clock.c 9.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392
  1. /*
  2. * sched_clock for unstable cpu clocks
  3. *
  4. * Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  5. *
  6. * Updates and enhancements:
  7. * Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
  8. *
  9. * Based on code by:
  10. * Ingo Molnar <mingo@redhat.com>
  11. * Guillaume Chazarain <guichaz@gmail.com>
  12. *
  13. *
  14. * What:
  15. *
  16. * cpu_clock(i) provides a fast (execution time) high resolution
  17. * clock with bounded drift between CPUs. The value of cpu_clock(i)
  18. * is monotonic for constant i. The timestamp returned is in nanoseconds.
  19. *
  20. * ######################### BIG FAT WARNING ##########################
  21. * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
  22. * # go backwards !! #
  23. * ####################################################################
  24. *
  25. * There is no strict promise about the base, although it tends to start
  26. * at 0 on boot (but people really shouldn't rely on that).
  27. *
  28. * cpu_clock(i) -- can be used from any context, including NMI.
  29. * local_clock() -- is cpu_clock() on the current cpu.
  30. *
  31. * sched_clock_cpu(i)
  32. *
  33. * How:
  34. *
  35. * The implementation either uses sched_clock() when
  36. * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the
  37. * sched_clock() is assumed to provide these properties (mostly it means
  38. * the architecture provides a globally synchronized highres time source).
  39. *
  40. * Otherwise it tries to create a semi stable clock from a mixture of other
  41. * clocks, including:
  42. *
  43. * - GTOD (clock monotomic)
  44. * - sched_clock()
  45. * - explicit idle events
  46. *
  47. * We use GTOD as base and use sched_clock() deltas to improve resolution. The
  48. * deltas are filtered to provide monotonicity and keeping it within an
  49. * expected window.
  50. *
  51. * Furthermore, explicit sleep and wakeup hooks allow us to account for time
  52. * that is otherwise invisible (TSC gets stopped).
  53. *
  54. */
  55. #include <linux/spinlock.h>
  56. #include <linux/hardirq.h>
  57. #include <linux/export.h>
  58. #include <linux/percpu.h>
  59. #include <linux/ktime.h>
  60. #include <linux/sched.h>
  61. #include <linux/static_key.h>
  62. #include <linux/workqueue.h>
  63. /*
  64. * Scheduler clock - returns current time in nanosec units.
  65. * This is default implementation.
  66. * Architectures and sub-architectures can override this.
  67. */
  68. unsigned long long __attribute__((weak)) sched_clock(void)
  69. {
  70. return (unsigned long long)(jiffies - INITIAL_JIFFIES)
  71. * (NSEC_PER_SEC / HZ);
  72. }
  73. EXPORT_SYMBOL_GPL(sched_clock);
  74. __read_mostly int sched_clock_running;
  75. #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
  76. static struct static_key __sched_clock_stable = STATIC_KEY_INIT;
  77. int sched_clock_stable(void)
  78. {
  79. if (static_key_false(&__sched_clock_stable))
  80. return false;
  81. return true;
  82. }
  83. void set_sched_clock_stable(void)
  84. {
  85. if (!sched_clock_stable())
  86. static_key_slow_dec(&__sched_clock_stable);
  87. }
  88. static void __clear_sched_clock_stable(struct work_struct *work)
  89. {
  90. /* XXX worry about clock continuity */
  91. if (sched_clock_stable())
  92. static_key_slow_inc(&__sched_clock_stable);
  93. }
  94. static DECLARE_WORK(sched_clock_work, __clear_sched_clock_stable);
  95. void clear_sched_clock_stable(void)
  96. {
  97. if (keventd_up())
  98. schedule_work(&sched_clock_work);
  99. else
  100. __clear_sched_clock_stable(&sched_clock_work);
  101. }
  102. struct sched_clock_data {
  103. u64 tick_raw;
  104. u64 tick_gtod;
  105. u64 clock;
  106. };
  107. static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
  108. static inline struct sched_clock_data *this_scd(void)
  109. {
  110. return &__get_cpu_var(sched_clock_data);
  111. }
  112. static inline struct sched_clock_data *cpu_sdc(int cpu)
  113. {
  114. return &per_cpu(sched_clock_data, cpu);
  115. }
  116. void sched_clock_init(void)
  117. {
  118. u64 ktime_now = ktime_to_ns(ktime_get());
  119. int cpu;
  120. for_each_possible_cpu(cpu) {
  121. struct sched_clock_data *scd = cpu_sdc(cpu);
  122. scd->tick_raw = 0;
  123. scd->tick_gtod = ktime_now;
  124. scd->clock = ktime_now;
  125. }
  126. sched_clock_running = 1;
  127. }
  128. /*
  129. * min, max except they take wrapping into account
  130. */
  131. static inline u64 wrap_min(u64 x, u64 y)
  132. {
  133. return (s64)(x - y) < 0 ? x : y;
  134. }
  135. static inline u64 wrap_max(u64 x, u64 y)
  136. {
  137. return (s64)(x - y) > 0 ? x : y;
  138. }
  139. /*
  140. * update the percpu scd from the raw @now value
  141. *
  142. * - filter out backward motion
  143. * - use the GTOD tick value to create a window to filter crazy TSC values
  144. */
  145. static u64 sched_clock_local(struct sched_clock_data *scd)
  146. {
  147. u64 now, clock, old_clock, min_clock, max_clock;
  148. s64 delta;
  149. again:
  150. now = sched_clock();
  151. delta = now - scd->tick_raw;
  152. if (unlikely(delta < 0))
  153. delta = 0;
  154. old_clock = scd->clock;
  155. /*
  156. * scd->clock = clamp(scd->tick_gtod + delta,
  157. * max(scd->tick_gtod, scd->clock),
  158. * scd->tick_gtod + TICK_NSEC);
  159. */
  160. clock = scd->tick_gtod + delta;
  161. min_clock = wrap_max(scd->tick_gtod, old_clock);
  162. max_clock = wrap_max(old_clock, scd->tick_gtod + TICK_NSEC);
  163. clock = wrap_max(clock, min_clock);
  164. clock = wrap_min(clock, max_clock);
  165. if (cmpxchg64(&scd->clock, old_clock, clock) != old_clock)
  166. goto again;
  167. return clock;
  168. }
  169. static u64 sched_clock_remote(struct sched_clock_data *scd)
  170. {
  171. struct sched_clock_data *my_scd = this_scd();
  172. u64 this_clock, remote_clock;
  173. u64 *ptr, old_val, val;
  174. #if BITS_PER_LONG != 64
  175. again:
  176. /*
  177. * Careful here: The local and the remote clock values need to
  178. * be read out atomic as we need to compare the values and
  179. * then update either the local or the remote side. So the
  180. * cmpxchg64 below only protects one readout.
  181. *
  182. * We must reread via sched_clock_local() in the retry case on
  183. * 32bit as an NMI could use sched_clock_local() via the
  184. * tracer and hit between the readout of
  185. * the low32bit and the high 32bit portion.
  186. */
  187. this_clock = sched_clock_local(my_scd);
  188. /*
  189. * We must enforce atomic readout on 32bit, otherwise the
  190. * update on the remote cpu can hit inbetween the readout of
  191. * the low32bit and the high 32bit portion.
  192. */
  193. remote_clock = cmpxchg64(&scd->clock, 0, 0);
  194. #else
  195. /*
  196. * On 64bit the read of [my]scd->clock is atomic versus the
  197. * update, so we can avoid the above 32bit dance.
  198. */
  199. sched_clock_local(my_scd);
  200. again:
  201. this_clock = my_scd->clock;
  202. remote_clock = scd->clock;
  203. #endif
  204. /*
  205. * Use the opportunity that we have both locks
  206. * taken to couple the two clocks: we take the
  207. * larger time as the latest time for both
  208. * runqueues. (this creates monotonic movement)
  209. */
  210. if (likely((s64)(remote_clock - this_clock) < 0)) {
  211. ptr = &scd->clock;
  212. old_val = remote_clock;
  213. val = this_clock;
  214. } else {
  215. /*
  216. * Should be rare, but possible:
  217. */
  218. ptr = &my_scd->clock;
  219. old_val = this_clock;
  220. val = remote_clock;
  221. }
  222. if (cmpxchg64(ptr, old_val, val) != old_val)
  223. goto again;
  224. return val;
  225. }
  226. /*
  227. * Similar to cpu_clock(), but requires local IRQs to be disabled.
  228. *
  229. * See cpu_clock().
  230. */
  231. u64 sched_clock_cpu(int cpu)
  232. {
  233. struct sched_clock_data *scd;
  234. u64 clock;
  235. if (sched_clock_stable())
  236. return sched_clock();
  237. if (unlikely(!sched_clock_running))
  238. return 0ull;
  239. preempt_disable();
  240. scd = cpu_sdc(cpu);
  241. if (cpu != smp_processor_id())
  242. clock = sched_clock_remote(scd);
  243. else
  244. clock = sched_clock_local(scd);
  245. preempt_enable();
  246. return clock;
  247. }
  248. void sched_clock_tick(void)
  249. {
  250. struct sched_clock_data *scd;
  251. u64 now, now_gtod;
  252. if (sched_clock_stable())
  253. return;
  254. if (unlikely(!sched_clock_running))
  255. return;
  256. WARN_ON_ONCE(!irqs_disabled());
  257. scd = this_scd();
  258. now_gtod = ktime_to_ns(ktime_get());
  259. now = sched_clock();
  260. scd->tick_raw = now;
  261. scd->tick_gtod = now_gtod;
  262. sched_clock_local(scd);
  263. }
  264. /*
  265. * We are going deep-idle (irqs are disabled):
  266. */
  267. void sched_clock_idle_sleep_event(void)
  268. {
  269. sched_clock_cpu(smp_processor_id());
  270. }
  271. EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
  272. /*
  273. * We just idled delta nanoseconds (called with irqs disabled):
  274. */
  275. void sched_clock_idle_wakeup_event(u64 delta_ns)
  276. {
  277. if (timekeeping_suspended)
  278. return;
  279. sched_clock_tick();
  280. touch_softlockup_watchdog();
  281. }
  282. EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
  283. /*
  284. * As outlined at the top, provides a fast, high resolution, nanosecond
  285. * time source that is monotonic per cpu argument and has bounded drift
  286. * between cpus.
  287. *
  288. * ######################### BIG FAT WARNING ##########################
  289. * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
  290. * # go backwards !! #
  291. * ####################################################################
  292. */
  293. u64 cpu_clock(int cpu)
  294. {
  295. if (static_key_false(&__sched_clock_stable))
  296. return sched_clock_cpu(cpu);
  297. return sched_clock();
  298. }
  299. /*
  300. * Similar to cpu_clock() for the current cpu. Time will only be observed
  301. * to be monotonic if care is taken to only compare timestampt taken on the
  302. * same CPU.
  303. *
  304. * See cpu_clock().
  305. */
  306. u64 local_clock(void)
  307. {
  308. if (static_key_false(&__sched_clock_stable))
  309. return sched_clock_cpu(raw_smp_processor_id());
  310. return sched_clock();
  311. }
  312. #else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
  313. void sched_clock_init(void)
  314. {
  315. sched_clock_running = 1;
  316. }
  317. u64 sched_clock_cpu(int cpu)
  318. {
  319. if (unlikely(!sched_clock_running))
  320. return 0;
  321. return sched_clock();
  322. }
  323. u64 cpu_clock(int cpu)
  324. {
  325. return sched_clock();
  326. }
  327. u64 local_clock(void)
  328. {
  329. return sched_clock();
  330. }
  331. #endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
  332. EXPORT_SYMBOL_GPL(cpu_clock);
  333. EXPORT_SYMBOL_GPL(local_clock);