipher_request *req)
  146. {
  147. struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
  148. struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
  149. int err, rounds = 6 + ctx->key_length / 4;
  150. struct skcipher_walk walk;
  151. unsigned int blocks;
  152. err = skcipher_walk_virt(&walk, req, false);
  153. while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
  154. kernel_neon_begin();
  155. aes_ecb_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
  156. ctx->key_dec, rounds, blocks);
  157. kernel_neon_end();
  158. err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
  159. }
  160. return err;
  161. }
  162. static int cbc_encrypt(struct skcipher_request *req)
  163. {
  164. struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
  165. struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
  166. int err, rounds = 6 + ctx->key_length / 4;
  167. struct skcipher_walk walk;
  168. unsigned int blocks;
  169. err = skcipher_walk_virt(&walk, req, false);
  170. while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
  171. kernel_neon_begin();
  172. aes_cbc_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
  173. ctx->key_enc, rounds, blocks, walk.iv);
  174. kernel_neon_end();
  175. err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
  176. }
  177. return err;
  178. }
  179. static int cbc_decrypt(struct skcipher_request *req)
  180. {
  181. struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
  182. struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
  183. int err, rounds = 6 + ctx->key_length / 4;
  184. struct skcipher_walk walk;
  185. unsigned int blocks;
  186. err = skcipher_walk_virt(&walk, req, false);
  187. while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
  188. kernel_neon_begin();
  189. aes_cbc_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
  190. ctx->key_dec, rounds, blocks, walk.iv);
  191. kernel_neon_end();
  192. err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
  193. }
  194. return err;
  195. }
  196. static int cts_cbc_init_tfm(struct crypto_skcipher *tfm)
  197. {
  198. crypto_skcipher_set_reqsize(tfm, sizeof(struct cts_cbc_req_ctx));
  199. return 0;
  200. }
  201. static int cts_cbc_encrypt(struct skcipher_request *req)
  202. {
  203. struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
  204. struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
  205. struct cts_cbc_req_ctx *rctx = skcipher_request_ctx(req);
  206. int err, rounds = 6 + ctx->key_length / 4;
  207. int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
  208. struct scatterlist *src = req->src, *dst = req->dst;
  209. struct skcipher_walk walk;
  210. skcipher_request_set_tfm(&rctx->subreq, tfm);
  211. if (req->cryptlen <= AES_BLOCK_SIZE) {
  212. if (req->cryptlen < AES_BLOCK_SIZE)
  213. return -EINVAL;
  214. cbc_blocks = 1;
  215. }
  216. if (cbc_blocks > 0) {
  217. unsigned int blocks;
  218. skcipher_request_set_crypt(&rctx->subreq, req->src, req->dst,
  219. cbc_blocks * AES_BLOCK_SIZE,
  220. req->iv);
  221. err = skcipher_walk_virt(&walk, &rctx->subreq, false);
  222. while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
  223. kernel_neon_begin();
  224. aes_cbc_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
  225. ctx->key_enc, rounds, blocks, walk.iv);
  226. kernel_neon_end();
  227. err = skcipher_walk_done(&walk,
  228. walk.nbytes % AES_BLOCK_SIZE);
  229. }
  230. if (err)
  231. return err;
  232. if (req->cryptlen == AES_BLOCK_SIZE)
  233. return 0;
  234. dst = src = scatterwalk_ffwd(rctx->sg_src, req->src,
  235. rctx->subreq.cryptlen);
  236. if (req->dst != req->src)
  237. dst = scatterwalk_ffwd(rctx->sg_dst, req->dst,
  238. rctx->subreq.cryptlen);
  239. }
  240. /* handle ciphertext stealing */
  241. skcipher_request_set_crypt(&rctx->subreq, src, dst,
  242. req->cryptlen - cbc_blocks * AES_BLOCK_SIZE,
  243. req->iv);
  244. err = skcipher_walk_virt(&walk, &rctx->subreq, false);
  245. if (err)
  246. return err;
  247. kernel_neon_begin();
  248. aes_cbc_cts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
  249. ctx->key_enc, rounds, walk.nbytes, walk.iv);
  250. kernel_neon_end();
  251. return skcipher_walk_done(&walk, 0);
  252. }
  253. static int cts_cbc_decrypt(struct skcipher_request *req)
  254. {
  255. struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
  256. struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
  257. struct cts_cbc_req_ctx *rctx = skcipher_request_ctx(req);
  258. int err, rounds = 6 + ctx->key_length / 4;
  259. int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
  260. struct scatterlist *src = req->src, *dst = req->dst;
  261. struct skcipher_walk walk;
  262. skcipher_request_set_tfm(&rctx->subreq, tfm);
  263. if (req->cryptlen <= AES_BLOCK_SIZE) {
  264. if (req->cryptlen < AES_BLOCK_SIZE)
  265. return -EINVAL;
  266. cbc_blocks = 1;
  267. }
  268. if (cbc_blocks > 0) {
  269. unsigned int blocks;
  270. skcipher_request_set_crypt(&rctx->subreq, req->src, req->dst,
  271. cbc_blocks * AES_BLOCK_SIZE,
  272. req->iv);
  273. err = skcipher_walk_virt(&walk, &rctx->subreq, false);
  274. while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
  275. kernel_neon_begin();
  276. aes_cbc_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
  277. ctx->key_dec, rounds, blocks, walk.iv);
  278. kernel_neon_end();
  279. err = skcipher_walk_done(&walk,
  280. walk.nbytes % AES_BLOCK_SIZE);
  281. }
  282. if (err)
  283. return err;
  284. if (req->cryptlen == AES_BLOCK_SIZE)
  285. return 0;
  286. dst = src = scatterwalk_ffwd(rctx->sg_src, req->src,
  287. rctx->subreq.cryptlen);
  288. if (req->dst != req->src)
  289. dst = scatterwalk_ffwd(rctx->sg_dst, req->dst,
  290. rctx->subreq.cryptlen);
  291. }
  292. /* handle ciphertext stealing */
  293. skcipher_request_set_crypt(&rctx->subreq, src, dst,
  294. req->cryptlen - cbc_blocks * AES_BLOCK_SIZE,
  295. req->iv);
  296. err = skcipher_walk_virt(&walk, &rctx->subreq, false);
  297. if (err)
  298. return err;
  299. kernel_neon_begin();
  300. aes_cbc_cts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
  301. ctx->key_dec, rounds, walk.nbytes, walk.iv);
  302. kernel_neon_end();
  303. return skcipher_walk_done(&walk, 0);
  304. }
  305. static int ctr_encrypt(struct skcipher_request *req)
  306. {
  307. struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
  308. struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
  309. int err, rounds = 6 + ctx->key_length / 4;
  310. struct skcipher_walk walk;
  311. int blocks;
  312. err = skcipher_walk_virt(&walk, req, false);
  313. while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
  314. kernel_neon_begin();
  315. aes_ctr_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
  316. ctx->key_enc, rounds, blocks, walk.iv);
  317. kernel_neon_end();
  318. err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
  319. }
  320. if (walk.nbytes) {
  321. u8 __aligned(8) tail[AES_BLOCK_SIZE];
  322. unsigned int nbytes = walk.nbytes;
  323. u8 *tdst = walk.dst.virt.addr;
  324. u8 *tsrc = walk.src.virt.addr;
  325. /*
  326. * Tell aes_ctr_encrypt() to process a tail block.
  327. */
  328. blocks = -1;
  329. kernel_neon_begin();
  330. aes_ctr_encrypt(tail, NULL, ctx->key_enc, rounds,
  331. blocks, walk.iv);
  332. kernel_neon_end();
  333. crypto_xor_cpy(tdst, tsrc, tail, nbytes);
  334. err = skcipher_walk_done(&walk, 0);
  335. }
  336. return err;
  337. }
  338. static int ctr_encrypt_sync(struct skcipher_request *req)
  339. {
  340. struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
  341. struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
  342. if (!may_use_simd())
  343. return aes_ctr_encrypt_fallback(ctx, req);
  344. return ctr_encrypt(req);
  345. }
  346. static int xts_encrypt(struct skcipher_request *req)
  347. {
  348. struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
  349. struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
  350. int err, first, rounds = 6 + ctx->key1.key_length / 4;
  351. struct skcipher_walk walk;
  352. unsigned int blocks;
  353. err = skcipher_walk_virt(&walk, req, false);
  354. for (first = 1; (blocks = (walk.nbytes / AES_BLOCK_SIZE)); first = 0) {
  355. kernel_neon_begin();
  356. aes_xts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
  357. ctx->key1.key_enc, rounds, blocks,
  358. ctx->key2.key_enc, walk.iv, first);
  359. kernel_neon_end();
  360. err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
  361. }
  362. return err;
  363. }
  364. static int xts_decrypt(struct skcipher_request *req)
  365. {
  366. struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
  367. struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
  368. int err, first, rounds = 6 + ctx->key1.key_length / 4;
  369. struct skcipher_walk walk;
  370. unsigned int blocks;
  371. err = skcipher_walk_virt(&walk, req, false);
  372. for (first = 1; (blocks = (walk.nbytes / AES_BLOCK_SIZE)); first = 0) {
  373. kernel_neon_begin();
  374. aes_xts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
  375. ctx->key1.key_dec, rounds, blocks,
  376. ctx->key2.key_enc, walk.iv, first);
  377. kernel_neon_end();
  378. err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
  379. }
  380. return err;
  381. }
  382. static struct skcipher_alg aes_algs[] = { {
  383. .base = {
  384. .cra_name = "__ecb(aes)",
  385. .cra_driver_name = "__ecb-aes-" MODE,
  386. .cra_priority = PRIO,
  387. .cra_flags = CRYPTO_ALG_INTERNAL,
  388. .cra_blocksize = AES_BLOCK_SIZE,
  389. .cra_ctxsize = sizeof(struct crypto_aes_ctx),
  390. .cra_module = THIS_MODULE,
  391. },
  392. .min_keysize = AES_MIN_KEY_SIZE,
  393. .max_keysize = AES_MAX_KEY_SIZE,
  394. .setkey = skcipher_aes_setkey,
  395. .encrypt = ecb_encrypt,
  396. .decrypt = ecb_decrypt,
  397. }, {
  398. .base = {
  399. .cra_name = "__cbc(aes)",
  400. .cra_driver_name = "__cbc-aes-" MODE,
  401. .cra_priority = PRIO,
  402. .cra_flags = CRYPTO_ALG_INTERNAL,
  403. .cra_blocksize = AES_BLOCK_SIZE,
  404. .cra_ctxsize = sizeof(struct crypto_aes_ctx),
  405. .cra_module = THIS_MODULE,
  406. },
  407. .min_keysize = AES_MIN_KEY_SIZE,
  408. .max_keysize = AES_MAX_KEY_SIZE,
  409. .ivsize = AES_BLOCK_SIZE,
  410. .setkey = skcipher_aes_setkey,
  411. .encrypt = cbc_encrypt,
  412. .decrypt = cbc_decrypt,
  413. }, {
  414. .base = {
  415. .cra_name = "__cts(cbc(aes))",
  416. .cra_driver_name = "__cts-cbc-aes-" MODE,
  417. .cra_priority = PRIO,
  418. .cra_flags = CRYPTO_ALG_INTERNAL,
  419. .cra_blocksize = AES_BLOCK_SIZE,
  420. .cra_ctxsize = sizeof(struct crypto_aes_ctx),
  421. .cra_module = THIS_MODULE,
  422. },
  423. .min_keysize = AES_MIN_KEY_SIZE,
  424. .max_keysize = AES_MAX_KEY_SIZE,
  425. .ivsize = AES_BLOCK_SIZE,
  426. .walksize = 2 * AES_BLOCK_SIZE,
  427. .setkey = skcipher_aes_setkey,
  428. .encrypt = cts_cbc_encrypt,
  429. .decrypt = cts_cbc_decrypt,
  430. .init = cts_cbc_init_tfm,
  431. }, {
  432. .base = {
  433. .cra_name = "__ctr(aes)",
  434. .cra_driver_name = "__ctr-aes-" MODE,
  435. .cra_priority = PRIO,
  436. .cra_flags = CRYPTO_ALG_INTERNAL,
  437. .cra_blocksize = 1,
  438. .cra_ctxsize = sizeof(struct crypto_aes_ctx),
  439. .cra_module = THIS_MODULE,
  440. },
  441. .min_keysize = AES_MIN_KEY_SIZE,
  442. .max_keysize = AES_MAX_KEY_SIZE,
  443. .ivsize = AES_BLOCK_SIZE,
  444. .chunksize = AES_BLOCK_SIZE,
  445. .setkey = skcipher_aes_setkey,
  446. .encrypt = ctr_encrypt,
  447. .decrypt = ctr_encrypt,
  448. }, {
  449. .base = {
  450. .cra_name = "ctr(aes)",
  451. .cra_driver_name = "ctr-aes-" MODE,
  452. .cra_priority = PRIO - 1,
  453. .cra_blocksize = 1,
  454. .cra_ctxsize = sizeof(struct crypto_aes_ctx),
  455. .cra_module = THIS_MODULE,
  456. },
  457. .min_keysize = AES_MIN_KEY_SIZE,
  458. .max_keysize = AES_MAX_KEY_SIZE,
  459. .ivsize = AES_BLOCK_SIZE,
  460. .chunksize = AES_BLOCK_SIZE,
  461. .setkey = skcipher_aes_setkey,
  462. .encrypt = ctr_encrypt_sync,
  463. .decrypt = ctr_encrypt_sync,
  464. }, {
  465. .base = {
  466. .cra_name = "__xts(aes)",
  467. .cra_driver_name = "__xts-aes-" MODE,
  468. .cra_priority = PRIO,
  469. .cra_flags = CRYPTO_ALG_INTERNAL,
  470. .cra_blocksize = AES_BLOCK_SIZE,
  471. .cra_ctxsize = sizeof(struct crypto_aes_xts_ctx),
  472. .cra_module = THIS_MODULE,
  473. },
  474. .min_keysize = 2 * AES_MIN_KEY_SIZE,
  475. .max_keysize = 2 * AES_MAX_KEY_SIZE,
  476. .ivsize = AES_BLOCK_SIZE,
  477. .setkey = xts_set_key,
  478. .encrypt = xts_encrypt,
  479. .decrypt = xts_decrypt,
  480. } };
  481. static int cbcmac_setkey(struct crypto_shash *tfm, const u8 *in_key,
  482. unsigned int key_len)
  483. {
  484. struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
  485. int err;
  486. err = aes_expandkey(&ctx->key, in_key, key_len);
  487. if (err)
  488. crypto_shash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
  489. return err;
  490. }
  491. static void cmac_gf128_mul_by_x(be128 *y, const be128 *x)
  492. {
  493. u64 a = be64_to_cpu(x->a);
  494. u64 b = be64_to_cpu(x->b);
  495. y->a = cpu_to_be64((a << 1) | (b >> 63));
  496. y->b = cpu_to_be64((b << 1) ^ ((a >> 63) ? 0x87 : 0));
  497. }
  498. static int cmac_setkey(struct crypto_shash *tfm, const u8 *in_key,
  499. unsigned int key_len)
  500. {
  501. struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
  502. be128 *consts = (be128 *)ctx->consts;
  503. int rounds = 6 + key_len / 4;
  504. int err;
  505. err = cbcmac_setkey(tfm, in_key, key_len);
  506. if (err)
  507. return err;
  508. /* encrypt the zero vector */
  509. kernel_neon_begin();
  510. aes_ecb_encrypt(ctx->consts, (u8[AES_BLOCK_SIZE]){}, ctx->key.key_enc,
  511. rounds, 1);
  512. kernel_neon_end();
  513. cmac_gf128_mul_by_x(consts, consts);
  514. cmac_gf128_mul_by_x(consts + 1, consts);
  515. return 0;
  516. }
  517. static int xcbc_setkey(struct crypto_shash *tfm, const u8 *in_key,
  518. unsigned int key_len)
  519. {
  520. static u8 const ks[3][AES_BLOCK_SIZE] = {
  521. { [0 ... AES_BLOCK_SIZE - 1] = 0x1 },
  522. { [0 ... AES_BLOCK_SIZE - 1] = 0x2 },
  523. { [0 ... AES_BLOCK_SIZE - 1] = 0x3 },
  524. };
  525. struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
  526. int rounds = 6 + key_len / 4;
  527. u8 key[AES_BLOCK_SIZE];
  528. int err;
  529. err = cbcmac_setkey(tfm, in_key, key_len);
  530. if (err)
  531. return err;
  532. kernel_neon_begin();
  533. aes_ecb_encrypt(key, ks[0], ctx->key.key_enc, rounds, 1);
  534. aes_ecb_encrypt(ctx->consts, ks[1], ctx->key.key_enc, rounds, 2);
  535. kernel_neon_end();
  536. return cbcmac_setkey(tfm, key, sizeof(key));
  537. }
  538. static int mac_init(struct shash_desc *desc)
  539. {
  540. struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
  541. memset(ctx->dg, 0, AES_BLOCK_SIZE);
  542. ctx->len = 0;
  543. return 0;
  544. }
  545. static void mac_do_update(struct crypto_aes_ctx *ctx, u8 const in[], int blocks,
  546. u8 dg[], int enc_before, int enc_after)
  547. {
  548. int rounds = 6 + ctx->key_length / 4;
  549. if (may_use_simd()) {
  550. kernel_neon_begin();
  551. aes_mac_update(in, ctx->key_enc, rounds, blocks, dg, enc_before,
  552. enc_after);
  553. kernel_neon_end();
  554. } else {
  555. if (enc_before)
  556. __aes_arm64_encrypt(ctx->key_enc, dg, dg, rounds);
  557. while (blocks--) {
  558. crypto_xor(dg, in, AES_BLOCK_SIZE);
  559. in += AES_BLOCK_SIZE;
  560. if (blocks || enc_after)
  561. __aes_arm64_encrypt(ctx->key_enc, dg, dg,
  562. rounds);
  563. }
  564. }
  565. }
  566. static int mac_update(struct shash_desc *desc, const u8 *p, unsigned int len)
  567. {
  568. struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
  569. struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
  570. while (len > 0) {
  571. unsigned int l;
  572. if ((ctx->len % AES_BLOCK_SIZE) == 0 &&
  573. (ctx->len + len) > AES_BLOCK_SIZE) {
  574. int blocks = len / AES_BLOCK_SIZE;
  575. len %= AES_BLOCK_SIZE;
  576. mac_do_update(&tctx->key, p, blocks, ctx->dg,
  577. (ctx->len != 0), (len != 0));
  578. p += blocks * AES_BLOCK_SIZE;
  579. if (!len) {
  580. ctx->len = AES_BLOCK_SIZE;
  581. break;
  582. }
  583. ctx->len = 0;
  584. }
  585. l = min(len, AES_BLOCK_SIZE - ctx->len);
  586. if (l <= AES_BLOCK_SIZE) {
  587. crypto_xor(ctx->dg + ctx->len, p, l);
  588. ctx->len += l;
  589. len -= l;
  590. p += l;
  591. }
  592. }
  593. return 0;
  594. }
  595. static int cbcmac_final(struct shash_desc *desc, u8 *out)
  596. {
  597. struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
  598. struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
  599. mac_do_update(&tctx->key, NULL, 0, ctx->dg, 1, 0);
  600. memcpy(out, ctx->dg, AES_BLOCK_SIZE);
  601. return 0;
  602. }
  603. static int cmac_final(struct shash_desc *desc, u8 *out)
  604. {
  605. struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
  606. struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
  607. u8 *consts = tctx->consts;
  608. if (ctx->len != AES_BLOCK_SIZE) {
  609. ctx->dg[ctx->len] ^= 0x80;
  610. consts += AES_BLOCK_SIZE;
  611. }
  612. mac_do_update(&tctx->key, consts, 1, ctx->dg, 0, 1);
  613. memcpy(out, ctx->dg, AES_BLOCK_SIZE);
  614. return 0;
  615. }
  616. static struct shash_alg mac_algs[] = { {
  617. .base.cra_name = "cmac(aes)",
  618. .base.cra_driver_name = "cmac-aes-" MODE,
  619. .base.cra_priority = PRIO,
  620. .base.cra_blocksize = AES_BLOCK_SIZE,
  621. .base.cra_ctxsize = sizeof(struct mac_tfm_ctx) +
  622. 2 * AES_BLOCK_SIZE,
  623. .base.cra_module = THIS_MODULE,
  624. .digestsize = AES_BLOCK_SIZE,
  625. .init = mac_init,
  626. .update = mac_update,
  627. .final = cmac_final,
  628. .setkey = cmac_setkey,
  629. .descsize = sizeof(struct mac_desc_ctx),
  630. }, {
  631. .base.cra_name = "xcbc(aes)",
  632. .base.cra_driver_name = "xcbc-aes-" MODE,
  633. .base.cra_priority = PRIO,
  634. .base.cra_blocksize = AES_BLOCK_SIZE,
  635. .base.cra_ctxsize = sizeof(struct mac_tfm_ctx) +
  636. 2 * AES_BLOCK_SIZE,
  637. .base.cra_module = THIS_MODULE,
  638. .digestsize = AES_BLOCK_SIZE,
  639. .init = mac_init,
  640. .update = mac_update,
  641. .final = cmac_final,
  642. .setkey = xcbc_setkey,
  643. .descsize = sizeof(struct mac_desc_ctx),
  644. }, {
  645. .base.cra_name = "cbcmac(aes)",
  646. .base.cra_driver_name = "cbcmac-aes-" MODE,
  647. .base.cra_priority = PRIO,
  648. .base.cra_blocksize = 1,
  649. .base.cra_ctxsize = sizeof(struct mac_tfm_ctx),
  650. .base.cra_module = THIS_MODULE,
  651. .digestsize = AES_BLOCK_SIZE,
  652. .init = mac_init,
  653. .update = mac_update,
  654. .final = cbcmac_final,
  655. .setkey = cbcmac_setkey,
  656. .descsize = sizeof(struct mac_desc_ctx),
  657. } };
  658. static struct simd_skcipher_alg *aes_simd_algs[ARRAY_SIZE(aes_algs)];
  659. static void aes_exit(void)
  660. {
  661. int i;
  662. for (i = 0; i < ARRAY_SIZE(aes_simd_algs); i++)
  663. if (aes_simd_algs[i])
  664. simd_skcipher_free(aes_simd_algs[i]);
  665. crypto_unregister_shashes(mac_algs, ARRAY_SIZE(mac_algs));
  666. crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
  667. }
  668. static int __init aes_init(void)
  669. {
  670. struct simd_skcipher_alg *simd;
  671. const char *basename;
  672. const char *algname;
  673. const char *drvname;
  674. int err;
  675. int i;
  676. err = crypto_register_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
  677. if (err)
  678. return err;
  679. err = crypto_register_shashes(mac_algs, ARRAY_SIZE(mac_algs));
  680. if (err)
  681. goto unregister_ciphers;
  682. for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
  683. if (!(aes_algs[i].base.cra_flags & CRYPTO_ALG_INTERNAL))
  684. continue;
  685. algname = aes_algs[i].base.cra_name + 2;
  686. drvname = aes_algs[i].base.cra_driver_name + 2;
  687. basename = aes_algs[i].base.cra_driver_name;
  688. simd = simd_skcipher_create_compat(algname, drvname, basename);
  689. err = PTR_ERR(simd);
  690. if (IS_ERR(simd))
  691. goto unregister_simds;
  692. aes_simd_algs[i] = simd;
  693. }
  694. return 0;
  695. unregister_simds:
  696. aes_exit();
  697. return err;
  698. unregister_ciphers:
  699. crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
  700. return err;
  701. }
  702. #ifdef USE_V8_CRYPTO_EXTENSIONS
  703. module_cpu_feature_match(AES, aes_init);
  704. #else
  705. module_init(aes_init);
  706. EXPORT_SYMBOL(neon_aes_ecb_encrypt);
  707. EXPORT_SYMBOL(neon_aes_cbc_encrypt);
  708. #endif
  709. module_exit(aes_exit);