page_alloc.c 197 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/memblock.h>
  24. #include <linux/compiler.h>
  25. #include <linux/kernel.h>
  26. #include <linux/kmemcheck.h>
  27. #include <linux/kasan.h>
  28. #include <linux/module.h>
  29. #include <linux/suspend.h>
  30. #include <linux/pagevec.h>
  31. #include <linux/blkdev.h>
  32. #include <linux/slab.h>
  33. #include <linux/ratelimit.h>
  34. #include <linux/oom.h>
  35. #include <linux/notifier.h>
  36. #include <linux/topology.h>
  37. #include <linux/sysctl.h>
  38. #include <linux/cpu.h>
  39. #include <linux/cpuset.h>
  40. #include <linux/memory_hotplug.h>
  41. #include <linux/nodemask.h>
  42. #include <linux/vmalloc.h>
  43. #include <linux/vmstat.h>
  44. #include <linux/mempolicy.h>
  45. #include <linux/memremap.h>
  46. #include <linux/stop_machine.h>
  47. #include <linux/sort.h>
  48. #include <linux/pfn.h>
  49. #include <linux/backing-dev.h>
  50. #include <linux/fault-inject.h>
  51. #include <linux/page-isolation.h>
  52. #include <linux/page_ext.h>
  53. #include <linux/debugobjects.h>
  54. #include <linux/kmemleak.h>
  55. #include <linux/compaction.h>
  56. #include <trace/events/kmem.h>
  57. #include <linux/prefetch.h>
  58. #include <linux/mm_inline.h>
  59. #include <linux/migrate.h>
  60. #include <linux/page_ext.h>
  61. #include <linux/hugetlb.h>
  62. #include <linux/sched/rt.h>
  63. #include <linux/page_owner.h>
  64. #include <linux/kthread.h>
  65. #include <asm/sections.h>
  66. #include <asm/tlbflush.h>
  67. #include <asm/div64.h>
  68. #include "internal.h"
  69. /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
  70. static DEFINE_MUTEX(pcp_batch_high_lock);
  71. #define MIN_PERCPU_PAGELIST_FRACTION (8)
  72. #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  73. DEFINE_PER_CPU(int, numa_node);
  74. EXPORT_PER_CPU_SYMBOL(numa_node);
  75. #endif
  76. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  77. /*
  78. * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  79. * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  80. * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  81. * defined in <linux/topology.h>.
  82. */
  83. DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
  84. EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  85. int _node_numa_mem_[MAX_NUMNODES];
  86. #endif
  87. /*
  88. * Array of node states.
  89. */
  90. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  91. [N_POSSIBLE] = NODE_MASK_ALL,
  92. [N_ONLINE] = { { [0] = 1UL } },
  93. #ifndef CONFIG_NUMA
  94. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  95. #ifdef CONFIG_HIGHMEM
  96. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  97. #endif
  98. #ifdef CONFIG_MOVABLE_NODE
  99. [N_MEMORY] = { { [0] = 1UL } },
  100. #endif
  101. [N_CPU] = { { [0] = 1UL } },
  102. #endif /* NUMA */
  103. };
  104. EXPORT_SYMBOL(node_states);
  105. /* Protect totalram_pages and zone->managed_pages */
  106. static DEFINE_SPINLOCK(managed_page_count_lock);
  107. unsigned long totalram_pages __read_mostly;
  108. unsigned long totalreserve_pages __read_mostly;
  109. unsigned long totalcma_pages __read_mostly;
  110. int percpu_pagelist_fraction;
  111. gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
  112. /*
  113. * A cached value of the page's pageblock's migratetype, used when the page is
  114. * put on a pcplist. Used to avoid the pageblock migratetype lookup when
  115. * freeing from pcplists in most cases, at the cost of possibly becoming stale.
  116. * Also the migratetype set in the page does not necessarily match the pcplist
  117. * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
  118. * other index - this ensures that it will be put on the correct CMA freelist.
  119. */
  120. static inline int get_pcppage_migratetype(struct page *page)
  121. {
  122. return page->index;
  123. }
  124. static inline void set_pcppage_migratetype(struct page *page, int migratetype)
  125. {
  126. page->index = migratetype;
  127. }
  128. #ifdef CONFIG_PM_SLEEP
  129. /*
  130. * The following functions are used by the suspend/hibernate code to temporarily
  131. * change gfp_allowed_mask in order to avoid using I/O during memory allocations
  132. * while devices are suspended. To avoid races with the suspend/hibernate code,
  133. * they should always be called with pm_mutex held (gfp_allowed_mask also should
  134. * only be modified with pm_mutex held, unless the suspend/hibernate code is
  135. * guaranteed not to run in parallel with that modification).
  136. */
  137. static gfp_t saved_gfp_mask;
  138. void pm_restore_gfp_mask(void)
  139. {
  140. WARN_ON(!mutex_is_locked(&pm_mutex));
  141. if (saved_gfp_mask) {
  142. gfp_allowed_mask = saved_gfp_mask;
  143. saved_gfp_mask = 0;
  144. }
  145. }
  146. void pm_restrict_gfp_mask(void)
  147. {
  148. WARN_ON(!mutex_is_locked(&pm_mutex));
  149. WARN_ON(saved_gfp_mask);
  150. saved_gfp_mask = gfp_allowed_mask;
  151. gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
  152. }
  153. bool pm_suspended_storage(void)
  154. {
  155. if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
  156. return false;
  157. return true;
  158. }
  159. #endif /* CONFIG_PM_SLEEP */
  160. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  161. unsigned int pageblock_order __read_mostly;
  162. #endif
  163. static void __free_pages_ok(struct page *page, unsigned int order);
  164. /*
  165. * results with 256, 32 in the lowmem_reserve sysctl:
  166. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  167. * 1G machine -> (16M dma, 784M normal, 224M high)
  168. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  169. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  170. * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
  171. *
  172. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  173. * don't need any ZONE_NORMAL reservation
  174. */
  175. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  176. #ifdef CONFIG_ZONE_DMA
  177. 256,
  178. #endif
  179. #ifdef CONFIG_ZONE_DMA32
  180. 256,
  181. #endif
  182. #ifdef CONFIG_HIGHMEM
  183. 32,
  184. #endif
  185. 32,
  186. };
  187. EXPORT_SYMBOL(totalram_pages);
  188. static char * const zone_names[MAX_NR_ZONES] = {
  189. #ifdef CONFIG_ZONE_DMA
  190. "DMA",
  191. #endif
  192. #ifdef CONFIG_ZONE_DMA32
  193. "DMA32",
  194. #endif
  195. "Normal",
  196. #ifdef CONFIG_HIGHMEM
  197. "HighMem",
  198. #endif
  199. "Movable",
  200. #ifdef CONFIG_ZONE_DEVICE
  201. "Device",
  202. #endif
  203. };
  204. char * const migratetype_names[MIGRATE_TYPES] = {
  205. "Unmovable",
  206. "Movable",
  207. "Reclaimable",
  208. "HighAtomic",
  209. #ifdef CONFIG_CMA
  210. "CMA",
  211. #endif
  212. #ifdef CONFIG_MEMORY_ISOLATION
  213. "Isolate",
  214. #endif
  215. };
  216. compound_page_dtor * const compound_page_dtors[] = {
  217. NULL,
  218. free_compound_page,
  219. #ifdef CONFIG_HUGETLB_PAGE
  220. free_huge_page,
  221. #endif
  222. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  223. free_transhuge_page,
  224. #endif
  225. };
  226. int min_free_kbytes = 1024;
  227. int user_min_free_kbytes = -1;
  228. int watermark_scale_factor = 10;
  229. static unsigned long __meminitdata nr_kernel_pages;
  230. static unsigned long __meminitdata nr_all_pages;
  231. static unsigned long __meminitdata dma_reserve;
  232. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  233. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  234. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  235. static unsigned long __initdata required_kernelcore;
  236. static unsigned long __initdata required_movablecore;
  237. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  238. static bool mirrored_kernelcore;
  239. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  240. int movable_zone;
  241. EXPORT_SYMBOL(movable_zone);
  242. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  243. #if MAX_NUMNODES > 1
  244. int nr_node_ids __read_mostly = MAX_NUMNODES;
  245. int nr_online_nodes __read_mostly = 1;
  246. EXPORT_SYMBOL(nr_node_ids);
  247. EXPORT_SYMBOL(nr_online_nodes);
  248. #endif
  249. int page_group_by_mobility_disabled __read_mostly;
  250. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  251. static inline void reset_deferred_meminit(pg_data_t *pgdat)
  252. {
  253. pgdat->first_deferred_pfn = ULONG_MAX;
  254. }
  255. /* Returns true if the struct page for the pfn is uninitialised */
  256. static inline bool __meminit early_page_uninitialised(unsigned long pfn)
  257. {
  258. if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
  259. return true;
  260. return false;
  261. }
  262. static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
  263. {
  264. if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
  265. return true;
  266. return false;
  267. }
  268. /*
  269. * Returns false when the remaining initialisation should be deferred until
  270. * later in the boot cycle when it can be parallelised.
  271. */
  272. static inline bool update_defer_init(pg_data_t *pgdat,
  273. unsigned long pfn, unsigned long zone_end,
  274. unsigned long *nr_initialised)
  275. {
  276. /* Always populate low zones for address-contrained allocations */
  277. if (zone_end < pgdat_end_pfn(pgdat))
  278. return true;
  279. /* Initialise at least 2G of the highest zone */
  280. (*nr_initialised)++;
  281. if (*nr_initialised > (2UL << (30 - PAGE_SHIFT)) &&
  282. (pfn & (PAGES_PER_SECTION - 1)) == 0) {
  283. pgdat->first_deferred_pfn = pfn;
  284. return false;
  285. }
  286. return true;
  287. }
  288. #else
  289. static inline void reset_deferred_meminit(pg_data_t *pgdat)
  290. {
  291. }
  292. static inline bool early_page_uninitialised(unsigned long pfn)
  293. {
  294. return false;
  295. }
  296. static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
  297. {
  298. return false;
  299. }
  300. static inline bool update_defer_init(pg_data_t *pgdat,
  301. unsigned long pfn, unsigned long zone_end,
  302. unsigned long *nr_initialised)
  303. {
  304. return true;
  305. }
  306. #endif
  307. void set_pageblock_migratetype(struct page *page, int migratetype)
  308. {
  309. if (unlikely(page_group_by_mobility_disabled &&
  310. migratetype < MIGRATE_PCPTYPES))
  311. migratetype = MIGRATE_UNMOVABLE;
  312. set_pageblock_flags_group(page, (unsigned long)migratetype,
  313. PB_migrate, PB_migrate_end);
  314. }
  315. #ifdef CONFIG_DEBUG_VM
  316. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  317. {
  318. int ret = 0;
  319. unsigned seq;
  320. unsigned long pfn = page_to_pfn(page);
  321. unsigned long sp, start_pfn;
  322. do {
  323. seq = zone_span_seqbegin(zone);
  324. start_pfn = zone->zone_start_pfn;
  325. sp = zone->spanned_pages;
  326. if (!zone_spans_pfn(zone, pfn))
  327. ret = 1;
  328. } while (zone_span_seqretry(zone, seq));
  329. if (ret)
  330. pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
  331. pfn, zone_to_nid(zone), zone->name,
  332. start_pfn, start_pfn + sp);
  333. return ret;
  334. }
  335. static int page_is_consistent(struct zone *zone, struct page *page)
  336. {
  337. if (!pfn_valid_within(page_to_pfn(page)))
  338. return 0;
  339. if (zone != page_zone(page))
  340. return 0;
  341. return 1;
  342. }
  343. /*
  344. * Temporary debugging check for pages not lying within a given zone.
  345. */
  346. static int bad_range(struct zone *zone, struct page *page)
  347. {
  348. if (page_outside_zone_boundaries(zone, page))
  349. return 1;
  350. if (!page_is_consistent(zone, page))
  351. return 1;
  352. return 0;
  353. }
  354. #else
  355. static inline int bad_range(struct zone *zone, struct page *page)
  356. {
  357. return 0;
  358. }
  359. #endif
  360. static void bad_page(struct page *page, const char *reason,
  361. unsigned long bad_flags)
  362. {
  363. static unsigned long resume;
  364. static unsigned long nr_shown;
  365. static unsigned long nr_unshown;
  366. /* Don't complain about poisoned pages */
  367. if (PageHWPoison(page)) {
  368. page_mapcount_reset(page); /* remove PageBuddy */
  369. return;
  370. }
  371. /*
  372. * Allow a burst of 60 reports, then keep quiet for that minute;
  373. * or allow a steady drip of one report per second.
  374. */
  375. if (nr_shown == 60) {
  376. if (time_before(jiffies, resume)) {
  377. nr_unshown++;
  378. goto out;
  379. }
  380. if (nr_unshown) {
  381. pr_alert(
  382. "BUG: Bad page state: %lu messages suppressed\n",
  383. nr_unshown);
  384. nr_unshown = 0;
  385. }
  386. nr_shown = 0;
  387. }
  388. if (nr_shown++ == 0)
  389. resume = jiffies + 60 * HZ;
  390. pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
  391. current->comm, page_to_pfn(page));
  392. __dump_page(page, reason);
  393. bad_flags &= page->flags;
  394. if (bad_flags)
  395. pr_alert("bad because of flags: %#lx(%pGp)\n",
  396. bad_flags, &bad_flags);
  397. dump_page_owner(page);
  398. print_modules();
  399. dump_stack();
  400. out:
  401. /* Leave bad fields for debug, except PageBuddy could make trouble */
  402. page_mapcount_reset(page); /* remove PageBuddy */
  403. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  404. }
  405. /*
  406. * Higher-order pages are called "compound pages". They are structured thusly:
  407. *
  408. * The first PAGE_SIZE page is called the "head page" and have PG_head set.
  409. *
  410. * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
  411. * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
  412. *
  413. * The first tail page's ->compound_dtor holds the offset in array of compound
  414. * page destructors. See compound_page_dtors.
  415. *
  416. * The first tail page's ->compound_order holds the order of allocation.
  417. * This usage means that zero-order pages may not be compound.
  418. */
  419. void free_compound_page(struct page *page)
  420. {
  421. __free_pages_ok(page, compound_order(page));
  422. }
  423. void prep_compound_page(struct page *page, unsigned int order)
  424. {
  425. int i;
  426. int nr_pages = 1 << order;
  427. set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
  428. set_compound_order(page, order);
  429. __SetPageHead(page);
  430. for (i = 1; i < nr_pages; i++) {
  431. struct page *p = page + i;
  432. set_page_count(p, 0);
  433. p->mapping = TAIL_MAPPING;
  434. set_compound_head(p, page);
  435. }
  436. atomic_set(compound_mapcount_ptr(page), -1);
  437. }
  438. #ifdef CONFIG_DEBUG_PAGEALLOC
  439. unsigned int _debug_guardpage_minorder;
  440. bool _debug_pagealloc_enabled __read_mostly
  441. = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
  442. EXPORT_SYMBOL(_debug_pagealloc_enabled);
  443. bool _debug_guardpage_enabled __read_mostly;
  444. static int __init early_debug_pagealloc(char *buf)
  445. {
  446. if (!buf)
  447. return -EINVAL;
  448. if (strcmp(buf, "on") == 0)
  449. _debug_pagealloc_enabled = true;
  450. if (strcmp(buf, "off") == 0)
  451. _debug_pagealloc_enabled = false;
  452. return 0;
  453. }
  454. early_param("debug_pagealloc", early_debug_pagealloc);
  455. static bool need_debug_guardpage(void)
  456. {
  457. /* If we don't use debug_pagealloc, we don't need guard page */
  458. if (!debug_pagealloc_enabled())
  459. return false;
  460. return true;
  461. }
  462. static void init_debug_guardpage(void)
  463. {
  464. if (!debug_pagealloc_enabled())
  465. return;
  466. _debug_guardpage_enabled = true;
  467. }
  468. struct page_ext_operations debug_guardpage_ops = {
  469. .need = need_debug_guardpage,
  470. .init = init_debug_guardpage,
  471. };
  472. static int __init debug_guardpage_minorder_setup(char *buf)
  473. {
  474. unsigned long res;
  475. if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
  476. printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
  477. return 0;
  478. }
  479. _debug_guardpage_minorder = res;
  480. printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
  481. return 0;
  482. }
  483. __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
  484. static inline void set_page_guard(struct zone *zone, struct page *page,
  485. unsigned int order, int migratetype)
  486. {
  487. struct page_ext *page_ext;
  488. if (!debug_guardpage_enabled())
  489. return;
  490. page_ext = lookup_page_ext(page);
  491. __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  492. INIT_LIST_HEAD(&page->lru);
  493. set_page_private(page, order);
  494. /* Guard pages are not available for any usage */
  495. __mod_zone_freepage_state(zone, -(1 << order), migratetype);
  496. }
  497. static inline void clear_page_guard(struct zone *zone, struct page *page,
  498. unsigned int order, int migratetype)
  499. {
  500. struct page_ext *page_ext;
  501. if (!debug_guardpage_enabled())
  502. return;
  503. page_ext = lookup_page_ext(page);
  504. __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  505. set_page_private(page, 0);
  506. if (!is_migrate_isolate(migratetype))
  507. __mod_zone_freepage_state(zone, (1 << order), migratetype);
  508. }
  509. #else
  510. struct page_ext_operations debug_guardpage_ops = { NULL, };
  511. static inline void set_page_guard(struct zone *zone, struct page *page,
  512. unsigned int order, int migratetype) {}
  513. static inline void clear_page_guard(struct zone *zone, struct page *page,
  514. unsigned int order, int migratetype) {}
  515. #endif
  516. static inline void set_page_order(struct page *page, unsigned int order)
  517. {
  518. set_page_private(page, order);
  519. __SetPageBuddy(page);
  520. }
  521. static inline void rmv_page_order(struct page *page)
  522. {
  523. __ClearPageBuddy(page);
  524. set_page_private(page, 0);
  525. }
  526. /*
  527. * This function checks whether a page is free && is the buddy
  528. * we can do coalesce a page and its buddy if
  529. * (a) the buddy is not in a hole &&
  530. * (b) the buddy is in the buddy system &&
  531. * (c) a page and its buddy have the same order &&
  532. * (d) a page and its buddy are in the same zone.
  533. *
  534. * For recording whether a page is in the buddy system, we set ->_mapcount
  535. * PAGE_BUDDY_MAPCOUNT_VALUE.
  536. * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
  537. * serialized by zone->lock.
  538. *
  539. * For recording page's order, we use page_private(page).
  540. */
  541. static inline int page_is_buddy(struct page *page, struct page *buddy,
  542. unsigned int order)
  543. {
  544. if (!pfn_valid_within(page_to_pfn(buddy)))
  545. return 0;
  546. if (page_is_guard(buddy) && page_order(buddy) == order) {
  547. if (page_zone_id(page) != page_zone_id(buddy))
  548. return 0;
  549. VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
  550. return 1;
  551. }
  552. if (PageBuddy(buddy) && page_order(buddy) == order) {
  553. /*
  554. * zone check is done late to avoid uselessly
  555. * calculating zone/node ids for pages that could
  556. * never merge.
  557. */
  558. if (page_zone_id(page) != page_zone_id(buddy))
  559. return 0;
  560. VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
  561. return 1;
  562. }
  563. return 0;
  564. }
  565. /*
  566. * Freeing function for a buddy system allocator.
  567. *
  568. * The concept of a buddy system is to maintain direct-mapped table
  569. * (containing bit values) for memory blocks of various "orders".
  570. * The bottom level table contains the map for the smallest allocatable
  571. * units of memory (here, pages), and each level above it describes
  572. * pairs of units from the levels below, hence, "buddies".
  573. * At a high level, all that happens here is marking the table entry
  574. * at the bottom level available, and propagating the changes upward
  575. * as necessary, plus some accounting needed to play nicely with other
  576. * parts of the VM system.
  577. * At each level, we keep a list of pages, which are heads of continuous
  578. * free pages of length of (1 << order) and marked with _mapcount
  579. * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
  580. * field.
  581. * So when we are allocating or freeing one, we can derive the state of the
  582. * other. That is, if we allocate a small block, and both were
  583. * free, the remainder of the region must be split into blocks.
  584. * If a block is freed, and its buddy is also free, then this
  585. * triggers coalescing into a block of larger size.
  586. *
  587. * -- nyc
  588. */
  589. static inline void __free_one_page(struct page *page,
  590. unsigned long pfn,
  591. struct zone *zone, unsigned int order,
  592. int migratetype)
  593. {
  594. unsigned long page_idx;
  595. unsigned long combined_idx;
  596. unsigned long uninitialized_var(buddy_idx);
  597. struct page *buddy;
  598. unsigned int max_order = MAX_ORDER;
  599. VM_BUG_ON(!zone_is_initialized(zone));
  600. VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
  601. VM_BUG_ON(migratetype == -1);
  602. if (is_migrate_isolate(migratetype)) {
  603. /*
  604. * We restrict max order of merging to prevent merge
  605. * between freepages on isolate pageblock and normal
  606. * pageblock. Without this, pageblock isolation
  607. * could cause incorrect freepage accounting.
  608. */
  609. max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
  610. } else {
  611. __mod_zone_freepage_state(zone, 1 << order, migratetype);
  612. }
  613. page_idx = pfn & ((1 << max_order) - 1);
  614. VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
  615. VM_BUG_ON_PAGE(bad_range(zone, page), page);
  616. while (order < max_order - 1) {
  617. buddy_idx = __find_buddy_index(page_idx, order);
  618. buddy = page + (buddy_idx - page_idx);
  619. if (!page_is_buddy(page, buddy, order))
  620. break;
  621. /*
  622. * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
  623. * merge with it and move up one order.
  624. */
  625. if (page_is_guard(buddy)) {
  626. clear_page_guard(zone, buddy, order, migratetype);
  627. } else {
  628. list_del(&buddy->lru);
  629. zone->free_area[order].nr_free--;
  630. rmv_page_order(buddy);
  631. }
  632. combined_idx = buddy_idx & page_idx;
  633. page = page + (combined_idx - page_idx);
  634. page_idx = combined_idx;
  635. order++;
  636. }
  637. set_page_order(page, order);
  638. /*
  639. * If this is not the largest possible page, check if the buddy
  640. * of the next-highest order is free. If it is, it's possible
  641. * that pages are being freed that will coalesce soon. In case,
  642. * that is happening, add the free page to the tail of the list
  643. * so it's less likely to be used soon and more likely to be merged
  644. * as a higher order page
  645. */
  646. if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
  647. struct page *higher_page, *higher_buddy;
  648. combined_idx = buddy_idx & page_idx;
  649. higher_page = page + (combined_idx - page_idx);
  650. buddy_idx = __find_buddy_index(combined_idx, order + 1);
  651. higher_buddy = higher_page + (buddy_idx - combined_idx);
  652. if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
  653. list_add_tail(&page->lru,
  654. &zone->free_area[order].free_list[migratetype]);
  655. goto out;
  656. }
  657. }
  658. list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
  659. out:
  660. zone->free_area[order].nr_free++;
  661. }
  662. static inline int free_pages_check(struct page *page)
  663. {
  664. const char *bad_reason = NULL;
  665. unsigned long bad_flags = 0;
  666. if (unlikely(atomic_read(&page->_mapcount) != -1))
  667. bad_reason = "nonzero mapcount";
  668. if (unlikely(page->mapping != NULL))
  669. bad_reason = "non-NULL mapping";
  670. if (unlikely(page_ref_count(page) != 0))
  671. bad_reason = "nonzero _count";
  672. if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
  673. bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
  674. bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
  675. }
  676. #ifdef CONFIG_MEMCG
  677. if (unlikely(page->mem_cgroup))
  678. bad_reason = "page still charged to cgroup";
  679. #endif
  680. if (unlikely(bad_reason)) {
  681. bad_page(page, bad_reason, bad_flags);
  682. return 1;
  683. }
  684. page_cpupid_reset_last(page);
  685. if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
  686. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  687. return 0;
  688. }
  689. /*
  690. * Frees a number of pages from the PCP lists
  691. * Assumes all pages on list are in same zone, and of same order.
  692. * count is the number of pages to free.
  693. *
  694. * If the zone was previously in an "all pages pinned" state then look to
  695. * see if this freeing clears that state.
  696. *
  697. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  698. * pinned" detection logic.
  699. */
  700. static void free_pcppages_bulk(struct zone *zone, int count,
  701. struct per_cpu_pages *pcp)
  702. {
  703. int migratetype = 0;
  704. int batch_free = 0;
  705. int to_free = count;
  706. unsigned long nr_scanned;
  707. spin_lock(&zone->lock);
  708. nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
  709. if (nr_scanned)
  710. __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
  711. while (to_free) {
  712. struct page *page;
  713. struct list_head *list;
  714. /*
  715. * Remove pages from lists in a round-robin fashion. A
  716. * batch_free count is maintained that is incremented when an
  717. * empty list is encountered. This is so more pages are freed
  718. * off fuller lists instead of spinning excessively around empty
  719. * lists
  720. */
  721. do {
  722. batch_free++;
  723. if (++migratetype == MIGRATE_PCPTYPES)
  724. migratetype = 0;
  725. list = &pcp->lists[migratetype];
  726. } while (list_empty(list));
  727. /* This is the only non-empty list. Free them all. */
  728. if (batch_free == MIGRATE_PCPTYPES)
  729. batch_free = to_free;
  730. do {
  731. int mt; /* migratetype of the to-be-freed page */
  732. page = list_last_entry(list, struct page, lru);
  733. /* must delete as __free_one_page list manipulates */
  734. list_del(&page->lru);
  735. mt = get_pcppage_migratetype(page);
  736. /* MIGRATE_ISOLATE page should not go to pcplists */
  737. VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
  738. /* Pageblock could have been isolated meanwhile */
  739. if (unlikely(has_isolate_pageblock(zone)))
  740. mt = get_pageblock_migratetype(page);
  741. __free_one_page(page, page_to_pfn(page), zone, 0, mt);
  742. trace_mm_page_pcpu_drain(page, 0, mt);
  743. } while (--to_free && --batch_free && !list_empty(list));
  744. }
  745. spin_unlock(&zone->lock);
  746. }
  747. static void free_one_page(struct zone *zone,
  748. struct page *page, unsigned long pfn,
  749. unsigned int order,
  750. int migratetype)
  751. {
  752. unsigned long nr_scanned;
  753. spin_lock(&zone->lock);
  754. nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
  755. if (nr_scanned)
  756. __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
  757. if (unlikely(has_isolate_pageblock(zone) ||
  758. is_migrate_isolate(migratetype))) {
  759. migratetype = get_pfnblock_migratetype(page, pfn);
  760. }
  761. __free_one_page(page, pfn, zone, order, migratetype);
  762. spin_unlock(&zone->lock);
  763. }
  764. static int free_tail_pages_check(struct page *head_page, struct page *page)
  765. {
  766. int ret = 1;
  767. /*
  768. * We rely page->lru.next never has bit 0 set, unless the page
  769. * is PageTail(). Let's make sure that's true even for poisoned ->lru.
  770. */
  771. BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
  772. if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
  773. ret = 0;
  774. goto out;
  775. }
  776. switch (page - head_page) {
  777. case 1:
  778. /* the first tail page: ->mapping is compound_mapcount() */
  779. if (unlikely(compound_mapcount(page))) {
  780. bad_page(page, "nonzero compound_mapcount", 0);
  781. goto out;
  782. }
  783. break;
  784. case 2:
  785. /*
  786. * the second tail page: ->mapping is
  787. * page_deferred_list().next -- ignore value.
  788. */
  789. break;
  790. default:
  791. if (page->mapping != TAIL_MAPPING) {
  792. bad_page(page, "corrupted mapping in tail page", 0);
  793. goto out;
  794. }
  795. break;
  796. }
  797. if (unlikely(!PageTail(page))) {
  798. bad_page(page, "PageTail not set", 0);
  799. goto out;
  800. }
  801. if (unlikely(compound_head(page) != head_page)) {
  802. bad_page(page, "compound_head not consistent", 0);
  803. goto out;
  804. }
  805. ret = 0;
  806. out:
  807. page->mapping = NULL;
  808. clear_compound_head(page);
  809. return ret;
  810. }
  811. static void __meminit __init_single_page(struct page *page, unsigned long pfn,
  812. unsigned long zone, int nid)
  813. {
  814. set_page_links(page, zone, nid, pfn);
  815. init_page_count(page);
  816. page_mapcount_reset(page);
  817. page_cpupid_reset_last(page);
  818. INIT_LIST_HEAD(&page->lru);
  819. #ifdef WANT_PAGE_VIRTUAL
  820. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  821. if (!is_highmem_idx(zone))
  822. set_page_address(page, __va(pfn << PAGE_SHIFT));
  823. #endif
  824. }
  825. static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
  826. int nid)
  827. {
  828. return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
  829. }
  830. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  831. static void init_reserved_page(unsigned long pfn)
  832. {
  833. pg_data_t *pgdat;
  834. int nid, zid;
  835. if (!early_page_uninitialised(pfn))
  836. return;
  837. nid = early_pfn_to_nid(pfn);
  838. pgdat = NODE_DATA(nid);
  839. for (zid = 0; zid < MAX_NR_ZONES; zid++) {
  840. struct zone *zone = &pgdat->node_zones[zid];
  841. if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
  842. break;
  843. }
  844. __init_single_pfn(pfn, zid, nid);
  845. }
  846. #else
  847. static inline void init_reserved_page(unsigned long pfn)
  848. {
  849. }
  850. #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
  851. /*
  852. * Initialised pages do not have PageReserved set. This function is
  853. * called for each range allocated by the bootmem allocator and
  854. * marks the pages PageReserved. The remaining valid pages are later
  855. * sent to the buddy page allocator.
  856. */
  857. void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
  858. {
  859. unsigned long start_pfn = PFN_DOWN(start);
  860. unsigned long end_pfn = PFN_UP(end);
  861. for (; start_pfn < end_pfn; start_pfn++) {
  862. if (pfn_valid(start_pfn)) {
  863. struct page *page = pfn_to_page(start_pfn);
  864. init_reserved_page(start_pfn);
  865. /* Avoid false-positive PageTail() */
  866. INIT_LIST_HEAD(&page->lru);
  867. SetPageReserved(page);
  868. }
  869. }
  870. }
  871. static bool free_pages_prepare(struct page *page, unsigned int order)
  872. {
  873. bool compound = PageCompound(page);
  874. int i, bad = 0;
  875. VM_BUG_ON_PAGE(PageTail(page), page);
  876. VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
  877. trace_mm_page_free(page, order);
  878. kmemcheck_free_shadow(page, order);
  879. kasan_free_pages(page, order);
  880. if (PageAnon(page))
  881. page->mapping = NULL;
  882. bad += free_pages_check(page);
  883. for (i = 1; i < (1 << order); i++) {
  884. if (compound)
  885. bad += free_tail_pages_check(page, page + i);
  886. bad += free_pages_check(page + i);
  887. }
  888. if (bad)
  889. return false;
  890. reset_page_owner(page, order);
  891. if (!PageHighMem(page)) {
  892. debug_check_no_locks_freed(page_address(page),
  893. PAGE_SIZE << order);
  894. debug_check_no_obj_freed(page_address(page),
  895. PAGE_SIZE << order);
  896. }
  897. arch_free_page(page, order);
  898. kernel_poison_pages(page, 1 << order, 0);
  899. kernel_map_pages(page, 1 << order, 0);
  900. return true;
  901. }
  902. static void __free_pages_ok(struct page *page, unsigned int order)
  903. {
  904. unsigned long flags;
  905. int migratetype;
  906. unsigned long pfn = page_to_pfn(page);
  907. if (!free_pages_prepare(page, order))
  908. return;
  909. migratetype = get_pfnblock_migratetype(page, pfn);
  910. local_irq_save(flags);
  911. __count_vm_events(PGFREE, 1 << order);
  912. free_one_page(page_zone(page), page, pfn, order, migratetype);
  913. local_irq_restore(flags);
  914. }
  915. static void __init __free_pages_boot_core(struct page *page,
  916. unsigned long pfn, unsigned int order)
  917. {
  918. unsigned int nr_pages = 1 << order;
  919. struct page *p = page;
  920. unsigned int loop;
  921. prefetchw(p);
  922. for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
  923. prefetchw(p + 1);
  924. __ClearPageReserved(p);
  925. set_page_count(p, 0);
  926. }
  927. __ClearPageReserved(p);
  928. set_page_count(p, 0);
  929. page_zone(page)->managed_pages += nr_pages;
  930. set_page_refcounted(page);
  931. __free_pages(page, order);
  932. }
  933. #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
  934. defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
  935. static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
  936. int __meminit early_pfn_to_nid(unsigned long pfn)
  937. {
  938. static DEFINE_SPINLOCK(early_pfn_lock);
  939. int nid;
  940. spin_lock(&early_pfn_lock);
  941. nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
  942. if (nid < 0)
  943. nid = 0;
  944. spin_unlock(&early_pfn_lock);
  945. return nid;
  946. }
  947. #endif
  948. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  949. static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
  950. struct mminit_pfnnid_cache *state)
  951. {
  952. int nid;
  953. nid = __early_pfn_to_nid(pfn, state);
  954. if (nid >= 0 && nid != node)
  955. return false;
  956. return true;
  957. }
  958. /* Only safe to use early in boot when initialisation is single-threaded */
  959. static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  960. {
  961. return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
  962. }
  963. #else
  964. static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  965. {
  966. return true;
  967. }
  968. static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
  969. struct mminit_pfnnid_cache *state)
  970. {
  971. return true;
  972. }
  973. #endif
  974. void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
  975. unsigned int order)
  976. {
  977. if (early_page_uninitialised(pfn))
  978. return;
  979. return __free_pages_boot_core(page, pfn, order);
  980. }
  981. /*
  982. * Check that the whole (or subset of) a pageblock given by the interval of
  983. * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
  984. * with the migration of free compaction scanner. The scanners then need to
  985. * use only pfn_valid_within() check for arches that allow holes within
  986. * pageblocks.
  987. *
  988. * Return struct page pointer of start_pfn, or NULL if checks were not passed.
  989. *
  990. * It's possible on some configurations to have a setup like node0 node1 node0
  991. * i.e. it's possible that all pages within a zones range of pages do not
  992. * belong to a single zone. We assume that a border between node0 and node1
  993. * can occur within a single pageblock, but not a node0 node1 node0
  994. * interleaving within a single pageblock. It is therefore sufficient to check
  995. * the first and last page of a pageblock and avoid checking each individual
  996. * page in a pageblock.
  997. */
  998. struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
  999. unsigned long end_pfn, struct zone *zone)
  1000. {
  1001. struct page *start_page;
  1002. struct page *end_page;
  1003. /* end_pfn is one past the range we are checking */
  1004. end_pfn--;
  1005. if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
  1006. return NULL;
  1007. start_page = pfn_to_page(start_pfn);
  1008. if (page_zone(start_page) != zone)
  1009. return NULL;
  1010. end_page = pfn_to_page(end_pfn);
  1011. /* This gives a shorter code than deriving page_zone(end_page) */
  1012. if (page_zone_id(start_page) != page_zone_id(end_page))
  1013. return NULL;
  1014. return start_page;
  1015. }
  1016. void set_zone_contiguous(struct zone *zone)
  1017. {
  1018. unsigned long block_start_pfn = zone->zone_start_pfn;
  1019. unsigned long block_end_pfn;
  1020. block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
  1021. for (; block_start_pfn < zone_end_pfn(zone);
  1022. block_start_pfn = block_end_pfn,
  1023. block_end_pfn += pageblock_nr_pages) {
  1024. block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
  1025. if (!__pageblock_pfn_to_page(block_start_pfn,
  1026. block_end_pfn, zone))
  1027. return;
  1028. }
  1029. /* We confirm that there is no hole */
  1030. zone->contiguous = true;
  1031. }
  1032. void clear_zone_contiguous(struct zone *zone)
  1033. {
  1034. zone->contiguous = false;
  1035. }
  1036. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  1037. static void __init deferred_free_range(struct page *page,
  1038. unsigned long pfn, int nr_pages)
  1039. {
  1040. int i;
  1041. if (!page)
  1042. return;
  1043. /* Free a large naturally-aligned chunk if possible */
  1044. if (nr_pages == MAX_ORDER_NR_PAGES &&
  1045. (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
  1046. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  1047. __free_pages_boot_core(page, pfn, MAX_ORDER-1);
  1048. return;
  1049. }
  1050. for (i = 0; i < nr_pages; i++, page++, pfn++)
  1051. __free_pages_boot_core(page, pfn, 0);
  1052. }
  1053. /* Completion tracking for deferred_init_memmap() threads */
  1054. static atomic_t pgdat_init_n_undone __initdata;
  1055. static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
  1056. static inline void __init pgdat_init_report_one_done(void)
  1057. {
  1058. if (atomic_dec_and_test(&pgdat_init_n_undone))
  1059. complete(&pgdat_init_all_done_comp);
  1060. }
  1061. /* Initialise remaining memory on a node */
  1062. static int __init deferred_init_memmap(void *data)
  1063. {
  1064. pg_data_t *pgdat = data;
  1065. int nid = pgdat->node_id;
  1066. struct mminit_pfnnid_cache nid_init_state = { };
  1067. unsigned long start = jiffies;
  1068. unsigned long nr_pages = 0;
  1069. unsigned long walk_start, walk_end;
  1070. int i, zid;
  1071. struct zone *zone;
  1072. unsigned long first_init_pfn = pgdat->first_deferred_pfn;
  1073. const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
  1074. if (first_init_pfn == ULONG_MAX) {
  1075. pgdat_init_report_one_done();
  1076. return 0;
  1077. }
  1078. /* Bind memory initialisation thread to a local node if possible */
  1079. if (!cpumask_empty(cpumask))
  1080. set_cpus_allowed_ptr(current, cpumask);
  1081. /* Sanity check boundaries */
  1082. BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
  1083. BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
  1084. pgdat->first_deferred_pfn = ULONG_MAX;
  1085. /* Only the highest zone is deferred so find it */
  1086. for (zid = 0; zid < MAX_NR_ZONES; zid++) {
  1087. zone = pgdat->node_zones + zid;
  1088. if (first_init_pfn < zone_end_pfn(zone))
  1089. break;
  1090. }
  1091. for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
  1092. unsigned long pfn, end_pfn;
  1093. struct page *page = NULL;
  1094. struct page *free_base_page = NULL;
  1095. unsigned long free_base_pfn = 0;
  1096. int nr_to_free = 0;
  1097. end_pfn = min(walk_end, zone_end_pfn(zone));
  1098. pfn = first_init_pfn;
  1099. if (pfn < walk_start)
  1100. pfn = walk_start;
  1101. if (pfn < zone->zone_start_pfn)
  1102. pfn = zone->zone_start_pfn;
  1103. for (; pfn < end_pfn; pfn++) {
  1104. if (!pfn_valid_within(pfn))
  1105. goto free_range;
  1106. /*
  1107. * Ensure pfn_valid is checked every
  1108. * MAX_ORDER_NR_PAGES for memory holes
  1109. */
  1110. if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
  1111. if (!pfn_valid(pfn)) {
  1112. page = NULL;
  1113. goto free_range;
  1114. }
  1115. }
  1116. if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
  1117. page = NULL;
  1118. goto free_range;
  1119. }
  1120. /* Minimise pfn page lookups and scheduler checks */
  1121. if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
  1122. page++;
  1123. } else {
  1124. nr_pages += nr_to_free;
  1125. deferred_free_range(free_base_page,
  1126. free_base_pfn, nr_to_free);
  1127. free_base_page = NULL;
  1128. free_base_pfn = nr_to_free = 0;
  1129. page = pfn_to_page(pfn);
  1130. cond_resched();
  1131. }
  1132. if (page->flags) {
  1133. VM_BUG_ON(page_zone(page) != zone);
  1134. goto free_range;
  1135. }
  1136. __init_single_page(page, pfn, zid, nid);
  1137. if (!free_base_page) {
  1138. free_base_page = page;
  1139. free_base_pfn = pfn;
  1140. nr_to_free = 0;
  1141. }
  1142. nr_to_free++;
  1143. /* Where possible, batch up pages for a single free */
  1144. continue;
  1145. free_range:
  1146. /* Free the current block of pages to allocator */
  1147. nr_pages += nr_to_free;
  1148. deferred_free_range(free_base_page, free_base_pfn,
  1149. nr_to_free);
  1150. free_base_page = NULL;
  1151. free_base_pfn = nr_to_free = 0;
  1152. }
  1153. first_init_pfn = max(end_pfn, first_init_pfn);
  1154. }
  1155. /* Sanity check that the next zone really is unpopulated */
  1156. WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
  1157. pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
  1158. jiffies_to_msecs(jiffies - start));
  1159. pgdat_init_report_one_done();
  1160. return 0;
  1161. }
  1162. #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
  1163. void __init page_alloc_init_late(void)
  1164. {
  1165. struct zone *zone;
  1166. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  1167. int nid;
  1168. /* There will be num_node_state(N_MEMORY) threads */
  1169. atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
  1170. for_each_node_state(nid, N_MEMORY) {
  1171. kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
  1172. }
  1173. /* Block until all are initialised */
  1174. wait_for_completion(&pgdat_init_all_done_comp);
  1175. /* Reinit limits that are based on free pages after the kernel is up */
  1176. files_maxfiles_init();
  1177. #endif
  1178. for_each_populated_zone(zone)
  1179. set_zone_contiguous(zone);
  1180. }
  1181. #ifdef CONFIG_CMA
  1182. /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
  1183. void __init init_cma_reserved_pageblock(struct page *page)
  1184. {
  1185. unsigned i = pageblock_nr_pages;
  1186. struct page *p = page;
  1187. do {
  1188. __ClearPageReserved(p);
  1189. set_page_count(p, 0);
  1190. } while (++p, --i);
  1191. set_pageblock_migratetype(page, MIGRATE_CMA);
  1192. if (pageblock_order >= MAX_ORDER) {
  1193. i = pageblock_nr_pages;
  1194. p = page;
  1195. do {
  1196. set_page_refcounted(p);
  1197. __free_pages(p, MAX_ORDER - 1);
  1198. p += MAX_ORDER_NR_PAGES;
  1199. } while (i -= MAX_ORDER_NR_PAGES);
  1200. } else {
  1201. set_page_refcounted(page);
  1202. __free_pages(page, pageblock_order);
  1203. }
  1204. adjust_managed_page_count(page, pageblock_nr_pages);
  1205. }
  1206. #endif
  1207. /*
  1208. * The order of subdivision here is critical for the IO subsystem.
  1209. * Please do not alter this order without good reasons and regression
  1210. * testing. Specifically, as large blocks of memory are subdivided,
  1211. * the order in which smaller blocks are delivered depends on the order
  1212. * they're subdivided in this function. This is the primary factor
  1213. * influencing the order in which pages are delivered to the IO
  1214. * subsystem according to empirical testing, and this is also justified
  1215. * by considering the behavior of a buddy system containing a single
  1216. * large block of memory acted on by a series of small allocations.
  1217. * This behavior is a critical factor in sglist merging's success.
  1218. *
  1219. * -- nyc
  1220. */
  1221. static inline void expand(struct zone *zone, struct page *page,
  1222. int low, int high, struct free_area *area,
  1223. int migratetype)
  1224. {
  1225. unsigned long size = 1 << high;
  1226. while (high > low) {
  1227. area--;
  1228. high--;
  1229. size >>= 1;
  1230. VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
  1231. if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
  1232. debug_guardpage_enabled() &&
  1233. high < debug_guardpage_minorder()) {
  1234. /*
  1235. * Mark as guard pages (or page), that will allow to
  1236. * merge back to allocator when buddy will be freed.
  1237. * Corresponding page table entries will not be touched,
  1238. * pages will stay not present in virtual address space
  1239. */
  1240. set_page_guard(zone, &page[size], high, migratetype);
  1241. continue;
  1242. }
  1243. list_add(&page[size].lru, &area->free_list[migratetype]);
  1244. area->nr_free++;
  1245. set_page_order(&page[size], high);
  1246. }
  1247. }
  1248. /*
  1249. * This page is about to be returned from the page allocator
  1250. */
  1251. static inline int check_new_page(struct page *page)
  1252. {
  1253. const char *bad_reason = NULL;
  1254. unsigned long bad_flags = 0;
  1255. if (unlikely(atomic_read(&page->_mapcount) != -1))
  1256. bad_reason = "nonzero mapcount";
  1257. if (unlikely(page->mapping != NULL))
  1258. bad_reason = "non-NULL mapping";
  1259. if (unlikely(page_ref_count(page) != 0))
  1260. bad_reason = "nonzero _count";
  1261. if (unlikely(page->flags & __PG_HWPOISON)) {
  1262. bad_reason = "HWPoisoned (hardware-corrupted)";
  1263. bad_flags = __PG_HWPOISON;
  1264. }
  1265. if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
  1266. bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
  1267. bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
  1268. }
  1269. #ifdef CONFIG_MEMCG
  1270. if (unlikely(page->mem_cgroup))
  1271. bad_reason = "page still charged to cgroup";
  1272. #endif
  1273. if (unlikely(bad_reason)) {
  1274. bad_page(page, bad_reason, bad_flags);
  1275. return 1;
  1276. }
  1277. return 0;
  1278. }
  1279. static inline bool free_pages_prezeroed(bool poisoned)
  1280. {
  1281. return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
  1282. page_poisoning_enabled() && poisoned;
  1283. }
  1284. static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
  1285. int alloc_flags)
  1286. {
  1287. int i;
  1288. bool poisoned = true;
  1289. for (i = 0; i < (1 << order); i++) {
  1290. struct page *p = page + i;
  1291. if (unlikely(check_new_page(p)))
  1292. return 1;
  1293. if (poisoned)
  1294. poisoned &= page_is_poisoned(p);
  1295. }
  1296. set_page_private(page, 0);
  1297. set_page_refcounted(page);
  1298. arch_alloc_page(page, order);
  1299. kernel_map_pages(page, 1 << order, 1);
  1300. kernel_poison_pages(page, 1 << order, 1);
  1301. kasan_alloc_pages(page, order);
  1302. if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
  1303. for (i = 0; i < (1 << order); i++)
  1304. clear_highpage(page + i);
  1305. if (order && (gfp_flags & __GFP_COMP))
  1306. prep_compound_page(page, order);
  1307. set_page_owner(page, order, gfp_flags);
  1308. /*
  1309. * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
  1310. * allocate the page. The expectation is that the caller is taking
  1311. * steps that will free more memory. The caller should avoid the page
  1312. * being used for !PFMEMALLOC purposes.
  1313. */
  1314. if (alloc_flags & ALLOC_NO_WATERMARKS)
  1315. set_page_pfmemalloc(page);
  1316. else
  1317. clear_page_pfmemalloc(page);
  1318. return 0;
  1319. }
  1320. /*
  1321. * Go through the free lists for the given migratetype and remove
  1322. * the smallest available page from the freelists
  1323. */
  1324. static inline
  1325. struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  1326. int migratetype)
  1327. {
  1328. unsigned int current_order;
  1329. struct free_area *area;
  1330. struct page *page;
  1331. /* Find a page of the appropriate size in the preferred list */
  1332. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  1333. area = &(zone->free_area[current_order]);
  1334. page = list_first_entry_or_null(&area->free_list[migratetype],
  1335. struct page, lru);
  1336. if (!page)
  1337. continue;
  1338. list_del(&page->lru);
  1339. rmv_page_order(page);
  1340. area->nr_free--;
  1341. expand(zone, page, order, current_order, area, migratetype);
  1342. set_pcppage_migratetype(page, migratetype);
  1343. return page;
  1344. }
  1345. return NULL;
  1346. }
  1347. /*
  1348. * This array describes the order lists are fallen back to when
  1349. * the free lists for the desirable migrate type are depleted
  1350. */
  1351. static int fallbacks[MIGRATE_TYPES][4] = {
  1352. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
  1353. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
  1354. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
  1355. #ifdef CONFIG_CMA
  1356. [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
  1357. #endif
  1358. #ifdef CONFIG_MEMORY_ISOLATION
  1359. [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
  1360. #endif
  1361. };
  1362. #ifdef CONFIG_CMA
  1363. static struct page *__rmqueue_cma_fallback(struct zone *zone,
  1364. unsigned int order)
  1365. {
  1366. return __rmqueue_smallest(zone, order, MIGRATE_CMA);
  1367. }
  1368. #else
  1369. static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
  1370. unsigned int order) { return NULL; }
  1371. #endif
  1372. /*
  1373. * Move the free pages in a range to the free lists of the requested type.
  1374. * Note that start_page and end_pages are not aligned on a pageblock
  1375. * boundary. If alignment is required, use move_freepages_block()
  1376. */
  1377. int move_freepages(struct zone *zone,
  1378. struct page *start_page, struct page *end_page,
  1379. int migratetype)
  1380. {
  1381. struct page *page;
  1382. unsigned int order;
  1383. int pages_moved = 0;
  1384. #ifndef CONFIG_HOLES_IN_ZONE
  1385. /*
  1386. * page_zone is not safe to call in this context when
  1387. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  1388. * anyway as we check zone boundaries in move_freepages_block().
  1389. * Remove at a later date when no bug reports exist related to
  1390. * grouping pages by mobility
  1391. */
  1392. VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
  1393. #endif
  1394. for (page = start_page; page <= end_page;) {
  1395. /* Make sure we are not inadvertently changing nodes */
  1396. VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
  1397. if (!pfn_valid_within(page_to_pfn(page))) {
  1398. page++;
  1399. continue;
  1400. }
  1401. if (!PageBuddy(page)) {
  1402. page++;
  1403. continue;
  1404. }
  1405. order = page_order(page);
  1406. list_move(&page->lru,
  1407. &zone->free_area[order].free_list[migratetype]);
  1408. page += 1 << order;
  1409. pages_moved += 1 << order;
  1410. }
  1411. return pages_moved;
  1412. }
  1413. int move_freepages_block(struct zone *zone, struct page *page,
  1414. int migratetype)
  1415. {
  1416. unsigned long start_pfn, end_pfn;
  1417. struct page *start_page, *end_page;
  1418. start_pfn = page_to_pfn(page);
  1419. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  1420. start_page = pfn_to_page(start_pfn);
  1421. end_page = start_page + pageblock_nr_pages - 1;
  1422. end_pfn = start_pfn + pageblock_nr_pages - 1;
  1423. /* Do not cross zone boundaries */
  1424. if (!zone_spans_pfn(zone, start_pfn))
  1425. start_page = page;
  1426. if (!zone_spans_pfn(zone, end_pfn))
  1427. return 0;
  1428. return move_freepages(zone, start_page, end_page, migratetype);
  1429. }
  1430. static void change_pageblock_range(struct page *pageblock_page,
  1431. int start_order, int migratetype)
  1432. {
  1433. int nr_pageblocks = 1 << (start_order - pageblock_order);
  1434. while (nr_pageblocks--) {
  1435. set_pageblock_migratetype(pageblock_page, migratetype);
  1436. pageblock_page += pageblock_nr_pages;
  1437. }
  1438. }
  1439. /*
  1440. * When we are falling back to another migratetype during allocation, try to
  1441. * steal extra free pages from the same pageblocks to satisfy further
  1442. * allocations, instead of polluting multiple pageblocks.
  1443. *
  1444. * If we are stealing a relatively large buddy page, it is likely there will
  1445. * be more free pages in the pageblock, so try to steal them all. For
  1446. * reclaimable and unmovable allocations, we steal regardless of page size,
  1447. * as fragmentation caused by those allocations polluting movable pageblocks
  1448. * is worse than movable allocations stealing from unmovable and reclaimable
  1449. * pageblocks.
  1450. */
  1451. static bool can_steal_fallback(unsigned int order, int start_mt)
  1452. {
  1453. /*
  1454. * Leaving this order check is intended, although there is
  1455. * relaxed order check in next check. The reason is that
  1456. * we can actually steal whole pageblock if this condition met,
  1457. * but, below check doesn't guarantee it and that is just heuristic
  1458. * so could be changed anytime.
  1459. */
  1460. if (order >= pageblock_order)
  1461. return true;
  1462. if (order >= pageblock_order / 2 ||
  1463. start_mt == MIGRATE_RECLAIMABLE ||
  1464. start_mt == MIGRATE_UNMOVABLE ||
  1465. page_group_by_mobility_disabled)
  1466. return true;
  1467. return false;
  1468. }
  1469. /*
  1470. * This function implements actual steal behaviour. If order is large enough,
  1471. * we can steal whole pageblock. If not, we first move freepages in this
  1472. * pageblock and check whether half of pages are moved or not. If half of
  1473. * pages are moved, we can change migratetype of pageblock and permanently
  1474. * use it's pages as requested migratetype in the future.
  1475. */
  1476. static void steal_suitable_fallback(struct zone *zone, struct page *page,
  1477. int start_type)
  1478. {
  1479. unsigned int current_order = page_order(page);
  1480. int pages;
  1481. /* Take ownership for orders >= pageblock_order */
  1482. if (current_order >= pageblock_order) {
  1483. change_pageblock_range(page, current_order, start_type);
  1484. return;
  1485. }
  1486. pages = move_freepages_block(zone, page, start_type);
  1487. /* Claim the whole block if over half of it is free */
  1488. if (pages >= (1 << (pageblock_order-1)) ||
  1489. page_group_by_mobility_disabled)
  1490. set_pageblock_migratetype(page, start_type);
  1491. }
  1492. /*
  1493. * Check whether there is a suitable fallback freepage with requested order.
  1494. * If only_stealable is true, this function returns fallback_mt only if
  1495. * we can steal other freepages all together. This would help to reduce
  1496. * fragmentation due to mixed migratetype pages in one pageblock.
  1497. */
  1498. int find_suitable_fallback(struct free_area *area, unsigned int order,
  1499. int migratetype, bool only_stealable, bool *can_steal)
  1500. {
  1501. int i;
  1502. int fallback_mt;
  1503. if (area->nr_free == 0)
  1504. return -1;
  1505. *can_steal = false;
  1506. for (i = 0;; i++) {
  1507. fallback_mt = fallbacks[migratetype][i];
  1508. if (fallback_mt == MIGRATE_TYPES)
  1509. break;
  1510. if (list_empty(&area->free_list[fallback_mt]))
  1511. continue;
  1512. if (can_steal_fallback(order, migratetype))
  1513. *can_steal = true;
  1514. if (!only_stealable)
  1515. return fallback_mt;
  1516. if (*can_steal)
  1517. return fallback_mt;
  1518. }
  1519. return -1;
  1520. }
  1521. /*
  1522. * Reserve a pageblock for exclusive use of high-order atomic allocations if
  1523. * there are no empty page blocks that contain a page with a suitable order
  1524. */
  1525. static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
  1526. unsigned int alloc_order)
  1527. {
  1528. int mt;
  1529. unsigned long max_managed, flags;
  1530. /*
  1531. * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
  1532. * Check is race-prone but harmless.
  1533. */
  1534. max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
  1535. if (zone->nr_reserved_highatomic >= max_managed)
  1536. return;
  1537. spin_lock_irqsave(&zone->lock, flags);
  1538. /* Recheck the nr_reserved_highatomic limit under the lock */
  1539. if (zone->nr_reserved_highatomic >= max_managed)
  1540. goto out_unlock;
  1541. /* Yoink! */
  1542. mt = get_pageblock_migratetype(page);
  1543. if (mt != MIGRATE_HIGHATOMIC &&
  1544. !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
  1545. zone->nr_reserved_highatomic += pageblock_nr_pages;
  1546. set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
  1547. move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
  1548. }
  1549. out_unlock:
  1550. spin_unlock_irqrestore(&zone->lock, flags);
  1551. }
  1552. /*
  1553. * Used when an allocation is about to fail under memory pressure. This
  1554. * potentially hurts the reliability of high-order allocations when under
  1555. * intense memory pressure but failed atomic allocations should be easier
  1556. * to recover from than an OOM.
  1557. */
  1558. static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
  1559. {
  1560. struct zonelist *zonelist = ac->zonelist;
  1561. unsigned long flags;
  1562. struct zoneref *z;
  1563. struct zone *zone;
  1564. struct page *page;
  1565. int order;
  1566. for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
  1567. ac->nodemask) {
  1568. /* Preserve at least one pageblock */
  1569. if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
  1570. continue;
  1571. spin_lock_irqsave(&zone->lock, flags);
  1572. for (order = 0; order < MAX_ORDER; order++) {
  1573. struct free_area *area = &(zone->free_area[order]);
  1574. page = list_first_entry_or_null(
  1575. &area->free_list[MIGRATE_HIGHATOMIC],
  1576. struct page, lru);
  1577. if (!page)
  1578. continue;
  1579. /*
  1580. * It should never happen but changes to locking could
  1581. * inadvertently allow a per-cpu drain to add pages
  1582. * to MIGRATE_HIGHATOMIC while unreserving so be safe
  1583. * and watch for underflows.
  1584. */
  1585. zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
  1586. zone->nr_reserved_highatomic);
  1587. /*
  1588. * Convert to ac->migratetype and avoid the normal
  1589. * pageblock stealing heuristics. Minimally, the caller
  1590. * is doing the work and needs the pages. More
  1591. * importantly, if the block was always converted to
  1592. * MIGRATE_UNMOVABLE or another type then the number
  1593. * of pageblocks that cannot be completely freed
  1594. * may increase.
  1595. */
  1596. set_pageblock_migratetype(page, ac->migratetype);
  1597. move_freepages_block(zone, page, ac->migratetype);
  1598. spin_unlock_irqrestore(&zone->lock, flags);
  1599. return;
  1600. }
  1601. spin_unlock_irqrestore(&zone->lock, flags);
  1602. }
  1603. }
  1604. /* Remove an element from the buddy allocator from the fallback list */
  1605. static inline struct page *
  1606. __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
  1607. {
  1608. struct free_area *area;
  1609. unsigned int current_order;
  1610. struct page *page;
  1611. int fallback_mt;
  1612. bool can_steal;
  1613. /* Find the largest possible block of pages in the other list */
  1614. for (current_order = MAX_ORDER-1;
  1615. current_order >= order && current_order <= MAX_ORDER-1;
  1616. --current_order) {
  1617. area = &(zone->free_area[current_order]);
  1618. fallback_mt = find_suitable_fallback(area, current_order,
  1619. start_migratetype, false, &can_steal);
  1620. if (fallback_mt == -1)
  1621. continue;
  1622. page = list_first_entry(&area->free_list[fallback_mt],
  1623. struct page, lru);
  1624. if (can_steal)
  1625. steal_suitable_fallback(zone, page, start_migratetype);
  1626. /* Remove the page from the freelists */
  1627. area->nr_free--;
  1628. list_del(&page->lru);
  1629. rmv_page_order(page);
  1630. expand(zone, page, order, current_order, area,
  1631. start_migratetype);
  1632. /*
  1633. * The pcppage_migratetype may differ from pageblock's
  1634. * migratetype depending on the decisions in
  1635. * find_suitable_fallback(). This is OK as long as it does not
  1636. * differ for MIGRATE_CMA pageblocks. Those can be used as
  1637. * fallback only via special __rmqueue_cma_fallback() function
  1638. */
  1639. set_pcppage_migratetype(page, start_migratetype);
  1640. trace_mm_page_alloc_extfrag(page, order, current_order,
  1641. start_migratetype, fallback_mt);
  1642. return page;
  1643. }
  1644. return NULL;
  1645. }
  1646. /*
  1647. * Do the hard work of removing an element from the buddy allocator.
  1648. * Call me with the zone->lock already held.
  1649. */
  1650. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  1651. int migratetype)
  1652. {
  1653. struct page *page;
  1654. page = __rmqueue_smallest(zone, order, migratetype);
  1655. if (unlikely(!page)) {
  1656. if (migratetype == MIGRATE_MOVABLE)
  1657. page = __rmqueue_cma_fallback(zone, order);
  1658. if (!page)
  1659. page = __rmqueue_fallback(zone, order, migratetype);
  1660. }
  1661. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  1662. return page;
  1663. }
  1664. /*
  1665. * Obtain a specified number of elements from the buddy allocator, all under
  1666. * a single hold of the lock, for efficiency. Add them to the supplied list.
  1667. * Returns the number of new pages which were placed at *list.
  1668. */
  1669. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  1670. unsigned long count, struct list_head *list,
  1671. int migratetype, bool cold)
  1672. {
  1673. int i;
  1674. spin_lock(&zone->lock);
  1675. for (i = 0; i < count; ++i) {
  1676. struct page *page = __rmqueue(zone, order, migratetype);
  1677. if (unlikely(page == NULL))
  1678. break;
  1679. /*
  1680. * Split buddy pages returned by expand() are received here
  1681. * in physical page order. The page is added to the callers and
  1682. * list and the list head then moves forward. From the callers
  1683. * perspective, the linked list is ordered by page number in
  1684. * some conditions. This is useful for IO devices that can
  1685. * merge IO requests if the physical pages are ordered
  1686. * properly.
  1687. */
  1688. if (likely(!cold))
  1689. list_add(&page->lru, list);
  1690. else
  1691. list_add_tail(&page->lru, list);
  1692. list = &page->lru;
  1693. if (is_migrate_cma(get_pcppage_migratetype(page)))
  1694. __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
  1695. -(1 << order));
  1696. }
  1697. __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
  1698. spin_unlock(&zone->lock);
  1699. return i;
  1700. }
  1701. #ifdef CONFIG_NUMA
  1702. /*
  1703. * Called from the vmstat counter updater to drain pagesets of this
  1704. * currently executing processor on remote nodes after they have
  1705. * expired.
  1706. *
  1707. * Note that this function must be called with the thread pinned to
  1708. * a single processor.
  1709. */
  1710. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  1711. {
  1712. unsigned long flags;
  1713. int to_drain, batch;
  1714. local_irq_save(flags);
  1715. batch = READ_ONCE(pcp->batch);
  1716. to_drain = min(pcp->count, batch);
  1717. if (to_drain > 0) {
  1718. free_pcppages_bulk(zone, to_drain, pcp);
  1719. pcp->count -= to_drain;
  1720. }
  1721. local_irq_restore(flags);
  1722. }
  1723. #endif
  1724. /*
  1725. * Drain pcplists of the indicated processor and zone.
  1726. *
  1727. * The processor must either be the current processor and the
  1728. * thread pinned to the current processor or a processor that
  1729. * is not online.
  1730. */
  1731. static void drain_pages_zone(unsigned int cpu, struct zone *zone)
  1732. {
  1733. unsigned long flags;
  1734. struct per_cpu_pageset *pset;
  1735. struct per_cpu_pages *pcp;
  1736. local_irq_save(flags);
  1737. pset = per_cpu_ptr(zone->pageset, cpu);
  1738. pcp = &pset->pcp;
  1739. if (pcp->count) {
  1740. free_pcppages_bulk(zone, pcp->count, pcp);
  1741. pcp->count = 0;
  1742. }
  1743. local_irq_restore(flags);
  1744. }
  1745. /*
  1746. * Drain pcplists of all zones on the indicated processor.
  1747. *
  1748. * The processor must either be the current processor and the
  1749. * thread pinned to the current processor or a processor that
  1750. * is not online.
  1751. */
  1752. static void drain_pages(unsigned int cpu)
  1753. {
  1754. struct zone *zone;
  1755. for_each_populated_zone(zone) {
  1756. drain_pages_zone(cpu, zone);
  1757. }
  1758. }
  1759. /*
  1760. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  1761. *
  1762. * The CPU has to be pinned. When zone parameter is non-NULL, spill just
  1763. * the single zone's pages.
  1764. */
  1765. void drain_local_pages(struct zone *zone)
  1766. {
  1767. int cpu = smp_processor_id();
  1768. if (zone)
  1769. drain_pages_zone(cpu, zone);
  1770. else
  1771. drain_pages(cpu);
  1772. }
  1773. /*
  1774. * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
  1775. *
  1776. * When zone parameter is non-NULL, spill just the single zone's pages.
  1777. *
  1778. * Note that this code is protected against sending an IPI to an offline
  1779. * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
  1780. * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
  1781. * nothing keeps CPUs from showing up after we populated the cpumask and
  1782. * before the call to on_each_cpu_mask().
  1783. */
  1784. void drain_all_pages(struct zone *zone)
  1785. {
  1786. int cpu;
  1787. /*
  1788. * Allocate in the BSS so we wont require allocation in
  1789. * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
  1790. */
  1791. static cpumask_t cpus_with_pcps;
  1792. /*
  1793. * We don't care about racing with CPU hotplug event
  1794. * as offline notification will cause the notified
  1795. * cpu to drain that CPU pcps and on_each_cpu_mask
  1796. * disables preemption as part of its processing
  1797. */
  1798. for_each_online_cpu(cpu) {
  1799. struct per_cpu_pageset *pcp;
  1800. struct zone *z;
  1801. bool has_pcps = false;
  1802. if (zone) {
  1803. pcp = per_cpu_ptr(zone->pageset, cpu);
  1804. if (pcp->pcp.count)
  1805. has_pcps = true;
  1806. } else {
  1807. for_each_populated_zone(z) {
  1808. pcp = per_cpu_ptr(z->pageset, cpu);
  1809. if (pcp->pcp.count) {
  1810. has_pcps = true;
  1811. break;
  1812. }
  1813. }
  1814. }
  1815. if (has_pcps)
  1816. cpumask_set_cpu(cpu, &cpus_with_pcps);
  1817. else
  1818. cpumask_clear_cpu(cpu, &cpus_with_pcps);
  1819. }
  1820. on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
  1821. zone, 1);
  1822. }
  1823. #ifdef CONFIG_HIBERNATION
  1824. void mark_free_pages(struct zone *zone)
  1825. {
  1826. unsigned long pfn, max_zone_pfn;
  1827. unsigned long flags;
  1828. unsigned int order, t;
  1829. struct page *page;
  1830. if (zone_is_empty(zone))
  1831. return;
  1832. spin_lock_irqsave(&zone->lock, flags);
  1833. max_zone_pfn = zone_end_pfn(zone);
  1834. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  1835. if (pfn_valid(pfn)) {
  1836. page = pfn_to_page(pfn);
  1837. if (!swsusp_page_is_forbidden(page))
  1838. swsusp_unset_page_free(page);
  1839. }
  1840. for_each_migratetype_order(order, t) {
  1841. list_for_each_entry(page,
  1842. &zone->free_area[order].free_list[t], lru) {
  1843. unsigned long i;
  1844. pfn = page_to_pfn(page);
  1845. for (i = 0; i < (1UL << order); i++)
  1846. swsusp_set_page_free(pfn_to_page(pfn + i));
  1847. }
  1848. }
  1849. spin_unlock_irqrestore(&zone->lock, flags);
  1850. }
  1851. #endif /* CONFIG_PM */
  1852. /*
  1853. * Free a 0-order page
  1854. * cold == true ? free a cold page : free a hot page
  1855. */
  1856. void free_hot_cold_page(struct page *page, bool cold)
  1857. {
  1858. struct zone *zone = page_zone(page);
  1859. struct per_cpu_pages *pcp;
  1860. unsigned long flags;
  1861. unsigned long pfn = page_to_pfn(page);
  1862. int migratetype;
  1863. if (!free_pages_prepare(page, 0))
  1864. return;
  1865. migratetype = get_pfnblock_migratetype(page, pfn);
  1866. set_pcppage_migratetype(page, migratetype);
  1867. local_irq_save(flags);
  1868. __count_vm_event(PGFREE);
  1869. /*
  1870. * We only track unmovable, reclaimable and movable on pcp lists.
  1871. * Free ISOLATE pages back to the allocator because they are being
  1872. * offlined but treat RESERVE as movable pages so we can get those
  1873. * areas back if necessary. Otherwise, we may have to free
  1874. * excessively into the page allocator
  1875. */
  1876. if (migratetype >= MIGRATE_PCPTYPES) {
  1877. if (unlikely(is_migrate_isolate(migratetype))) {
  1878. free_one_page(zone, page, pfn, 0, migratetype);
  1879. goto out;
  1880. }
  1881. migratetype = MIGRATE_MOVABLE;
  1882. }
  1883. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1884. if (!cold)
  1885. list_add(&page->lru, &pcp->lists[migratetype]);
  1886. else
  1887. list_add_tail(&page->lru, &pcp->lists[migratetype]);
  1888. pcp->count++;
  1889. if (pcp->count >= pcp->high) {
  1890. unsigned long batch = READ_ONCE(pcp->batch);
  1891. free_pcppages_bulk(zone, batch, pcp);
  1892. pcp->count -= batch;
  1893. }
  1894. out:
  1895. local_irq_restore(flags);
  1896. }
  1897. /*
  1898. * Free a list of 0-order pages
  1899. */
  1900. void free_hot_cold_page_list(struct list_head *list, bool cold)
  1901. {
  1902. struct page *page, *next;
  1903. list_for_each_entry_safe(page, next, list, lru) {
  1904. trace_mm_page_free_batched(page, cold);
  1905. free_hot_cold_page(page, cold);
  1906. }
  1907. }
  1908. /*
  1909. * split_page takes a non-compound higher-order page, and splits it into
  1910. * n (1<<order) sub-pages: page[0..n]
  1911. * Each sub-page must be freed individually.
  1912. *
  1913. * Note: this is probably too low level an operation for use in drivers.
  1914. * Please consult with lkml before using this in your driver.
  1915. */
  1916. void split_page(struct page *page, unsigned int order)
  1917. {
  1918. int i;
  1919. gfp_t gfp_mask;
  1920. VM_BUG_ON_PAGE(PageCompound(page), page);
  1921. VM_BUG_ON_PAGE(!page_count(page), page);
  1922. #ifdef CONFIG_KMEMCHECK
  1923. /*
  1924. * Split shadow pages too, because free(page[0]) would
  1925. * otherwise free the whole shadow.
  1926. */
  1927. if (kmemcheck_page_is_tracked(page))
  1928. split_page(virt_to_page(page[0].shadow), order);
  1929. #endif
  1930. gfp_mask = get_page_owner_gfp(page);
  1931. set_page_owner(page, 0, gfp_mask);
  1932. for (i = 1; i < (1 << order); i++) {
  1933. set_page_refcounted(page + i);
  1934. set_page_owner(page + i, 0, gfp_mask);
  1935. }
  1936. }
  1937. EXPORT_SYMBOL_GPL(split_page);
  1938. int __isolate_free_page(struct page *page, unsigned int order)
  1939. {
  1940. unsigned long watermark;
  1941. struct zone *zone;
  1942. int mt;
  1943. BUG_ON(!PageBuddy(page));
  1944. zone = page_zone(page);
  1945. mt = get_pageblock_migratetype(page);
  1946. if (!is_migrate_isolate(mt)) {
  1947. /* Obey watermarks as if the page was being allocated */
  1948. watermark = low_wmark_pages(zone) + (1 << order);
  1949. if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
  1950. return 0;
  1951. __mod_zone_freepage_state(zone, -(1UL << order), mt);
  1952. }
  1953. /* Remove page from free list */
  1954. list_del(&page->lru);
  1955. zone->free_area[order].nr_free--;
  1956. rmv_page_order(page);
  1957. set_page_owner(page, order, __GFP_MOVABLE);
  1958. /* Set the pageblock if the isolated page is at least a pageblock */
  1959. if (order >= pageblock_order - 1) {
  1960. struct page *endpage = page + (1 << order) - 1;
  1961. for (; page < endpage; page += pageblock_nr_pages) {
  1962. int mt = get_pageblock_migratetype(page);
  1963. if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
  1964. set_pageblock_migratetype(page,
  1965. MIGRATE_MOVABLE);
  1966. }
  1967. }
  1968. return 1UL << order;
  1969. }
  1970. /*
  1971. * Similar to split_page except the page is already free. As this is only
  1972. * being used for migration, the migratetype of the block also changes.
  1973. * As this is called with interrupts disabled, the caller is responsible
  1974. * for calling arch_alloc_page() and kernel_map_page() after interrupts
  1975. * are enabled.
  1976. *
  1977. * Note: this is probably too low level an operation for use in drivers.
  1978. * Please consult with lkml before using this in your driver.
  1979. */
  1980. int split_free_page(struct page *page)
  1981. {
  1982. unsigned int order;
  1983. int nr_pages;
  1984. order = page_order(page);
  1985. nr_pages = __isolate_free_page(page, order);
  1986. if (!nr_pages)
  1987. return 0;
  1988. /* Split into individual pages */
  1989. set_page_refcounted(page);
  1990. split_page(page, order);
  1991. return nr_pages;
  1992. }
  1993. /*
  1994. * Allocate a page from the given zone. Use pcplists for order-0 allocations.
  1995. */
  1996. static inline
  1997. struct page *buffered_rmqueue(struct zone *preferred_zone,
  1998. struct zone *zone, unsigned int order,
  1999. gfp_t gfp_flags, int alloc_flags, int migratetype)
  2000. {
  2001. unsigned long flags;
  2002. struct page *page;
  2003. bool cold = ((gfp_flags & __GFP_COLD) != 0);
  2004. if (likely(order == 0)) {
  2005. struct per_cpu_pages *pcp;
  2006. struct list_head *list;
  2007. local_irq_save(flags);
  2008. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  2009. list = &pcp->lists[migratetype];
  2010. if (list_empty(list)) {
  2011. pcp->count += rmqueue_bulk(zone, 0,
  2012. pcp->batch, list,
  2013. migratetype, cold);
  2014. if (unlikely(list_empty(list)))
  2015. goto failed;
  2016. }
  2017. if (cold)
  2018. page = list_last_entry(list, struct page, lru);
  2019. else
  2020. page = list_first_entry(list, struct page, lru);
  2021. list_del(&page->lru);
  2022. pcp->count--;
  2023. } else {
  2024. if (unlikely(gfp_flags & __GFP_NOFAIL)) {
  2025. /*
  2026. * __GFP_NOFAIL is not to be used in new code.
  2027. *
  2028. * All __GFP_NOFAIL callers should be fixed so that they
  2029. * properly detect and handle allocation failures.
  2030. *
  2031. * We most definitely don't want callers attempting to
  2032. * allocate greater than order-1 page units with
  2033. * __GFP_NOFAIL.
  2034. */
  2035. WARN_ON_ONCE(order > 1);
  2036. }
  2037. spin_lock_irqsave(&zone->lock, flags);
  2038. page = NULL;
  2039. if (alloc_flags & ALLOC_HARDER) {
  2040. page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
  2041. if (page)
  2042. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  2043. }
  2044. if (!page)
  2045. page = __rmqueue(zone, order, migratetype);
  2046. spin_unlock(&zone->lock);
  2047. if (!page)
  2048. goto failed;
  2049. __mod_zone_freepage_state(zone, -(1 << order),
  2050. get_pcppage_migratetype(page));
  2051. }
  2052. __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
  2053. if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
  2054. !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
  2055. set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
  2056. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  2057. zone_statistics(preferred_zone, zone, gfp_flags);
  2058. local_irq_restore(flags);
  2059. VM_BUG_ON_PAGE(bad_range(zone, page), page);
  2060. return page;
  2061. failed:
  2062. local_irq_restore(flags);
  2063. return NULL;
  2064. }
  2065. #ifdef CONFIG_FAIL_PAGE_ALLOC
  2066. static struct {
  2067. struct fault_attr attr;
  2068. bool ignore_gfp_highmem;
  2069. bool ignore_gfp_reclaim;
  2070. u32 min_order;
  2071. } fail_page_alloc = {
  2072. .attr = FAULT_ATTR_INITIALIZER,
  2073. .ignore_gfp_reclaim = true,
  2074. .ignore_gfp_highmem = true,
  2075. .min_order = 1,
  2076. };
  2077. static int __init setup_fail_page_alloc(char *str)
  2078. {
  2079. return setup_fault_attr(&fail_page_alloc.attr, str);
  2080. }
  2081. __setup("fail_page_alloc=", setup_fail_page_alloc);
  2082. static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  2083. {
  2084. if (order < fail_page_alloc.min_order)
  2085. return false;
  2086. if (gfp_mask & __GFP_NOFAIL)
  2087. return false;
  2088. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  2089. return false;
  2090. if (fail_page_alloc.ignore_gfp_reclaim &&
  2091. (gfp_mask & __GFP_DIRECT_RECLAIM))
  2092. return false;
  2093. return should_fail(&fail_page_alloc.attr, 1 << order);
  2094. }
  2095. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  2096. static int __init fail_page_alloc_debugfs(void)
  2097. {
  2098. umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  2099. struct dentry *dir;
  2100. dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
  2101. &fail_page_alloc.attr);
  2102. if (IS_ERR(dir))
  2103. return PTR_ERR(dir);
  2104. if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
  2105. &fail_page_alloc.ignore_gfp_reclaim))
  2106. goto fail;
  2107. if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  2108. &fail_page_alloc.ignore_gfp_highmem))
  2109. goto fail;
  2110. if (!debugfs_create_u32("min-order", mode, dir,
  2111. &fail_page_alloc.min_order))
  2112. goto fail;
  2113. return 0;
  2114. fail:
  2115. debugfs_remove_recursive(dir);
  2116. return -ENOMEM;
  2117. }
  2118. late_initcall(fail_page_alloc_debugfs);
  2119. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  2120. #else /* CONFIG_FAIL_PAGE_ALLOC */
  2121. static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  2122. {
  2123. return false;
  2124. }
  2125. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  2126. /*
  2127. * Return true if free base pages are above 'mark'. For high-order checks it
  2128. * will return true of the order-0 watermark is reached and there is at least
  2129. * one free page of a suitable size. Checking now avoids taking the zone lock
  2130. * to check in the allocation paths if no pages are free.
  2131. */
  2132. static bool __zone_watermark_ok(struct zone *z, unsigned int order,
  2133. unsigned long mark, int classzone_idx, int alloc_flags,
  2134. long free_pages)
  2135. {
  2136. long min = mark;
  2137. int o;
  2138. const int alloc_harder = (alloc_flags & ALLOC_HARDER);
  2139. /* free_pages may go negative - that's OK */
  2140. free_pages -= (1 << order) - 1;
  2141. if (alloc_flags & ALLOC_HIGH)
  2142. min -= min / 2;
  2143. /*
  2144. * If the caller does not have rights to ALLOC_HARDER then subtract
  2145. * the high-atomic reserves. This will over-estimate the size of the
  2146. * atomic reserve but it avoids a search.
  2147. */
  2148. if (likely(!alloc_harder))
  2149. free_pages -= z->nr_reserved_highatomic;
  2150. else
  2151. min -= min / 4;
  2152. #ifdef CONFIG_CMA
  2153. /* If allocation can't use CMA areas don't use free CMA pages */
  2154. if (!(alloc_flags & ALLOC_CMA))
  2155. free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
  2156. #endif
  2157. /*
  2158. * Check watermarks for an order-0 allocation request. If these
  2159. * are not met, then a high-order request also cannot go ahead
  2160. * even if a suitable page happened to be free.
  2161. */
  2162. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  2163. return false;
  2164. /* If this is an order-0 request then the watermark is fine */
  2165. if (!order)
  2166. return true;
  2167. /* For a high-order request, check at least one suitable page is free */
  2168. for (o = order; o < MAX_ORDER; o++) {
  2169. struct free_area *area = &z->free_area[o];
  2170. int mt;
  2171. if (!area->nr_free)
  2172. continue;
  2173. if (alloc_harder)
  2174. return true;
  2175. for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
  2176. if (!list_empty(&area->free_list[mt]))
  2177. return true;
  2178. }
  2179. #ifdef CONFIG_CMA
  2180. if ((alloc_flags & ALLOC_CMA) &&
  2181. !list_empty(&area->free_list[MIGRATE_CMA])) {
  2182. return true;
  2183. }
  2184. #endif
  2185. }
  2186. return false;
  2187. }
  2188. bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
  2189. int classzone_idx, int alloc_flags)
  2190. {
  2191. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  2192. zone_page_state(z, NR_FREE_PAGES));
  2193. }
  2194. bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
  2195. unsigned long mark, int classzone_idx)
  2196. {
  2197. long free_pages = zone_page_state(z, NR_FREE_PAGES);
  2198. if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
  2199. free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
  2200. return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
  2201. free_pages);
  2202. }
  2203. #ifdef CONFIG_NUMA
  2204. static bool zone_local(struct zone *local_zone, struct zone *zone)
  2205. {
  2206. return local_zone->node == zone->node;
  2207. }
  2208. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  2209. {
  2210. return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
  2211. RECLAIM_DISTANCE;
  2212. }
  2213. #else /* CONFIG_NUMA */
  2214. static bool zone_local(struct zone *local_zone, struct zone *zone)
  2215. {
  2216. return true;
  2217. }
  2218. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  2219. {
  2220. return true;
  2221. }
  2222. #endif /* CONFIG_NUMA */
  2223. static void reset_alloc_batches(struct zone *preferred_zone)
  2224. {
  2225. struct zone *zone = preferred_zone->zone_pgdat->node_zones;
  2226. do {
  2227. mod_zone_page_state(zone, NR_ALLOC_BATCH,
  2228. high_wmark_pages(zone) - low_wmark_pages(zone) -
  2229. atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
  2230. clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
  2231. } while (zone++ != preferred_zone);
  2232. }
  2233. /*
  2234. * get_page_from_freelist goes through the zonelist trying to allocate
  2235. * a page.
  2236. */
  2237. static struct page *
  2238. get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
  2239. const struct alloc_context *ac)
  2240. {
  2241. struct zonelist *zonelist = ac->zonelist;
  2242. struct zoneref *z;
  2243. struct page *page = NULL;
  2244. struct zone *zone;
  2245. int nr_fair_skipped = 0;
  2246. bool zonelist_rescan;
  2247. zonelist_scan:
  2248. zonelist_rescan = false;
  2249. /*
  2250. * Scan zonelist, looking for a zone with enough free.
  2251. * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
  2252. */
  2253. for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
  2254. ac->nodemask) {
  2255. unsigned long mark;
  2256. if (cpusets_enabled() &&
  2257. (alloc_flags & ALLOC_CPUSET) &&
  2258. !cpuset_zone_allowed(zone, gfp_mask))
  2259. continue;
  2260. /*
  2261. * Distribute pages in proportion to the individual
  2262. * zone size to ensure fair page aging. The zone a
  2263. * page was allocated in should have no effect on the
  2264. * time the page has in memory before being reclaimed.
  2265. */
  2266. if (alloc_flags & ALLOC_FAIR) {
  2267. if (!zone_local(ac->preferred_zone, zone))
  2268. break;
  2269. if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
  2270. nr_fair_skipped++;
  2271. continue;
  2272. }
  2273. }
  2274. /*
  2275. * When allocating a page cache page for writing, we
  2276. * want to get it from a zone that is within its dirty
  2277. * limit, such that no single zone holds more than its
  2278. * proportional share of globally allowed dirty pages.
  2279. * The dirty limits take into account the zone's
  2280. * lowmem reserves and high watermark so that kswapd
  2281. * should be able to balance it without having to
  2282. * write pages from its LRU list.
  2283. *
  2284. * This may look like it could increase pressure on
  2285. * lower zones by failing allocations in higher zones
  2286. * before they are full. But the pages that do spill
  2287. * over are limited as the lower zones are protected
  2288. * by this very same mechanism. It should not become
  2289. * a practical burden to them.
  2290. *
  2291. * XXX: For now, allow allocations to potentially
  2292. * exceed the per-zone dirty limit in the slowpath
  2293. * (spread_dirty_pages unset) before going into reclaim,
  2294. * which is important when on a NUMA setup the allowed
  2295. * zones are together not big enough to reach the
  2296. * global limit. The proper fix for these situations
  2297. * will require awareness of zones in the
  2298. * dirty-throttling and the flusher threads.
  2299. */
  2300. if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
  2301. continue;
  2302. mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
  2303. if (!zone_watermark_ok(zone, order, mark,
  2304. ac->classzone_idx, alloc_flags)) {
  2305. int ret;
  2306. /* Checked here to keep the fast path fast */
  2307. BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
  2308. if (alloc_flags & ALLOC_NO_WATERMARKS)
  2309. goto try_this_zone;
  2310. if (zone_reclaim_mode == 0 ||
  2311. !zone_allows_reclaim(ac->preferred_zone, zone))
  2312. continue;
  2313. ret = zone_reclaim(zone, gfp_mask, order);
  2314. switch (ret) {
  2315. case ZONE_RECLAIM_NOSCAN:
  2316. /* did not scan */
  2317. continue;
  2318. case ZONE_RECLAIM_FULL:
  2319. /* scanned but unreclaimable */
  2320. continue;
  2321. default:
  2322. /* did we reclaim enough */
  2323. if (zone_watermark_ok(zone, order, mark,
  2324. ac->classzone_idx, alloc_flags))
  2325. goto try_this_zone;
  2326. continue;
  2327. }
  2328. }
  2329. try_this_zone:
  2330. page = buffered_rmqueue(ac->preferred_zone, zone, order,
  2331. gfp_mask, alloc_flags, ac->migratetype);
  2332. if (page) {
  2333. if (prep_new_page(page, order, gfp_mask, alloc_flags))
  2334. goto try_this_zone;
  2335. /*
  2336. * If this is a high-order atomic allocation then check
  2337. * if the pageblock should be reserved for the future
  2338. */
  2339. if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
  2340. reserve_highatomic_pageblock(page, zone, order);
  2341. return page;
  2342. }
  2343. }
  2344. /*
  2345. * The first pass makes sure allocations are spread fairly within the
  2346. * local node. However, the local node might have free pages left
  2347. * after the fairness batches are exhausted, and remote zones haven't
  2348. * even been considered yet. Try once more without fairness, and
  2349. * include remote zones now, before entering the slowpath and waking
  2350. * kswapd: prefer spilling to a remote zone over swapping locally.
  2351. */
  2352. if (alloc_flags & ALLOC_FAIR) {
  2353. alloc_flags &= ~ALLOC_FAIR;
  2354. if (nr_fair_skipped) {
  2355. zonelist_rescan = true;
  2356. reset_alloc_batches(ac->preferred_zone);
  2357. }
  2358. if (nr_online_nodes > 1)
  2359. zonelist_rescan = true;
  2360. }
  2361. if (zonelist_rescan)
  2362. goto zonelist_scan;
  2363. return NULL;
  2364. }
  2365. /*
  2366. * Large machines with many possible nodes should not always dump per-node
  2367. * meminfo in irq context.
  2368. */
  2369. static inline bool should_suppress_show_mem(void)
  2370. {
  2371. bool ret = false;
  2372. #if NODES_SHIFT > 8
  2373. ret = in_interrupt();
  2374. #endif
  2375. return ret;
  2376. }
  2377. static DEFINE_RATELIMIT_STATE(nopage_rs,
  2378. DEFAULT_RATELIMIT_INTERVAL,
  2379. DEFAULT_RATELIMIT_BURST);
  2380. void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
  2381. {
  2382. unsigned int filter = SHOW_MEM_FILTER_NODES;
  2383. if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
  2384. debug_guardpage_minorder() > 0)
  2385. return;
  2386. /*
  2387. * This documents exceptions given to allocations in certain
  2388. * contexts that are allowed to allocate outside current's set
  2389. * of allowed nodes.
  2390. */
  2391. if (!(gfp_mask & __GFP_NOMEMALLOC))
  2392. if (test_thread_flag(TIF_MEMDIE) ||
  2393. (current->flags & (PF_MEMALLOC | PF_EXITING)))
  2394. filter &= ~SHOW_MEM_FILTER_NODES;
  2395. if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
  2396. filter &= ~SHOW_MEM_FILTER_NODES;
  2397. if (fmt) {
  2398. struct va_format vaf;
  2399. va_list args;
  2400. va_start(args, fmt);
  2401. vaf.fmt = fmt;
  2402. vaf.va = &args;
  2403. pr_warn("%pV", &vaf);
  2404. va_end(args);
  2405. }
  2406. pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
  2407. current->comm, order, gfp_mask, &gfp_mask);
  2408. dump_stack();
  2409. if (!should_suppress_show_mem())
  2410. show_mem(filter);
  2411. }
  2412. static inline struct page *
  2413. __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
  2414. const struct alloc_context *ac, unsigned long *did_some_progress)
  2415. {
  2416. struct oom_control oc = {
  2417. .zonelist = ac->zonelist,
  2418. .nodemask = ac->nodemask,
  2419. .gfp_mask = gfp_mask,
  2420. .order = order,
  2421. };
  2422. struct page *page;
  2423. *did_some_progress = 0;
  2424. /*
  2425. * Acquire the oom lock. If that fails, somebody else is
  2426. * making progress for us.
  2427. */
  2428. if (!mutex_trylock(&oom_lock)) {
  2429. *did_some_progress = 1;
  2430. schedule_timeout_uninterruptible(1);
  2431. return NULL;
  2432. }
  2433. /*
  2434. * Go through the zonelist yet one more time, keep very high watermark
  2435. * here, this is only to catch a parallel oom killing, we must fail if
  2436. * we're still under heavy pressure.
  2437. */
  2438. page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
  2439. ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
  2440. if (page)
  2441. goto out;
  2442. if (!(gfp_mask & __GFP_NOFAIL)) {
  2443. /* Coredumps can quickly deplete all memory reserves */
  2444. if (current->flags & PF_DUMPCORE)
  2445. goto out;
  2446. /* The OOM killer will not help higher order allocs */
  2447. if (order > PAGE_ALLOC_COSTLY_ORDER)
  2448. goto out;
  2449. /* The OOM killer does not needlessly kill tasks for lowmem */
  2450. if (ac->high_zoneidx < ZONE_NORMAL)
  2451. goto out;
  2452. /* The OOM killer does not compensate for IO-less reclaim */
  2453. if (!(gfp_mask & __GFP_FS)) {
  2454. /*
  2455. * XXX: Page reclaim didn't yield anything,
  2456. * and the OOM killer can't be invoked, but
  2457. * keep looping as per tradition.
  2458. */
  2459. *did_some_progress = 1;
  2460. goto out;
  2461. }
  2462. if (pm_suspended_storage())
  2463. goto out;
  2464. /* The OOM killer may not free memory on a specific node */
  2465. if (gfp_mask & __GFP_THISNODE)
  2466. goto out;
  2467. }
  2468. /* Exhausted what can be done so it's blamo time */
  2469. if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
  2470. *did_some_progress = 1;
  2471. if (gfp_mask & __GFP_NOFAIL) {
  2472. page = get_page_from_freelist(gfp_mask, order,
  2473. ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
  2474. /*
  2475. * fallback to ignore cpuset restriction if our nodes
  2476. * are depleted
  2477. */
  2478. if (!page)
  2479. page = get_page_from_freelist(gfp_mask, order,
  2480. ALLOC_NO_WATERMARKS, ac);
  2481. }
  2482. }
  2483. out:
  2484. mutex_unlock(&oom_lock);
  2485. return page;
  2486. }
  2487. #ifdef CONFIG_COMPACTION
  2488. /* Try memory compaction for high-order allocations before reclaim */
  2489. static struct page *
  2490. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  2491. int alloc_flags, const struct alloc_context *ac,
  2492. enum migrate_mode mode, int *contended_compaction,
  2493. bool *deferred_compaction)
  2494. {
  2495. unsigned long compact_result;
  2496. struct page *page;
  2497. if (!order)
  2498. return NULL;
  2499. current->flags |= PF_MEMALLOC;
  2500. compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
  2501. mode, contended_compaction);
  2502. current->flags &= ~PF_MEMALLOC;
  2503. switch (compact_result) {
  2504. case COMPACT_DEFERRED:
  2505. *deferred_compaction = true;
  2506. /* fall-through */
  2507. case COMPACT_SKIPPED:
  2508. return NULL;
  2509. default:
  2510. break;
  2511. }
  2512. /*
  2513. * At least in one zone compaction wasn't deferred or skipped, so let's
  2514. * count a compaction stall
  2515. */
  2516. count_vm_event(COMPACTSTALL);
  2517. page = get_page_from_freelist(gfp_mask, order,
  2518. alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
  2519. if (page) {
  2520. struct zone *zone = page_zone(page);
  2521. zone->compact_blockskip_flush = false;
  2522. compaction_defer_reset(zone, order, true);
  2523. count_vm_event(COMPACTSUCCESS);
  2524. return page;
  2525. }
  2526. /*
  2527. * It's bad if compaction run occurs and fails. The most likely reason
  2528. * is that pages exist, but not enough to satisfy watermarks.
  2529. */
  2530. count_vm_event(COMPACTFAIL);
  2531. cond_resched();
  2532. return NULL;
  2533. }
  2534. #else
  2535. static inline struct page *
  2536. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  2537. int alloc_flags, const struct alloc_context *ac,
  2538. enum migrate_mode mode, int *contended_compaction,
  2539. bool *deferred_compaction)
  2540. {
  2541. return NULL;
  2542. }
  2543. #endif /* CONFIG_COMPACTION */
  2544. /* Perform direct synchronous page reclaim */
  2545. static int
  2546. __perform_reclaim(gfp_t gfp_mask, unsigned int order,
  2547. const struct alloc_context *ac)
  2548. {
  2549. struct reclaim_state reclaim_state;
  2550. int progress;
  2551. cond_resched();
  2552. /* We now go into synchronous reclaim */
  2553. cpuset_memory_pressure_bump();
  2554. current->flags |= PF_MEMALLOC;
  2555. lockdep_set_current_reclaim_state(gfp_mask);
  2556. reclaim_state.reclaimed_slab = 0;
  2557. current->reclaim_state = &reclaim_state;
  2558. progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
  2559. ac->nodemask);
  2560. current->reclaim_state = NULL;
  2561. lockdep_clear_current_reclaim_state();
  2562. current->flags &= ~PF_MEMALLOC;
  2563. cond_resched();
  2564. return progress;
  2565. }
  2566. /* The really slow allocator path where we enter direct reclaim */
  2567. static inline struct page *
  2568. __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
  2569. int alloc_flags, const struct alloc_context *ac,
  2570. unsigned long *did_some_progress)
  2571. {
  2572. struct page *page = NULL;
  2573. bool drained = false;
  2574. *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
  2575. if (unlikely(!(*did_some_progress)))
  2576. return NULL;
  2577. retry:
  2578. page = get_page_from_freelist(gfp_mask, order,
  2579. alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
  2580. /*
  2581. * If an allocation failed after direct reclaim, it could be because
  2582. * pages are pinned on the per-cpu lists or in high alloc reserves.
  2583. * Shrink them them and try again
  2584. */
  2585. if (!page && !drained) {
  2586. unreserve_highatomic_pageblock(ac);
  2587. drain_all_pages(NULL);
  2588. drained = true;
  2589. goto retry;
  2590. }
  2591. return page;
  2592. }
  2593. static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
  2594. {
  2595. struct zoneref *z;
  2596. struct zone *zone;
  2597. for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
  2598. ac->high_zoneidx, ac->nodemask)
  2599. wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
  2600. }
  2601. static inline int
  2602. gfp_to_alloc_flags(gfp_t gfp_mask)
  2603. {
  2604. int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
  2605. /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
  2606. BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
  2607. /*
  2608. * The caller may dip into page reserves a bit more if the caller
  2609. * cannot run direct reclaim, or if the caller has realtime scheduling
  2610. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  2611. * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
  2612. */
  2613. alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
  2614. if (gfp_mask & __GFP_ATOMIC) {
  2615. /*
  2616. * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
  2617. * if it can't schedule.
  2618. */
  2619. if (!(gfp_mask & __GFP_NOMEMALLOC))
  2620. alloc_flags |= ALLOC_HARDER;
  2621. /*
  2622. * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
  2623. * comment for __cpuset_node_allowed().
  2624. */
  2625. alloc_flags &= ~ALLOC_CPUSET;
  2626. } else if (unlikely(rt_task(current)) && !in_interrupt())
  2627. alloc_flags |= ALLOC_HARDER;
  2628. if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
  2629. if (gfp_mask & __GFP_MEMALLOC)
  2630. alloc_flags |= ALLOC_NO_WATERMARKS;
  2631. else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
  2632. alloc_flags |= ALLOC_NO_WATERMARKS;
  2633. else if (!in_interrupt() &&
  2634. ((current->flags & PF_MEMALLOC) ||
  2635. unlikely(test_thread_flag(TIF_MEMDIE))))
  2636. alloc_flags |= ALLOC_NO_WATERMARKS;
  2637. }
  2638. #ifdef CONFIG_CMA
  2639. if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
  2640. alloc_flags |= ALLOC_CMA;
  2641. #endif
  2642. return alloc_flags;
  2643. }
  2644. bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
  2645. {
  2646. return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
  2647. }
  2648. static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
  2649. {
  2650. return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
  2651. }
  2652. static inline struct page *
  2653. __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
  2654. struct alloc_context *ac)
  2655. {
  2656. bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
  2657. struct page *page = NULL;
  2658. int alloc_flags;
  2659. unsigned long pages_reclaimed = 0;
  2660. unsigned long did_some_progress;
  2661. enum migrate_mode migration_mode = MIGRATE_ASYNC;
  2662. bool deferred_compaction = false;
  2663. int contended_compaction = COMPACT_CONTENDED_NONE;
  2664. /*
  2665. * In the slowpath, we sanity check order to avoid ever trying to
  2666. * reclaim >= MAX_ORDER areas which will never succeed. Callers may
  2667. * be using allocators in order of preference for an area that is
  2668. * too large.
  2669. */
  2670. if (order >= MAX_ORDER) {
  2671. WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
  2672. return NULL;
  2673. }
  2674. /*
  2675. * We also sanity check to catch abuse of atomic reserves being used by
  2676. * callers that are not in atomic context.
  2677. */
  2678. if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
  2679. (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
  2680. gfp_mask &= ~__GFP_ATOMIC;
  2681. retry:
  2682. if (gfp_mask & __GFP_KSWAPD_RECLAIM)
  2683. wake_all_kswapds(order, ac);
  2684. /*
  2685. * OK, we're below the kswapd watermark and have kicked background
  2686. * reclaim. Now things get more complex, so set up alloc_flags according
  2687. * to how we want to proceed.
  2688. */
  2689. alloc_flags = gfp_to_alloc_flags(gfp_mask);
  2690. /*
  2691. * Find the true preferred zone if the allocation is unconstrained by
  2692. * cpusets.
  2693. */
  2694. if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
  2695. struct zoneref *preferred_zoneref;
  2696. preferred_zoneref = first_zones_zonelist(ac->zonelist,
  2697. ac->high_zoneidx, NULL, &ac->preferred_zone);
  2698. ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
  2699. }
  2700. /* This is the last chance, in general, before the goto nopage. */
  2701. page = get_page_from_freelist(gfp_mask, order,
  2702. alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
  2703. if (page)
  2704. goto got_pg;
  2705. /* Allocate without watermarks if the context allows */
  2706. if (alloc_flags & ALLOC_NO_WATERMARKS) {
  2707. /*
  2708. * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
  2709. * the allocation is high priority and these type of
  2710. * allocations are system rather than user orientated
  2711. */
  2712. ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
  2713. page = get_page_from_freelist(gfp_mask, order,
  2714. ALLOC_NO_WATERMARKS, ac);
  2715. if (page)
  2716. goto got_pg;
  2717. }
  2718. /* Caller is not willing to reclaim, we can't balance anything */
  2719. if (!can_direct_reclaim) {
  2720. /*
  2721. * All existing users of the __GFP_NOFAIL are blockable, so warn
  2722. * of any new users that actually allow this type of allocation
  2723. * to fail.
  2724. */
  2725. WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
  2726. goto nopage;
  2727. }
  2728. /* Avoid recursion of direct reclaim */
  2729. if (current->flags & PF_MEMALLOC) {
  2730. /*
  2731. * __GFP_NOFAIL request from this context is rather bizarre
  2732. * because we cannot reclaim anything and only can loop waiting
  2733. * for somebody to do a work for us.
  2734. */
  2735. if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
  2736. cond_resched();
  2737. goto retry;
  2738. }
  2739. goto nopage;
  2740. }
  2741. /* Avoid allocations with no watermarks from looping endlessly */
  2742. if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
  2743. goto nopage;
  2744. /*
  2745. * Try direct compaction. The first pass is asynchronous. Subsequent
  2746. * attempts after direct reclaim are synchronous
  2747. */
  2748. page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
  2749. migration_mode,
  2750. &contended_compaction,
  2751. &deferred_compaction);
  2752. if (page)
  2753. goto got_pg;
  2754. /* Checks for THP-specific high-order allocations */
  2755. if (is_thp_gfp_mask(gfp_mask)) {
  2756. /*
  2757. * If compaction is deferred for high-order allocations, it is
  2758. * because sync compaction recently failed. If this is the case
  2759. * and the caller requested a THP allocation, we do not want
  2760. * to heavily disrupt the system, so we fail the allocation
  2761. * instead of entering direct reclaim.
  2762. */
  2763. if (deferred_compaction)
  2764. goto nopage;
  2765. /*
  2766. * In all zones where compaction was attempted (and not
  2767. * deferred or skipped), lock contention has been detected.
  2768. * For THP allocation we do not want to disrupt the others
  2769. * so we fallback to base pages instead.
  2770. */
  2771. if (contended_compaction == COMPACT_CONTENDED_LOCK)
  2772. goto nopage;
  2773. /*
  2774. * If compaction was aborted due to need_resched(), we do not
  2775. * want to further increase allocation latency, unless it is
  2776. * khugepaged trying to collapse.
  2777. */
  2778. if (contended_compaction == COMPACT_CONTENDED_SCHED
  2779. && !(current->flags & PF_KTHREAD))
  2780. goto nopage;
  2781. }
  2782. /*
  2783. * It can become very expensive to allocate transparent hugepages at
  2784. * fault, so use asynchronous memory compaction for THP unless it is
  2785. * khugepaged trying to collapse.
  2786. */
  2787. if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
  2788. migration_mode = MIGRATE_SYNC_LIGHT;
  2789. /* Try direct reclaim and then allocating */
  2790. page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
  2791. &did_some_progress);
  2792. if (page)
  2793. goto got_pg;
  2794. /* Do not loop if specifically requested */
  2795. if (gfp_mask & __GFP_NORETRY)
  2796. goto noretry;
  2797. /* Keep reclaiming pages as long as there is reasonable progress */
  2798. pages_reclaimed += did_some_progress;
  2799. if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
  2800. ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
  2801. /* Wait for some write requests to complete then retry */
  2802. wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
  2803. goto retry;
  2804. }
  2805. /* Reclaim has failed us, start killing things */
  2806. page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
  2807. if (page)
  2808. goto got_pg;
  2809. /* Retry as long as the OOM killer is making progress */
  2810. if (did_some_progress)
  2811. goto retry;
  2812. noretry:
  2813. /*
  2814. * High-order allocations do not necessarily loop after
  2815. * direct reclaim and reclaim/compaction depends on compaction
  2816. * being called after reclaim so call directly if necessary
  2817. */
  2818. page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
  2819. ac, migration_mode,
  2820. &contended_compaction,
  2821. &deferred_compaction);
  2822. if (page)
  2823. goto got_pg;
  2824. nopage:
  2825. warn_alloc_failed(gfp_mask, order, NULL);
  2826. got_pg:
  2827. return page;
  2828. }
  2829. /*
  2830. * This is the 'heart' of the zoned buddy allocator.
  2831. */
  2832. struct page *
  2833. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
  2834. struct zonelist *zonelist, nodemask_t *nodemask)
  2835. {
  2836. struct zoneref *preferred_zoneref;
  2837. struct page *page = NULL;
  2838. unsigned int cpuset_mems_cookie;
  2839. int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
  2840. gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
  2841. struct alloc_context ac = {
  2842. .high_zoneidx = gfp_zone(gfp_mask),
  2843. .nodemask = nodemask,
  2844. .migratetype = gfpflags_to_migratetype(gfp_mask),
  2845. };
  2846. gfp_mask &= gfp_allowed_mask;
  2847. lockdep_trace_alloc(gfp_mask);
  2848. might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
  2849. if (should_fail_alloc_page(gfp_mask, order))
  2850. return NULL;
  2851. /*
  2852. * Check the zones suitable for the gfp_mask contain at least one
  2853. * valid zone. It's possible to have an empty zonelist as a result
  2854. * of __GFP_THISNODE and a memoryless node
  2855. */
  2856. if (unlikely(!zonelist->_zonerefs->zone))
  2857. return NULL;
  2858. if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
  2859. alloc_flags |= ALLOC_CMA;
  2860. retry_cpuset:
  2861. cpuset_mems_cookie = read_mems_allowed_begin();
  2862. /* We set it here, as __alloc_pages_slowpath might have changed it */
  2863. ac.zonelist = zonelist;
  2864. /* Dirty zone balancing only done in the fast path */
  2865. ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
  2866. /* The preferred zone is used for statistics later */
  2867. preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
  2868. ac.nodemask ? : &cpuset_current_mems_allowed,
  2869. &ac.preferred_zone);
  2870. if (!ac.preferred_zone)
  2871. goto out;
  2872. ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
  2873. /* First allocation attempt */
  2874. alloc_mask = gfp_mask|__GFP_HARDWALL;
  2875. page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
  2876. if (unlikely(!page)) {
  2877. /*
  2878. * Runtime PM, block IO and its error handling path
  2879. * can deadlock because I/O on the device might not
  2880. * complete.
  2881. */
  2882. alloc_mask = memalloc_noio_flags(gfp_mask);
  2883. ac.spread_dirty_pages = false;
  2884. page = __alloc_pages_slowpath(alloc_mask, order, &ac);
  2885. }
  2886. if (kmemcheck_enabled && page)
  2887. kmemcheck_pagealloc_alloc(page, order, gfp_mask);
  2888. trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
  2889. out:
  2890. /*
  2891. * When updating a task's mems_allowed, it is possible to race with
  2892. * parallel threads in such a way that an allocation can fail while
  2893. * the mask is being updated. If a page allocation is about to fail,
  2894. * check if the cpuset changed during allocation and if so, retry.
  2895. */
  2896. if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
  2897. goto retry_cpuset;
  2898. return page;
  2899. }
  2900. EXPORT_SYMBOL(__alloc_pages_nodemask);
  2901. /*
  2902. * Common helper functions.
  2903. */
  2904. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  2905. {
  2906. struct page *page;
  2907. /*
  2908. * __get_free_pages() returns a 32-bit address, which cannot represent
  2909. * a highmem page
  2910. */
  2911. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  2912. page = alloc_pages(gfp_mask, order);
  2913. if (!page)
  2914. return 0;
  2915. return (unsigned long) page_address(page);
  2916. }
  2917. EXPORT_SYMBOL(__get_free_pages);
  2918. unsigned long get_zeroed_page(gfp_t gfp_mask)
  2919. {
  2920. return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
  2921. }
  2922. EXPORT_SYMBOL(get_zeroed_page);
  2923. void __free_pages(struct page *page, unsigned int order)
  2924. {
  2925. if (put_page_testzero(page)) {
  2926. if (order == 0)
  2927. free_hot_cold_page(page, false);
  2928. else
  2929. __free_pages_ok(page, order);
  2930. }
  2931. }
  2932. EXPORT_SYMBOL(__free_pages);
  2933. void free_pages(unsigned long addr, unsigned int order)
  2934. {
  2935. if (addr != 0) {
  2936. VM_BUG_ON(!virt_addr_valid((void *)addr));
  2937. __free_pages(virt_to_page((void *)addr), order);
  2938. }
  2939. }
  2940. EXPORT_SYMBOL(free_pages);
  2941. /*
  2942. * Page Fragment:
  2943. * An arbitrary-length arbitrary-offset area of memory which resides
  2944. * within a 0 or higher order page. Multiple fragments within that page
  2945. * are individually refcounted, in the page's reference counter.
  2946. *
  2947. * The page_frag functions below provide a simple allocation framework for
  2948. * page fragments. This is used by the network stack and network device
  2949. * drivers to provide a backing region of memory for use as either an
  2950. * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
  2951. */
  2952. static struct page *__page_frag_refill(struct page_frag_cache *nc,
  2953. gfp_t gfp_mask)
  2954. {
  2955. struct page *page = NULL;
  2956. gfp_t gfp = gfp_mask;
  2957. #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
  2958. gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
  2959. __GFP_NOMEMALLOC;
  2960. page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
  2961. PAGE_FRAG_CACHE_MAX_ORDER);
  2962. nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
  2963. #endif
  2964. if (unlikely(!page))
  2965. page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
  2966. nc->va = page ? page_address(page) : NULL;
  2967. return page;
  2968. }
  2969. void *__alloc_page_frag(struct page_frag_cache *nc,
  2970. unsigned int fragsz, gfp_t gfp_mask)
  2971. {
  2972. unsigned int size = PAGE_SIZE;
  2973. struct page *page;
  2974. int offset;
  2975. if (unlikely(!nc->va)) {
  2976. refill:
  2977. page = __page_frag_refill(nc, gfp_mask);
  2978. if (!page)
  2979. return NULL;
  2980. #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
  2981. /* if size can vary use size else just use PAGE_SIZE */
  2982. size = nc->size;
  2983. #endif
  2984. /* Even if we own the page, we do not use atomic_set().
  2985. * This would break get_page_unless_zero() users.
  2986. */
  2987. page_ref_add(page, size - 1);
  2988. /* reset page count bias and offset to start of new frag */
  2989. nc->pfmemalloc = page_is_pfmemalloc(page);
  2990. nc->pagecnt_bias = size;
  2991. nc->offset = size;
  2992. }
  2993. offset = nc->offset - fragsz;
  2994. if (unlikely(offset < 0)) {
  2995. page = virt_to_page(nc->va);
  2996. if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
  2997. goto refill;
  2998. #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
  2999. /* if size can vary use size else just use PAGE_SIZE */
  3000. size = nc->size;
  3001. #endif
  3002. /* OK, page count is 0, we can safely set it */
  3003. set_page_count(page, size);
  3004. /* reset page count bias and offset to start of new frag */
  3005. nc->pagecnt_bias = size;
  3006. offset = size - fragsz;
  3007. }
  3008. nc->pagecnt_bias--;
  3009. nc->offset = offset;
  3010. return nc->va + offset;
  3011. }
  3012. EXPORT_SYMBOL(__alloc_page_frag);
  3013. /*
  3014. * Frees a page fragment allocated out of either a compound or order 0 page.
  3015. */
  3016. void __free_page_frag(void *addr)
  3017. {
  3018. struct page *page = virt_to_head_page(addr);
  3019. if (unlikely(put_page_testzero(page)))
  3020. __free_pages_ok(page, compound_order(page));
  3021. }
  3022. EXPORT_SYMBOL(__free_page_frag);
  3023. /*
  3024. * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
  3025. * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
  3026. * equivalent to alloc_pages.
  3027. *
  3028. * It should be used when the caller would like to use kmalloc, but since the
  3029. * allocation is large, it has to fall back to the page allocator.
  3030. */
  3031. struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
  3032. {
  3033. struct page *page;
  3034. page = alloc_pages(gfp_mask, order);
  3035. if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
  3036. __free_pages(page, order);
  3037. page = NULL;
  3038. }
  3039. return page;
  3040. }
  3041. struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
  3042. {
  3043. struct page *page;
  3044. page = alloc_pages_node(nid, gfp_mask, order);
  3045. if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
  3046. __free_pages(page, order);
  3047. page = NULL;
  3048. }
  3049. return page;
  3050. }
  3051. /*
  3052. * __free_kmem_pages and free_kmem_pages will free pages allocated with
  3053. * alloc_kmem_pages.
  3054. */
  3055. void __free_kmem_pages(struct page *page, unsigned int order)
  3056. {
  3057. memcg_kmem_uncharge(page, order);
  3058. __free_pages(page, order);
  3059. }
  3060. void free_kmem_pages(unsigned long addr, unsigned int order)
  3061. {
  3062. if (addr != 0) {
  3063. VM_BUG_ON(!virt_addr_valid((void *)addr));
  3064. __free_kmem_pages(virt_to_page((void *)addr), order);
  3065. }
  3066. }
  3067. static void *make_alloc_exact(unsigned long addr, unsigned int order,
  3068. size_t size)
  3069. {
  3070. if (addr) {
  3071. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  3072. unsigned long used = addr + PAGE_ALIGN(size);
  3073. split_page(virt_to_page((void *)addr), order);
  3074. while (used < alloc_end) {
  3075. free_page(used);
  3076. used += PAGE_SIZE;
  3077. }
  3078. }
  3079. return (void *)addr;
  3080. }
  3081. /**
  3082. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  3083. * @size: the number of bytes to allocate
  3084. * @gfp_mask: GFP flags for the allocation
  3085. *
  3086. * This function is similar to alloc_pages(), except that it allocates the
  3087. * minimum number of pages to satisfy the request. alloc_pages() can only
  3088. * allocate memory in power-of-two pages.
  3089. *
  3090. * This function is also limited by MAX_ORDER.
  3091. *
  3092. * Memory allocated by this function must be released by free_pages_exact().
  3093. */
  3094. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  3095. {
  3096. unsigned int order = get_order(size);
  3097. unsigned long addr;
  3098. addr = __get_free_pages(gfp_mask, order);
  3099. return make_alloc_exact(addr, order, size);
  3100. }
  3101. EXPORT_SYMBOL(alloc_pages_exact);
  3102. /**
  3103. * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
  3104. * pages on a node.
  3105. * @nid: the preferred node ID where memory should be allocated
  3106. * @size: the number of bytes to allocate
  3107. * @gfp_mask: GFP flags for the allocation
  3108. *
  3109. * Like alloc_pages_exact(), but try to allocate on node nid first before falling
  3110. * back.
  3111. */
  3112. void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
  3113. {
  3114. unsigned int order = get_order(size);
  3115. struct page *p = alloc_pages_node(nid, gfp_mask, order);
  3116. if (!p)
  3117. return NULL;
  3118. return make_alloc_exact((unsigned long)page_address(p), order, size);
  3119. }
  3120. /**
  3121. * free_pages_exact - release memory allocated via alloc_pages_exact()
  3122. * @virt: the value returned by alloc_pages_exact.
  3123. * @size: size of allocation, same value as passed to alloc_pages_exact().
  3124. *
  3125. * Release the memory allocated by a previous call to alloc_pages_exact.
  3126. */
  3127. void free_pages_exact(void *virt, size_t size)
  3128. {
  3129. unsigned long addr = (unsigned long)virt;
  3130. unsigned long end = addr + PAGE_ALIGN(size);
  3131. while (addr < end) {
  3132. free_page(addr);
  3133. addr += PAGE_SIZE;
  3134. }
  3135. }
  3136. EXPORT_SYMBOL(free_pages_exact);
  3137. /**
  3138. * nr_free_zone_pages - count number of pages beyond high watermark
  3139. * @offset: The zone index of the highest zone
  3140. *
  3141. * nr_free_zone_pages() counts the number of counts pages which are beyond the
  3142. * high watermark within all zones at or below a given zone index. For each
  3143. * zone, the number of pages is calculated as:
  3144. * managed_pages - high_pages
  3145. */
  3146. static unsigned long nr_free_zone_pages(int offset)
  3147. {
  3148. struct zoneref *z;
  3149. struct zone *zone;
  3150. /* Just pick one node, since fallback list is circular */
  3151. unsigned long sum = 0;
  3152. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  3153. for_each_zone_zonelist(zone, z, zonelist, offset) {
  3154. unsigned long size = zone->managed_pages;
  3155. unsigned long high = high_wmark_pages(zone);
  3156. if (size > high)
  3157. sum += size - high;
  3158. }
  3159. return sum;
  3160. }
  3161. /**
  3162. * nr_free_buffer_pages - count number of pages beyond high watermark
  3163. *
  3164. * nr_free_buffer_pages() counts the number of pages which are beyond the high
  3165. * watermark within ZONE_DMA and ZONE_NORMAL.
  3166. */
  3167. unsigned long nr_free_buffer_pages(void)
  3168. {
  3169. return nr_free_zone_pages(gfp_zone(GFP_USER));
  3170. }
  3171. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  3172. /**
  3173. * nr_free_pagecache_pages - count number of pages beyond high watermark
  3174. *
  3175. * nr_free_pagecache_pages() counts the number of pages which are beyond the
  3176. * high watermark within all zones.
  3177. */
  3178. unsigned long nr_free_pagecache_pages(void)
  3179. {
  3180. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  3181. }
  3182. static inline void show_node(struct zone *zone)
  3183. {
  3184. if (IS_ENABLED(CONFIG_NUMA))
  3185. printk("Node %d ", zone_to_nid(zone));
  3186. }
  3187. long si_mem_available(void)
  3188. {
  3189. long available;
  3190. unsigned long pagecache;
  3191. unsigned long wmark_low = 0;
  3192. unsigned long pages[NR_LRU_LISTS];
  3193. struct zone *zone;
  3194. int lru;
  3195. for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
  3196. pages[lru] = global_page_state(NR_LRU_BASE + lru);
  3197. for_each_zone(zone)
  3198. wmark_low += zone->watermark[WMARK_LOW];
  3199. /*
  3200. * Estimate the amount of memory available for userspace allocations,
  3201. * without causing swapping.
  3202. */
  3203. available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
  3204. /*
  3205. * Not all the page cache can be freed, otherwise the system will
  3206. * start swapping. Assume at least half of the page cache, or the
  3207. * low watermark worth of cache, needs to stay.
  3208. */
  3209. pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
  3210. pagecache -= min(pagecache / 2, wmark_low);
  3211. available += pagecache;
  3212. /*
  3213. * Part of the reclaimable slab consists of items that are in use,
  3214. * and cannot be freed. Cap this estimate at the low watermark.
  3215. */
  3216. available += global_page_state(NR_SLAB_RECLAIMABLE) -
  3217. min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
  3218. if (available < 0)
  3219. available = 0;
  3220. return available;
  3221. }
  3222. EXPORT_SYMBOL_GPL(si_mem_available);
  3223. void si_meminfo(struct sysinfo *val)
  3224. {
  3225. val->totalram = totalram_pages;
  3226. val->sharedram = global_page_state(NR_SHMEM);
  3227. val->freeram = global_page_state(NR_FREE_PAGES);
  3228. val->bufferram = nr_blockdev_pages();
  3229. val->totalhigh = totalhigh_pages;
  3230. val->freehigh = nr_free_highpages();
  3231. val->mem_unit = PAGE_SIZE;
  3232. }
  3233. EXPORT_SYMBOL(si_meminfo);
  3234. #ifdef CONFIG_NUMA
  3235. void si_meminfo_node(struct sysinfo *val, int nid)
  3236. {
  3237. int zone_type; /* needs to be signed */
  3238. unsigned long managed_pages = 0;
  3239. pg_data_t *pgdat = NODE_DATA(nid);
  3240. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
  3241. managed_pages += pgdat->node_zones[zone_type].managed_pages;
  3242. val->totalram = managed_pages;
  3243. val->sharedram = node_page_state(nid, NR_SHMEM);
  3244. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  3245. #ifdef CONFIG_HIGHMEM
  3246. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
  3247. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  3248. NR_FREE_PAGES);
  3249. #else
  3250. val->totalhigh = 0;
  3251. val->freehigh = 0;
  3252. #endif
  3253. val->mem_unit = PAGE_SIZE;
  3254. }
  3255. #endif
  3256. /*
  3257. * Determine whether the node should be displayed or not, depending on whether
  3258. * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
  3259. */
  3260. bool skip_free_areas_node(unsigned int flags, int nid)
  3261. {
  3262. bool ret = false;
  3263. unsigned int cpuset_mems_cookie;
  3264. if (!(flags & SHOW_MEM_FILTER_NODES))
  3265. goto out;
  3266. do {
  3267. cpuset_mems_cookie = read_mems_allowed_begin();
  3268. ret = !node_isset(nid, cpuset_current_mems_allowed);
  3269. } while (read_mems_allowed_retry(cpuset_mems_cookie));
  3270. out:
  3271. return ret;
  3272. }
  3273. #define K(x) ((x) << (PAGE_SHIFT-10))
  3274. static void show_migration_types(unsigned char type)
  3275. {
  3276. static const char types[MIGRATE_TYPES] = {
  3277. [MIGRATE_UNMOVABLE] = 'U',
  3278. [MIGRATE_MOVABLE] = 'M',
  3279. [MIGRATE_RECLAIMABLE] = 'E',
  3280. [MIGRATE_HIGHATOMIC] = 'H',
  3281. #ifdef CONFIG_CMA
  3282. [MIGRATE_CMA] = 'C',
  3283. #endif
  3284. #ifdef CONFIG_MEMORY_ISOLATION
  3285. [MIGRATE_ISOLATE] = 'I',
  3286. #endif
  3287. };
  3288. char tmp[MIGRATE_TYPES + 1];
  3289. char *p = tmp;
  3290. int i;
  3291. for (i = 0; i < MIGRATE_TYPES; i++) {
  3292. if (type & (1 << i))
  3293. *p++ = types[i];
  3294. }
  3295. *p = '\0';
  3296. printk("(%s) ", tmp);
  3297. }
  3298. /*
  3299. * Show free area list (used inside shift_scroll-lock stuff)
  3300. * We also calculate the percentage fragmentation. We do this by counting the
  3301. * memory on each free list with the exception of the first item on the list.
  3302. *
  3303. * Bits in @filter:
  3304. * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
  3305. * cpuset.
  3306. */
  3307. void show_free_areas(unsigned int filter)
  3308. {
  3309. unsigned long free_pcp = 0;
  3310. int cpu;
  3311. struct zone *zone;
  3312. for_each_populated_zone(zone) {
  3313. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  3314. continue;
  3315. for_each_online_cpu(cpu)
  3316. free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
  3317. }
  3318. printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
  3319. " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
  3320. " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
  3321. " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
  3322. " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
  3323. " free:%lu free_pcp:%lu free_cma:%lu\n",
  3324. global_page_state(NR_ACTIVE_ANON),
  3325. global_page_state(NR_INACTIVE_ANON),
  3326. global_page_state(NR_ISOLATED_ANON),
  3327. global_page_state(NR_ACTIVE_FILE),
  3328. global_page_state(NR_INACTIVE_FILE),
  3329. global_page_state(NR_ISOLATED_FILE),
  3330. global_page_state(NR_UNEVICTABLE),
  3331. global_page_state(NR_FILE_DIRTY),
  3332. global_page_state(NR_WRITEBACK),
  3333. global_page_state(NR_UNSTABLE_NFS),
  3334. global_page_state(NR_SLAB_RECLAIMABLE),
  3335. global_page_state(NR_SLAB_UNRECLAIMABLE),
  3336. global_page_state(NR_FILE_MAPPED),
  3337. global_page_state(NR_SHMEM),
  3338. global_page_state(NR_PAGETABLE),
  3339. global_page_state(NR_BOUNCE),
  3340. global_page_state(NR_FREE_PAGES),
  3341. free_pcp,
  3342. global_page_state(NR_FREE_CMA_PAGES));
  3343. for_each_populated_zone(zone) {
  3344. int i;
  3345. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  3346. continue;
  3347. free_pcp = 0;
  3348. for_each_online_cpu(cpu)
  3349. free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
  3350. show_node(zone);
  3351. printk("%s"
  3352. " free:%lukB"
  3353. " min:%lukB"
  3354. " low:%lukB"
  3355. " high:%lukB"
  3356. " active_anon:%lukB"
  3357. " inactive_anon:%lukB"
  3358. " active_file:%lukB"
  3359. " inactive_file:%lukB"
  3360. " unevictable:%lukB"
  3361. " isolated(anon):%lukB"
  3362. " isolated(file):%lukB"
  3363. " present:%lukB"
  3364. " managed:%lukB"
  3365. " mlocked:%lukB"
  3366. " dirty:%lukB"
  3367. " writeback:%lukB"
  3368. " mapped:%lukB"
  3369. " shmem:%lukB"
  3370. " slab_reclaimable:%lukB"
  3371. " slab_unreclaimable:%lukB"
  3372. " kernel_stack:%lukB"
  3373. " pagetables:%lukB"
  3374. " unstable:%lukB"
  3375. " bounce:%lukB"
  3376. " free_pcp:%lukB"
  3377. " local_pcp:%ukB"
  3378. " free_cma:%lukB"
  3379. " writeback_tmp:%lukB"
  3380. " pages_scanned:%lu"
  3381. " all_unreclaimable? %s"
  3382. "\n",
  3383. zone->name,
  3384. K(zone_page_state(zone, NR_FREE_PAGES)),
  3385. K(min_wmark_pages(zone)),
  3386. K(low_wmark_pages(zone)),
  3387. K(high_wmark_pages(zone)),
  3388. K(zone_page_state(zone, NR_ACTIVE_ANON)),
  3389. K(zone_page_state(zone, NR_INACTIVE_ANON)),
  3390. K(zone_page_state(zone, NR_ACTIVE_FILE)),
  3391. K(zone_page_state(zone, NR_INACTIVE_FILE)),
  3392. K(zone_page_state(zone, NR_UNEVICTABLE)),
  3393. K(zone_page_state(zone, NR_ISOLATED_ANON)),
  3394. K(zone_page_state(zone, NR_ISOLATED_FILE)),
  3395. K(zone->present_pages),
  3396. K(zone->managed_pages),
  3397. K(zone_page_state(zone, NR_MLOCK)),
  3398. K(zone_page_state(zone, NR_FILE_DIRTY)),
  3399. K(zone_page_state(zone, NR_WRITEBACK)),
  3400. K(zone_page_state(zone, NR_FILE_MAPPED)),
  3401. K(zone_page_state(zone, NR_SHMEM)),
  3402. K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
  3403. K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
  3404. zone_page_state(zone, NR_KERNEL_STACK) *
  3405. THREAD_SIZE / 1024,
  3406. K(zone_page_state(zone, NR_PAGETABLE)),
  3407. K(zone_page_state(zone, NR_UNSTABLE_NFS)),
  3408. K(zone_page_state(zone, NR_BOUNCE)),
  3409. K(free_pcp),
  3410. K(this_cpu_read(zone->pageset->pcp.count)),
  3411. K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
  3412. K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
  3413. K(zone_page_state(zone, NR_PAGES_SCANNED)),
  3414. (!zone_reclaimable(zone) ? "yes" : "no")
  3415. );
  3416. printk("lowmem_reserve[]:");
  3417. for (i = 0; i < MAX_NR_ZONES; i++)
  3418. printk(" %ld", zone->lowmem_reserve[i]);
  3419. printk("\n");
  3420. }
  3421. for_each_populated_zone(zone) {
  3422. unsigned int order;
  3423. unsigned long nr[MAX_ORDER], flags, total = 0;
  3424. unsigned char types[MAX_ORDER];
  3425. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  3426. continue;
  3427. show_node(zone);
  3428. printk("%s: ", zone->name);
  3429. spin_lock_irqsave(&zone->lock, flags);
  3430. for (order = 0; order < MAX_ORDER; order++) {
  3431. struct free_area *area = &zone->free_area[order];
  3432. int type;
  3433. nr[order] = area->nr_free;
  3434. total += nr[order] << order;
  3435. types[order] = 0;
  3436. for (type = 0; type < MIGRATE_TYPES; type++) {
  3437. if (!list_empty(&area->free_list[type]))
  3438. types[order] |= 1 << type;
  3439. }
  3440. }
  3441. spin_unlock_irqrestore(&zone->lock, flags);
  3442. for (order = 0; order < MAX_ORDER; order++) {
  3443. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  3444. if (nr[order])
  3445. show_migration_types(types[order]);
  3446. }
  3447. printk("= %lukB\n", K(total));
  3448. }
  3449. hugetlb_show_meminfo();
  3450. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  3451. show_swap_cache_info();
  3452. }
  3453. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  3454. {
  3455. zoneref->zone = zone;
  3456. zoneref->zone_idx = zone_idx(zone);
  3457. }
  3458. /*
  3459. * Builds allocation fallback zone lists.
  3460. *
  3461. * Add all populated zones of a node to the zonelist.
  3462. */
  3463. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  3464. int nr_zones)
  3465. {
  3466. struct zone *zone;
  3467. enum zone_type zone_type = MAX_NR_ZONES;
  3468. do {
  3469. zone_type--;
  3470. zone = pgdat->node_zones + zone_type;
  3471. if (populated_zone(zone)) {
  3472. zoneref_set_zone(zone,
  3473. &zonelist->_zonerefs[nr_zones++]);
  3474. check_highest_zone(zone_type);
  3475. }
  3476. } while (zone_type);
  3477. return nr_zones;
  3478. }
  3479. /*
  3480. * zonelist_order:
  3481. * 0 = automatic detection of better ordering.
  3482. * 1 = order by ([node] distance, -zonetype)
  3483. * 2 = order by (-zonetype, [node] distance)
  3484. *
  3485. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  3486. * the same zonelist. So only NUMA can configure this param.
  3487. */
  3488. #define ZONELIST_ORDER_DEFAULT 0
  3489. #define ZONELIST_ORDER_NODE 1
  3490. #define ZONELIST_ORDER_ZONE 2
  3491. /* zonelist order in the kernel.
  3492. * set_zonelist_order() will set this to NODE or ZONE.
  3493. */
  3494. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  3495. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  3496. #ifdef CONFIG_NUMA
  3497. /* The value user specified ....changed by config */
  3498. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  3499. /* string for sysctl */
  3500. #define NUMA_ZONELIST_ORDER_LEN 16
  3501. char numa_zonelist_order[16] = "default";
  3502. /*
  3503. * interface for configure zonelist ordering.
  3504. * command line option "numa_zonelist_order"
  3505. * = "[dD]efault - default, automatic configuration.
  3506. * = "[nN]ode - order by node locality, then by zone within node
  3507. * = "[zZ]one - order by zone, then by locality within zone
  3508. */
  3509. static int __parse_numa_zonelist_order(char *s)
  3510. {
  3511. if (*s == 'd' || *s == 'D') {
  3512. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  3513. } else if (*s == 'n' || *s == 'N') {
  3514. user_zonelist_order = ZONELIST_ORDER_NODE;
  3515. } else if (*s == 'z' || *s == 'Z') {
  3516. user_zonelist_order = ZONELIST_ORDER_ZONE;
  3517. } else {
  3518. printk(KERN_WARNING
  3519. "Ignoring invalid numa_zonelist_order value: "
  3520. "%s\n", s);
  3521. return -EINVAL;
  3522. }
  3523. return 0;
  3524. }
  3525. static __init int setup_numa_zonelist_order(char *s)
  3526. {
  3527. int ret;
  3528. if (!s)
  3529. return 0;
  3530. ret = __parse_numa_zonelist_order(s);
  3531. if (ret == 0)
  3532. strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
  3533. return ret;
  3534. }
  3535. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  3536. /*
  3537. * sysctl handler for numa_zonelist_order
  3538. */
  3539. int numa_zonelist_order_handler(struct ctl_table *table, int write,
  3540. void __user *buffer, size_t *length,
  3541. loff_t *ppos)
  3542. {
  3543. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  3544. int ret;
  3545. static DEFINE_MUTEX(zl_order_mutex);
  3546. mutex_lock(&zl_order_mutex);
  3547. if (write) {
  3548. if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
  3549. ret = -EINVAL;
  3550. goto out;
  3551. }
  3552. strcpy(saved_string, (char *)table->data);
  3553. }
  3554. ret = proc_dostring(table, write, buffer, length, ppos);
  3555. if (ret)
  3556. goto out;
  3557. if (write) {
  3558. int oldval = user_zonelist_order;
  3559. ret = __parse_numa_zonelist_order((char *)table->data);
  3560. if (ret) {
  3561. /*
  3562. * bogus value. restore saved string
  3563. */
  3564. strncpy((char *)table->data, saved_string,
  3565. NUMA_ZONELIST_ORDER_LEN);
  3566. user_zonelist_order = oldval;
  3567. } else if (oldval != user_zonelist_order) {
  3568. mutex_lock(&zonelists_mutex);
  3569. build_all_zonelists(NULL, NULL);
  3570. mutex_unlock(&zonelists_mutex);
  3571. }
  3572. }
  3573. out:
  3574. mutex_unlock(&zl_order_mutex);
  3575. return ret;
  3576. }
  3577. #define MAX_NODE_LOAD (nr_online_nodes)
  3578. static int node_load[MAX_NUMNODES];
  3579. /**
  3580. * find_next_best_node - find the next node that should appear in a given node's fallback list
  3581. * @node: node whose fallback list we're appending
  3582. * @used_node_mask: nodemask_t of already used nodes
  3583. *
  3584. * We use a number of factors to determine which is the next node that should
  3585. * appear on a given node's fallback list. The node should not have appeared
  3586. * already in @node's fallback list, and it should be the next closest node
  3587. * according to the distance array (which contains arbitrary distance values
  3588. * from each node to each node in the system), and should also prefer nodes
  3589. * with no CPUs, since presumably they'll have very little allocation pressure
  3590. * on them otherwise.
  3591. * It returns -1 if no node is found.
  3592. */
  3593. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  3594. {
  3595. int n, val;
  3596. int min_val = INT_MAX;
  3597. int best_node = NUMA_NO_NODE;
  3598. const struct cpumask *tmp = cpumask_of_node(0);
  3599. /* Use the local node if we haven't already */
  3600. if (!node_isset(node, *used_node_mask)) {
  3601. node_set(node, *used_node_mask);
  3602. return node;
  3603. }
  3604. for_each_node_state(n, N_MEMORY) {
  3605. /* Don't want a node to appear more than once */
  3606. if (node_isset(n, *used_node_mask))
  3607. continue;
  3608. /* Use the distance array to find the distance */
  3609. val = node_distance(node, n);
  3610. /* Penalize nodes under us ("prefer the next node") */
  3611. val += (n < node);
  3612. /* Give preference to headless and unused nodes */
  3613. tmp = cpumask_of_node(n);
  3614. if (!cpumask_empty(tmp))
  3615. val += PENALTY_FOR_NODE_WITH_CPUS;
  3616. /* Slight preference for less loaded node */
  3617. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  3618. val += node_load[n];
  3619. if (val < min_val) {
  3620. min_val = val;
  3621. best_node = n;
  3622. }
  3623. }
  3624. if (best_node >= 0)
  3625. node_set(best_node, *used_node_mask);
  3626. return best_node;
  3627. }
  3628. /*
  3629. * Build zonelists ordered by node and zones within node.
  3630. * This results in maximum locality--normal zone overflows into local
  3631. * DMA zone, if any--but risks exhausting DMA zone.
  3632. */
  3633. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  3634. {
  3635. int j;
  3636. struct zonelist *zonelist;
  3637. zonelist = &pgdat->node_zonelists[0];
  3638. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  3639. ;
  3640. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  3641. zonelist->_zonerefs[j].zone = NULL;
  3642. zonelist->_zonerefs[j].zone_idx = 0;
  3643. }
  3644. /*
  3645. * Build gfp_thisnode zonelists
  3646. */
  3647. static void build_thisnode_zonelists(pg_data_t *pgdat)
  3648. {
  3649. int j;
  3650. struct zonelist *zonelist;
  3651. zonelist = &pgdat->node_zonelists[1];
  3652. j = build_zonelists_node(pgdat, zonelist, 0);
  3653. zonelist->_zonerefs[j].zone = NULL;
  3654. zonelist->_zonerefs[j].zone_idx = 0;
  3655. }
  3656. /*
  3657. * Build zonelists ordered by zone and nodes within zones.
  3658. * This results in conserving DMA zone[s] until all Normal memory is
  3659. * exhausted, but results in overflowing to remote node while memory
  3660. * may still exist in local DMA zone.
  3661. */
  3662. static int node_order[MAX_NUMNODES];
  3663. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  3664. {
  3665. int pos, j, node;
  3666. int zone_type; /* needs to be signed */
  3667. struct zone *z;
  3668. struct zonelist *zonelist;
  3669. zonelist = &pgdat->node_zonelists[0];
  3670. pos = 0;
  3671. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  3672. for (j = 0; j < nr_nodes; j++) {
  3673. node = node_order[j];
  3674. z = &NODE_DATA(node)->node_zones[zone_type];
  3675. if (populated_zone(z)) {
  3676. zoneref_set_zone(z,
  3677. &zonelist->_zonerefs[pos++]);
  3678. check_highest_zone(zone_type);
  3679. }
  3680. }
  3681. }
  3682. zonelist->_zonerefs[pos].zone = NULL;
  3683. zonelist->_zonerefs[pos].zone_idx = 0;
  3684. }
  3685. #if defined(CONFIG_64BIT)
  3686. /*
  3687. * Devices that require DMA32/DMA are relatively rare and do not justify a
  3688. * penalty to every machine in case the specialised case applies. Default
  3689. * to Node-ordering on 64-bit NUMA machines
  3690. */
  3691. static int default_zonelist_order(void)
  3692. {
  3693. return ZONELIST_ORDER_NODE;
  3694. }
  3695. #else
  3696. /*
  3697. * On 32-bit, the Normal zone needs to be preserved for allocations accessible
  3698. * by the kernel. If processes running on node 0 deplete the low memory zone
  3699. * then reclaim will occur more frequency increasing stalls and potentially
  3700. * be easier to OOM if a large percentage of the zone is under writeback or
  3701. * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
  3702. * Hence, default to zone ordering on 32-bit.
  3703. */
  3704. static int default_zonelist_order(void)
  3705. {
  3706. return ZONELIST_ORDER_ZONE;
  3707. }
  3708. #endif /* CONFIG_64BIT */
  3709. static void set_zonelist_order(void)
  3710. {
  3711. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  3712. current_zonelist_order = default_zonelist_order();
  3713. else
  3714. current_zonelist_order = user_zonelist_order;
  3715. }
  3716. static void build_zonelists(pg_data_t *pgdat)
  3717. {
  3718. int i, node, load;
  3719. nodemask_t used_mask;
  3720. int local_node, prev_node;
  3721. struct zonelist *zonelist;
  3722. unsigned int order = current_zonelist_order;
  3723. /* initialize zonelists */
  3724. for (i = 0; i < MAX_ZONELISTS; i++) {
  3725. zonelist = pgdat->node_zonelists + i;
  3726. zonelist->_zonerefs[0].zone = NULL;
  3727. zonelist->_zonerefs[0].zone_idx = 0;
  3728. }
  3729. /* NUMA-aware ordering of nodes */
  3730. local_node = pgdat->node_id;
  3731. load = nr_online_nodes;
  3732. prev_node = local_node;
  3733. nodes_clear(used_mask);
  3734. memset(node_order, 0, sizeof(node_order));
  3735. i = 0;
  3736. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  3737. /*
  3738. * We don't want to pressure a particular node.
  3739. * So adding penalty to the first node in same
  3740. * distance group to make it round-robin.
  3741. */
  3742. if (node_distance(local_node, node) !=
  3743. node_distance(local_node, prev_node))
  3744. node_load[node] = load;
  3745. prev_node = node;
  3746. load--;
  3747. if (order == ZONELIST_ORDER_NODE)
  3748. build_zonelists_in_node_order(pgdat, node);
  3749. else
  3750. node_order[i++] = node; /* remember order */
  3751. }
  3752. if (order == ZONELIST_ORDER_ZONE) {
  3753. /* calculate node order -- i.e., DMA last! */
  3754. build_zonelists_in_zone_order(pgdat, i);
  3755. }
  3756. build_thisnode_zonelists(pgdat);
  3757. }
  3758. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  3759. /*
  3760. * Return node id of node used for "local" allocations.
  3761. * I.e., first node id of first zone in arg node's generic zonelist.
  3762. * Used for initializing percpu 'numa_mem', which is used primarily
  3763. * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
  3764. */
  3765. int local_memory_node(int node)
  3766. {
  3767. struct zone *zone;
  3768. (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
  3769. gfp_zone(GFP_KERNEL),
  3770. NULL,
  3771. &zone);
  3772. return zone->node;
  3773. }
  3774. #endif
  3775. #else /* CONFIG_NUMA */
  3776. static void set_zonelist_order(void)
  3777. {
  3778. current_zonelist_order = ZONELIST_ORDER_ZONE;
  3779. }
  3780. static void build_zonelists(pg_data_t *pgdat)
  3781. {
  3782. int node, local_node;
  3783. enum zone_type j;
  3784. struct zonelist *zonelist;
  3785. local_node = pgdat->node_id;
  3786. zonelist = &pgdat->node_zonelists[0];
  3787. j = build_zonelists_node(pgdat, zonelist, 0);
  3788. /*
  3789. * Now we build the zonelist so that it contains the zones
  3790. * of all the other nodes.
  3791. * We don't want to pressure a particular node, so when
  3792. * building the zones for node N, we make sure that the
  3793. * zones coming right after the local ones are those from
  3794. * node N+1 (modulo N)
  3795. */
  3796. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  3797. if (!node_online(node))
  3798. continue;
  3799. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  3800. }
  3801. for (node = 0; node < local_node; node++) {
  3802. if (!node_online(node))
  3803. continue;
  3804. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  3805. }
  3806. zonelist->_zonerefs[j].zone = NULL;
  3807. zonelist->_zonerefs[j].zone_idx = 0;
  3808. }
  3809. #endif /* CONFIG_NUMA */
  3810. /*
  3811. * Boot pageset table. One per cpu which is going to be used for all
  3812. * zones and all nodes. The parameters will be set in such a way
  3813. * that an item put on a list will immediately be handed over to
  3814. * the buddy list. This is safe since pageset manipulation is done
  3815. * with interrupts disabled.
  3816. *
  3817. * The boot_pagesets must be kept even after bootup is complete for
  3818. * unused processors and/or zones. They do play a role for bootstrapping
  3819. * hotplugged processors.
  3820. *
  3821. * zoneinfo_show() and maybe other functions do
  3822. * not check if the processor is online before following the pageset pointer.
  3823. * Other parts of the kernel may not check if the zone is available.
  3824. */
  3825. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
  3826. static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
  3827. static void setup_zone_pageset(struct zone *zone);
  3828. /*
  3829. * Global mutex to protect against size modification of zonelists
  3830. * as well as to serialize pageset setup for the new populated zone.
  3831. */
  3832. DEFINE_MUTEX(zonelists_mutex);
  3833. /* return values int ....just for stop_machine() */
  3834. static int __build_all_zonelists(void *data)
  3835. {
  3836. int nid;
  3837. int cpu;
  3838. pg_data_t *self = data;
  3839. #ifdef CONFIG_NUMA
  3840. memset(node_load, 0, sizeof(node_load));
  3841. #endif
  3842. if (self && !node_online(self->node_id)) {
  3843. build_zonelists(self);
  3844. }
  3845. for_each_online_node(nid) {
  3846. pg_data_t *pgdat = NODE_DATA(nid);
  3847. build_zonelists(pgdat);
  3848. }
  3849. /*
  3850. * Initialize the boot_pagesets that are going to be used
  3851. * for bootstrapping processors. The real pagesets for
  3852. * each zone will be allocated later when the per cpu
  3853. * allocator is available.
  3854. *
  3855. * boot_pagesets are used also for bootstrapping offline
  3856. * cpus if the system is already booted because the pagesets
  3857. * are needed to initialize allocators on a specific cpu too.
  3858. * F.e. the percpu allocator needs the page allocator which
  3859. * needs the percpu allocator in order to allocate its pagesets
  3860. * (a chicken-egg dilemma).
  3861. */
  3862. for_each_possible_cpu(cpu) {
  3863. setup_pageset(&per_cpu(boot_pageset, cpu), 0);
  3864. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  3865. /*
  3866. * We now know the "local memory node" for each node--
  3867. * i.e., the node of the first zone in the generic zonelist.
  3868. * Set up numa_mem percpu variable for on-line cpus. During
  3869. * boot, only the boot cpu should be on-line; we'll init the
  3870. * secondary cpus' numa_mem as they come on-line. During
  3871. * node/memory hotplug, we'll fixup all on-line cpus.
  3872. */
  3873. if (cpu_online(cpu))
  3874. set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
  3875. #endif
  3876. }
  3877. return 0;
  3878. }
  3879. static noinline void __init
  3880. build_all_zonelists_init(void)
  3881. {
  3882. __build_all_zonelists(NULL);
  3883. mminit_verify_zonelist();
  3884. cpuset_init_current_mems_allowed();
  3885. }
  3886. /*
  3887. * Called with zonelists_mutex held always
  3888. * unless system_state == SYSTEM_BOOTING.
  3889. *
  3890. * __ref due to (1) call of __meminit annotated setup_zone_pageset
  3891. * [we're only called with non-NULL zone through __meminit paths] and
  3892. * (2) call of __init annotated helper build_all_zonelists_init
  3893. * [protected by SYSTEM_BOOTING].
  3894. */
  3895. void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
  3896. {
  3897. set_zonelist_order();
  3898. if (system_state == SYSTEM_BOOTING) {
  3899. build_all_zonelists_init();
  3900. } else {
  3901. #ifdef CONFIG_MEMORY_HOTPLUG
  3902. if (zone)
  3903. setup_zone_pageset(zone);
  3904. #endif
  3905. /* we have to stop all cpus to guarantee there is no user
  3906. of zonelist */
  3907. stop_machine(__build_all_zonelists, pgdat, NULL);
  3908. /* cpuset refresh routine should be here */
  3909. }
  3910. vm_total_pages = nr_free_pagecache_pages();
  3911. /*
  3912. * Disable grouping by mobility if the number of pages in the
  3913. * system is too low to allow the mechanism to work. It would be
  3914. * more accurate, but expensive to check per-zone. This check is
  3915. * made on memory-hotadd so a system can start with mobility
  3916. * disabled and enable it later
  3917. */
  3918. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  3919. page_group_by_mobility_disabled = 1;
  3920. else
  3921. page_group_by_mobility_disabled = 0;
  3922. pr_info("Built %i zonelists in %s order, mobility grouping %s. "
  3923. "Total pages: %ld\n",
  3924. nr_online_nodes,
  3925. zonelist_order_name[current_zonelist_order],
  3926. page_group_by_mobility_disabled ? "off" : "on",
  3927. vm_total_pages);
  3928. #ifdef CONFIG_NUMA
  3929. pr_info("Policy zone: %s\n", zone_names[policy_zone]);
  3930. #endif
  3931. }
  3932. /*
  3933. * Helper functions to size the waitqueue hash table.
  3934. * Essentially these want to choose hash table sizes sufficiently
  3935. * large so that collisions trying to wait on pages are rare.
  3936. * But in fact, the number of active page waitqueues on typical
  3937. * systems is ridiculously low, less than 200. So this is even
  3938. * conservative, even though it seems large.
  3939. *
  3940. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  3941. * waitqueues, i.e. the size of the waitq table given the number of pages.
  3942. */
  3943. #define PAGES_PER_WAITQUEUE 256
  3944. #ifndef CONFIG_MEMORY_HOTPLUG
  3945. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  3946. {
  3947. unsigned long size = 1;
  3948. pages /= PAGES_PER_WAITQUEUE;
  3949. while (size < pages)
  3950. size <<= 1;
  3951. /*
  3952. * Once we have dozens or even hundreds of threads sleeping
  3953. * on IO we've got bigger problems than wait queue collision.
  3954. * Limit the size of the wait table to a reasonable size.
  3955. */
  3956. size = min(size, 4096UL);
  3957. return max(size, 4UL);
  3958. }
  3959. #else
  3960. /*
  3961. * A zone's size might be changed by hot-add, so it is not possible to determine
  3962. * a suitable size for its wait_table. So we use the maximum size now.
  3963. *
  3964. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  3965. *
  3966. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  3967. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  3968. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  3969. *
  3970. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  3971. * or more by the traditional way. (See above). It equals:
  3972. *
  3973. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  3974. * ia64(16K page size) : = ( 8G + 4M)byte.
  3975. * powerpc (64K page size) : = (32G +16M)byte.
  3976. */
  3977. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  3978. {
  3979. return 4096UL;
  3980. }
  3981. #endif
  3982. /*
  3983. * This is an integer logarithm so that shifts can be used later
  3984. * to extract the more random high bits from the multiplicative
  3985. * hash function before the remainder is taken.
  3986. */
  3987. static inline unsigned long wait_table_bits(unsigned long size)
  3988. {
  3989. return ffz(~size);
  3990. }
  3991. /*
  3992. * Initially all pages are reserved - free ones are freed
  3993. * up by free_all_bootmem() once the early boot process is
  3994. * done. Non-atomic initialization, single-pass.
  3995. */
  3996. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  3997. unsigned long start_pfn, enum memmap_context context)
  3998. {
  3999. struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
  4000. unsigned long end_pfn = start_pfn + size;
  4001. pg_data_t *pgdat = NODE_DATA(nid);
  4002. unsigned long pfn;
  4003. unsigned long nr_initialised = 0;
  4004. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4005. struct memblock_region *r = NULL, *tmp;
  4006. #endif
  4007. if (highest_memmap_pfn < end_pfn - 1)
  4008. highest_memmap_pfn = end_pfn - 1;
  4009. /*
  4010. * Honor reservation requested by the driver for this ZONE_DEVICE
  4011. * memory
  4012. */
  4013. if (altmap && start_pfn == altmap->base_pfn)
  4014. start_pfn += altmap->reserve;
  4015. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  4016. /*
  4017. * There can be holes in boot-time mem_map[]s handed to this
  4018. * function. They do not exist on hotplugged memory.
  4019. */
  4020. if (context != MEMMAP_EARLY)
  4021. goto not_early;
  4022. if (!early_pfn_valid(pfn))
  4023. continue;
  4024. if (!early_pfn_in_nid(pfn, nid))
  4025. continue;
  4026. if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
  4027. break;
  4028. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4029. /*
  4030. * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
  4031. * from zone_movable_pfn[nid] to end of each node should be
  4032. * ZONE_MOVABLE not ZONE_NORMAL. skip it.
  4033. */
  4034. if (!mirrored_kernelcore && zone_movable_pfn[nid])
  4035. if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
  4036. continue;
  4037. /*
  4038. * Check given memblock attribute by firmware which can affect
  4039. * kernel memory layout. If zone==ZONE_MOVABLE but memory is
  4040. * mirrored, it's an overlapped memmap init. skip it.
  4041. */
  4042. if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
  4043. if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
  4044. for_each_memblock(memory, tmp)
  4045. if (pfn < memblock_region_memory_end_pfn(tmp))
  4046. break;
  4047. r = tmp;
  4048. }
  4049. if (pfn >= memblock_region_memory_base_pfn(r) &&
  4050. memblock_is_mirror(r)) {
  4051. /* already initialized as NORMAL */
  4052. pfn = memblock_region_memory_end_pfn(r);
  4053. continue;
  4054. }
  4055. }
  4056. #endif
  4057. not_early:
  4058. /*
  4059. * Mark the block movable so that blocks are reserved for
  4060. * movable at startup. This will force kernel allocations
  4061. * to reserve their blocks rather than leaking throughout
  4062. * the address space during boot when many long-lived
  4063. * kernel allocations are made.
  4064. *
  4065. * bitmap is created for zone's valid pfn range. but memmap
  4066. * can be created for invalid pages (for alignment)
  4067. * check here not to call set_pageblock_migratetype() against
  4068. * pfn out of zone.
  4069. */
  4070. if (!(pfn & (pageblock_nr_pages - 1))) {
  4071. struct page *page = pfn_to_page(pfn);
  4072. __init_single_page(page, pfn, zone, nid);
  4073. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  4074. } else {
  4075. __init_single_pfn(pfn, zone, nid);
  4076. }
  4077. }
  4078. }
  4079. static void __meminit zone_init_free_lists(struct zone *zone)
  4080. {
  4081. unsigned int order, t;
  4082. for_each_migratetype_order(order, t) {
  4083. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  4084. zone->free_area[order].nr_free = 0;
  4085. }
  4086. }
  4087. #ifndef __HAVE_ARCH_MEMMAP_INIT
  4088. #define memmap_init(size, nid, zone, start_pfn) \
  4089. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  4090. #endif
  4091. static int zone_batchsize(struct zone *zone)
  4092. {
  4093. #ifdef CONFIG_MMU
  4094. int batch;
  4095. /*
  4096. * The per-cpu-pages pools are set to around 1000th of the
  4097. * size of the zone. But no more than 1/2 of a meg.
  4098. *
  4099. * OK, so we don't know how big the cache is. So guess.
  4100. */
  4101. batch = zone->managed_pages / 1024;
  4102. if (batch * PAGE_SIZE > 512 * 1024)
  4103. batch = (512 * 1024) / PAGE_SIZE;
  4104. batch /= 4; /* We effectively *= 4 below */
  4105. if (batch < 1)
  4106. batch = 1;
  4107. /*
  4108. * Clamp the batch to a 2^n - 1 value. Having a power
  4109. * of 2 value was found to be more likely to have
  4110. * suboptimal cache aliasing properties in some cases.
  4111. *
  4112. * For example if 2 tasks are alternately allocating
  4113. * batches of pages, one task can end up with a lot
  4114. * of pages of one half of the possible page colors
  4115. * and the other with pages of the other colors.
  4116. */
  4117. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  4118. return batch;
  4119. #else
  4120. /* The deferral and batching of frees should be suppressed under NOMMU
  4121. * conditions.
  4122. *
  4123. * The problem is that NOMMU needs to be able to allocate large chunks
  4124. * of contiguous memory as there's no hardware page translation to
  4125. * assemble apparent contiguous memory from discontiguous pages.
  4126. *
  4127. * Queueing large contiguous runs of pages for batching, however,
  4128. * causes the pages to actually be freed in smaller chunks. As there
  4129. * can be a significant delay between the individual batches being
  4130. * recycled, this leads to the once large chunks of space being
  4131. * fragmented and becoming unavailable for high-order allocations.
  4132. */
  4133. return 0;
  4134. #endif
  4135. }
  4136. /*
  4137. * pcp->high and pcp->batch values are related and dependent on one another:
  4138. * ->batch must never be higher then ->high.
  4139. * The following function updates them in a safe manner without read side
  4140. * locking.
  4141. *
  4142. * Any new users of pcp->batch and pcp->high should ensure they can cope with
  4143. * those fields changing asynchronously (acording the the above rule).
  4144. *
  4145. * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
  4146. * outside of boot time (or some other assurance that no concurrent updaters
  4147. * exist).
  4148. */
  4149. static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
  4150. unsigned long batch)
  4151. {
  4152. /* start with a fail safe value for batch */
  4153. pcp->batch = 1;
  4154. smp_wmb();
  4155. /* Update high, then batch, in order */
  4156. pcp->high = high;
  4157. smp_wmb();
  4158. pcp->batch = batch;
  4159. }
  4160. /* a companion to pageset_set_high() */
  4161. static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
  4162. {
  4163. pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
  4164. }
  4165. static void pageset_init(struct per_cpu_pageset *p)
  4166. {
  4167. struct per_cpu_pages *pcp;
  4168. int migratetype;
  4169. memset(p, 0, sizeof(*p));
  4170. pcp = &p->pcp;
  4171. pcp->count = 0;
  4172. for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
  4173. INIT_LIST_HEAD(&pcp->lists[migratetype]);
  4174. }
  4175. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  4176. {
  4177. pageset_init(p);
  4178. pageset_set_batch(p, batch);
  4179. }
  4180. /*
  4181. * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
  4182. * to the value high for the pageset p.
  4183. */
  4184. static void pageset_set_high(struct per_cpu_pageset *p,
  4185. unsigned long high)
  4186. {
  4187. unsigned long batch = max(1UL, high / 4);
  4188. if ((high / 4) > (PAGE_SHIFT * 8))
  4189. batch = PAGE_SHIFT * 8;
  4190. pageset_update(&p->pcp, high, batch);
  4191. }
  4192. static void pageset_set_high_and_batch(struct zone *zone,
  4193. struct per_cpu_pageset *pcp)
  4194. {
  4195. if (percpu_pagelist_fraction)
  4196. pageset_set_high(pcp,
  4197. (zone->managed_pages /
  4198. percpu_pagelist_fraction));
  4199. else
  4200. pageset_set_batch(pcp, zone_batchsize(zone));
  4201. }
  4202. static void __meminit zone_pageset_init(struct zone *zone, int cpu)
  4203. {
  4204. struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
  4205. pageset_init(pcp);
  4206. pageset_set_high_and_batch(zone, pcp);
  4207. }
  4208. static void __meminit setup_zone_pageset(struct zone *zone)
  4209. {
  4210. int cpu;
  4211. zone->pageset = alloc_percpu(struct per_cpu_pageset);
  4212. for_each_possible_cpu(cpu)
  4213. zone_pageset_init(zone, cpu);
  4214. }
  4215. /*
  4216. * Allocate per cpu pagesets and initialize them.
  4217. * Before this call only boot pagesets were available.
  4218. */
  4219. void __init setup_per_cpu_pageset(void)
  4220. {
  4221. struct zone *zone;
  4222. for_each_populated_zone(zone)
  4223. setup_zone_pageset(zone);
  4224. }
  4225. static noinline __init_refok
  4226. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  4227. {
  4228. int i;
  4229. size_t alloc_size;
  4230. /*
  4231. * The per-page waitqueue mechanism uses hashed waitqueues
  4232. * per zone.
  4233. */
  4234. zone->wait_table_hash_nr_entries =
  4235. wait_table_hash_nr_entries(zone_size_pages);
  4236. zone->wait_table_bits =
  4237. wait_table_bits(zone->wait_table_hash_nr_entries);
  4238. alloc_size = zone->wait_table_hash_nr_entries
  4239. * sizeof(wait_queue_head_t);
  4240. if (!slab_is_available()) {
  4241. zone->wait_table = (wait_queue_head_t *)
  4242. memblock_virt_alloc_node_nopanic(
  4243. alloc_size, zone->zone_pgdat->node_id);
  4244. } else {
  4245. /*
  4246. * This case means that a zone whose size was 0 gets new memory
  4247. * via memory hot-add.
  4248. * But it may be the case that a new node was hot-added. In
  4249. * this case vmalloc() will not be able to use this new node's
  4250. * memory - this wait_table must be initialized to use this new
  4251. * node itself as well.
  4252. * To use this new node's memory, further consideration will be
  4253. * necessary.
  4254. */
  4255. zone->wait_table = vmalloc(alloc_size);
  4256. }
  4257. if (!zone->wait_table)
  4258. return -ENOMEM;
  4259. for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  4260. init_waitqueue_head(zone->wait_table + i);
  4261. return 0;
  4262. }
  4263. static __meminit void zone_pcp_init(struct zone *zone)
  4264. {
  4265. /*
  4266. * per cpu subsystem is not up at this point. The following code
  4267. * relies on the ability of the linker to provide the
  4268. * offset of a (static) per cpu variable into the per cpu area.
  4269. */
  4270. zone->pageset = &boot_pageset;
  4271. if (populated_zone(zone))
  4272. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
  4273. zone->name, zone->present_pages,
  4274. zone_batchsize(zone));
  4275. }
  4276. int __meminit init_currently_empty_zone(struct zone *zone,
  4277. unsigned long zone_start_pfn,
  4278. unsigned long size)
  4279. {
  4280. struct pglist_data *pgdat = zone->zone_pgdat;
  4281. int ret;
  4282. ret = zone_wait_table_init(zone, size);
  4283. if (ret)
  4284. return ret;
  4285. pgdat->nr_zones = zone_idx(zone) + 1;
  4286. zone->zone_start_pfn = zone_start_pfn;
  4287. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  4288. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  4289. pgdat->node_id,
  4290. (unsigned long)zone_idx(zone),
  4291. zone_start_pfn, (zone_start_pfn + size));
  4292. zone_init_free_lists(zone);
  4293. return 0;
  4294. }
  4295. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4296. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  4297. /*
  4298. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  4299. */
  4300. int __meminit __early_pfn_to_nid(unsigned long pfn,
  4301. struct mminit_pfnnid_cache *state)
  4302. {
  4303. unsigned long start_pfn, end_pfn;
  4304. int nid;
  4305. if (state->last_start <= pfn && pfn < state->last_end)
  4306. return state->last_nid;
  4307. nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
  4308. if (nid != -1) {
  4309. state->last_start = start_pfn;
  4310. state->last_end = end_pfn;
  4311. state->last_nid = nid;
  4312. }
  4313. return nid;
  4314. }
  4315. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  4316. /**
  4317. * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
  4318. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  4319. * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
  4320. *
  4321. * If an architecture guarantees that all ranges registered contain no holes
  4322. * and may be freed, this this function may be used instead of calling
  4323. * memblock_free_early_nid() manually.
  4324. */
  4325. void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
  4326. {
  4327. unsigned long start_pfn, end_pfn;
  4328. int i, this_nid;
  4329. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
  4330. start_pfn = min(start_pfn, max_low_pfn);
  4331. end_pfn = min(end_pfn, max_low_pfn);
  4332. if (start_pfn < end_pfn)
  4333. memblock_free_early_nid(PFN_PHYS(start_pfn),
  4334. (end_pfn - start_pfn) << PAGE_SHIFT,
  4335. this_nid);
  4336. }
  4337. }
  4338. /**
  4339. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  4340. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  4341. *
  4342. * If an architecture guarantees that all ranges registered contain no holes and may
  4343. * be freed, this function may be used instead of calling memory_present() manually.
  4344. */
  4345. void __init sparse_memory_present_with_active_regions(int nid)
  4346. {
  4347. unsigned long start_pfn, end_pfn;
  4348. int i, this_nid;
  4349. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
  4350. memory_present(this_nid, start_pfn, end_pfn);
  4351. }
  4352. /**
  4353. * get_pfn_range_for_nid - Return the start and end page frames for a node
  4354. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  4355. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  4356. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  4357. *
  4358. * It returns the start and end page frame of a node based on information
  4359. * provided by memblock_set_node(). If called for a node
  4360. * with no available memory, a warning is printed and the start and end
  4361. * PFNs will be 0.
  4362. */
  4363. void __meminit get_pfn_range_for_nid(unsigned int nid,
  4364. unsigned long *start_pfn, unsigned long *end_pfn)
  4365. {
  4366. unsigned long this_start_pfn, this_end_pfn;
  4367. int i;
  4368. *start_pfn = -1UL;
  4369. *end_pfn = 0;
  4370. for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
  4371. *start_pfn = min(*start_pfn, this_start_pfn);
  4372. *end_pfn = max(*end_pfn, this_end_pfn);
  4373. }
  4374. if (*start_pfn == -1UL)
  4375. *start_pfn = 0;
  4376. }
  4377. /*
  4378. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  4379. * assumption is made that zones within a node are ordered in monotonic
  4380. * increasing memory addresses so that the "highest" populated zone is used
  4381. */
  4382. static void __init find_usable_zone_for_movable(void)
  4383. {
  4384. int zone_index;
  4385. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  4386. if (zone_index == ZONE_MOVABLE)
  4387. continue;
  4388. if (arch_zone_highest_possible_pfn[zone_index] >
  4389. arch_zone_lowest_possible_pfn[zone_index])
  4390. break;
  4391. }
  4392. VM_BUG_ON(zone_index == -1);
  4393. movable_zone = zone_index;
  4394. }
  4395. /*
  4396. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  4397. * because it is sized independent of architecture. Unlike the other zones,
  4398. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  4399. * in each node depending on the size of each node and how evenly kernelcore
  4400. * is distributed. This helper function adjusts the zone ranges
  4401. * provided by the architecture for a given node by using the end of the
  4402. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  4403. * zones within a node are in order of monotonic increases memory addresses
  4404. */
  4405. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  4406. unsigned long zone_type,
  4407. unsigned long node_start_pfn,
  4408. unsigned long node_end_pfn,
  4409. unsigned long *zone_start_pfn,
  4410. unsigned long *zone_end_pfn)
  4411. {
  4412. /* Only adjust if ZONE_MOVABLE is on this node */
  4413. if (zone_movable_pfn[nid]) {
  4414. /* Size ZONE_MOVABLE */
  4415. if (zone_type == ZONE_MOVABLE) {
  4416. *zone_start_pfn = zone_movable_pfn[nid];
  4417. *zone_end_pfn = min(node_end_pfn,
  4418. arch_zone_highest_possible_pfn[movable_zone]);
  4419. /* Check if this whole range is within ZONE_MOVABLE */
  4420. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  4421. *zone_start_pfn = *zone_end_pfn;
  4422. }
  4423. }
  4424. /*
  4425. * Return the number of pages a zone spans in a node, including holes
  4426. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  4427. */
  4428. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  4429. unsigned long zone_type,
  4430. unsigned long node_start_pfn,
  4431. unsigned long node_end_pfn,
  4432. unsigned long *zone_start_pfn,
  4433. unsigned long *zone_end_pfn,
  4434. unsigned long *ignored)
  4435. {
  4436. /* When hotadd a new node from cpu_up(), the node should be empty */
  4437. if (!node_start_pfn && !node_end_pfn)
  4438. return 0;
  4439. /* Get the start and end of the zone */
  4440. *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  4441. *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  4442. adjust_zone_range_for_zone_movable(nid, zone_type,
  4443. node_start_pfn, node_end_pfn,
  4444. zone_start_pfn, zone_end_pfn);
  4445. /* Check that this node has pages within the zone's required range */
  4446. if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
  4447. return 0;
  4448. /* Move the zone boundaries inside the node if necessary */
  4449. *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
  4450. *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
  4451. /* Return the spanned pages */
  4452. return *zone_end_pfn - *zone_start_pfn;
  4453. }
  4454. /*
  4455. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  4456. * then all holes in the requested range will be accounted for.
  4457. */
  4458. unsigned long __meminit __absent_pages_in_range(int nid,
  4459. unsigned long range_start_pfn,
  4460. unsigned long range_end_pfn)
  4461. {
  4462. unsigned long nr_absent = range_end_pfn - range_start_pfn;
  4463. unsigned long start_pfn, end_pfn;
  4464. int i;
  4465. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  4466. start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
  4467. end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
  4468. nr_absent -= end_pfn - start_pfn;
  4469. }
  4470. return nr_absent;
  4471. }
  4472. /**
  4473. * absent_pages_in_range - Return number of page frames in holes within a range
  4474. * @start_pfn: The start PFN to start searching for holes
  4475. * @end_pfn: The end PFN to stop searching for holes
  4476. *
  4477. * It returns the number of pages frames in memory holes within a range.
  4478. */
  4479. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  4480. unsigned long end_pfn)
  4481. {
  4482. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  4483. }
  4484. /* Return the number of page frames in holes in a zone on a node */
  4485. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  4486. unsigned long zone_type,
  4487. unsigned long node_start_pfn,
  4488. unsigned long node_end_pfn,
  4489. unsigned long *ignored)
  4490. {
  4491. unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
  4492. unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
  4493. unsigned long zone_start_pfn, zone_end_pfn;
  4494. unsigned long nr_absent;
  4495. /* When hotadd a new node from cpu_up(), the node should be empty */
  4496. if (!node_start_pfn && !node_end_pfn)
  4497. return 0;
  4498. zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
  4499. zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
  4500. adjust_zone_range_for_zone_movable(nid, zone_type,
  4501. node_start_pfn, node_end_pfn,
  4502. &zone_start_pfn, &zone_end_pfn);
  4503. nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  4504. /*
  4505. * ZONE_MOVABLE handling.
  4506. * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
  4507. * and vice versa.
  4508. */
  4509. if (zone_movable_pfn[nid]) {
  4510. if (mirrored_kernelcore) {
  4511. unsigned long start_pfn, end_pfn;
  4512. struct memblock_region *r;
  4513. for_each_memblock(memory, r) {
  4514. start_pfn = clamp(memblock_region_memory_base_pfn(r),
  4515. zone_start_pfn, zone_end_pfn);
  4516. end_pfn = clamp(memblock_region_memory_end_pfn(r),
  4517. zone_start_pfn, zone_end_pfn);
  4518. if (zone_type == ZONE_MOVABLE &&
  4519. memblock_is_mirror(r))
  4520. nr_absent += end_pfn - start_pfn;
  4521. if (zone_type == ZONE_NORMAL &&
  4522. !memblock_is_mirror(r))
  4523. nr_absent += end_pfn - start_pfn;
  4524. }
  4525. } else {
  4526. if (zone_type == ZONE_NORMAL)
  4527. nr_absent += node_end_pfn - zone_movable_pfn[nid];
  4528. }
  4529. }
  4530. return nr_absent;
  4531. }
  4532. #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4533. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  4534. unsigned long zone_type,
  4535. unsigned long node_start_pfn,
  4536. unsigned long node_end_pfn,
  4537. unsigned long *zone_start_pfn,
  4538. unsigned long *zone_end_pfn,
  4539. unsigned long *zones_size)
  4540. {
  4541. unsigned int zone;
  4542. *zone_start_pfn = node_start_pfn;
  4543. for (zone = 0; zone < zone_type; zone++)
  4544. *zone_start_pfn += zones_size[zone];
  4545. *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
  4546. return zones_size[zone_type];
  4547. }
  4548. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  4549. unsigned long zone_type,
  4550. unsigned long node_start_pfn,
  4551. unsigned long node_end_pfn,
  4552. unsigned long *zholes_size)
  4553. {
  4554. if (!zholes_size)
  4555. return 0;
  4556. return zholes_size[zone_type];
  4557. }
  4558. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4559. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  4560. unsigned long node_start_pfn,
  4561. unsigned long node_end_pfn,
  4562. unsigned long *zones_size,
  4563. unsigned long *zholes_size)
  4564. {
  4565. unsigned long realtotalpages = 0, totalpages = 0;
  4566. enum zone_type i;
  4567. for (i = 0; i < MAX_NR_ZONES; i++) {
  4568. struct zone *zone = pgdat->node_zones + i;
  4569. unsigned long zone_start_pfn, zone_end_pfn;
  4570. unsigned long size, real_size;
  4571. size = zone_spanned_pages_in_node(pgdat->node_id, i,
  4572. node_start_pfn,
  4573. node_end_pfn,
  4574. &zone_start_pfn,
  4575. &zone_end_pfn,
  4576. zones_size);
  4577. real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
  4578. node_start_pfn, node_end_pfn,
  4579. zholes_size);
  4580. if (size)
  4581. zone->zone_start_pfn = zone_start_pfn;
  4582. else
  4583. zone->zone_start_pfn = 0;
  4584. zone->spanned_pages = size;
  4585. zone->present_pages = real_size;
  4586. totalpages += size;
  4587. realtotalpages += real_size;
  4588. }
  4589. pgdat->node_spanned_pages = totalpages;
  4590. pgdat->node_present_pages = realtotalpages;
  4591. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  4592. realtotalpages);
  4593. }
  4594. #ifndef CONFIG_SPARSEMEM
  4595. /*
  4596. * Calculate the size of the zone->blockflags rounded to an unsigned long
  4597. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  4598. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  4599. * round what is now in bits to nearest long in bits, then return it in
  4600. * bytes.
  4601. */
  4602. static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
  4603. {
  4604. unsigned long usemapsize;
  4605. zonesize += zone_start_pfn & (pageblock_nr_pages-1);
  4606. usemapsize = roundup(zonesize, pageblock_nr_pages);
  4607. usemapsize = usemapsize >> pageblock_order;
  4608. usemapsize *= NR_PAGEBLOCK_BITS;
  4609. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  4610. return usemapsize / 8;
  4611. }
  4612. static void __init setup_usemap(struct pglist_data *pgdat,
  4613. struct zone *zone,
  4614. unsigned long zone_start_pfn,
  4615. unsigned long zonesize)
  4616. {
  4617. unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
  4618. zone->pageblock_flags = NULL;
  4619. if (usemapsize)
  4620. zone->pageblock_flags =
  4621. memblock_virt_alloc_node_nopanic(usemapsize,
  4622. pgdat->node_id);
  4623. }
  4624. #else
  4625. static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
  4626. unsigned long zone_start_pfn, unsigned long zonesize) {}
  4627. #endif /* CONFIG_SPARSEMEM */
  4628. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  4629. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  4630. void __paginginit set_pageblock_order(void)
  4631. {
  4632. unsigned int order;
  4633. /* Check that pageblock_nr_pages has not already been setup */
  4634. if (pageblock_order)
  4635. return;
  4636. if (HPAGE_SHIFT > PAGE_SHIFT)
  4637. order = HUGETLB_PAGE_ORDER;
  4638. else
  4639. order = MAX_ORDER - 1;
  4640. /*
  4641. * Assume the largest contiguous order of interest is a huge page.
  4642. * This value may be variable depending on boot parameters on IA64 and
  4643. * powerpc.
  4644. */
  4645. pageblock_order = order;
  4646. }
  4647. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  4648. /*
  4649. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  4650. * is unused as pageblock_order is set at compile-time. See
  4651. * include/linux/pageblock-flags.h for the values of pageblock_order based on
  4652. * the kernel config
  4653. */
  4654. void __paginginit set_pageblock_order(void)
  4655. {
  4656. }
  4657. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  4658. static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
  4659. unsigned long present_pages)
  4660. {
  4661. unsigned long pages = spanned_pages;
  4662. /*
  4663. * Provide a more accurate estimation if there are holes within
  4664. * the zone and SPARSEMEM is in use. If there are holes within the
  4665. * zone, each populated memory region may cost us one or two extra
  4666. * memmap pages due to alignment because memmap pages for each
  4667. * populated regions may not naturally algined on page boundary.
  4668. * So the (present_pages >> 4) heuristic is a tradeoff for that.
  4669. */
  4670. if (spanned_pages > present_pages + (present_pages >> 4) &&
  4671. IS_ENABLED(CONFIG_SPARSEMEM))
  4672. pages = present_pages;
  4673. return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
  4674. }
  4675. /*
  4676. * Set up the zone data structures:
  4677. * - mark all pages reserved
  4678. * - mark all memory queues empty
  4679. * - clear the memory bitmaps
  4680. *
  4681. * NOTE: pgdat should get zeroed by caller.
  4682. */
  4683. static void __paginginit free_area_init_core(struct pglist_data *pgdat)
  4684. {
  4685. enum zone_type j;
  4686. int nid = pgdat->node_id;
  4687. int ret;
  4688. pgdat_resize_init(pgdat);
  4689. #ifdef CONFIG_NUMA_BALANCING
  4690. spin_lock_init(&pgdat->numabalancing_migrate_lock);
  4691. pgdat->numabalancing_migrate_nr_pages = 0;
  4692. pgdat->numabalancing_migrate_next_window = jiffies;
  4693. #endif
  4694. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  4695. spin_lock_init(&pgdat->split_queue_lock);
  4696. INIT_LIST_HEAD(&pgdat->split_queue);
  4697. pgdat->split_queue_len = 0;
  4698. #endif
  4699. init_waitqueue_head(&pgdat->kswapd_wait);
  4700. init_waitqueue_head(&pgdat->pfmemalloc_wait);
  4701. #ifdef CONFIG_COMPACTION
  4702. init_waitqueue_head(&pgdat->kcompactd_wait);
  4703. #endif
  4704. pgdat_page_ext_init(pgdat);
  4705. for (j = 0; j < MAX_NR_ZONES; j++) {
  4706. struct zone *zone = pgdat->node_zones + j;
  4707. unsigned long size, realsize, freesize, memmap_pages;
  4708. unsigned long zone_start_pfn = zone->zone_start_pfn;
  4709. size = zone->spanned_pages;
  4710. realsize = freesize = zone->present_pages;
  4711. /*
  4712. * Adjust freesize so that it accounts for how much memory
  4713. * is used by this zone for memmap. This affects the watermark
  4714. * and per-cpu initialisations
  4715. */
  4716. memmap_pages = calc_memmap_size(size, realsize);
  4717. if (!is_highmem_idx(j)) {
  4718. if (freesize >= memmap_pages) {
  4719. freesize -= memmap_pages;
  4720. if (memmap_pages)
  4721. printk(KERN_DEBUG
  4722. " %s zone: %lu pages used for memmap\n",
  4723. zone_names[j], memmap_pages);
  4724. } else
  4725. printk(KERN_WARNING
  4726. " %s zone: %lu pages exceeds freesize %lu\n",
  4727. zone_names[j], memmap_pages, freesize);
  4728. }
  4729. /* Account for reserved pages */
  4730. if (j == 0 && freesize > dma_reserve) {
  4731. freesize -= dma_reserve;
  4732. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  4733. zone_names[0], dma_reserve);
  4734. }
  4735. if (!is_highmem_idx(j))
  4736. nr_kernel_pages += freesize;
  4737. /* Charge for highmem memmap if there are enough kernel pages */
  4738. else if (nr_kernel_pages > memmap_pages * 2)
  4739. nr_kernel_pages -= memmap_pages;
  4740. nr_all_pages += freesize;
  4741. /*
  4742. * Set an approximate value for lowmem here, it will be adjusted
  4743. * when the bootmem allocator frees pages into the buddy system.
  4744. * And all highmem pages will be managed by the buddy system.
  4745. */
  4746. zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
  4747. #ifdef CONFIG_NUMA
  4748. zone->node = nid;
  4749. zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
  4750. / 100;
  4751. zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
  4752. #endif
  4753. zone->name = zone_names[j];
  4754. spin_lock_init(&zone->lock);
  4755. spin_lock_init(&zone->lru_lock);
  4756. zone_seqlock_init(zone);
  4757. zone->zone_pgdat = pgdat;
  4758. zone_pcp_init(zone);
  4759. /* For bootup, initialized properly in watermark setup */
  4760. mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
  4761. lruvec_init(&zone->lruvec);
  4762. if (!size)
  4763. continue;
  4764. set_pageblock_order();
  4765. setup_usemap(pgdat, zone, zone_start_pfn, size);
  4766. ret = init_currently_empty_zone(zone, zone_start_pfn, size);
  4767. BUG_ON(ret);
  4768. memmap_init(size, nid, j, zone_start_pfn);
  4769. }
  4770. }
  4771. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  4772. {
  4773. unsigned long __maybe_unused start = 0;
  4774. unsigned long __maybe_unused offset = 0;
  4775. /* Skip empty nodes */
  4776. if (!pgdat->node_spanned_pages)
  4777. return;
  4778. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  4779. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  4780. offset = pgdat->node_start_pfn - start;
  4781. /* ia64 gets its own node_mem_map, before this, without bootmem */
  4782. if (!pgdat->node_mem_map) {
  4783. unsigned long size, end;
  4784. struct page *map;
  4785. /*
  4786. * The zone's endpoints aren't required to be MAX_ORDER
  4787. * aligned but the node_mem_map endpoints must be in order
  4788. * for the buddy allocator to function correctly.
  4789. */
  4790. end = pgdat_end_pfn(pgdat);
  4791. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  4792. size = (end - start) * sizeof(struct page);
  4793. map = alloc_remap(pgdat->node_id, size);
  4794. if (!map)
  4795. map = memblock_virt_alloc_node_nopanic(size,
  4796. pgdat->node_id);
  4797. pgdat->node_mem_map = map + offset;
  4798. }
  4799. #ifndef CONFIG_NEED_MULTIPLE_NODES
  4800. /*
  4801. * With no DISCONTIG, the global mem_map is just set as node 0's
  4802. */
  4803. if (pgdat == NODE_DATA(0)) {
  4804. mem_map = NODE_DATA(0)->node_mem_map;
  4805. #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
  4806. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  4807. mem_map -= offset;
  4808. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4809. }
  4810. #endif
  4811. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  4812. }
  4813. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  4814. unsigned long node_start_pfn, unsigned long *zholes_size)
  4815. {
  4816. pg_data_t *pgdat = NODE_DATA(nid);
  4817. unsigned long start_pfn = 0;
  4818. unsigned long end_pfn = 0;
  4819. /* pg_data_t should be reset to zero when it's allocated */
  4820. WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
  4821. reset_deferred_meminit(pgdat);
  4822. pgdat->node_id = nid;
  4823. pgdat->node_start_pfn = node_start_pfn;
  4824. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4825. get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
  4826. pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
  4827. (u64)start_pfn << PAGE_SHIFT,
  4828. end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
  4829. #else
  4830. start_pfn = node_start_pfn;
  4831. #endif
  4832. calculate_node_totalpages(pgdat, start_pfn, end_pfn,
  4833. zones_size, zholes_size);
  4834. alloc_node_mem_map(pgdat);
  4835. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  4836. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  4837. nid, (unsigned long)pgdat,
  4838. (unsigned long)pgdat->node_mem_map);
  4839. #endif
  4840. free_area_init_core(pgdat);
  4841. }
  4842. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4843. #if MAX_NUMNODES > 1
  4844. /*
  4845. * Figure out the number of possible node ids.
  4846. */
  4847. void __init setup_nr_node_ids(void)
  4848. {
  4849. unsigned int highest;
  4850. highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
  4851. nr_node_ids = highest + 1;
  4852. }
  4853. #endif
  4854. /**
  4855. * node_map_pfn_alignment - determine the maximum internode alignment
  4856. *
  4857. * This function should be called after node map is populated and sorted.
  4858. * It calculates the maximum power of two alignment which can distinguish
  4859. * all the nodes.
  4860. *
  4861. * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
  4862. * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
  4863. * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
  4864. * shifted, 1GiB is enough and this function will indicate so.
  4865. *
  4866. * This is used to test whether pfn -> nid mapping of the chosen memory
  4867. * model has fine enough granularity to avoid incorrect mapping for the
  4868. * populated node map.
  4869. *
  4870. * Returns the determined alignment in pfn's. 0 if there is no alignment
  4871. * requirement (single node).
  4872. */
  4873. unsigned long __init node_map_pfn_alignment(void)
  4874. {
  4875. unsigned long accl_mask = 0, last_end = 0;
  4876. unsigned long start, end, mask;
  4877. int last_nid = -1;
  4878. int i, nid;
  4879. for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
  4880. if (!start || last_nid < 0 || last_nid == nid) {
  4881. last_nid = nid;
  4882. last_end = end;
  4883. continue;
  4884. }
  4885. /*
  4886. * Start with a mask granular enough to pin-point to the
  4887. * start pfn and tick off bits one-by-one until it becomes
  4888. * too coarse to separate the current node from the last.
  4889. */
  4890. mask = ~((1 << __ffs(start)) - 1);
  4891. while (mask && last_end <= (start & (mask << 1)))
  4892. mask <<= 1;
  4893. /* accumulate all internode masks */
  4894. accl_mask |= mask;
  4895. }
  4896. /* convert mask to number of pages */
  4897. return ~accl_mask + 1;
  4898. }
  4899. /* Find the lowest pfn for a node */
  4900. static unsigned long __init find_min_pfn_for_node(int nid)
  4901. {
  4902. unsigned long min_pfn = ULONG_MAX;
  4903. unsigned long start_pfn;
  4904. int i;
  4905. for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
  4906. min_pfn = min(min_pfn, start_pfn);
  4907. if (min_pfn == ULONG_MAX) {
  4908. printk(KERN_WARNING
  4909. "Could not find start_pfn for node %d\n", nid);
  4910. return 0;
  4911. }
  4912. return min_pfn;
  4913. }
  4914. /**
  4915. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  4916. *
  4917. * It returns the minimum PFN based on information provided via
  4918. * memblock_set_node().
  4919. */
  4920. unsigned long __init find_min_pfn_with_active_regions(void)
  4921. {
  4922. return find_min_pfn_for_node(MAX_NUMNODES);
  4923. }
  4924. /*
  4925. * early_calculate_totalpages()
  4926. * Sum pages in active regions for movable zone.
  4927. * Populate N_MEMORY for calculating usable_nodes.
  4928. */
  4929. static unsigned long __init early_calculate_totalpages(void)
  4930. {
  4931. unsigned long totalpages = 0;
  4932. unsigned long start_pfn, end_pfn;
  4933. int i, nid;
  4934. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
  4935. unsigned long pages = end_pfn - start_pfn;
  4936. totalpages += pages;
  4937. if (pages)
  4938. node_set_state(nid, N_MEMORY);
  4939. }
  4940. return totalpages;
  4941. }
  4942. /*
  4943. * Find the PFN the Movable zone begins in each node. Kernel memory
  4944. * is spread evenly between nodes as long as the nodes have enough
  4945. * memory. When they don't, some nodes will have more kernelcore than
  4946. * others
  4947. */
  4948. static void __init find_zone_movable_pfns_for_nodes(void)
  4949. {
  4950. int i, nid;
  4951. unsigned long usable_startpfn;
  4952. unsigned long kernelcore_node, kernelcore_remaining;
  4953. /* save the state before borrow the nodemask */
  4954. nodemask_t saved_node_state = node_states[N_MEMORY];
  4955. unsigned long totalpages = early_calculate_totalpages();
  4956. int usable_nodes = nodes_weight(node_states[N_MEMORY]);
  4957. struct memblock_region *r;
  4958. /* Need to find movable_zone earlier when movable_node is specified. */
  4959. find_usable_zone_for_movable();
  4960. /*
  4961. * If movable_node is specified, ignore kernelcore and movablecore
  4962. * options.
  4963. */
  4964. if (movable_node_is_enabled()) {
  4965. for_each_memblock(memory, r) {
  4966. if (!memblock_is_hotpluggable(r))
  4967. continue;
  4968. nid = r->nid;
  4969. usable_startpfn = PFN_DOWN(r->base);
  4970. zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
  4971. min(usable_startpfn, zone_movable_pfn[nid]) :
  4972. usable_startpfn;
  4973. }
  4974. goto out2;
  4975. }
  4976. /*
  4977. * If kernelcore=mirror is specified, ignore movablecore option
  4978. */
  4979. if (mirrored_kernelcore) {
  4980. bool mem_below_4gb_not_mirrored = false;
  4981. for_each_memblock(memory, r) {
  4982. if (memblock_is_mirror(r))
  4983. continue;
  4984. nid = r->nid;
  4985. usable_startpfn = memblock_region_memory_base_pfn(r);
  4986. if (usable_startpfn < 0x100000) {
  4987. mem_below_4gb_not_mirrored = true;
  4988. continue;
  4989. }
  4990. zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
  4991. min(usable_startpfn, zone_movable_pfn[nid]) :
  4992. usable_startpfn;
  4993. }
  4994. if (mem_below_4gb_not_mirrored)
  4995. pr_warn("This configuration results in unmirrored kernel memory.");
  4996. goto out2;
  4997. }
  4998. /*
  4999. * If movablecore=nn[KMG] was specified, calculate what size of
  5000. * kernelcore that corresponds so that memory usable for
  5001. * any allocation type is evenly spread. If both kernelcore
  5002. * and movablecore are specified, then the value of kernelcore
  5003. * will be used for required_kernelcore if it's greater than
  5004. * what movablecore would have allowed.
  5005. */
  5006. if (required_movablecore) {
  5007. unsigned long corepages;
  5008. /*
  5009. * Round-up so that ZONE_MOVABLE is at least as large as what
  5010. * was requested by the user
  5011. */
  5012. required_movablecore =
  5013. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  5014. required_movablecore = min(totalpages, required_movablecore);
  5015. corepages = totalpages - required_movablecore;
  5016. required_kernelcore = max(required_kernelcore, corepages);
  5017. }
  5018. /*
  5019. * If kernelcore was not specified or kernelcore size is larger
  5020. * than totalpages, there is no ZONE_MOVABLE.
  5021. */
  5022. if (!required_kernelcore || required_kernelcore >= totalpages)
  5023. goto out;
  5024. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  5025. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  5026. restart:
  5027. /* Spread kernelcore memory as evenly as possible throughout nodes */
  5028. kernelcore_node = required_kernelcore / usable_nodes;
  5029. for_each_node_state(nid, N_MEMORY) {
  5030. unsigned long start_pfn, end_pfn;
  5031. /*
  5032. * Recalculate kernelcore_node if the division per node
  5033. * now exceeds what is necessary to satisfy the requested
  5034. * amount of memory for the kernel
  5035. */
  5036. if (required_kernelcore < kernelcore_node)
  5037. kernelcore_node = required_kernelcore / usable_nodes;
  5038. /*
  5039. * As the map is walked, we track how much memory is usable
  5040. * by the kernel using kernelcore_remaining. When it is
  5041. * 0, the rest of the node is usable by ZONE_MOVABLE
  5042. */
  5043. kernelcore_remaining = kernelcore_node;
  5044. /* Go through each range of PFNs within this node */
  5045. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  5046. unsigned long size_pages;
  5047. start_pfn = max(start_pfn, zone_movable_pfn[nid]);
  5048. if (start_pfn >= end_pfn)
  5049. continue;
  5050. /* Account for what is only usable for kernelcore */
  5051. if (start_pfn < usable_startpfn) {
  5052. unsigned long kernel_pages;
  5053. kernel_pages = min(end_pfn, usable_startpfn)
  5054. - start_pfn;
  5055. kernelcore_remaining -= min(kernel_pages,
  5056. kernelcore_remaining);
  5057. required_kernelcore -= min(kernel_pages,
  5058. required_kernelcore);
  5059. /* Continue if range is now fully accounted */
  5060. if (end_pfn <= usable_startpfn) {
  5061. /*
  5062. * Push zone_movable_pfn to the end so
  5063. * that if we have to rebalance
  5064. * kernelcore across nodes, we will
  5065. * not double account here
  5066. */
  5067. zone_movable_pfn[nid] = end_pfn;
  5068. continue;
  5069. }
  5070. start_pfn = usable_startpfn;
  5071. }
  5072. /*
  5073. * The usable PFN range for ZONE_MOVABLE is from
  5074. * start_pfn->end_pfn. Calculate size_pages as the
  5075. * number of pages used as kernelcore
  5076. */
  5077. size_pages = end_pfn - start_pfn;
  5078. if (size_pages > kernelcore_remaining)
  5079. size_pages = kernelcore_remaining;
  5080. zone_movable_pfn[nid] = start_pfn + size_pages;
  5081. /*
  5082. * Some kernelcore has been met, update counts and
  5083. * break if the kernelcore for this node has been
  5084. * satisfied
  5085. */
  5086. required_kernelcore -= min(required_kernelcore,
  5087. size_pages);
  5088. kernelcore_remaining -= size_pages;
  5089. if (!kernelcore_remaining)
  5090. break;
  5091. }
  5092. }
  5093. /*
  5094. * If there is still required_kernelcore, we do another pass with one
  5095. * less node in the count. This will push zone_movable_pfn[nid] further
  5096. * along on the nodes that still have memory until kernelcore is
  5097. * satisfied
  5098. */
  5099. usable_nodes--;
  5100. if (usable_nodes && required_kernelcore > usable_nodes)
  5101. goto restart;
  5102. out2:
  5103. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  5104. for (nid = 0; nid < MAX_NUMNODES; nid++)
  5105. zone_movable_pfn[nid] =
  5106. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  5107. out:
  5108. /* restore the node_state */
  5109. node_states[N_MEMORY] = saved_node_state;
  5110. }
  5111. /* Any regular or high memory on that node ? */
  5112. static void check_for_memory(pg_data_t *pgdat, int nid)
  5113. {
  5114. enum zone_type zone_type;
  5115. if (N_MEMORY == N_NORMAL_MEMORY)
  5116. return;
  5117. for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
  5118. struct zone *zone = &pgdat->node_zones[zone_type];
  5119. if (populated_zone(zone)) {
  5120. node_set_state(nid, N_HIGH_MEMORY);
  5121. if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
  5122. zone_type <= ZONE_NORMAL)
  5123. node_set_state(nid, N_NORMAL_MEMORY);
  5124. break;
  5125. }
  5126. }
  5127. }
  5128. /**
  5129. * free_area_init_nodes - Initialise all pg_data_t and zone data
  5130. * @max_zone_pfn: an array of max PFNs for each zone
  5131. *
  5132. * This will call free_area_init_node() for each active node in the system.
  5133. * Using the page ranges provided by memblock_set_node(), the size of each
  5134. * zone in each node and their holes is calculated. If the maximum PFN
  5135. * between two adjacent zones match, it is assumed that the zone is empty.
  5136. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  5137. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  5138. * starts where the previous one ended. For example, ZONE_DMA32 starts
  5139. * at arch_max_dma_pfn.
  5140. */
  5141. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  5142. {
  5143. unsigned long start_pfn, end_pfn;
  5144. int i, nid;
  5145. /* Record where the zone boundaries are */
  5146. memset(arch_zone_lowest_possible_pfn, 0,
  5147. sizeof(arch_zone_lowest_possible_pfn));
  5148. memset(arch_zone_highest_possible_pfn, 0,
  5149. sizeof(arch_zone_highest_possible_pfn));
  5150. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  5151. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  5152. for (i = 1; i < MAX_NR_ZONES; i++) {
  5153. if (i == ZONE_MOVABLE)
  5154. continue;
  5155. arch_zone_lowest_possible_pfn[i] =
  5156. arch_zone_highest_possible_pfn[i-1];
  5157. arch_zone_highest_possible_pfn[i] =
  5158. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  5159. }
  5160. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  5161. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  5162. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  5163. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  5164. find_zone_movable_pfns_for_nodes();
  5165. /* Print out the zone ranges */
  5166. pr_info("Zone ranges:\n");
  5167. for (i = 0; i < MAX_NR_ZONES; i++) {
  5168. if (i == ZONE_MOVABLE)
  5169. continue;
  5170. pr_info(" %-8s ", zone_names[i]);
  5171. if (arch_zone_lowest_possible_pfn[i] ==
  5172. arch_zone_highest_possible_pfn[i])
  5173. pr_cont("empty\n");
  5174. else
  5175. pr_cont("[mem %#018Lx-%#018Lx]\n",
  5176. (u64)arch_zone_lowest_possible_pfn[i]
  5177. << PAGE_SHIFT,
  5178. ((u64)arch_zone_highest_possible_pfn[i]
  5179. << PAGE_SHIFT) - 1);
  5180. }
  5181. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  5182. pr_info("Movable zone start for each node\n");
  5183. for (i = 0; i < MAX_NUMNODES; i++) {
  5184. if (zone_movable_pfn[i])
  5185. pr_info(" Node %d: %#018Lx\n", i,
  5186. (u64)zone_movable_pfn[i] << PAGE_SHIFT);
  5187. }
  5188. /* Print out the early node map */
  5189. pr_info("Early memory node ranges\n");
  5190. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
  5191. pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
  5192. (u64)start_pfn << PAGE_SHIFT,
  5193. ((u64)end_pfn << PAGE_SHIFT) - 1);
  5194. /* Initialise every node */
  5195. mminit_verify_pageflags_layout();
  5196. setup_nr_node_ids();
  5197. for_each_online_node(nid) {
  5198. pg_data_t *pgdat = NODE_DATA(nid);
  5199. free_area_init_node(nid, NULL,
  5200. find_min_pfn_for_node(nid), NULL);
  5201. /* Any memory on that node */
  5202. if (pgdat->node_present_pages)
  5203. node_set_state(nid, N_MEMORY);
  5204. check_for_memory(pgdat, nid);
  5205. }
  5206. }
  5207. static int __init cmdline_parse_core(char *p, unsigned long *core)
  5208. {
  5209. unsigned long long coremem;
  5210. if (!p)
  5211. return -EINVAL;
  5212. coremem = memparse(p, &p);
  5213. *core = coremem >> PAGE_SHIFT;
  5214. /* Paranoid check that UL is enough for the coremem value */
  5215. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  5216. return 0;
  5217. }
  5218. /*
  5219. * kernelcore=size sets the amount of memory for use for allocations that
  5220. * cannot be reclaimed or migrated.
  5221. */
  5222. static int __init cmdline_parse_kernelcore(char *p)
  5223. {
  5224. /* parse kernelcore=mirror */
  5225. if (parse_option_str(p, "mirror")) {
  5226. mirrored_kernelcore = true;
  5227. return 0;
  5228. }
  5229. return cmdline_parse_core(p, &required_kernelcore);
  5230. }
  5231. /*
  5232. * movablecore=size sets the amount of memory for use for allocations that
  5233. * can be reclaimed or migrated.
  5234. */
  5235. static int __init cmdline_parse_movablecore(char *p)
  5236. {
  5237. return cmdline_parse_core(p, &required_movablecore);
  5238. }
  5239. early_param("kernelcore", cmdline_parse_kernelcore);
  5240. early_param("movablecore", cmdline_parse_movablecore);
  5241. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  5242. void adjust_managed_page_count(struct page *page, long count)
  5243. {
  5244. spin_lock(&managed_page_count_lock);
  5245. page_zone(page)->managed_pages += count;
  5246. totalram_pages += count;
  5247. #ifdef CONFIG_HIGHMEM
  5248. if (PageHighMem(page))
  5249. totalhigh_pages += count;
  5250. #endif
  5251. spin_unlock(&managed_page_count_lock);
  5252. }
  5253. EXPORT_SYMBOL(adjust_managed_page_count);
  5254. unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
  5255. {
  5256. void *pos;
  5257. unsigned long pages = 0;
  5258. start = (void *)PAGE_ALIGN((unsigned long)start);
  5259. end = (void *)((unsigned long)end & PAGE_MASK);
  5260. for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
  5261. if ((unsigned int)poison <= 0xFF)
  5262. memset(pos, poison, PAGE_SIZE);
  5263. free_reserved_page(virt_to_page(pos));
  5264. }
  5265. if (pages && s)
  5266. pr_info("Freeing %s memory: %ldK (%p - %p)\n",
  5267. s, pages << (PAGE_SHIFT - 10), start, end);
  5268. return pages;
  5269. }
  5270. EXPORT_SYMBOL(free_reserved_area);
  5271. #ifdef CONFIG_HIGHMEM
  5272. void free_highmem_page(struct page *page)
  5273. {
  5274. __free_reserved_page(page);
  5275. totalram_pages++;
  5276. page_zone(page)->managed_pages++;
  5277. totalhigh_pages++;
  5278. }
  5279. #endif
  5280. void __init mem_init_print_info(const char *str)
  5281. {
  5282. unsigned long physpages, codesize, datasize, rosize, bss_size;
  5283. unsigned long init_code_size, init_data_size;
  5284. physpages = get_num_physpages();
  5285. codesize = _etext - _stext;
  5286. datasize = _edata - _sdata;
  5287. rosize = __end_rodata - __start_rodata;
  5288. bss_size = __bss_stop - __bss_start;
  5289. init_data_size = __init_end - __init_begin;
  5290. init_code_size = _einittext - _sinittext;
  5291. /*
  5292. * Detect special cases and adjust section sizes accordingly:
  5293. * 1) .init.* may be embedded into .data sections
  5294. * 2) .init.text.* may be out of [__init_begin, __init_end],
  5295. * please refer to arch/tile/kernel/vmlinux.lds.S.
  5296. * 3) .rodata.* may be embedded into .text or .data sections.
  5297. */
  5298. #define adj_init_size(start, end, size, pos, adj) \
  5299. do { \
  5300. if (start <= pos && pos < end && size > adj) \
  5301. size -= adj; \
  5302. } while (0)
  5303. adj_init_size(__init_begin, __init_end, init_data_size,
  5304. _sinittext, init_code_size);
  5305. adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
  5306. adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
  5307. adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
  5308. adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
  5309. #undef adj_init_size
  5310. pr_info("Memory: %luK/%luK available "
  5311. "(%luK kernel code, %luK rwdata, %luK rodata, "
  5312. "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
  5313. #ifdef CONFIG_HIGHMEM
  5314. ", %luK highmem"
  5315. #endif
  5316. "%s%s)\n",
  5317. nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
  5318. codesize >> 10, datasize >> 10, rosize >> 10,
  5319. (init_data_size + init_code_size) >> 10, bss_size >> 10,
  5320. (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
  5321. totalcma_pages << (PAGE_SHIFT-10),
  5322. #ifdef CONFIG_HIGHMEM
  5323. totalhigh_pages << (PAGE_SHIFT-10),
  5324. #endif
  5325. str ? ", " : "", str ? str : "");
  5326. }
  5327. /**
  5328. * set_dma_reserve - set the specified number of pages reserved in the first zone
  5329. * @new_dma_reserve: The number of pages to mark reserved
  5330. *
  5331. * The per-cpu batchsize and zone watermarks are determined by managed_pages.
  5332. * In the DMA zone, a significant percentage may be consumed by kernel image
  5333. * and other unfreeable allocations which can skew the watermarks badly. This
  5334. * function may optionally be used to account for unfreeable pages in the
  5335. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  5336. * smaller per-cpu batchsize.
  5337. */
  5338. void __init set_dma_reserve(unsigned long new_dma_reserve)
  5339. {
  5340. dma_reserve = new_dma_reserve;
  5341. }
  5342. void __init free_area_init(unsigned long *zones_size)
  5343. {
  5344. free_area_init_node(0, zones_size,
  5345. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  5346. }
  5347. static int page_alloc_cpu_notify(struct notifier_block *self,
  5348. unsigned long action, void *hcpu)
  5349. {
  5350. int cpu = (unsigned long)hcpu;
  5351. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  5352. lru_add_drain_cpu(cpu);
  5353. drain_pages(cpu);
  5354. /*
  5355. * Spill the event counters of the dead processor
  5356. * into the current processors event counters.
  5357. * This artificially elevates the count of the current
  5358. * processor.
  5359. */
  5360. vm_events_fold_cpu(cpu);
  5361. /*
  5362. * Zero the differential counters of the dead processor
  5363. * so that the vm statistics are consistent.
  5364. *
  5365. * This is only okay since the processor is dead and cannot
  5366. * race with what we are doing.
  5367. */
  5368. cpu_vm_stats_fold(cpu);
  5369. }
  5370. return NOTIFY_OK;
  5371. }
  5372. void __init page_alloc_init(void)
  5373. {
  5374. hotcpu_notifier(page_alloc_cpu_notify, 0);
  5375. }
  5376. /*
  5377. * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
  5378. * or min_free_kbytes changes.
  5379. */
  5380. static void calculate_totalreserve_pages(void)
  5381. {
  5382. struct pglist_data *pgdat;
  5383. unsigned long reserve_pages = 0;
  5384. enum zone_type i, j;
  5385. for_each_online_pgdat(pgdat) {
  5386. for (i = 0; i < MAX_NR_ZONES; i++) {
  5387. struct zone *zone = pgdat->node_zones + i;
  5388. long max = 0;
  5389. /* Find valid and maximum lowmem_reserve in the zone */
  5390. for (j = i; j < MAX_NR_ZONES; j++) {
  5391. if (zone->lowmem_reserve[j] > max)
  5392. max = zone->lowmem_reserve[j];
  5393. }
  5394. /* we treat the high watermark as reserved pages. */
  5395. max += high_wmark_pages(zone);
  5396. if (max > zone->managed_pages)
  5397. max = zone->managed_pages;
  5398. zone->totalreserve_pages = max;
  5399. reserve_pages += max;
  5400. }
  5401. }
  5402. totalreserve_pages = reserve_pages;
  5403. }
  5404. /*
  5405. * setup_per_zone_lowmem_reserve - called whenever
  5406. * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
  5407. * has a correct pages reserved value, so an adequate number of
  5408. * pages are left in the zone after a successful __alloc_pages().
  5409. */
  5410. static void setup_per_zone_lowmem_reserve(void)
  5411. {
  5412. struct pglist_data *pgdat;
  5413. enum zone_type j, idx;
  5414. for_each_online_pgdat(pgdat) {
  5415. for (j = 0; j < MAX_NR_ZONES; j++) {
  5416. struct zone *zone = pgdat->node_zones + j;
  5417. unsigned long managed_pages = zone->managed_pages;
  5418. zone->lowmem_reserve[j] = 0;
  5419. idx = j;
  5420. while (idx) {
  5421. struct zone *lower_zone;
  5422. idx--;
  5423. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  5424. sysctl_lowmem_reserve_ratio[idx] = 1;
  5425. lower_zone = pgdat->node_zones + idx;
  5426. lower_zone->lowmem_reserve[j] = managed_pages /
  5427. sysctl_lowmem_reserve_ratio[idx];
  5428. managed_pages += lower_zone->managed_pages;
  5429. }
  5430. }
  5431. }
  5432. /* update totalreserve_pages */
  5433. calculate_totalreserve_pages();
  5434. }
  5435. static void __setup_per_zone_wmarks(void)
  5436. {
  5437. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  5438. unsigned long lowmem_pages = 0;
  5439. struct zone *zone;
  5440. unsigned long flags;
  5441. /* Calculate total number of !ZONE_HIGHMEM pages */
  5442. for_each_zone(zone) {
  5443. if (!is_highmem(zone))
  5444. lowmem_pages += zone->managed_pages;
  5445. }
  5446. for_each_zone(zone) {
  5447. u64 tmp;
  5448. spin_lock_irqsave(&zone->lock, flags);
  5449. tmp = (u64)pages_min * zone->managed_pages;
  5450. do_div(tmp, lowmem_pages);
  5451. if (is_highmem(zone)) {
  5452. /*
  5453. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  5454. * need highmem pages, so cap pages_min to a small
  5455. * value here.
  5456. *
  5457. * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
  5458. * deltas control asynch page reclaim, and so should
  5459. * not be capped for highmem.
  5460. */
  5461. unsigned long min_pages;
  5462. min_pages = zone->managed_pages / 1024;
  5463. min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
  5464. zone->watermark[WMARK_MIN] = min_pages;
  5465. } else {
  5466. /*
  5467. * If it's a lowmem zone, reserve a number of pages
  5468. * proportionate to the zone's size.
  5469. */
  5470. zone->watermark[WMARK_MIN] = tmp;
  5471. }
  5472. /*
  5473. * Set the kswapd watermarks distance according to the
  5474. * scale factor in proportion to available memory, but
  5475. * ensure a minimum size on small systems.
  5476. */
  5477. tmp = max_t(u64, tmp >> 2,
  5478. mult_frac(zone->managed_pages,
  5479. watermark_scale_factor, 10000));
  5480. zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
  5481. zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
  5482. __mod_zone_page_state(zone, NR_ALLOC_BATCH,
  5483. high_wmark_pages(zone) - low_wmark_pages(zone) -
  5484. atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
  5485. spin_unlock_irqrestore(&zone->lock, flags);
  5486. }
  5487. /* update totalreserve_pages */
  5488. calculate_totalreserve_pages();
  5489. }
  5490. /**
  5491. * setup_per_zone_wmarks - called when min_free_kbytes changes
  5492. * or when memory is hot-{added|removed}
  5493. *
  5494. * Ensures that the watermark[min,low,high] values for each zone are set
  5495. * correctly with respect to min_free_kbytes.
  5496. */
  5497. void setup_per_zone_wmarks(void)
  5498. {
  5499. mutex_lock(&zonelists_mutex);
  5500. __setup_per_zone_wmarks();
  5501. mutex_unlock(&zonelists_mutex);
  5502. }
  5503. /*
  5504. * The inactive anon list should be small enough that the VM never has to
  5505. * do too much work, but large enough that each inactive page has a chance
  5506. * to be referenced again before it is swapped out.
  5507. *
  5508. * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
  5509. * INACTIVE_ANON pages on this zone's LRU, maintained by the
  5510. * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
  5511. * the anonymous pages are kept on the inactive list.
  5512. *
  5513. * total target max
  5514. * memory ratio inactive anon
  5515. * -------------------------------------
  5516. * 10MB 1 5MB
  5517. * 100MB 1 50MB
  5518. * 1GB 3 250MB
  5519. * 10GB 10 0.9GB
  5520. * 100GB 31 3GB
  5521. * 1TB 101 10GB
  5522. * 10TB 320 32GB
  5523. */
  5524. static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
  5525. {
  5526. unsigned int gb, ratio;
  5527. /* Zone size in gigabytes */
  5528. gb = zone->managed_pages >> (30 - PAGE_SHIFT);
  5529. if (gb)
  5530. ratio = int_sqrt(10 * gb);
  5531. else
  5532. ratio = 1;
  5533. zone->inactive_ratio = ratio;
  5534. }
  5535. static void __meminit setup_per_zone_inactive_ratio(void)
  5536. {
  5537. struct zone *zone;
  5538. for_each_zone(zone)
  5539. calculate_zone_inactive_ratio(zone);
  5540. }
  5541. /*
  5542. * Initialise min_free_kbytes.
  5543. *
  5544. * For small machines we want it small (128k min). For large machines
  5545. * we want it large (64MB max). But it is not linear, because network
  5546. * bandwidth does not increase linearly with machine size. We use
  5547. *
  5548. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  5549. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  5550. *
  5551. * which yields
  5552. *
  5553. * 16MB: 512k
  5554. * 32MB: 724k
  5555. * 64MB: 1024k
  5556. * 128MB: 1448k
  5557. * 256MB: 2048k
  5558. * 512MB: 2896k
  5559. * 1024MB: 4096k
  5560. * 2048MB: 5792k
  5561. * 4096MB: 8192k
  5562. * 8192MB: 11584k
  5563. * 16384MB: 16384k
  5564. */
  5565. int __meminit init_per_zone_wmark_min(void)
  5566. {
  5567. unsigned long lowmem_kbytes;
  5568. int new_min_free_kbytes;
  5569. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  5570. new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  5571. if (new_min_free_kbytes > user_min_free_kbytes) {
  5572. min_free_kbytes = new_min_free_kbytes;
  5573. if (min_free_kbytes < 128)
  5574. min_free_kbytes = 128;
  5575. if (min_free_kbytes > 65536)
  5576. min_free_kbytes = 65536;
  5577. } else {
  5578. pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
  5579. new_min_free_kbytes, user_min_free_kbytes);
  5580. }
  5581. setup_per_zone_wmarks();
  5582. refresh_zone_stat_thresholds();
  5583. setup_per_zone_lowmem_reserve();
  5584. setup_per_zone_inactive_ratio();
  5585. return 0;
  5586. }
  5587. module_init(init_per_zone_wmark_min)
  5588. /*
  5589. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  5590. * that we can call two helper functions whenever min_free_kbytes
  5591. * changes.
  5592. */
  5593. int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
  5594. void __user *buffer, size_t *length, loff_t *ppos)
  5595. {
  5596. int rc;
  5597. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5598. if (rc)
  5599. return rc;
  5600. if (write) {
  5601. user_min_free_kbytes = min_free_kbytes;
  5602. setup_per_zone_wmarks();
  5603. }
  5604. return 0;
  5605. }
  5606. int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
  5607. void __user *buffer, size_t *length, loff_t *ppos)
  5608. {
  5609. int rc;
  5610. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5611. if (rc)
  5612. return rc;
  5613. if (write)
  5614. setup_per_zone_wmarks();
  5615. return 0;
  5616. }
  5617. #ifdef CONFIG_NUMA
  5618. int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
  5619. void __user *buffer, size_t *length, loff_t *ppos)
  5620. {
  5621. struct zone *zone;
  5622. int rc;
  5623. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5624. if (rc)
  5625. return rc;
  5626. for_each_zone(zone)
  5627. zone->min_unmapped_pages = (zone->managed_pages *
  5628. sysctl_min_unmapped_ratio) / 100;
  5629. return 0;
  5630. }
  5631. int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
  5632. void __user *buffer, size_t *length, loff_t *ppos)
  5633. {
  5634. struct zone *zone;
  5635. int rc;
  5636. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5637. if (rc)
  5638. return rc;
  5639. for_each_zone(zone)
  5640. zone->min_slab_pages = (zone->managed_pages *
  5641. sysctl_min_slab_ratio) / 100;
  5642. return 0;
  5643. }
  5644. #endif
  5645. /*
  5646. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  5647. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  5648. * whenever sysctl_lowmem_reserve_ratio changes.
  5649. *
  5650. * The reserve ratio obviously has absolutely no relation with the
  5651. * minimum watermarks. The lowmem reserve ratio can only make sense
  5652. * if in function of the boot time zone sizes.
  5653. */
  5654. int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
  5655. void __user *buffer, size_t *length, loff_t *ppos)
  5656. {
  5657. proc_dointvec_minmax(table, write, buffer, length, ppos);
  5658. setup_per_zone_lowmem_reserve();
  5659. return 0;
  5660. }
  5661. /*
  5662. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  5663. * cpu. It is the fraction of total pages in each zone that a hot per cpu
  5664. * pagelist can have before it gets flushed back to buddy allocator.
  5665. */
  5666. int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
  5667. void __user *buffer, size_t *length, loff_t *ppos)
  5668. {
  5669. struct zone *zone;
  5670. int old_percpu_pagelist_fraction;
  5671. int ret;
  5672. mutex_lock(&pcp_batch_high_lock);
  5673. old_percpu_pagelist_fraction = percpu_pagelist_fraction;
  5674. ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5675. if (!write || ret < 0)
  5676. goto out;
  5677. /* Sanity checking to avoid pcp imbalance */
  5678. if (percpu_pagelist_fraction &&
  5679. percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
  5680. percpu_pagelist_fraction = old_percpu_pagelist_fraction;
  5681. ret = -EINVAL;
  5682. goto out;
  5683. }
  5684. /* No change? */
  5685. if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
  5686. goto out;
  5687. for_each_populated_zone(zone) {
  5688. unsigned int cpu;
  5689. for_each_possible_cpu(cpu)
  5690. pageset_set_high_and_batch(zone,
  5691. per_cpu_ptr(zone->pageset, cpu));
  5692. }
  5693. out:
  5694. mutex_unlock(&pcp_batch_high_lock);
  5695. return ret;
  5696. }
  5697. #ifdef CONFIG_NUMA
  5698. int hashdist = HASHDIST_DEFAULT;
  5699. static int __init set_hashdist(char *str)
  5700. {
  5701. if (!str)
  5702. return 0;
  5703. hashdist = simple_strtoul(str, &str, 0);
  5704. return 1;
  5705. }
  5706. __setup("hashdist=", set_hashdist);
  5707. #endif
  5708. /*
  5709. * allocate a large system hash table from bootmem
  5710. * - it is assumed that the hash table must contain an exact power-of-2
  5711. * quantity of entries
  5712. * - limit is the number of hash buckets, not the total allocation size
  5713. */
  5714. void *__init alloc_large_system_hash(const char *tablename,
  5715. unsigned long bucketsize,
  5716. unsigned long numentries,
  5717. int scale,
  5718. int flags,
  5719. unsigned int *_hash_shift,
  5720. unsigned int *_hash_mask,
  5721. unsigned long low_limit,
  5722. unsigned long high_limit)
  5723. {
  5724. unsigned long long max = high_limit;
  5725. unsigned long log2qty, size;
  5726. void *table = NULL;
  5727. /* allow the kernel cmdline to have a say */
  5728. if (!numentries) {
  5729. /* round applicable memory size up to nearest megabyte */
  5730. numentries = nr_kernel_pages;
  5731. /* It isn't necessary when PAGE_SIZE >= 1MB */
  5732. if (PAGE_SHIFT < 20)
  5733. numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
  5734. /* limit to 1 bucket per 2^scale bytes of low memory */
  5735. if (scale > PAGE_SHIFT)
  5736. numentries >>= (scale - PAGE_SHIFT);
  5737. else
  5738. numentries <<= (PAGE_SHIFT - scale);
  5739. /* Make sure we've got at least a 0-order allocation.. */
  5740. if (unlikely(flags & HASH_SMALL)) {
  5741. /* Makes no sense without HASH_EARLY */
  5742. WARN_ON(!(flags & HASH_EARLY));
  5743. if (!(numentries >> *_hash_shift)) {
  5744. numentries = 1UL << *_hash_shift;
  5745. BUG_ON(!numentries);
  5746. }
  5747. } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  5748. numentries = PAGE_SIZE / bucketsize;
  5749. }
  5750. numentries = roundup_pow_of_two(numentries);
  5751. /* limit allocation size to 1/16 total memory by default */
  5752. if (max == 0) {
  5753. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  5754. do_div(max, bucketsize);
  5755. }
  5756. max = min(max, 0x80000000ULL);
  5757. if (numentries < low_limit)
  5758. numentries = low_limit;
  5759. if (numentries > max)
  5760. numentries = max;
  5761. log2qty = ilog2(numentries);
  5762. do {
  5763. size = bucketsize << log2qty;
  5764. if (flags & HASH_EARLY)
  5765. table = memblock_virt_alloc_nopanic(size, 0);
  5766. else if (hashdist)
  5767. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  5768. else {
  5769. /*
  5770. * If bucketsize is not a power-of-two, we may free
  5771. * some pages at the end of hash table which
  5772. * alloc_pages_exact() automatically does
  5773. */
  5774. if (get_order(size) < MAX_ORDER) {
  5775. table = alloc_pages_exact(size, GFP_ATOMIC);
  5776. kmemleak_alloc(table, size, 1, GFP_ATOMIC);
  5777. }
  5778. }
  5779. } while (!table && size > PAGE_SIZE && --log2qty);
  5780. if (!table)
  5781. panic("Failed to allocate %s hash table\n", tablename);
  5782. printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
  5783. tablename,
  5784. (1UL << log2qty),
  5785. ilog2(size) - PAGE_SHIFT,
  5786. size);
  5787. if (_hash_shift)
  5788. *_hash_shift = log2qty;
  5789. if (_hash_mask)
  5790. *_hash_mask = (1 << log2qty) - 1;
  5791. return table;
  5792. }
  5793. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  5794. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  5795. unsigned long pfn)
  5796. {
  5797. #ifdef CONFIG_SPARSEMEM
  5798. return __pfn_to_section(pfn)->pageblock_flags;
  5799. #else
  5800. return zone->pageblock_flags;
  5801. #endif /* CONFIG_SPARSEMEM */
  5802. }
  5803. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  5804. {
  5805. #ifdef CONFIG_SPARSEMEM
  5806. pfn &= (PAGES_PER_SECTION-1);
  5807. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  5808. #else
  5809. pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
  5810. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  5811. #endif /* CONFIG_SPARSEMEM */
  5812. }
  5813. /**
  5814. * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
  5815. * @page: The page within the block of interest
  5816. * @pfn: The target page frame number
  5817. * @end_bitidx: The last bit of interest to retrieve
  5818. * @mask: mask of bits that the caller is interested in
  5819. *
  5820. * Return: pageblock_bits flags
  5821. */
  5822. unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
  5823. unsigned long end_bitidx,
  5824. unsigned long mask)
  5825. {
  5826. struct zone *zone;
  5827. unsigned long *bitmap;
  5828. unsigned long bitidx, word_bitidx;
  5829. unsigned long word;
  5830. zone = page_zone(page);
  5831. bitmap = get_pageblock_bitmap(zone, pfn);
  5832. bitidx = pfn_to_bitidx(zone, pfn);
  5833. word_bitidx = bitidx / BITS_PER_LONG;
  5834. bitidx &= (BITS_PER_LONG-1);
  5835. word = bitmap[word_bitidx];
  5836. bitidx += end_bitidx;
  5837. return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
  5838. }
  5839. /**
  5840. * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
  5841. * @page: The page within the block of interest
  5842. * @flags: The flags to set
  5843. * @pfn: The target page frame number
  5844. * @end_bitidx: The last bit of interest
  5845. * @mask: mask of bits that the caller is interested in
  5846. */
  5847. void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
  5848. unsigned long pfn,
  5849. unsigned long end_bitidx,
  5850. unsigned long mask)
  5851. {
  5852. struct zone *zone;
  5853. unsigned long *bitmap;
  5854. unsigned long bitidx, word_bitidx;
  5855. unsigned long old_word, word;
  5856. BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
  5857. zone = page_zone(page);
  5858. bitmap = get_pageblock_bitmap(zone, pfn);
  5859. bitidx = pfn_to_bitidx(zone, pfn);
  5860. word_bitidx = bitidx / BITS_PER_LONG;
  5861. bitidx &= (BITS_PER_LONG-1);
  5862. VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
  5863. bitidx += end_bitidx;
  5864. mask <<= (BITS_PER_LONG - bitidx - 1);
  5865. flags <<= (BITS_PER_LONG - bitidx - 1);
  5866. word = READ_ONCE(bitmap[word_bitidx]);
  5867. for (;;) {
  5868. old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
  5869. if (word == old_word)
  5870. break;
  5871. word = old_word;
  5872. }
  5873. }
  5874. /*
  5875. * This function checks whether pageblock includes unmovable pages or not.
  5876. * If @count is not zero, it is okay to include less @count unmovable pages
  5877. *
  5878. * PageLRU check without isolation or lru_lock could race so that
  5879. * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
  5880. * expect this function should be exact.
  5881. */
  5882. bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
  5883. bool skip_hwpoisoned_pages)
  5884. {
  5885. unsigned long pfn, iter, found;
  5886. int mt;
  5887. /*
  5888. * For avoiding noise data, lru_add_drain_all() should be called
  5889. * If ZONE_MOVABLE, the zone never contains unmovable pages
  5890. */
  5891. if (zone_idx(zone) == ZONE_MOVABLE)
  5892. return false;
  5893. mt = get_pageblock_migratetype(page);
  5894. if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
  5895. return false;
  5896. pfn = page_to_pfn(page);
  5897. for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
  5898. unsigned long check = pfn + iter;
  5899. if (!pfn_valid_within(check))
  5900. continue;
  5901. page = pfn_to_page(check);
  5902. /*
  5903. * Hugepages are not in LRU lists, but they're movable.
  5904. * We need not scan over tail pages bacause we don't
  5905. * handle each tail page individually in migration.
  5906. */
  5907. if (PageHuge(page)) {
  5908. iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
  5909. continue;
  5910. }
  5911. /*
  5912. * We can't use page_count without pin a page
  5913. * because another CPU can free compound page.
  5914. * This check already skips compound tails of THP
  5915. * because their page->_count is zero at all time.
  5916. */
  5917. if (!page_ref_count(page)) {
  5918. if (PageBuddy(page))
  5919. iter += (1 << page_order(page)) - 1;
  5920. continue;
  5921. }
  5922. /*
  5923. * The HWPoisoned page may be not in buddy system, and
  5924. * page_count() is not 0.
  5925. */
  5926. if (skip_hwpoisoned_pages && PageHWPoison(page))
  5927. continue;
  5928. if (!PageLRU(page))
  5929. found++;
  5930. /*
  5931. * If there are RECLAIMABLE pages, we need to check
  5932. * it. But now, memory offline itself doesn't call
  5933. * shrink_node_slabs() and it still to be fixed.
  5934. */
  5935. /*
  5936. * If the page is not RAM, page_count()should be 0.
  5937. * we don't need more check. This is an _used_ not-movable page.
  5938. *
  5939. * The problematic thing here is PG_reserved pages. PG_reserved
  5940. * is set to both of a memory hole page and a _used_ kernel
  5941. * page at boot.
  5942. */
  5943. if (found > count)
  5944. return true;
  5945. }
  5946. return false;
  5947. }
  5948. bool is_pageblock_removable_nolock(struct page *page)
  5949. {
  5950. struct zone *zone;
  5951. unsigned long pfn;
  5952. /*
  5953. * We have to be careful here because we are iterating over memory
  5954. * sections which are not zone aware so we might end up outside of
  5955. * the zone but still within the section.
  5956. * We have to take care about the node as well. If the node is offline
  5957. * its NODE_DATA will be NULL - see page_zone.
  5958. */
  5959. if (!node_online(page_to_nid(page)))
  5960. return false;
  5961. zone = page_zone(page);
  5962. pfn = page_to_pfn(page);
  5963. if (!zone_spans_pfn(zone, pfn))
  5964. return false;
  5965. return !has_unmovable_pages(zone, page, 0, true);
  5966. }
  5967. #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
  5968. static unsigned long pfn_max_align_down(unsigned long pfn)
  5969. {
  5970. return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
  5971. pageblock_nr_pages) - 1);
  5972. }
  5973. static unsigned long pfn_max_align_up(unsigned long pfn)
  5974. {
  5975. return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
  5976. pageblock_nr_pages));
  5977. }
  5978. /* [start, end) must belong to a single zone. */
  5979. static int __alloc_contig_migrate_range(struct compact_control *cc,
  5980. unsigned long start, unsigned long end)
  5981. {
  5982. /* This function is based on compact_zone() from compaction.c. */
  5983. unsigned long nr_reclaimed;
  5984. unsigned long pfn = start;
  5985. unsigned int tries = 0;
  5986. int ret = 0;
  5987. migrate_prep();
  5988. while (pfn < end || !list_empty(&cc->migratepages)) {
  5989. if (fatal_signal_pending(current)) {
  5990. ret = -EINTR;
  5991. break;
  5992. }
  5993. if (list_empty(&cc->migratepages)) {
  5994. cc->nr_migratepages = 0;
  5995. pfn = isolate_migratepages_range(cc, pfn, end);
  5996. if (!pfn) {
  5997. ret = -EINTR;
  5998. break;
  5999. }
  6000. tries = 0;
  6001. } else if (++tries == 5) {
  6002. ret = ret < 0 ? ret : -EBUSY;
  6003. break;
  6004. }
  6005. nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
  6006. &cc->migratepages);
  6007. cc->nr_migratepages -= nr_reclaimed;
  6008. ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
  6009. NULL, 0, cc->mode, MR_CMA);
  6010. }
  6011. if (ret < 0) {
  6012. putback_movable_pages(&cc->migratepages);
  6013. return ret;
  6014. }
  6015. return 0;
  6016. }
  6017. /**
  6018. * alloc_contig_range() -- tries to allocate given range of pages
  6019. * @start: start PFN to allocate
  6020. * @end: one-past-the-last PFN to allocate
  6021. * @migratetype: migratetype of the underlaying pageblocks (either
  6022. * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
  6023. * in range must have the same migratetype and it must
  6024. * be either of the two.
  6025. *
  6026. * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
  6027. * aligned, however it's the caller's responsibility to guarantee that
  6028. * we are the only thread that changes migrate type of pageblocks the
  6029. * pages fall in.
  6030. *
  6031. * The PFN range must belong to a single zone.
  6032. *
  6033. * Returns zero on success or negative error code. On success all
  6034. * pages which PFN is in [start, end) are allocated for the caller and
  6035. * need to be freed with free_contig_range().
  6036. */
  6037. int alloc_contig_range(unsigned long start, unsigned long end,
  6038. unsigned migratetype)
  6039. {
  6040. unsigned long outer_start, outer_end;
  6041. unsigned int order;
  6042. int ret = 0;
  6043. struct compact_control cc = {
  6044. .nr_migratepages = 0,
  6045. .order = -1,
  6046. .zone = page_zone(pfn_to_page(start)),
  6047. .mode = MIGRATE_SYNC,
  6048. .ignore_skip_hint = true,
  6049. };
  6050. INIT_LIST_HEAD(&cc.migratepages);
  6051. /*
  6052. * What we do here is we mark all pageblocks in range as
  6053. * MIGRATE_ISOLATE. Because pageblock and max order pages may
  6054. * have different sizes, and due to the way page allocator
  6055. * work, we align the range to biggest of the two pages so
  6056. * that page allocator won't try to merge buddies from
  6057. * different pageblocks and change MIGRATE_ISOLATE to some
  6058. * other migration type.
  6059. *
  6060. * Once the pageblocks are marked as MIGRATE_ISOLATE, we
  6061. * migrate the pages from an unaligned range (ie. pages that
  6062. * we are interested in). This will put all the pages in
  6063. * range back to page allocator as MIGRATE_ISOLATE.
  6064. *
  6065. * When this is done, we take the pages in range from page
  6066. * allocator removing them from the buddy system. This way
  6067. * page allocator will never consider using them.
  6068. *
  6069. * This lets us mark the pageblocks back as
  6070. * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
  6071. * aligned range but not in the unaligned, original range are
  6072. * put back to page allocator so that buddy can use them.
  6073. */
  6074. ret = start_isolate_page_range(pfn_max_align_down(start),
  6075. pfn_max_align_up(end), migratetype,
  6076. false);
  6077. if (ret)
  6078. return ret;
  6079. /*
  6080. * In case of -EBUSY, we'd like to know which page causes problem.
  6081. * So, just fall through. We will check it in test_pages_isolated().
  6082. */
  6083. ret = __alloc_contig_migrate_range(&cc, start, end);
  6084. if (ret && ret != -EBUSY)
  6085. goto done;
  6086. /*
  6087. * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
  6088. * aligned blocks that are marked as MIGRATE_ISOLATE. What's
  6089. * more, all pages in [start, end) are free in page allocator.
  6090. * What we are going to do is to allocate all pages from
  6091. * [start, end) (that is remove them from page allocator).
  6092. *
  6093. * The only problem is that pages at the beginning and at the
  6094. * end of interesting range may be not aligned with pages that
  6095. * page allocator holds, ie. they can be part of higher order
  6096. * pages. Because of this, we reserve the bigger range and
  6097. * once this is done free the pages we are not interested in.
  6098. *
  6099. * We don't have to hold zone->lock here because the pages are
  6100. * isolated thus they won't get removed from buddy.
  6101. */
  6102. lru_add_drain_all();
  6103. drain_all_pages(cc.zone);
  6104. order = 0;
  6105. outer_start = start;
  6106. while (!PageBuddy(pfn_to_page(outer_start))) {
  6107. if (++order >= MAX_ORDER) {
  6108. outer_start = start;
  6109. break;
  6110. }
  6111. outer_start &= ~0UL << order;
  6112. }
  6113. if (outer_start != start) {
  6114. order = page_order(pfn_to_page(outer_start));
  6115. /*
  6116. * outer_start page could be small order buddy page and
  6117. * it doesn't include start page. Adjust outer_start
  6118. * in this case to report failed page properly
  6119. * on tracepoint in test_pages_isolated()
  6120. */
  6121. if (outer_start + (1UL << order) <= start)
  6122. outer_start = start;
  6123. }
  6124. /* Make sure the range is really isolated. */
  6125. if (test_pages_isolated(outer_start, end, false)) {
  6126. pr_info("%s: [%lx, %lx) PFNs busy\n",
  6127. __func__, outer_start, end);
  6128. ret = -EBUSY;
  6129. goto done;
  6130. }
  6131. /* Grab isolated pages from freelists. */
  6132. outer_end = isolate_freepages_range(&cc, outer_start, end);
  6133. if (!outer_end) {
  6134. ret = -EBUSY;
  6135. goto done;
  6136. }
  6137. /* Free head and tail (if any) */
  6138. if (start != outer_start)
  6139. free_contig_range(outer_start, start - outer_start);
  6140. if (end != outer_end)
  6141. free_contig_range(end, outer_end - end);
  6142. done:
  6143. undo_isolate_page_range(pfn_max_align_down(start),
  6144. pfn_max_align_up(end), migratetype);
  6145. return ret;
  6146. }
  6147. void free_contig_range(unsigned long pfn, unsigned nr_pages)
  6148. {
  6149. unsigned int count = 0;
  6150. for (; nr_pages--; pfn++) {
  6151. struct page *page = pfn_to_page(pfn);
  6152. count += page_count(page) != 1;
  6153. __free_page(page);
  6154. }
  6155. WARN(count != 0, "%d pages are still in use!\n", count);
  6156. }
  6157. #endif
  6158. #ifdef CONFIG_MEMORY_HOTPLUG
  6159. /*
  6160. * The zone indicated has a new number of managed_pages; batch sizes and percpu
  6161. * page high values need to be recalulated.
  6162. */
  6163. void __meminit zone_pcp_update(struct zone *zone)
  6164. {
  6165. unsigned cpu;
  6166. mutex_lock(&pcp_batch_high_lock);
  6167. for_each_possible_cpu(cpu)
  6168. pageset_set_high_and_batch(zone,
  6169. per_cpu_ptr(zone->pageset, cpu));
  6170. mutex_unlock(&pcp_batch_high_lock);
  6171. }
  6172. #endif
  6173. void zone_pcp_reset(struct zone *zone)
  6174. {
  6175. unsigned long flags;
  6176. int cpu;
  6177. struct per_cpu_pageset *pset;
  6178. /* avoid races with drain_pages() */
  6179. local_irq_save(flags);
  6180. if (zone->pageset != &boot_pageset) {
  6181. for_each_online_cpu(cpu) {
  6182. pset = per_cpu_ptr(zone->pageset, cpu);
  6183. drain_zonestat(zone, pset);
  6184. }
  6185. free_percpu(zone->pageset);
  6186. zone->pageset = &boot_pageset;
  6187. }
  6188. local_irq_restore(flags);
  6189. }
  6190. #ifdef CONFIG_MEMORY_HOTREMOVE
  6191. /*
  6192. * All pages in the range must be isolated before calling this.
  6193. */
  6194. void
  6195. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  6196. {
  6197. struct page *page;
  6198. struct zone *zone;
  6199. unsigned int order, i;
  6200. unsigned long pfn;
  6201. unsigned long flags;
  6202. /* find the first valid pfn */
  6203. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  6204. if (pfn_valid(pfn))
  6205. break;
  6206. if (pfn == end_pfn)
  6207. return;
  6208. zone = page_zone(pfn_to_page(pfn));
  6209. spin_lock_irqsave(&zone->lock, flags);
  6210. pfn = start_pfn;
  6211. while (pfn < end_pfn) {
  6212. if (!pfn_valid(pfn)) {
  6213. pfn++;
  6214. continue;
  6215. }
  6216. page = pfn_to_page(pfn);
  6217. /*
  6218. * The HWPoisoned page may be not in buddy system, and
  6219. * page_count() is not 0.
  6220. */
  6221. if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
  6222. pfn++;
  6223. SetPageReserved(page);
  6224. continue;
  6225. }
  6226. BUG_ON(page_count(page));
  6227. BUG_ON(!PageBuddy(page));
  6228. order = page_order(page);
  6229. #ifdef CONFIG_DEBUG_VM
  6230. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  6231. pfn, 1 << order, end_pfn);
  6232. #endif
  6233. list_del(&page->lru);
  6234. rmv_page_order(page);
  6235. zone->free_area[order].nr_free--;
  6236. for (i = 0; i < (1 << order); i++)
  6237. SetPageReserved((page+i));
  6238. pfn += (1 << order);
  6239. }
  6240. spin_unlock_irqrestore(&zone->lock, flags);
  6241. }
  6242. #endif
  6243. bool is_free_buddy_page(struct page *page)
  6244. {
  6245. struct zone *zone = page_zone(page);
  6246. unsigned long pfn = page_to_pfn(page);
  6247. unsigned long flags;
  6248. unsigned int order;
  6249. spin_lock_irqsave(&zone->lock, flags);
  6250. for (order = 0; order < MAX_ORDER; order++) {
  6251. struct page *page_head = page - (pfn & ((1 << order) - 1));
  6252. if (PageBuddy(page_head) && page_order(page_head) >= order)
  6253. break;
  6254. }
  6255. spin_unlock_irqrestore(&zone->lock, flags);
  6256. return order < MAX_ORDER;
  6257. }