huge_memory.c 94 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615
  1. /*
  2. * Copyright (C) 2009 Red Hat, Inc.
  3. *
  4. * This work is licensed under the terms of the GNU GPL, version 2. See
  5. * the COPYING file in the top-level directory.
  6. */
  7. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  8. #include <linux/mm.h>
  9. #include <linux/sched.h>
  10. #include <linux/highmem.h>
  11. #include <linux/hugetlb.h>
  12. #include <linux/mmu_notifier.h>
  13. #include <linux/rmap.h>
  14. #include <linux/swap.h>
  15. #include <linux/shrinker.h>
  16. #include <linux/mm_inline.h>
  17. #include <linux/swapops.h>
  18. #include <linux/dax.h>
  19. #include <linux/kthread.h>
  20. #include <linux/khugepaged.h>
  21. #include <linux/freezer.h>
  22. #include <linux/pfn_t.h>
  23. #include <linux/mman.h>
  24. #include <linux/memremap.h>
  25. #include <linux/pagemap.h>
  26. #include <linux/debugfs.h>
  27. #include <linux/migrate.h>
  28. #include <linux/hashtable.h>
  29. #include <linux/userfaultfd_k.h>
  30. #include <linux/page_idle.h>
  31. #include <asm/tlb.h>
  32. #include <asm/pgalloc.h>
  33. #include "internal.h"
  34. enum scan_result {
  35. SCAN_FAIL,
  36. SCAN_SUCCEED,
  37. SCAN_PMD_NULL,
  38. SCAN_EXCEED_NONE_PTE,
  39. SCAN_PTE_NON_PRESENT,
  40. SCAN_PAGE_RO,
  41. SCAN_NO_REFERENCED_PAGE,
  42. SCAN_PAGE_NULL,
  43. SCAN_SCAN_ABORT,
  44. SCAN_PAGE_COUNT,
  45. SCAN_PAGE_LRU,
  46. SCAN_PAGE_LOCK,
  47. SCAN_PAGE_ANON,
  48. SCAN_PAGE_COMPOUND,
  49. SCAN_ANY_PROCESS,
  50. SCAN_VMA_NULL,
  51. SCAN_VMA_CHECK,
  52. SCAN_ADDRESS_RANGE,
  53. SCAN_SWAP_CACHE_PAGE,
  54. SCAN_DEL_PAGE_LRU,
  55. SCAN_ALLOC_HUGE_PAGE_FAIL,
  56. SCAN_CGROUP_CHARGE_FAIL
  57. };
  58. #define CREATE_TRACE_POINTS
  59. #include <trace/events/huge_memory.h>
  60. /*
  61. * By default transparent hugepage support is disabled in order that avoid
  62. * to risk increase the memory footprint of applications without a guaranteed
  63. * benefit. When transparent hugepage support is enabled, is for all mappings,
  64. * and khugepaged scans all mappings.
  65. * Defrag is invoked by khugepaged hugepage allocations and by page faults
  66. * for all hugepage allocations.
  67. */
  68. unsigned long transparent_hugepage_flags __read_mostly =
  69. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  70. (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  71. #endif
  72. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  73. (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  74. #endif
  75. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
  76. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  77. (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  78. /* default scan 8*512 pte (or vmas) every 30 second */
  79. static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
  80. static unsigned int khugepaged_pages_collapsed;
  81. static unsigned int khugepaged_full_scans;
  82. static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  83. /* during fragmentation poll the hugepage allocator once every minute */
  84. static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  85. static struct task_struct *khugepaged_thread __read_mostly;
  86. static DEFINE_MUTEX(khugepaged_mutex);
  87. static DEFINE_SPINLOCK(khugepaged_mm_lock);
  88. static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  89. /*
  90. * default collapse hugepages if there is at least one pte mapped like
  91. * it would have happened if the vma was large enough during page
  92. * fault.
  93. */
  94. static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
  95. static int khugepaged(void *none);
  96. static int khugepaged_slab_init(void);
  97. static void khugepaged_slab_exit(void);
  98. #define MM_SLOTS_HASH_BITS 10
  99. static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
  100. static struct kmem_cache *mm_slot_cache __read_mostly;
  101. /**
  102. * struct mm_slot - hash lookup from mm to mm_slot
  103. * @hash: hash collision list
  104. * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  105. * @mm: the mm that this information is valid for
  106. */
  107. struct mm_slot {
  108. struct hlist_node hash;
  109. struct list_head mm_node;
  110. struct mm_struct *mm;
  111. };
  112. /**
  113. * struct khugepaged_scan - cursor for scanning
  114. * @mm_head: the head of the mm list to scan
  115. * @mm_slot: the current mm_slot we are scanning
  116. * @address: the next address inside that to be scanned
  117. *
  118. * There is only the one khugepaged_scan instance of this cursor structure.
  119. */
  120. struct khugepaged_scan {
  121. struct list_head mm_head;
  122. struct mm_slot *mm_slot;
  123. unsigned long address;
  124. };
  125. static struct khugepaged_scan khugepaged_scan = {
  126. .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  127. };
  128. static struct shrinker deferred_split_shrinker;
  129. static void set_recommended_min_free_kbytes(void)
  130. {
  131. struct zone *zone;
  132. int nr_zones = 0;
  133. unsigned long recommended_min;
  134. for_each_populated_zone(zone)
  135. nr_zones++;
  136. /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
  137. recommended_min = pageblock_nr_pages * nr_zones * 2;
  138. /*
  139. * Make sure that on average at least two pageblocks are almost free
  140. * of another type, one for a migratetype to fall back to and a
  141. * second to avoid subsequent fallbacks of other types There are 3
  142. * MIGRATE_TYPES we care about.
  143. */
  144. recommended_min += pageblock_nr_pages * nr_zones *
  145. MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
  146. /* don't ever allow to reserve more than 5% of the lowmem */
  147. recommended_min = min(recommended_min,
  148. (unsigned long) nr_free_buffer_pages() / 20);
  149. recommended_min <<= (PAGE_SHIFT-10);
  150. if (recommended_min > min_free_kbytes) {
  151. if (user_min_free_kbytes >= 0)
  152. pr_info("raising min_free_kbytes from %d to %lu "
  153. "to help transparent hugepage allocations\n",
  154. min_free_kbytes, recommended_min);
  155. min_free_kbytes = recommended_min;
  156. }
  157. setup_per_zone_wmarks();
  158. }
  159. static int start_stop_khugepaged(void)
  160. {
  161. int err = 0;
  162. if (khugepaged_enabled()) {
  163. if (!khugepaged_thread)
  164. khugepaged_thread = kthread_run(khugepaged, NULL,
  165. "khugepaged");
  166. if (IS_ERR(khugepaged_thread)) {
  167. pr_err("khugepaged: kthread_run(khugepaged) failed\n");
  168. err = PTR_ERR(khugepaged_thread);
  169. khugepaged_thread = NULL;
  170. goto fail;
  171. }
  172. if (!list_empty(&khugepaged_scan.mm_head))
  173. wake_up_interruptible(&khugepaged_wait);
  174. set_recommended_min_free_kbytes();
  175. } else if (khugepaged_thread) {
  176. kthread_stop(khugepaged_thread);
  177. khugepaged_thread = NULL;
  178. }
  179. fail:
  180. return err;
  181. }
  182. static atomic_t huge_zero_refcount;
  183. struct page *huge_zero_page __read_mostly;
  184. struct page *get_huge_zero_page(void)
  185. {
  186. struct page *zero_page;
  187. retry:
  188. if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
  189. return READ_ONCE(huge_zero_page);
  190. zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
  191. HPAGE_PMD_ORDER);
  192. if (!zero_page) {
  193. count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
  194. return NULL;
  195. }
  196. count_vm_event(THP_ZERO_PAGE_ALLOC);
  197. preempt_disable();
  198. if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
  199. preempt_enable();
  200. __free_pages(zero_page, compound_order(zero_page));
  201. goto retry;
  202. }
  203. /* We take additional reference here. It will be put back by shrinker */
  204. atomic_set(&huge_zero_refcount, 2);
  205. preempt_enable();
  206. return READ_ONCE(huge_zero_page);
  207. }
  208. static void put_huge_zero_page(void)
  209. {
  210. /*
  211. * Counter should never go to zero here. Only shrinker can put
  212. * last reference.
  213. */
  214. BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
  215. }
  216. static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
  217. struct shrink_control *sc)
  218. {
  219. /* we can free zero page only if last reference remains */
  220. return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
  221. }
  222. static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
  223. struct shrink_control *sc)
  224. {
  225. if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
  226. struct page *zero_page = xchg(&huge_zero_page, NULL);
  227. BUG_ON(zero_page == NULL);
  228. __free_pages(zero_page, compound_order(zero_page));
  229. return HPAGE_PMD_NR;
  230. }
  231. return 0;
  232. }
  233. static struct shrinker huge_zero_page_shrinker = {
  234. .count_objects = shrink_huge_zero_page_count,
  235. .scan_objects = shrink_huge_zero_page_scan,
  236. .seeks = DEFAULT_SEEKS,
  237. };
  238. #ifdef CONFIG_SYSFS
  239. static ssize_t triple_flag_store(struct kobject *kobj,
  240. struct kobj_attribute *attr,
  241. const char *buf, size_t count,
  242. enum transparent_hugepage_flag enabled,
  243. enum transparent_hugepage_flag deferred,
  244. enum transparent_hugepage_flag req_madv)
  245. {
  246. if (!memcmp("defer", buf,
  247. min(sizeof("defer")-1, count))) {
  248. if (enabled == deferred)
  249. return -EINVAL;
  250. clear_bit(enabled, &transparent_hugepage_flags);
  251. clear_bit(req_madv, &transparent_hugepage_flags);
  252. set_bit(deferred, &transparent_hugepage_flags);
  253. } else if (!memcmp("always", buf,
  254. min(sizeof("always")-1, count))) {
  255. clear_bit(deferred, &transparent_hugepage_flags);
  256. clear_bit(req_madv, &transparent_hugepage_flags);
  257. set_bit(enabled, &transparent_hugepage_flags);
  258. } else if (!memcmp("madvise", buf,
  259. min(sizeof("madvise")-1, count))) {
  260. clear_bit(enabled, &transparent_hugepage_flags);
  261. clear_bit(deferred, &transparent_hugepage_flags);
  262. set_bit(req_madv, &transparent_hugepage_flags);
  263. } else if (!memcmp("never", buf,
  264. min(sizeof("never")-1, count))) {
  265. clear_bit(enabled, &transparent_hugepage_flags);
  266. clear_bit(req_madv, &transparent_hugepage_flags);
  267. clear_bit(deferred, &transparent_hugepage_flags);
  268. } else
  269. return -EINVAL;
  270. return count;
  271. }
  272. static ssize_t enabled_show(struct kobject *kobj,
  273. struct kobj_attribute *attr, char *buf)
  274. {
  275. if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
  276. return sprintf(buf, "[always] madvise never\n");
  277. else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
  278. return sprintf(buf, "always [madvise] never\n");
  279. else
  280. return sprintf(buf, "always madvise [never]\n");
  281. }
  282. static ssize_t enabled_store(struct kobject *kobj,
  283. struct kobj_attribute *attr,
  284. const char *buf, size_t count)
  285. {
  286. ssize_t ret;
  287. ret = triple_flag_store(kobj, attr, buf, count,
  288. TRANSPARENT_HUGEPAGE_FLAG,
  289. TRANSPARENT_HUGEPAGE_FLAG,
  290. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  291. if (ret > 0) {
  292. int err;
  293. mutex_lock(&khugepaged_mutex);
  294. err = start_stop_khugepaged();
  295. mutex_unlock(&khugepaged_mutex);
  296. if (err)
  297. ret = err;
  298. }
  299. return ret;
  300. }
  301. static struct kobj_attribute enabled_attr =
  302. __ATTR(enabled, 0644, enabled_show, enabled_store);
  303. static ssize_t single_flag_show(struct kobject *kobj,
  304. struct kobj_attribute *attr, char *buf,
  305. enum transparent_hugepage_flag flag)
  306. {
  307. return sprintf(buf, "%d\n",
  308. !!test_bit(flag, &transparent_hugepage_flags));
  309. }
  310. static ssize_t single_flag_store(struct kobject *kobj,
  311. struct kobj_attribute *attr,
  312. const char *buf, size_t count,
  313. enum transparent_hugepage_flag flag)
  314. {
  315. unsigned long value;
  316. int ret;
  317. ret = kstrtoul(buf, 10, &value);
  318. if (ret < 0)
  319. return ret;
  320. if (value > 1)
  321. return -EINVAL;
  322. if (value)
  323. set_bit(flag, &transparent_hugepage_flags);
  324. else
  325. clear_bit(flag, &transparent_hugepage_flags);
  326. return count;
  327. }
  328. /*
  329. * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
  330. * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
  331. * memory just to allocate one more hugepage.
  332. */
  333. static ssize_t defrag_show(struct kobject *kobj,
  334. struct kobj_attribute *attr, char *buf)
  335. {
  336. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
  337. return sprintf(buf, "[always] defer madvise never\n");
  338. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
  339. return sprintf(buf, "always [defer] madvise never\n");
  340. else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
  341. return sprintf(buf, "always defer [madvise] never\n");
  342. else
  343. return sprintf(buf, "always defer madvise [never]\n");
  344. }
  345. static ssize_t defrag_store(struct kobject *kobj,
  346. struct kobj_attribute *attr,
  347. const char *buf, size_t count)
  348. {
  349. return triple_flag_store(kobj, attr, buf, count,
  350. TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
  351. TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
  352. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  353. }
  354. static struct kobj_attribute defrag_attr =
  355. __ATTR(defrag, 0644, defrag_show, defrag_store);
  356. static ssize_t use_zero_page_show(struct kobject *kobj,
  357. struct kobj_attribute *attr, char *buf)
  358. {
  359. return single_flag_show(kobj, attr, buf,
  360. TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  361. }
  362. static ssize_t use_zero_page_store(struct kobject *kobj,
  363. struct kobj_attribute *attr, const char *buf, size_t count)
  364. {
  365. return single_flag_store(kobj, attr, buf, count,
  366. TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  367. }
  368. static struct kobj_attribute use_zero_page_attr =
  369. __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
  370. #ifdef CONFIG_DEBUG_VM
  371. static ssize_t debug_cow_show(struct kobject *kobj,
  372. struct kobj_attribute *attr, char *buf)
  373. {
  374. return single_flag_show(kobj, attr, buf,
  375. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  376. }
  377. static ssize_t debug_cow_store(struct kobject *kobj,
  378. struct kobj_attribute *attr,
  379. const char *buf, size_t count)
  380. {
  381. return single_flag_store(kobj, attr, buf, count,
  382. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  383. }
  384. static struct kobj_attribute debug_cow_attr =
  385. __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
  386. #endif /* CONFIG_DEBUG_VM */
  387. static struct attribute *hugepage_attr[] = {
  388. &enabled_attr.attr,
  389. &defrag_attr.attr,
  390. &use_zero_page_attr.attr,
  391. #ifdef CONFIG_DEBUG_VM
  392. &debug_cow_attr.attr,
  393. #endif
  394. NULL,
  395. };
  396. static struct attribute_group hugepage_attr_group = {
  397. .attrs = hugepage_attr,
  398. };
  399. static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
  400. struct kobj_attribute *attr,
  401. char *buf)
  402. {
  403. return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
  404. }
  405. static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
  406. struct kobj_attribute *attr,
  407. const char *buf, size_t count)
  408. {
  409. unsigned long msecs;
  410. int err;
  411. err = kstrtoul(buf, 10, &msecs);
  412. if (err || msecs > UINT_MAX)
  413. return -EINVAL;
  414. khugepaged_scan_sleep_millisecs = msecs;
  415. wake_up_interruptible(&khugepaged_wait);
  416. return count;
  417. }
  418. static struct kobj_attribute scan_sleep_millisecs_attr =
  419. __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
  420. scan_sleep_millisecs_store);
  421. static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
  422. struct kobj_attribute *attr,
  423. char *buf)
  424. {
  425. return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
  426. }
  427. static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
  428. struct kobj_attribute *attr,
  429. const char *buf, size_t count)
  430. {
  431. unsigned long msecs;
  432. int err;
  433. err = kstrtoul(buf, 10, &msecs);
  434. if (err || msecs > UINT_MAX)
  435. return -EINVAL;
  436. khugepaged_alloc_sleep_millisecs = msecs;
  437. wake_up_interruptible(&khugepaged_wait);
  438. return count;
  439. }
  440. static struct kobj_attribute alloc_sleep_millisecs_attr =
  441. __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
  442. alloc_sleep_millisecs_store);
  443. static ssize_t pages_to_scan_show(struct kobject *kobj,
  444. struct kobj_attribute *attr,
  445. char *buf)
  446. {
  447. return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
  448. }
  449. static ssize_t pages_to_scan_store(struct kobject *kobj,
  450. struct kobj_attribute *attr,
  451. const char *buf, size_t count)
  452. {
  453. int err;
  454. unsigned long pages;
  455. err = kstrtoul(buf, 10, &pages);
  456. if (err || !pages || pages > UINT_MAX)
  457. return -EINVAL;
  458. khugepaged_pages_to_scan = pages;
  459. return count;
  460. }
  461. static struct kobj_attribute pages_to_scan_attr =
  462. __ATTR(pages_to_scan, 0644, pages_to_scan_show,
  463. pages_to_scan_store);
  464. static ssize_t pages_collapsed_show(struct kobject *kobj,
  465. struct kobj_attribute *attr,
  466. char *buf)
  467. {
  468. return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
  469. }
  470. static struct kobj_attribute pages_collapsed_attr =
  471. __ATTR_RO(pages_collapsed);
  472. static ssize_t full_scans_show(struct kobject *kobj,
  473. struct kobj_attribute *attr,
  474. char *buf)
  475. {
  476. return sprintf(buf, "%u\n", khugepaged_full_scans);
  477. }
  478. static struct kobj_attribute full_scans_attr =
  479. __ATTR_RO(full_scans);
  480. static ssize_t khugepaged_defrag_show(struct kobject *kobj,
  481. struct kobj_attribute *attr, char *buf)
  482. {
  483. return single_flag_show(kobj, attr, buf,
  484. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  485. }
  486. static ssize_t khugepaged_defrag_store(struct kobject *kobj,
  487. struct kobj_attribute *attr,
  488. const char *buf, size_t count)
  489. {
  490. return single_flag_store(kobj, attr, buf, count,
  491. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  492. }
  493. static struct kobj_attribute khugepaged_defrag_attr =
  494. __ATTR(defrag, 0644, khugepaged_defrag_show,
  495. khugepaged_defrag_store);
  496. /*
  497. * max_ptes_none controls if khugepaged should collapse hugepages over
  498. * any unmapped ptes in turn potentially increasing the memory
  499. * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
  500. * reduce the available free memory in the system as it
  501. * runs. Increasing max_ptes_none will instead potentially reduce the
  502. * free memory in the system during the khugepaged scan.
  503. */
  504. static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
  505. struct kobj_attribute *attr,
  506. char *buf)
  507. {
  508. return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
  509. }
  510. static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
  511. struct kobj_attribute *attr,
  512. const char *buf, size_t count)
  513. {
  514. int err;
  515. unsigned long max_ptes_none;
  516. err = kstrtoul(buf, 10, &max_ptes_none);
  517. if (err || max_ptes_none > HPAGE_PMD_NR-1)
  518. return -EINVAL;
  519. khugepaged_max_ptes_none = max_ptes_none;
  520. return count;
  521. }
  522. static struct kobj_attribute khugepaged_max_ptes_none_attr =
  523. __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
  524. khugepaged_max_ptes_none_store);
  525. static struct attribute *khugepaged_attr[] = {
  526. &khugepaged_defrag_attr.attr,
  527. &khugepaged_max_ptes_none_attr.attr,
  528. &pages_to_scan_attr.attr,
  529. &pages_collapsed_attr.attr,
  530. &full_scans_attr.attr,
  531. &scan_sleep_millisecs_attr.attr,
  532. &alloc_sleep_millisecs_attr.attr,
  533. NULL,
  534. };
  535. static struct attribute_group khugepaged_attr_group = {
  536. .attrs = khugepaged_attr,
  537. .name = "khugepaged",
  538. };
  539. static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
  540. {
  541. int err;
  542. *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
  543. if (unlikely(!*hugepage_kobj)) {
  544. pr_err("failed to create transparent hugepage kobject\n");
  545. return -ENOMEM;
  546. }
  547. err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
  548. if (err) {
  549. pr_err("failed to register transparent hugepage group\n");
  550. goto delete_obj;
  551. }
  552. err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
  553. if (err) {
  554. pr_err("failed to register transparent hugepage group\n");
  555. goto remove_hp_group;
  556. }
  557. return 0;
  558. remove_hp_group:
  559. sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
  560. delete_obj:
  561. kobject_put(*hugepage_kobj);
  562. return err;
  563. }
  564. static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  565. {
  566. sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
  567. sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
  568. kobject_put(hugepage_kobj);
  569. }
  570. #else
  571. static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
  572. {
  573. return 0;
  574. }
  575. static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  576. {
  577. }
  578. #endif /* CONFIG_SYSFS */
  579. static int __init hugepage_init(void)
  580. {
  581. int err;
  582. struct kobject *hugepage_kobj;
  583. if (!has_transparent_hugepage()) {
  584. transparent_hugepage_flags = 0;
  585. return -EINVAL;
  586. }
  587. err = hugepage_init_sysfs(&hugepage_kobj);
  588. if (err)
  589. goto err_sysfs;
  590. err = khugepaged_slab_init();
  591. if (err)
  592. goto err_slab;
  593. err = register_shrinker(&huge_zero_page_shrinker);
  594. if (err)
  595. goto err_hzp_shrinker;
  596. err = register_shrinker(&deferred_split_shrinker);
  597. if (err)
  598. goto err_split_shrinker;
  599. /*
  600. * By default disable transparent hugepages on smaller systems,
  601. * where the extra memory used could hurt more than TLB overhead
  602. * is likely to save. The admin can still enable it through /sys.
  603. */
  604. if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
  605. transparent_hugepage_flags = 0;
  606. return 0;
  607. }
  608. err = start_stop_khugepaged();
  609. if (err)
  610. goto err_khugepaged;
  611. return 0;
  612. err_khugepaged:
  613. unregister_shrinker(&deferred_split_shrinker);
  614. err_split_shrinker:
  615. unregister_shrinker(&huge_zero_page_shrinker);
  616. err_hzp_shrinker:
  617. khugepaged_slab_exit();
  618. err_slab:
  619. hugepage_exit_sysfs(hugepage_kobj);
  620. err_sysfs:
  621. return err;
  622. }
  623. subsys_initcall(hugepage_init);
  624. static int __init setup_transparent_hugepage(char *str)
  625. {
  626. int ret = 0;
  627. if (!str)
  628. goto out;
  629. if (!strcmp(str, "always")) {
  630. set_bit(TRANSPARENT_HUGEPAGE_FLAG,
  631. &transparent_hugepage_flags);
  632. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  633. &transparent_hugepage_flags);
  634. ret = 1;
  635. } else if (!strcmp(str, "madvise")) {
  636. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  637. &transparent_hugepage_flags);
  638. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  639. &transparent_hugepage_flags);
  640. ret = 1;
  641. } else if (!strcmp(str, "never")) {
  642. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  643. &transparent_hugepage_flags);
  644. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  645. &transparent_hugepage_flags);
  646. ret = 1;
  647. }
  648. out:
  649. if (!ret)
  650. pr_warn("transparent_hugepage= cannot parse, ignored\n");
  651. return ret;
  652. }
  653. __setup("transparent_hugepage=", setup_transparent_hugepage);
  654. pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
  655. {
  656. if (likely(vma->vm_flags & VM_WRITE))
  657. pmd = pmd_mkwrite(pmd);
  658. return pmd;
  659. }
  660. static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
  661. {
  662. pmd_t entry;
  663. entry = mk_pmd(page, prot);
  664. entry = pmd_mkhuge(entry);
  665. return entry;
  666. }
  667. static inline struct list_head *page_deferred_list(struct page *page)
  668. {
  669. /*
  670. * ->lru in the tail pages is occupied by compound_head.
  671. * Let's use ->mapping + ->index in the second tail page as list_head.
  672. */
  673. return (struct list_head *)&page[2].mapping;
  674. }
  675. void prep_transhuge_page(struct page *page)
  676. {
  677. /*
  678. * we use page->mapping and page->indexlru in second tail page
  679. * as list_head: assuming THP order >= 2
  680. */
  681. BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
  682. INIT_LIST_HEAD(page_deferred_list(page));
  683. set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
  684. }
  685. static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
  686. struct vm_area_struct *vma,
  687. unsigned long address, pmd_t *pmd,
  688. struct page *page, gfp_t gfp,
  689. unsigned int flags)
  690. {
  691. struct mem_cgroup *memcg;
  692. pgtable_t pgtable;
  693. spinlock_t *ptl;
  694. unsigned long haddr = address & HPAGE_PMD_MASK;
  695. VM_BUG_ON_PAGE(!PageCompound(page), page);
  696. if (mem_cgroup_try_charge(page, mm, gfp, &memcg, true)) {
  697. put_page(page);
  698. count_vm_event(THP_FAULT_FALLBACK);
  699. return VM_FAULT_FALLBACK;
  700. }
  701. pgtable = pte_alloc_one(mm, haddr);
  702. if (unlikely(!pgtable)) {
  703. mem_cgroup_cancel_charge(page, memcg, true);
  704. put_page(page);
  705. return VM_FAULT_OOM;
  706. }
  707. clear_huge_page(page, haddr, HPAGE_PMD_NR);
  708. /*
  709. * The memory barrier inside __SetPageUptodate makes sure that
  710. * clear_huge_page writes become visible before the set_pmd_at()
  711. * write.
  712. */
  713. __SetPageUptodate(page);
  714. ptl = pmd_lock(mm, pmd);
  715. if (unlikely(!pmd_none(*pmd))) {
  716. spin_unlock(ptl);
  717. mem_cgroup_cancel_charge(page, memcg, true);
  718. put_page(page);
  719. pte_free(mm, pgtable);
  720. } else {
  721. pmd_t entry;
  722. /* Deliver the page fault to userland */
  723. if (userfaultfd_missing(vma)) {
  724. int ret;
  725. spin_unlock(ptl);
  726. mem_cgroup_cancel_charge(page, memcg, true);
  727. put_page(page);
  728. pte_free(mm, pgtable);
  729. ret = handle_userfault(vma, address, flags,
  730. VM_UFFD_MISSING);
  731. VM_BUG_ON(ret & VM_FAULT_FALLBACK);
  732. return ret;
  733. }
  734. entry = mk_huge_pmd(page, vma->vm_page_prot);
  735. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  736. page_add_new_anon_rmap(page, vma, haddr, true);
  737. mem_cgroup_commit_charge(page, memcg, false, true);
  738. lru_cache_add_active_or_unevictable(page, vma);
  739. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  740. set_pmd_at(mm, haddr, pmd, entry);
  741. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  742. atomic_long_inc(&mm->nr_ptes);
  743. spin_unlock(ptl);
  744. count_vm_event(THP_FAULT_ALLOC);
  745. }
  746. return 0;
  747. }
  748. /*
  749. * If THP is set to always then directly reclaim/compact as necessary
  750. * If set to defer then do no reclaim and defer to khugepaged
  751. * If set to madvise and the VMA is flagged then directly reclaim/compact
  752. */
  753. static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
  754. {
  755. gfp_t reclaim_flags = 0;
  756. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags) &&
  757. (vma->vm_flags & VM_HUGEPAGE))
  758. reclaim_flags = __GFP_DIRECT_RECLAIM;
  759. else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
  760. reclaim_flags = __GFP_KSWAPD_RECLAIM;
  761. else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
  762. reclaim_flags = __GFP_DIRECT_RECLAIM;
  763. return GFP_TRANSHUGE | reclaim_flags;
  764. }
  765. /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
  766. static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
  767. {
  768. return GFP_TRANSHUGE | (khugepaged_defrag() ? __GFP_DIRECT_RECLAIM : 0);
  769. }
  770. /* Caller must hold page table lock. */
  771. static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
  772. struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
  773. struct page *zero_page)
  774. {
  775. pmd_t entry;
  776. if (!pmd_none(*pmd))
  777. return false;
  778. entry = mk_pmd(zero_page, vma->vm_page_prot);
  779. entry = pmd_mkhuge(entry);
  780. if (pgtable)
  781. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  782. set_pmd_at(mm, haddr, pmd, entry);
  783. atomic_long_inc(&mm->nr_ptes);
  784. return true;
  785. }
  786. int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  787. unsigned long address, pmd_t *pmd,
  788. unsigned int flags)
  789. {
  790. gfp_t gfp;
  791. struct page *page;
  792. unsigned long haddr = address & HPAGE_PMD_MASK;
  793. if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
  794. return VM_FAULT_FALLBACK;
  795. if (unlikely(anon_vma_prepare(vma)))
  796. return VM_FAULT_OOM;
  797. if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
  798. return VM_FAULT_OOM;
  799. if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
  800. transparent_hugepage_use_zero_page()) {
  801. spinlock_t *ptl;
  802. pgtable_t pgtable;
  803. struct page *zero_page;
  804. bool set;
  805. int ret;
  806. pgtable = pte_alloc_one(mm, haddr);
  807. if (unlikely(!pgtable))
  808. return VM_FAULT_OOM;
  809. zero_page = get_huge_zero_page();
  810. if (unlikely(!zero_page)) {
  811. pte_free(mm, pgtable);
  812. count_vm_event(THP_FAULT_FALLBACK);
  813. return VM_FAULT_FALLBACK;
  814. }
  815. ptl = pmd_lock(mm, pmd);
  816. ret = 0;
  817. set = false;
  818. if (pmd_none(*pmd)) {
  819. if (userfaultfd_missing(vma)) {
  820. spin_unlock(ptl);
  821. ret = handle_userfault(vma, address, flags,
  822. VM_UFFD_MISSING);
  823. VM_BUG_ON(ret & VM_FAULT_FALLBACK);
  824. } else {
  825. set_huge_zero_page(pgtable, mm, vma,
  826. haddr, pmd,
  827. zero_page);
  828. spin_unlock(ptl);
  829. set = true;
  830. }
  831. } else
  832. spin_unlock(ptl);
  833. if (!set) {
  834. pte_free(mm, pgtable);
  835. put_huge_zero_page();
  836. }
  837. return ret;
  838. }
  839. gfp = alloc_hugepage_direct_gfpmask(vma);
  840. page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
  841. if (unlikely(!page)) {
  842. count_vm_event(THP_FAULT_FALLBACK);
  843. return VM_FAULT_FALLBACK;
  844. }
  845. prep_transhuge_page(page);
  846. return __do_huge_pmd_anonymous_page(mm, vma, address, pmd, page, gfp,
  847. flags);
  848. }
  849. static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
  850. pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
  851. {
  852. struct mm_struct *mm = vma->vm_mm;
  853. pmd_t entry;
  854. spinlock_t *ptl;
  855. ptl = pmd_lock(mm, pmd);
  856. entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
  857. if (pfn_t_devmap(pfn))
  858. entry = pmd_mkdevmap(entry);
  859. if (write) {
  860. entry = pmd_mkyoung(pmd_mkdirty(entry));
  861. entry = maybe_pmd_mkwrite(entry, vma);
  862. }
  863. set_pmd_at(mm, addr, pmd, entry);
  864. update_mmu_cache_pmd(vma, addr, pmd);
  865. spin_unlock(ptl);
  866. }
  867. int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
  868. pmd_t *pmd, pfn_t pfn, bool write)
  869. {
  870. pgprot_t pgprot = vma->vm_page_prot;
  871. /*
  872. * If we had pmd_special, we could avoid all these restrictions,
  873. * but we need to be consistent with PTEs and architectures that
  874. * can't support a 'special' bit.
  875. */
  876. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  877. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  878. (VM_PFNMAP|VM_MIXEDMAP));
  879. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  880. BUG_ON(!pfn_t_devmap(pfn));
  881. if (addr < vma->vm_start || addr >= vma->vm_end)
  882. return VM_FAULT_SIGBUS;
  883. if (track_pfn_insert(vma, &pgprot, pfn))
  884. return VM_FAULT_SIGBUS;
  885. insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
  886. return VM_FAULT_NOPAGE;
  887. }
  888. static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
  889. pmd_t *pmd)
  890. {
  891. pmd_t _pmd;
  892. /*
  893. * We should set the dirty bit only for FOLL_WRITE but for now
  894. * the dirty bit in the pmd is meaningless. And if the dirty
  895. * bit will become meaningful and we'll only set it with
  896. * FOLL_WRITE, an atomic set_bit will be required on the pmd to
  897. * set the young bit, instead of the current set_pmd_at.
  898. */
  899. _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
  900. if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
  901. pmd, _pmd, 1))
  902. update_mmu_cache_pmd(vma, addr, pmd);
  903. }
  904. struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
  905. pmd_t *pmd, int flags)
  906. {
  907. unsigned long pfn = pmd_pfn(*pmd);
  908. struct mm_struct *mm = vma->vm_mm;
  909. struct dev_pagemap *pgmap;
  910. struct page *page;
  911. assert_spin_locked(pmd_lockptr(mm, pmd));
  912. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  913. return NULL;
  914. if (pmd_present(*pmd) && pmd_devmap(*pmd))
  915. /* pass */;
  916. else
  917. return NULL;
  918. if (flags & FOLL_TOUCH)
  919. touch_pmd(vma, addr, pmd);
  920. /*
  921. * device mapped pages can only be returned if the
  922. * caller will manage the page reference count.
  923. */
  924. if (!(flags & FOLL_GET))
  925. return ERR_PTR(-EEXIST);
  926. pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
  927. pgmap = get_dev_pagemap(pfn, NULL);
  928. if (!pgmap)
  929. return ERR_PTR(-EFAULT);
  930. page = pfn_to_page(pfn);
  931. get_page(page);
  932. put_dev_pagemap(pgmap);
  933. return page;
  934. }
  935. int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  936. pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
  937. struct vm_area_struct *vma)
  938. {
  939. spinlock_t *dst_ptl, *src_ptl;
  940. struct page *src_page;
  941. pmd_t pmd;
  942. pgtable_t pgtable = NULL;
  943. int ret;
  944. if (!vma_is_dax(vma)) {
  945. ret = -ENOMEM;
  946. pgtable = pte_alloc_one(dst_mm, addr);
  947. if (unlikely(!pgtable))
  948. goto out;
  949. }
  950. dst_ptl = pmd_lock(dst_mm, dst_pmd);
  951. src_ptl = pmd_lockptr(src_mm, src_pmd);
  952. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  953. ret = -EAGAIN;
  954. pmd = *src_pmd;
  955. if (unlikely(!pmd_trans_huge(pmd) && !pmd_devmap(pmd))) {
  956. pte_free(dst_mm, pgtable);
  957. goto out_unlock;
  958. }
  959. /*
  960. * When page table lock is held, the huge zero pmd should not be
  961. * under splitting since we don't split the page itself, only pmd to
  962. * a page table.
  963. */
  964. if (is_huge_zero_pmd(pmd)) {
  965. struct page *zero_page;
  966. /*
  967. * get_huge_zero_page() will never allocate a new page here,
  968. * since we already have a zero page to copy. It just takes a
  969. * reference.
  970. */
  971. zero_page = get_huge_zero_page();
  972. set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
  973. zero_page);
  974. ret = 0;
  975. goto out_unlock;
  976. }
  977. if (!vma_is_dax(vma)) {
  978. /* thp accounting separate from pmd_devmap accounting */
  979. src_page = pmd_page(pmd);
  980. VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
  981. get_page(src_page);
  982. page_dup_rmap(src_page, true);
  983. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  984. atomic_long_inc(&dst_mm->nr_ptes);
  985. pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
  986. }
  987. pmdp_set_wrprotect(src_mm, addr, src_pmd);
  988. pmd = pmd_mkold(pmd_wrprotect(pmd));
  989. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  990. ret = 0;
  991. out_unlock:
  992. spin_unlock(src_ptl);
  993. spin_unlock(dst_ptl);
  994. out:
  995. return ret;
  996. }
  997. void huge_pmd_set_accessed(struct mm_struct *mm,
  998. struct vm_area_struct *vma,
  999. unsigned long address,
  1000. pmd_t *pmd, pmd_t orig_pmd,
  1001. int dirty)
  1002. {
  1003. spinlock_t *ptl;
  1004. pmd_t entry;
  1005. unsigned long haddr;
  1006. ptl = pmd_lock(mm, pmd);
  1007. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  1008. goto unlock;
  1009. entry = pmd_mkyoung(orig_pmd);
  1010. haddr = address & HPAGE_PMD_MASK;
  1011. if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
  1012. update_mmu_cache_pmd(vma, address, pmd);
  1013. unlock:
  1014. spin_unlock(ptl);
  1015. }
  1016. static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
  1017. struct vm_area_struct *vma,
  1018. unsigned long address,
  1019. pmd_t *pmd, pmd_t orig_pmd,
  1020. struct page *page,
  1021. unsigned long haddr)
  1022. {
  1023. struct mem_cgroup *memcg;
  1024. spinlock_t *ptl;
  1025. pgtable_t pgtable;
  1026. pmd_t _pmd;
  1027. int ret = 0, i;
  1028. struct page **pages;
  1029. unsigned long mmun_start; /* For mmu_notifiers */
  1030. unsigned long mmun_end; /* For mmu_notifiers */
  1031. pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
  1032. GFP_KERNEL);
  1033. if (unlikely(!pages)) {
  1034. ret |= VM_FAULT_OOM;
  1035. goto out;
  1036. }
  1037. for (i = 0; i < HPAGE_PMD_NR; i++) {
  1038. pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
  1039. __GFP_OTHER_NODE,
  1040. vma, address, page_to_nid(page));
  1041. if (unlikely(!pages[i] ||
  1042. mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
  1043. &memcg, false))) {
  1044. if (pages[i])
  1045. put_page(pages[i]);
  1046. while (--i >= 0) {
  1047. memcg = (void *)page_private(pages[i]);
  1048. set_page_private(pages[i], 0);
  1049. mem_cgroup_cancel_charge(pages[i], memcg,
  1050. false);
  1051. put_page(pages[i]);
  1052. }
  1053. kfree(pages);
  1054. ret |= VM_FAULT_OOM;
  1055. goto out;
  1056. }
  1057. set_page_private(pages[i], (unsigned long)memcg);
  1058. }
  1059. for (i = 0; i < HPAGE_PMD_NR; i++) {
  1060. copy_user_highpage(pages[i], page + i,
  1061. haddr + PAGE_SIZE * i, vma);
  1062. __SetPageUptodate(pages[i]);
  1063. cond_resched();
  1064. }
  1065. mmun_start = haddr;
  1066. mmun_end = haddr + HPAGE_PMD_SIZE;
  1067. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1068. ptl = pmd_lock(mm, pmd);
  1069. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  1070. goto out_free_pages;
  1071. VM_BUG_ON_PAGE(!PageHead(page), page);
  1072. pmdp_huge_clear_flush_notify(vma, haddr, pmd);
  1073. /* leave pmd empty until pte is filled */
  1074. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  1075. pmd_populate(mm, &_pmd, pgtable);
  1076. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  1077. pte_t *pte, entry;
  1078. entry = mk_pte(pages[i], vma->vm_page_prot);
  1079. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1080. memcg = (void *)page_private(pages[i]);
  1081. set_page_private(pages[i], 0);
  1082. page_add_new_anon_rmap(pages[i], vma, haddr, false);
  1083. mem_cgroup_commit_charge(pages[i], memcg, false, false);
  1084. lru_cache_add_active_or_unevictable(pages[i], vma);
  1085. pte = pte_offset_map(&_pmd, haddr);
  1086. VM_BUG_ON(!pte_none(*pte));
  1087. set_pte_at(mm, haddr, pte, entry);
  1088. pte_unmap(pte);
  1089. }
  1090. kfree(pages);
  1091. smp_wmb(); /* make pte visible before pmd */
  1092. pmd_populate(mm, pmd, pgtable);
  1093. page_remove_rmap(page, true);
  1094. spin_unlock(ptl);
  1095. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1096. ret |= VM_FAULT_WRITE;
  1097. put_page(page);
  1098. out:
  1099. return ret;
  1100. out_free_pages:
  1101. spin_unlock(ptl);
  1102. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1103. for (i = 0; i < HPAGE_PMD_NR; i++) {
  1104. memcg = (void *)page_private(pages[i]);
  1105. set_page_private(pages[i], 0);
  1106. mem_cgroup_cancel_charge(pages[i], memcg, false);
  1107. put_page(pages[i]);
  1108. }
  1109. kfree(pages);
  1110. goto out;
  1111. }
  1112. int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1113. unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
  1114. {
  1115. spinlock_t *ptl;
  1116. int ret = 0;
  1117. struct page *page = NULL, *new_page;
  1118. struct mem_cgroup *memcg;
  1119. unsigned long haddr;
  1120. unsigned long mmun_start; /* For mmu_notifiers */
  1121. unsigned long mmun_end; /* For mmu_notifiers */
  1122. gfp_t huge_gfp; /* for allocation and charge */
  1123. ptl = pmd_lockptr(mm, pmd);
  1124. VM_BUG_ON_VMA(!vma->anon_vma, vma);
  1125. haddr = address & HPAGE_PMD_MASK;
  1126. if (is_huge_zero_pmd(orig_pmd))
  1127. goto alloc;
  1128. spin_lock(ptl);
  1129. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  1130. goto out_unlock;
  1131. page = pmd_page(orig_pmd);
  1132. VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
  1133. /*
  1134. * We can only reuse the page if nobody else maps the huge page or it's
  1135. * part. We can do it by checking page_mapcount() on each sub-page, but
  1136. * it's expensive.
  1137. * The cheaper way is to check page_count() to be equal 1: every
  1138. * mapcount takes page reference reference, so this way we can
  1139. * guarantee, that the PMD is the only mapping.
  1140. * This can give false negative if somebody pinned the page, but that's
  1141. * fine.
  1142. */
  1143. if (page_mapcount(page) == 1 && page_count(page) == 1) {
  1144. pmd_t entry;
  1145. entry = pmd_mkyoung(orig_pmd);
  1146. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  1147. if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
  1148. update_mmu_cache_pmd(vma, address, pmd);
  1149. ret |= VM_FAULT_WRITE;
  1150. goto out_unlock;
  1151. }
  1152. get_page(page);
  1153. spin_unlock(ptl);
  1154. alloc:
  1155. if (transparent_hugepage_enabled(vma) &&
  1156. !transparent_hugepage_debug_cow()) {
  1157. huge_gfp = alloc_hugepage_direct_gfpmask(vma);
  1158. new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
  1159. } else
  1160. new_page = NULL;
  1161. if (likely(new_page)) {
  1162. prep_transhuge_page(new_page);
  1163. } else {
  1164. if (!page) {
  1165. split_huge_pmd(vma, pmd, address);
  1166. ret |= VM_FAULT_FALLBACK;
  1167. } else {
  1168. ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
  1169. pmd, orig_pmd, page, haddr);
  1170. if (ret & VM_FAULT_OOM) {
  1171. split_huge_pmd(vma, pmd, address);
  1172. ret |= VM_FAULT_FALLBACK;
  1173. }
  1174. put_page(page);
  1175. }
  1176. count_vm_event(THP_FAULT_FALLBACK);
  1177. goto out;
  1178. }
  1179. if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg,
  1180. true))) {
  1181. put_page(new_page);
  1182. if (page) {
  1183. split_huge_pmd(vma, pmd, address);
  1184. put_page(page);
  1185. } else
  1186. split_huge_pmd(vma, pmd, address);
  1187. ret |= VM_FAULT_FALLBACK;
  1188. count_vm_event(THP_FAULT_FALLBACK);
  1189. goto out;
  1190. }
  1191. count_vm_event(THP_FAULT_ALLOC);
  1192. if (!page)
  1193. clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
  1194. else
  1195. copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
  1196. __SetPageUptodate(new_page);
  1197. mmun_start = haddr;
  1198. mmun_end = haddr + HPAGE_PMD_SIZE;
  1199. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1200. spin_lock(ptl);
  1201. if (page)
  1202. put_page(page);
  1203. if (unlikely(!pmd_same(*pmd, orig_pmd))) {
  1204. spin_unlock(ptl);
  1205. mem_cgroup_cancel_charge(new_page, memcg, true);
  1206. put_page(new_page);
  1207. goto out_mn;
  1208. } else {
  1209. pmd_t entry;
  1210. entry = mk_huge_pmd(new_page, vma->vm_page_prot);
  1211. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  1212. pmdp_huge_clear_flush_notify(vma, haddr, pmd);
  1213. page_add_new_anon_rmap(new_page, vma, haddr, true);
  1214. mem_cgroup_commit_charge(new_page, memcg, false, true);
  1215. lru_cache_add_active_or_unevictable(new_page, vma);
  1216. set_pmd_at(mm, haddr, pmd, entry);
  1217. update_mmu_cache_pmd(vma, address, pmd);
  1218. if (!page) {
  1219. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  1220. put_huge_zero_page();
  1221. } else {
  1222. VM_BUG_ON_PAGE(!PageHead(page), page);
  1223. page_remove_rmap(page, true);
  1224. put_page(page);
  1225. }
  1226. ret |= VM_FAULT_WRITE;
  1227. }
  1228. spin_unlock(ptl);
  1229. out_mn:
  1230. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1231. out:
  1232. return ret;
  1233. out_unlock:
  1234. spin_unlock(ptl);
  1235. return ret;
  1236. }
  1237. struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
  1238. unsigned long addr,
  1239. pmd_t *pmd,
  1240. unsigned int flags)
  1241. {
  1242. struct mm_struct *mm = vma->vm_mm;
  1243. struct page *page = NULL;
  1244. assert_spin_locked(pmd_lockptr(mm, pmd));
  1245. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  1246. goto out;
  1247. /* Avoid dumping huge zero page */
  1248. if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
  1249. return ERR_PTR(-EFAULT);
  1250. /* Full NUMA hinting faults to serialise migration in fault paths */
  1251. if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
  1252. goto out;
  1253. page = pmd_page(*pmd);
  1254. VM_BUG_ON_PAGE(!PageHead(page), page);
  1255. if (flags & FOLL_TOUCH)
  1256. touch_pmd(vma, addr, pmd);
  1257. if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
  1258. /*
  1259. * We don't mlock() pte-mapped THPs. This way we can avoid
  1260. * leaking mlocked pages into non-VM_LOCKED VMAs.
  1261. *
  1262. * In most cases the pmd is the only mapping of the page as we
  1263. * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
  1264. * writable private mappings in populate_vma_page_range().
  1265. *
  1266. * The only scenario when we have the page shared here is if we
  1267. * mlocking read-only mapping shared over fork(). We skip
  1268. * mlocking such pages.
  1269. */
  1270. if (compound_mapcount(page) == 1 && !PageDoubleMap(page) &&
  1271. page->mapping && trylock_page(page)) {
  1272. lru_add_drain();
  1273. if (page->mapping)
  1274. mlock_vma_page(page);
  1275. unlock_page(page);
  1276. }
  1277. }
  1278. page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
  1279. VM_BUG_ON_PAGE(!PageCompound(page), page);
  1280. if (flags & FOLL_GET)
  1281. get_page(page);
  1282. out:
  1283. return page;
  1284. }
  1285. /* NUMA hinting page fault entry point for trans huge pmds */
  1286. int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1287. unsigned long addr, pmd_t pmd, pmd_t *pmdp)
  1288. {
  1289. spinlock_t *ptl;
  1290. struct anon_vma *anon_vma = NULL;
  1291. struct page *page;
  1292. unsigned long haddr = addr & HPAGE_PMD_MASK;
  1293. int page_nid = -1, this_nid = numa_node_id();
  1294. int target_nid, last_cpupid = -1;
  1295. bool page_locked;
  1296. bool migrated = false;
  1297. bool was_writable;
  1298. int flags = 0;
  1299. /* A PROT_NONE fault should not end up here */
  1300. BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
  1301. ptl = pmd_lock(mm, pmdp);
  1302. if (unlikely(!pmd_same(pmd, *pmdp)))
  1303. goto out_unlock;
  1304. /*
  1305. * If there are potential migrations, wait for completion and retry
  1306. * without disrupting NUMA hinting information. Do not relock and
  1307. * check_same as the page may no longer be mapped.
  1308. */
  1309. if (unlikely(pmd_trans_migrating(*pmdp))) {
  1310. page = pmd_page(*pmdp);
  1311. spin_unlock(ptl);
  1312. wait_on_page_locked(page);
  1313. goto out;
  1314. }
  1315. page = pmd_page(pmd);
  1316. BUG_ON(is_huge_zero_page(page));
  1317. page_nid = page_to_nid(page);
  1318. last_cpupid = page_cpupid_last(page);
  1319. count_vm_numa_event(NUMA_HINT_FAULTS);
  1320. if (page_nid == this_nid) {
  1321. count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
  1322. flags |= TNF_FAULT_LOCAL;
  1323. }
  1324. /* See similar comment in do_numa_page for explanation */
  1325. if (!(vma->vm_flags & VM_WRITE))
  1326. flags |= TNF_NO_GROUP;
  1327. /*
  1328. * Acquire the page lock to serialise THP migrations but avoid dropping
  1329. * page_table_lock if at all possible
  1330. */
  1331. page_locked = trylock_page(page);
  1332. target_nid = mpol_misplaced(page, vma, haddr);
  1333. if (target_nid == -1) {
  1334. /* If the page was locked, there are no parallel migrations */
  1335. if (page_locked)
  1336. goto clear_pmdnuma;
  1337. }
  1338. /* Migration could have started since the pmd_trans_migrating check */
  1339. if (!page_locked) {
  1340. spin_unlock(ptl);
  1341. wait_on_page_locked(page);
  1342. page_nid = -1;
  1343. goto out;
  1344. }
  1345. /*
  1346. * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
  1347. * to serialises splits
  1348. */
  1349. get_page(page);
  1350. spin_unlock(ptl);
  1351. anon_vma = page_lock_anon_vma_read(page);
  1352. /* Confirm the PMD did not change while page_table_lock was released */
  1353. spin_lock(ptl);
  1354. if (unlikely(!pmd_same(pmd, *pmdp))) {
  1355. unlock_page(page);
  1356. put_page(page);
  1357. page_nid = -1;
  1358. goto out_unlock;
  1359. }
  1360. /* Bail if we fail to protect against THP splits for any reason */
  1361. if (unlikely(!anon_vma)) {
  1362. put_page(page);
  1363. page_nid = -1;
  1364. goto clear_pmdnuma;
  1365. }
  1366. /*
  1367. * Migrate the THP to the requested node, returns with page unlocked
  1368. * and access rights restored.
  1369. */
  1370. spin_unlock(ptl);
  1371. migrated = migrate_misplaced_transhuge_page(mm, vma,
  1372. pmdp, pmd, addr, page, target_nid);
  1373. if (migrated) {
  1374. flags |= TNF_MIGRATED;
  1375. page_nid = target_nid;
  1376. } else
  1377. flags |= TNF_MIGRATE_FAIL;
  1378. goto out;
  1379. clear_pmdnuma:
  1380. BUG_ON(!PageLocked(page));
  1381. was_writable = pmd_write(pmd);
  1382. pmd = pmd_modify(pmd, vma->vm_page_prot);
  1383. pmd = pmd_mkyoung(pmd);
  1384. if (was_writable)
  1385. pmd = pmd_mkwrite(pmd);
  1386. set_pmd_at(mm, haddr, pmdp, pmd);
  1387. update_mmu_cache_pmd(vma, addr, pmdp);
  1388. unlock_page(page);
  1389. out_unlock:
  1390. spin_unlock(ptl);
  1391. out:
  1392. if (anon_vma)
  1393. page_unlock_anon_vma_read(anon_vma);
  1394. if (page_nid != -1)
  1395. task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
  1396. return 0;
  1397. }
  1398. int madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  1399. pmd_t *pmd, unsigned long addr, unsigned long next)
  1400. {
  1401. spinlock_t *ptl;
  1402. pmd_t orig_pmd;
  1403. struct page *page;
  1404. struct mm_struct *mm = tlb->mm;
  1405. int ret = 0;
  1406. ptl = pmd_trans_huge_lock(pmd, vma);
  1407. if (!ptl)
  1408. goto out_unlocked;
  1409. orig_pmd = *pmd;
  1410. if (is_huge_zero_pmd(orig_pmd)) {
  1411. ret = 1;
  1412. goto out;
  1413. }
  1414. page = pmd_page(orig_pmd);
  1415. /*
  1416. * If other processes are mapping this page, we couldn't discard
  1417. * the page unless they all do MADV_FREE so let's skip the page.
  1418. */
  1419. if (page_mapcount(page) != 1)
  1420. goto out;
  1421. if (!trylock_page(page))
  1422. goto out;
  1423. /*
  1424. * If user want to discard part-pages of THP, split it so MADV_FREE
  1425. * will deactivate only them.
  1426. */
  1427. if (next - addr != HPAGE_PMD_SIZE) {
  1428. get_page(page);
  1429. spin_unlock(ptl);
  1430. if (split_huge_page(page)) {
  1431. put_page(page);
  1432. unlock_page(page);
  1433. goto out_unlocked;
  1434. }
  1435. put_page(page);
  1436. unlock_page(page);
  1437. ret = 1;
  1438. goto out_unlocked;
  1439. }
  1440. if (PageDirty(page))
  1441. ClearPageDirty(page);
  1442. unlock_page(page);
  1443. if (PageActive(page))
  1444. deactivate_page(page);
  1445. if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
  1446. orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
  1447. tlb->fullmm);
  1448. orig_pmd = pmd_mkold(orig_pmd);
  1449. orig_pmd = pmd_mkclean(orig_pmd);
  1450. set_pmd_at(mm, addr, pmd, orig_pmd);
  1451. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  1452. }
  1453. ret = 1;
  1454. out:
  1455. spin_unlock(ptl);
  1456. out_unlocked:
  1457. return ret;
  1458. }
  1459. int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  1460. pmd_t *pmd, unsigned long addr)
  1461. {
  1462. pmd_t orig_pmd;
  1463. spinlock_t *ptl;
  1464. ptl = __pmd_trans_huge_lock(pmd, vma);
  1465. if (!ptl)
  1466. return 0;
  1467. /*
  1468. * For architectures like ppc64 we look at deposited pgtable
  1469. * when calling pmdp_huge_get_and_clear. So do the
  1470. * pgtable_trans_huge_withdraw after finishing pmdp related
  1471. * operations.
  1472. */
  1473. orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
  1474. tlb->fullmm);
  1475. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  1476. if (vma_is_dax(vma)) {
  1477. spin_unlock(ptl);
  1478. if (is_huge_zero_pmd(orig_pmd))
  1479. put_huge_zero_page();
  1480. } else if (is_huge_zero_pmd(orig_pmd)) {
  1481. pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
  1482. atomic_long_dec(&tlb->mm->nr_ptes);
  1483. spin_unlock(ptl);
  1484. put_huge_zero_page();
  1485. } else {
  1486. struct page *page = pmd_page(orig_pmd);
  1487. page_remove_rmap(page, true);
  1488. VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
  1489. add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
  1490. VM_BUG_ON_PAGE(!PageHead(page), page);
  1491. pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
  1492. atomic_long_dec(&tlb->mm->nr_ptes);
  1493. spin_unlock(ptl);
  1494. tlb_remove_page(tlb, page);
  1495. }
  1496. return 1;
  1497. }
  1498. bool move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
  1499. unsigned long old_addr,
  1500. unsigned long new_addr, unsigned long old_end,
  1501. pmd_t *old_pmd, pmd_t *new_pmd)
  1502. {
  1503. spinlock_t *old_ptl, *new_ptl;
  1504. pmd_t pmd;
  1505. struct mm_struct *mm = vma->vm_mm;
  1506. if ((old_addr & ~HPAGE_PMD_MASK) ||
  1507. (new_addr & ~HPAGE_PMD_MASK) ||
  1508. old_end - old_addr < HPAGE_PMD_SIZE ||
  1509. (new_vma->vm_flags & VM_NOHUGEPAGE))
  1510. return false;
  1511. /*
  1512. * The destination pmd shouldn't be established, free_pgtables()
  1513. * should have release it.
  1514. */
  1515. if (WARN_ON(!pmd_none(*new_pmd))) {
  1516. VM_BUG_ON(pmd_trans_huge(*new_pmd));
  1517. return false;
  1518. }
  1519. /*
  1520. * We don't have to worry about the ordering of src and dst
  1521. * ptlocks because exclusive mmap_sem prevents deadlock.
  1522. */
  1523. old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
  1524. if (old_ptl) {
  1525. new_ptl = pmd_lockptr(mm, new_pmd);
  1526. if (new_ptl != old_ptl)
  1527. spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
  1528. pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
  1529. VM_BUG_ON(!pmd_none(*new_pmd));
  1530. if (pmd_move_must_withdraw(new_ptl, old_ptl) &&
  1531. vma_is_anonymous(vma)) {
  1532. pgtable_t pgtable;
  1533. pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
  1534. pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
  1535. }
  1536. set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
  1537. if (new_ptl != old_ptl)
  1538. spin_unlock(new_ptl);
  1539. spin_unlock(old_ptl);
  1540. return true;
  1541. }
  1542. return false;
  1543. }
  1544. /*
  1545. * Returns
  1546. * - 0 if PMD could not be locked
  1547. * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
  1548. * - HPAGE_PMD_NR is protections changed and TLB flush necessary
  1549. */
  1550. int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  1551. unsigned long addr, pgprot_t newprot, int prot_numa)
  1552. {
  1553. struct mm_struct *mm = vma->vm_mm;
  1554. spinlock_t *ptl;
  1555. int ret = 0;
  1556. ptl = __pmd_trans_huge_lock(pmd, vma);
  1557. if (ptl) {
  1558. pmd_t entry;
  1559. bool preserve_write = prot_numa && pmd_write(*pmd);
  1560. ret = 1;
  1561. /*
  1562. * Avoid trapping faults against the zero page. The read-only
  1563. * data is likely to be read-cached on the local CPU and
  1564. * local/remote hits to the zero page are not interesting.
  1565. */
  1566. if (prot_numa && is_huge_zero_pmd(*pmd)) {
  1567. spin_unlock(ptl);
  1568. return ret;
  1569. }
  1570. if (!prot_numa || !pmd_protnone(*pmd)) {
  1571. entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
  1572. entry = pmd_modify(entry, newprot);
  1573. if (preserve_write)
  1574. entry = pmd_mkwrite(entry);
  1575. ret = HPAGE_PMD_NR;
  1576. set_pmd_at(mm, addr, pmd, entry);
  1577. BUG_ON(!preserve_write && pmd_write(entry));
  1578. }
  1579. spin_unlock(ptl);
  1580. }
  1581. return ret;
  1582. }
  1583. /*
  1584. * Returns true if a given pmd maps a thp, false otherwise.
  1585. *
  1586. * Note that if it returns true, this routine returns without unlocking page
  1587. * table lock. So callers must unlock it.
  1588. */
  1589. spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
  1590. {
  1591. spinlock_t *ptl;
  1592. ptl = pmd_lock(vma->vm_mm, pmd);
  1593. if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
  1594. return ptl;
  1595. spin_unlock(ptl);
  1596. return NULL;
  1597. }
  1598. #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
  1599. int hugepage_madvise(struct vm_area_struct *vma,
  1600. unsigned long *vm_flags, int advice)
  1601. {
  1602. switch (advice) {
  1603. case MADV_HUGEPAGE:
  1604. #ifdef CONFIG_S390
  1605. /*
  1606. * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
  1607. * can't handle this properly after s390_enable_sie, so we simply
  1608. * ignore the madvise to prevent qemu from causing a SIGSEGV.
  1609. */
  1610. if (mm_has_pgste(vma->vm_mm))
  1611. return 0;
  1612. #endif
  1613. /*
  1614. * Be somewhat over-protective like KSM for now!
  1615. */
  1616. if (*vm_flags & VM_NO_THP)
  1617. return -EINVAL;
  1618. *vm_flags &= ~VM_NOHUGEPAGE;
  1619. *vm_flags |= VM_HUGEPAGE;
  1620. /*
  1621. * If the vma become good for khugepaged to scan,
  1622. * register it here without waiting a page fault that
  1623. * may not happen any time soon.
  1624. */
  1625. if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
  1626. return -ENOMEM;
  1627. break;
  1628. case MADV_NOHUGEPAGE:
  1629. /*
  1630. * Be somewhat over-protective like KSM for now!
  1631. */
  1632. if (*vm_flags & VM_NO_THP)
  1633. return -EINVAL;
  1634. *vm_flags &= ~VM_HUGEPAGE;
  1635. *vm_flags |= VM_NOHUGEPAGE;
  1636. /*
  1637. * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
  1638. * this vma even if we leave the mm registered in khugepaged if
  1639. * it got registered before VM_NOHUGEPAGE was set.
  1640. */
  1641. break;
  1642. }
  1643. return 0;
  1644. }
  1645. static int __init khugepaged_slab_init(void)
  1646. {
  1647. mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
  1648. sizeof(struct mm_slot),
  1649. __alignof__(struct mm_slot), 0, NULL);
  1650. if (!mm_slot_cache)
  1651. return -ENOMEM;
  1652. return 0;
  1653. }
  1654. static void __init khugepaged_slab_exit(void)
  1655. {
  1656. kmem_cache_destroy(mm_slot_cache);
  1657. }
  1658. static inline struct mm_slot *alloc_mm_slot(void)
  1659. {
  1660. if (!mm_slot_cache) /* initialization failed */
  1661. return NULL;
  1662. return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
  1663. }
  1664. static inline void free_mm_slot(struct mm_slot *mm_slot)
  1665. {
  1666. kmem_cache_free(mm_slot_cache, mm_slot);
  1667. }
  1668. static struct mm_slot *get_mm_slot(struct mm_struct *mm)
  1669. {
  1670. struct mm_slot *mm_slot;
  1671. hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
  1672. if (mm == mm_slot->mm)
  1673. return mm_slot;
  1674. return NULL;
  1675. }
  1676. static void insert_to_mm_slots_hash(struct mm_struct *mm,
  1677. struct mm_slot *mm_slot)
  1678. {
  1679. mm_slot->mm = mm;
  1680. hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
  1681. }
  1682. static inline int khugepaged_test_exit(struct mm_struct *mm)
  1683. {
  1684. return atomic_read(&mm->mm_users) == 0;
  1685. }
  1686. int __khugepaged_enter(struct mm_struct *mm)
  1687. {
  1688. struct mm_slot *mm_slot;
  1689. int wakeup;
  1690. mm_slot = alloc_mm_slot();
  1691. if (!mm_slot)
  1692. return -ENOMEM;
  1693. /* __khugepaged_exit() must not run from under us */
  1694. VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
  1695. if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
  1696. free_mm_slot(mm_slot);
  1697. return 0;
  1698. }
  1699. spin_lock(&khugepaged_mm_lock);
  1700. insert_to_mm_slots_hash(mm, mm_slot);
  1701. /*
  1702. * Insert just behind the scanning cursor, to let the area settle
  1703. * down a little.
  1704. */
  1705. wakeup = list_empty(&khugepaged_scan.mm_head);
  1706. list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
  1707. spin_unlock(&khugepaged_mm_lock);
  1708. atomic_inc(&mm->mm_count);
  1709. if (wakeup)
  1710. wake_up_interruptible(&khugepaged_wait);
  1711. return 0;
  1712. }
  1713. int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
  1714. unsigned long vm_flags)
  1715. {
  1716. unsigned long hstart, hend;
  1717. if (!vma->anon_vma)
  1718. /*
  1719. * Not yet faulted in so we will register later in the
  1720. * page fault if needed.
  1721. */
  1722. return 0;
  1723. if (vma->vm_ops)
  1724. /* khugepaged not yet working on file or special mappings */
  1725. return 0;
  1726. VM_BUG_ON_VMA(vm_flags & VM_NO_THP, vma);
  1727. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1728. hend = vma->vm_end & HPAGE_PMD_MASK;
  1729. if (hstart < hend)
  1730. return khugepaged_enter(vma, vm_flags);
  1731. return 0;
  1732. }
  1733. void __khugepaged_exit(struct mm_struct *mm)
  1734. {
  1735. struct mm_slot *mm_slot;
  1736. int free = 0;
  1737. spin_lock(&khugepaged_mm_lock);
  1738. mm_slot = get_mm_slot(mm);
  1739. if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
  1740. hash_del(&mm_slot->hash);
  1741. list_del(&mm_slot->mm_node);
  1742. free = 1;
  1743. }
  1744. spin_unlock(&khugepaged_mm_lock);
  1745. if (free) {
  1746. clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1747. free_mm_slot(mm_slot);
  1748. mmdrop(mm);
  1749. } else if (mm_slot) {
  1750. /*
  1751. * This is required to serialize against
  1752. * khugepaged_test_exit() (which is guaranteed to run
  1753. * under mmap sem read mode). Stop here (after we
  1754. * return all pagetables will be destroyed) until
  1755. * khugepaged has finished working on the pagetables
  1756. * under the mmap_sem.
  1757. */
  1758. down_write(&mm->mmap_sem);
  1759. up_write(&mm->mmap_sem);
  1760. }
  1761. }
  1762. static void release_pte_page(struct page *page)
  1763. {
  1764. /* 0 stands for page_is_file_cache(page) == false */
  1765. dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1766. unlock_page(page);
  1767. putback_lru_page(page);
  1768. }
  1769. static void release_pte_pages(pte_t *pte, pte_t *_pte)
  1770. {
  1771. while (--_pte >= pte) {
  1772. pte_t pteval = *_pte;
  1773. if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
  1774. release_pte_page(pte_page(pteval));
  1775. }
  1776. }
  1777. static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
  1778. unsigned long address,
  1779. pte_t *pte)
  1780. {
  1781. struct page *page = NULL;
  1782. pte_t *_pte;
  1783. int none_or_zero = 0, result = 0;
  1784. bool referenced = false, writable = false;
  1785. for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
  1786. _pte++, address += PAGE_SIZE) {
  1787. pte_t pteval = *_pte;
  1788. if (pte_none(pteval) || (pte_present(pteval) &&
  1789. is_zero_pfn(pte_pfn(pteval)))) {
  1790. if (!userfaultfd_armed(vma) &&
  1791. ++none_or_zero <= khugepaged_max_ptes_none) {
  1792. continue;
  1793. } else {
  1794. result = SCAN_EXCEED_NONE_PTE;
  1795. goto out;
  1796. }
  1797. }
  1798. if (!pte_present(pteval)) {
  1799. result = SCAN_PTE_NON_PRESENT;
  1800. goto out;
  1801. }
  1802. page = vm_normal_page(vma, address, pteval);
  1803. if (unlikely(!page)) {
  1804. result = SCAN_PAGE_NULL;
  1805. goto out;
  1806. }
  1807. VM_BUG_ON_PAGE(PageCompound(page), page);
  1808. VM_BUG_ON_PAGE(!PageAnon(page), page);
  1809. VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
  1810. /*
  1811. * We can do it before isolate_lru_page because the
  1812. * page can't be freed from under us. NOTE: PG_lock
  1813. * is needed to serialize against split_huge_page
  1814. * when invoked from the VM.
  1815. */
  1816. if (!trylock_page(page)) {
  1817. result = SCAN_PAGE_LOCK;
  1818. goto out;
  1819. }
  1820. /*
  1821. * cannot use mapcount: can't collapse if there's a gup pin.
  1822. * The page must only be referenced by the scanned process
  1823. * and page swap cache.
  1824. */
  1825. if (page_count(page) != 1 + !!PageSwapCache(page)) {
  1826. unlock_page(page);
  1827. result = SCAN_PAGE_COUNT;
  1828. goto out;
  1829. }
  1830. if (pte_write(pteval)) {
  1831. writable = true;
  1832. } else {
  1833. if (PageSwapCache(page) && !reuse_swap_page(page)) {
  1834. unlock_page(page);
  1835. result = SCAN_SWAP_CACHE_PAGE;
  1836. goto out;
  1837. }
  1838. /*
  1839. * Page is not in the swap cache. It can be collapsed
  1840. * into a THP.
  1841. */
  1842. }
  1843. /*
  1844. * Isolate the page to avoid collapsing an hugepage
  1845. * currently in use by the VM.
  1846. */
  1847. if (isolate_lru_page(page)) {
  1848. unlock_page(page);
  1849. result = SCAN_DEL_PAGE_LRU;
  1850. goto out;
  1851. }
  1852. /* 0 stands for page_is_file_cache(page) == false */
  1853. inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1854. VM_BUG_ON_PAGE(!PageLocked(page), page);
  1855. VM_BUG_ON_PAGE(PageLRU(page), page);
  1856. /* If there is no mapped pte young don't collapse the page */
  1857. if (pte_young(pteval) ||
  1858. page_is_young(page) || PageReferenced(page) ||
  1859. mmu_notifier_test_young(vma->vm_mm, address))
  1860. referenced = true;
  1861. }
  1862. if (likely(writable)) {
  1863. if (likely(referenced)) {
  1864. result = SCAN_SUCCEED;
  1865. trace_mm_collapse_huge_page_isolate(page, none_or_zero,
  1866. referenced, writable, result);
  1867. return 1;
  1868. }
  1869. } else {
  1870. result = SCAN_PAGE_RO;
  1871. }
  1872. out:
  1873. release_pte_pages(pte, _pte);
  1874. trace_mm_collapse_huge_page_isolate(page, none_or_zero,
  1875. referenced, writable, result);
  1876. return 0;
  1877. }
  1878. static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
  1879. struct vm_area_struct *vma,
  1880. unsigned long address,
  1881. spinlock_t *ptl)
  1882. {
  1883. pte_t *_pte;
  1884. for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
  1885. pte_t pteval = *_pte;
  1886. struct page *src_page;
  1887. if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
  1888. clear_user_highpage(page, address);
  1889. add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
  1890. if (is_zero_pfn(pte_pfn(pteval))) {
  1891. /*
  1892. * ptl mostly unnecessary.
  1893. */
  1894. spin_lock(ptl);
  1895. /*
  1896. * paravirt calls inside pte_clear here are
  1897. * superfluous.
  1898. */
  1899. pte_clear(vma->vm_mm, address, _pte);
  1900. spin_unlock(ptl);
  1901. }
  1902. } else {
  1903. src_page = pte_page(pteval);
  1904. copy_user_highpage(page, src_page, address, vma);
  1905. VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
  1906. release_pte_page(src_page);
  1907. /*
  1908. * ptl mostly unnecessary, but preempt has to
  1909. * be disabled to update the per-cpu stats
  1910. * inside page_remove_rmap().
  1911. */
  1912. spin_lock(ptl);
  1913. /*
  1914. * paravirt calls inside pte_clear here are
  1915. * superfluous.
  1916. */
  1917. pte_clear(vma->vm_mm, address, _pte);
  1918. page_remove_rmap(src_page, false);
  1919. spin_unlock(ptl);
  1920. free_page_and_swap_cache(src_page);
  1921. }
  1922. address += PAGE_SIZE;
  1923. page++;
  1924. }
  1925. }
  1926. static void khugepaged_alloc_sleep(void)
  1927. {
  1928. DEFINE_WAIT(wait);
  1929. add_wait_queue(&khugepaged_wait, &wait);
  1930. freezable_schedule_timeout_interruptible(
  1931. msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
  1932. remove_wait_queue(&khugepaged_wait, &wait);
  1933. }
  1934. static int khugepaged_node_load[MAX_NUMNODES];
  1935. static bool khugepaged_scan_abort(int nid)
  1936. {
  1937. int i;
  1938. /*
  1939. * If zone_reclaim_mode is disabled, then no extra effort is made to
  1940. * allocate memory locally.
  1941. */
  1942. if (!zone_reclaim_mode)
  1943. return false;
  1944. /* If there is a count for this node already, it must be acceptable */
  1945. if (khugepaged_node_load[nid])
  1946. return false;
  1947. for (i = 0; i < MAX_NUMNODES; i++) {
  1948. if (!khugepaged_node_load[i])
  1949. continue;
  1950. if (node_distance(nid, i) > RECLAIM_DISTANCE)
  1951. return true;
  1952. }
  1953. return false;
  1954. }
  1955. #ifdef CONFIG_NUMA
  1956. static int khugepaged_find_target_node(void)
  1957. {
  1958. static int last_khugepaged_target_node = NUMA_NO_NODE;
  1959. int nid, target_node = 0, max_value = 0;
  1960. /* find first node with max normal pages hit */
  1961. for (nid = 0; nid < MAX_NUMNODES; nid++)
  1962. if (khugepaged_node_load[nid] > max_value) {
  1963. max_value = khugepaged_node_load[nid];
  1964. target_node = nid;
  1965. }
  1966. /* do some balance if several nodes have the same hit record */
  1967. if (target_node <= last_khugepaged_target_node)
  1968. for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
  1969. nid++)
  1970. if (max_value == khugepaged_node_load[nid]) {
  1971. target_node = nid;
  1972. break;
  1973. }
  1974. last_khugepaged_target_node = target_node;
  1975. return target_node;
  1976. }
  1977. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  1978. {
  1979. if (IS_ERR(*hpage)) {
  1980. if (!*wait)
  1981. return false;
  1982. *wait = false;
  1983. *hpage = NULL;
  1984. khugepaged_alloc_sleep();
  1985. } else if (*hpage) {
  1986. put_page(*hpage);
  1987. *hpage = NULL;
  1988. }
  1989. return true;
  1990. }
  1991. static struct page *
  1992. khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
  1993. unsigned long address, int node)
  1994. {
  1995. VM_BUG_ON_PAGE(*hpage, *hpage);
  1996. /*
  1997. * Before allocating the hugepage, release the mmap_sem read lock.
  1998. * The allocation can take potentially a long time if it involves
  1999. * sync compaction, and we do not need to hold the mmap_sem during
  2000. * that. We will recheck the vma after taking it again in write mode.
  2001. */
  2002. up_read(&mm->mmap_sem);
  2003. *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
  2004. if (unlikely(!*hpage)) {
  2005. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  2006. *hpage = ERR_PTR(-ENOMEM);
  2007. return NULL;
  2008. }
  2009. prep_transhuge_page(*hpage);
  2010. count_vm_event(THP_COLLAPSE_ALLOC);
  2011. return *hpage;
  2012. }
  2013. #else
  2014. static int khugepaged_find_target_node(void)
  2015. {
  2016. return 0;
  2017. }
  2018. static inline struct page *alloc_khugepaged_hugepage(void)
  2019. {
  2020. struct page *page;
  2021. page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
  2022. HPAGE_PMD_ORDER);
  2023. if (page)
  2024. prep_transhuge_page(page);
  2025. return page;
  2026. }
  2027. static struct page *khugepaged_alloc_hugepage(bool *wait)
  2028. {
  2029. struct page *hpage;
  2030. do {
  2031. hpage = alloc_khugepaged_hugepage();
  2032. if (!hpage) {
  2033. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  2034. if (!*wait)
  2035. return NULL;
  2036. *wait = false;
  2037. khugepaged_alloc_sleep();
  2038. } else
  2039. count_vm_event(THP_COLLAPSE_ALLOC);
  2040. } while (unlikely(!hpage) && likely(khugepaged_enabled()));
  2041. return hpage;
  2042. }
  2043. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  2044. {
  2045. if (!*hpage)
  2046. *hpage = khugepaged_alloc_hugepage(wait);
  2047. if (unlikely(!*hpage))
  2048. return false;
  2049. return true;
  2050. }
  2051. static struct page *
  2052. khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
  2053. unsigned long address, int node)
  2054. {
  2055. up_read(&mm->mmap_sem);
  2056. VM_BUG_ON(!*hpage);
  2057. return *hpage;
  2058. }
  2059. #endif
  2060. static bool hugepage_vma_check(struct vm_area_struct *vma)
  2061. {
  2062. if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
  2063. (vma->vm_flags & VM_NOHUGEPAGE))
  2064. return false;
  2065. if (!vma->anon_vma || vma->vm_ops)
  2066. return false;
  2067. if (is_vma_temporary_stack(vma))
  2068. return false;
  2069. VM_BUG_ON_VMA(vma->vm_flags & VM_NO_THP, vma);
  2070. return true;
  2071. }
  2072. static void collapse_huge_page(struct mm_struct *mm,
  2073. unsigned long address,
  2074. struct page **hpage,
  2075. struct vm_area_struct *vma,
  2076. int node)
  2077. {
  2078. pmd_t *pmd, _pmd;
  2079. pte_t *pte;
  2080. pgtable_t pgtable;
  2081. struct page *new_page;
  2082. spinlock_t *pmd_ptl, *pte_ptl;
  2083. int isolated = 0, result = 0;
  2084. unsigned long hstart, hend;
  2085. struct mem_cgroup *memcg;
  2086. unsigned long mmun_start; /* For mmu_notifiers */
  2087. unsigned long mmun_end; /* For mmu_notifiers */
  2088. gfp_t gfp;
  2089. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  2090. /* Only allocate from the target node */
  2091. gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_OTHER_NODE | __GFP_THISNODE;
  2092. /* release the mmap_sem read lock. */
  2093. new_page = khugepaged_alloc_page(hpage, gfp, mm, address, node);
  2094. if (!new_page) {
  2095. result = SCAN_ALLOC_HUGE_PAGE_FAIL;
  2096. goto out_nolock;
  2097. }
  2098. if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
  2099. result = SCAN_CGROUP_CHARGE_FAIL;
  2100. goto out_nolock;
  2101. }
  2102. /*
  2103. * Prevent all access to pagetables with the exception of
  2104. * gup_fast later hanlded by the ptep_clear_flush and the VM
  2105. * handled by the anon_vma lock + PG_lock.
  2106. */
  2107. down_write(&mm->mmap_sem);
  2108. if (unlikely(khugepaged_test_exit(mm))) {
  2109. result = SCAN_ANY_PROCESS;
  2110. goto out;
  2111. }
  2112. vma = find_vma(mm, address);
  2113. if (!vma) {
  2114. result = SCAN_VMA_NULL;
  2115. goto out;
  2116. }
  2117. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  2118. hend = vma->vm_end & HPAGE_PMD_MASK;
  2119. if (address < hstart || address + HPAGE_PMD_SIZE > hend) {
  2120. result = SCAN_ADDRESS_RANGE;
  2121. goto out;
  2122. }
  2123. if (!hugepage_vma_check(vma)) {
  2124. result = SCAN_VMA_CHECK;
  2125. goto out;
  2126. }
  2127. pmd = mm_find_pmd(mm, address);
  2128. if (!pmd) {
  2129. result = SCAN_PMD_NULL;
  2130. goto out;
  2131. }
  2132. anon_vma_lock_write(vma->anon_vma);
  2133. pte = pte_offset_map(pmd, address);
  2134. pte_ptl = pte_lockptr(mm, pmd);
  2135. mmun_start = address;
  2136. mmun_end = address + HPAGE_PMD_SIZE;
  2137. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  2138. pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
  2139. /*
  2140. * After this gup_fast can't run anymore. This also removes
  2141. * any huge TLB entry from the CPU so we won't allow
  2142. * huge and small TLB entries for the same virtual address
  2143. * to avoid the risk of CPU bugs in that area.
  2144. */
  2145. _pmd = pmdp_collapse_flush(vma, address, pmd);
  2146. spin_unlock(pmd_ptl);
  2147. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2148. spin_lock(pte_ptl);
  2149. isolated = __collapse_huge_page_isolate(vma, address, pte);
  2150. spin_unlock(pte_ptl);
  2151. if (unlikely(!isolated)) {
  2152. pte_unmap(pte);
  2153. spin_lock(pmd_ptl);
  2154. BUG_ON(!pmd_none(*pmd));
  2155. /*
  2156. * We can only use set_pmd_at when establishing
  2157. * hugepmds and never for establishing regular pmds that
  2158. * points to regular pagetables. Use pmd_populate for that
  2159. */
  2160. pmd_populate(mm, pmd, pmd_pgtable(_pmd));
  2161. spin_unlock(pmd_ptl);
  2162. anon_vma_unlock_write(vma->anon_vma);
  2163. result = SCAN_FAIL;
  2164. goto out;
  2165. }
  2166. /*
  2167. * All pages are isolated and locked so anon_vma rmap
  2168. * can't run anymore.
  2169. */
  2170. anon_vma_unlock_write(vma->anon_vma);
  2171. __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
  2172. pte_unmap(pte);
  2173. __SetPageUptodate(new_page);
  2174. pgtable = pmd_pgtable(_pmd);
  2175. _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
  2176. _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
  2177. /*
  2178. * spin_lock() below is not the equivalent of smp_wmb(), so
  2179. * this is needed to avoid the copy_huge_page writes to become
  2180. * visible after the set_pmd_at() write.
  2181. */
  2182. smp_wmb();
  2183. spin_lock(pmd_ptl);
  2184. BUG_ON(!pmd_none(*pmd));
  2185. page_add_new_anon_rmap(new_page, vma, address, true);
  2186. mem_cgroup_commit_charge(new_page, memcg, false, true);
  2187. lru_cache_add_active_or_unevictable(new_page, vma);
  2188. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  2189. set_pmd_at(mm, address, pmd, _pmd);
  2190. update_mmu_cache_pmd(vma, address, pmd);
  2191. spin_unlock(pmd_ptl);
  2192. *hpage = NULL;
  2193. khugepaged_pages_collapsed++;
  2194. result = SCAN_SUCCEED;
  2195. out_up_write:
  2196. up_write(&mm->mmap_sem);
  2197. trace_mm_collapse_huge_page(mm, isolated, result);
  2198. return;
  2199. out_nolock:
  2200. trace_mm_collapse_huge_page(mm, isolated, result);
  2201. return;
  2202. out:
  2203. mem_cgroup_cancel_charge(new_page, memcg, true);
  2204. goto out_up_write;
  2205. }
  2206. static int khugepaged_scan_pmd(struct mm_struct *mm,
  2207. struct vm_area_struct *vma,
  2208. unsigned long address,
  2209. struct page **hpage)
  2210. {
  2211. pmd_t *pmd;
  2212. pte_t *pte, *_pte;
  2213. int ret = 0, none_or_zero = 0, result = 0;
  2214. struct page *page = NULL;
  2215. unsigned long _address;
  2216. spinlock_t *ptl;
  2217. int node = NUMA_NO_NODE;
  2218. bool writable = false, referenced = false;
  2219. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  2220. pmd = mm_find_pmd(mm, address);
  2221. if (!pmd) {
  2222. result = SCAN_PMD_NULL;
  2223. goto out;
  2224. }
  2225. memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
  2226. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  2227. for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
  2228. _pte++, _address += PAGE_SIZE) {
  2229. pte_t pteval = *_pte;
  2230. if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
  2231. if (!userfaultfd_armed(vma) &&
  2232. ++none_or_zero <= khugepaged_max_ptes_none) {
  2233. continue;
  2234. } else {
  2235. result = SCAN_EXCEED_NONE_PTE;
  2236. goto out_unmap;
  2237. }
  2238. }
  2239. if (!pte_present(pteval)) {
  2240. result = SCAN_PTE_NON_PRESENT;
  2241. goto out_unmap;
  2242. }
  2243. if (pte_write(pteval))
  2244. writable = true;
  2245. page = vm_normal_page(vma, _address, pteval);
  2246. if (unlikely(!page)) {
  2247. result = SCAN_PAGE_NULL;
  2248. goto out_unmap;
  2249. }
  2250. /* TODO: teach khugepaged to collapse THP mapped with pte */
  2251. if (PageCompound(page)) {
  2252. result = SCAN_PAGE_COMPOUND;
  2253. goto out_unmap;
  2254. }
  2255. /*
  2256. * Record which node the original page is from and save this
  2257. * information to khugepaged_node_load[].
  2258. * Khupaged will allocate hugepage from the node has the max
  2259. * hit record.
  2260. */
  2261. node = page_to_nid(page);
  2262. if (khugepaged_scan_abort(node)) {
  2263. result = SCAN_SCAN_ABORT;
  2264. goto out_unmap;
  2265. }
  2266. khugepaged_node_load[node]++;
  2267. if (!PageLRU(page)) {
  2268. result = SCAN_SCAN_ABORT;
  2269. goto out_unmap;
  2270. }
  2271. if (PageLocked(page)) {
  2272. result = SCAN_PAGE_LOCK;
  2273. goto out_unmap;
  2274. }
  2275. if (!PageAnon(page)) {
  2276. result = SCAN_PAGE_ANON;
  2277. goto out_unmap;
  2278. }
  2279. /*
  2280. * cannot use mapcount: can't collapse if there's a gup pin.
  2281. * The page must only be referenced by the scanned process
  2282. * and page swap cache.
  2283. */
  2284. if (page_count(page) != 1 + !!PageSwapCache(page)) {
  2285. result = SCAN_PAGE_COUNT;
  2286. goto out_unmap;
  2287. }
  2288. if (pte_young(pteval) ||
  2289. page_is_young(page) || PageReferenced(page) ||
  2290. mmu_notifier_test_young(vma->vm_mm, address))
  2291. referenced = true;
  2292. }
  2293. if (writable) {
  2294. if (referenced) {
  2295. result = SCAN_SUCCEED;
  2296. ret = 1;
  2297. } else {
  2298. result = SCAN_NO_REFERENCED_PAGE;
  2299. }
  2300. } else {
  2301. result = SCAN_PAGE_RO;
  2302. }
  2303. out_unmap:
  2304. pte_unmap_unlock(pte, ptl);
  2305. if (ret) {
  2306. node = khugepaged_find_target_node();
  2307. /* collapse_huge_page will return with the mmap_sem released */
  2308. collapse_huge_page(mm, address, hpage, vma, node);
  2309. }
  2310. out:
  2311. trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
  2312. none_or_zero, result);
  2313. return ret;
  2314. }
  2315. static void collect_mm_slot(struct mm_slot *mm_slot)
  2316. {
  2317. struct mm_struct *mm = mm_slot->mm;
  2318. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  2319. if (khugepaged_test_exit(mm)) {
  2320. /* free mm_slot */
  2321. hash_del(&mm_slot->hash);
  2322. list_del(&mm_slot->mm_node);
  2323. /*
  2324. * Not strictly needed because the mm exited already.
  2325. *
  2326. * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  2327. */
  2328. /* khugepaged_mm_lock actually not necessary for the below */
  2329. free_mm_slot(mm_slot);
  2330. mmdrop(mm);
  2331. }
  2332. }
  2333. static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
  2334. struct page **hpage)
  2335. __releases(&khugepaged_mm_lock)
  2336. __acquires(&khugepaged_mm_lock)
  2337. {
  2338. struct mm_slot *mm_slot;
  2339. struct mm_struct *mm;
  2340. struct vm_area_struct *vma;
  2341. int progress = 0;
  2342. VM_BUG_ON(!pages);
  2343. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  2344. if (khugepaged_scan.mm_slot)
  2345. mm_slot = khugepaged_scan.mm_slot;
  2346. else {
  2347. mm_slot = list_entry(khugepaged_scan.mm_head.next,
  2348. struct mm_slot, mm_node);
  2349. khugepaged_scan.address = 0;
  2350. khugepaged_scan.mm_slot = mm_slot;
  2351. }
  2352. spin_unlock(&khugepaged_mm_lock);
  2353. mm = mm_slot->mm;
  2354. down_read(&mm->mmap_sem);
  2355. if (unlikely(khugepaged_test_exit(mm)))
  2356. vma = NULL;
  2357. else
  2358. vma = find_vma(mm, khugepaged_scan.address);
  2359. progress++;
  2360. for (; vma; vma = vma->vm_next) {
  2361. unsigned long hstart, hend;
  2362. cond_resched();
  2363. if (unlikely(khugepaged_test_exit(mm))) {
  2364. progress++;
  2365. break;
  2366. }
  2367. if (!hugepage_vma_check(vma)) {
  2368. skip:
  2369. progress++;
  2370. continue;
  2371. }
  2372. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  2373. hend = vma->vm_end & HPAGE_PMD_MASK;
  2374. if (hstart >= hend)
  2375. goto skip;
  2376. if (khugepaged_scan.address > hend)
  2377. goto skip;
  2378. if (khugepaged_scan.address < hstart)
  2379. khugepaged_scan.address = hstart;
  2380. VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
  2381. while (khugepaged_scan.address < hend) {
  2382. int ret;
  2383. cond_resched();
  2384. if (unlikely(khugepaged_test_exit(mm)))
  2385. goto breakouterloop;
  2386. VM_BUG_ON(khugepaged_scan.address < hstart ||
  2387. khugepaged_scan.address + HPAGE_PMD_SIZE >
  2388. hend);
  2389. ret = khugepaged_scan_pmd(mm, vma,
  2390. khugepaged_scan.address,
  2391. hpage);
  2392. /* move to next address */
  2393. khugepaged_scan.address += HPAGE_PMD_SIZE;
  2394. progress += HPAGE_PMD_NR;
  2395. if (ret)
  2396. /* we released mmap_sem so break loop */
  2397. goto breakouterloop_mmap_sem;
  2398. if (progress >= pages)
  2399. goto breakouterloop;
  2400. }
  2401. }
  2402. breakouterloop:
  2403. up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
  2404. breakouterloop_mmap_sem:
  2405. spin_lock(&khugepaged_mm_lock);
  2406. VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
  2407. /*
  2408. * Release the current mm_slot if this mm is about to die, or
  2409. * if we scanned all vmas of this mm.
  2410. */
  2411. if (khugepaged_test_exit(mm) || !vma) {
  2412. /*
  2413. * Make sure that if mm_users is reaching zero while
  2414. * khugepaged runs here, khugepaged_exit will find
  2415. * mm_slot not pointing to the exiting mm.
  2416. */
  2417. if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
  2418. khugepaged_scan.mm_slot = list_entry(
  2419. mm_slot->mm_node.next,
  2420. struct mm_slot, mm_node);
  2421. khugepaged_scan.address = 0;
  2422. } else {
  2423. khugepaged_scan.mm_slot = NULL;
  2424. khugepaged_full_scans++;
  2425. }
  2426. collect_mm_slot(mm_slot);
  2427. }
  2428. return progress;
  2429. }
  2430. static int khugepaged_has_work(void)
  2431. {
  2432. return !list_empty(&khugepaged_scan.mm_head) &&
  2433. khugepaged_enabled();
  2434. }
  2435. static int khugepaged_wait_event(void)
  2436. {
  2437. return !list_empty(&khugepaged_scan.mm_head) ||
  2438. kthread_should_stop();
  2439. }
  2440. static void khugepaged_do_scan(void)
  2441. {
  2442. struct page *hpage = NULL;
  2443. unsigned int progress = 0, pass_through_head = 0;
  2444. unsigned int pages = khugepaged_pages_to_scan;
  2445. bool wait = true;
  2446. barrier(); /* write khugepaged_pages_to_scan to local stack */
  2447. while (progress < pages) {
  2448. if (!khugepaged_prealloc_page(&hpage, &wait))
  2449. break;
  2450. cond_resched();
  2451. if (unlikely(kthread_should_stop() || try_to_freeze()))
  2452. break;
  2453. spin_lock(&khugepaged_mm_lock);
  2454. if (!khugepaged_scan.mm_slot)
  2455. pass_through_head++;
  2456. if (khugepaged_has_work() &&
  2457. pass_through_head < 2)
  2458. progress += khugepaged_scan_mm_slot(pages - progress,
  2459. &hpage);
  2460. else
  2461. progress = pages;
  2462. spin_unlock(&khugepaged_mm_lock);
  2463. }
  2464. if (!IS_ERR_OR_NULL(hpage))
  2465. put_page(hpage);
  2466. }
  2467. static void khugepaged_wait_work(void)
  2468. {
  2469. if (khugepaged_has_work()) {
  2470. if (!khugepaged_scan_sleep_millisecs)
  2471. return;
  2472. wait_event_freezable_timeout(khugepaged_wait,
  2473. kthread_should_stop(),
  2474. msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
  2475. return;
  2476. }
  2477. if (khugepaged_enabled())
  2478. wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
  2479. }
  2480. static int khugepaged(void *none)
  2481. {
  2482. struct mm_slot *mm_slot;
  2483. set_freezable();
  2484. set_user_nice(current, MAX_NICE);
  2485. while (!kthread_should_stop()) {
  2486. khugepaged_do_scan();
  2487. khugepaged_wait_work();
  2488. }
  2489. spin_lock(&khugepaged_mm_lock);
  2490. mm_slot = khugepaged_scan.mm_slot;
  2491. khugepaged_scan.mm_slot = NULL;
  2492. if (mm_slot)
  2493. collect_mm_slot(mm_slot);
  2494. spin_unlock(&khugepaged_mm_lock);
  2495. return 0;
  2496. }
  2497. static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
  2498. unsigned long haddr, pmd_t *pmd)
  2499. {
  2500. struct mm_struct *mm = vma->vm_mm;
  2501. pgtable_t pgtable;
  2502. pmd_t _pmd;
  2503. int i;
  2504. /* leave pmd empty until pte is filled */
  2505. pmdp_huge_clear_flush_notify(vma, haddr, pmd);
  2506. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  2507. pmd_populate(mm, &_pmd, pgtable);
  2508. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  2509. pte_t *pte, entry;
  2510. entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
  2511. entry = pte_mkspecial(entry);
  2512. pte = pte_offset_map(&_pmd, haddr);
  2513. VM_BUG_ON(!pte_none(*pte));
  2514. set_pte_at(mm, haddr, pte, entry);
  2515. pte_unmap(pte);
  2516. }
  2517. smp_wmb(); /* make pte visible before pmd */
  2518. pmd_populate(mm, pmd, pgtable);
  2519. put_huge_zero_page();
  2520. }
  2521. static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
  2522. unsigned long haddr, bool freeze)
  2523. {
  2524. struct mm_struct *mm = vma->vm_mm;
  2525. struct page *page;
  2526. pgtable_t pgtable;
  2527. pmd_t _pmd;
  2528. bool young, write, dirty;
  2529. unsigned long addr;
  2530. int i;
  2531. VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
  2532. VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
  2533. VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
  2534. VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
  2535. count_vm_event(THP_SPLIT_PMD);
  2536. if (vma_is_dax(vma)) {
  2537. pmd_t _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
  2538. if (is_huge_zero_pmd(_pmd))
  2539. put_huge_zero_page();
  2540. return;
  2541. } else if (is_huge_zero_pmd(*pmd)) {
  2542. return __split_huge_zero_page_pmd(vma, haddr, pmd);
  2543. }
  2544. page = pmd_page(*pmd);
  2545. VM_BUG_ON_PAGE(!page_count(page), page);
  2546. page_ref_add(page, HPAGE_PMD_NR - 1);
  2547. write = pmd_write(*pmd);
  2548. young = pmd_young(*pmd);
  2549. dirty = pmd_dirty(*pmd);
  2550. pmdp_huge_split_prepare(vma, haddr, pmd);
  2551. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  2552. pmd_populate(mm, &_pmd, pgtable);
  2553. for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
  2554. pte_t entry, *pte;
  2555. /*
  2556. * Note that NUMA hinting access restrictions are not
  2557. * transferred to avoid any possibility of altering
  2558. * permissions across VMAs.
  2559. */
  2560. if (freeze) {
  2561. swp_entry_t swp_entry;
  2562. swp_entry = make_migration_entry(page + i, write);
  2563. entry = swp_entry_to_pte(swp_entry);
  2564. } else {
  2565. entry = mk_pte(page + i, vma->vm_page_prot);
  2566. entry = maybe_mkwrite(entry, vma);
  2567. if (!write)
  2568. entry = pte_wrprotect(entry);
  2569. if (!young)
  2570. entry = pte_mkold(entry);
  2571. }
  2572. if (dirty)
  2573. SetPageDirty(page + i);
  2574. pte = pte_offset_map(&_pmd, addr);
  2575. BUG_ON(!pte_none(*pte));
  2576. set_pte_at(mm, addr, pte, entry);
  2577. atomic_inc(&page[i]._mapcount);
  2578. pte_unmap(pte);
  2579. }
  2580. /*
  2581. * Set PG_double_map before dropping compound_mapcount to avoid
  2582. * false-negative page_mapped().
  2583. */
  2584. if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
  2585. for (i = 0; i < HPAGE_PMD_NR; i++)
  2586. atomic_inc(&page[i]._mapcount);
  2587. }
  2588. if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
  2589. /* Last compound_mapcount is gone. */
  2590. __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
  2591. if (TestClearPageDoubleMap(page)) {
  2592. /* No need in mapcount reference anymore */
  2593. for (i = 0; i < HPAGE_PMD_NR; i++)
  2594. atomic_dec(&page[i]._mapcount);
  2595. }
  2596. }
  2597. smp_wmb(); /* make pte visible before pmd */
  2598. /*
  2599. * Up to this point the pmd is present and huge and userland has the
  2600. * whole access to the hugepage during the split (which happens in
  2601. * place). If we overwrite the pmd with the not-huge version pointing
  2602. * to the pte here (which of course we could if all CPUs were bug
  2603. * free), userland could trigger a small page size TLB miss on the
  2604. * small sized TLB while the hugepage TLB entry is still established in
  2605. * the huge TLB. Some CPU doesn't like that.
  2606. * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
  2607. * 383 on page 93. Intel should be safe but is also warns that it's
  2608. * only safe if the permission and cache attributes of the two entries
  2609. * loaded in the two TLB is identical (which should be the case here).
  2610. * But it is generally safer to never allow small and huge TLB entries
  2611. * for the same virtual address to be loaded simultaneously. So instead
  2612. * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
  2613. * current pmd notpresent (atomically because here the pmd_trans_huge
  2614. * and pmd_trans_splitting must remain set at all times on the pmd
  2615. * until the split is complete for this pmd), then we flush the SMP TLB
  2616. * and finally we write the non-huge version of the pmd entry with
  2617. * pmd_populate.
  2618. */
  2619. pmdp_invalidate(vma, haddr, pmd);
  2620. pmd_populate(mm, pmd, pgtable);
  2621. if (freeze) {
  2622. for (i = 0; i < HPAGE_PMD_NR; i++) {
  2623. page_remove_rmap(page + i, false);
  2624. put_page(page + i);
  2625. }
  2626. }
  2627. }
  2628. void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  2629. unsigned long address)
  2630. {
  2631. spinlock_t *ptl;
  2632. struct mm_struct *mm = vma->vm_mm;
  2633. struct page *page = NULL;
  2634. unsigned long haddr = address & HPAGE_PMD_MASK;
  2635. mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
  2636. ptl = pmd_lock(mm, pmd);
  2637. if (pmd_trans_huge(*pmd)) {
  2638. page = pmd_page(*pmd);
  2639. if (PageMlocked(page))
  2640. get_page(page);
  2641. else
  2642. page = NULL;
  2643. } else if (!pmd_devmap(*pmd))
  2644. goto out;
  2645. __split_huge_pmd_locked(vma, pmd, haddr, false);
  2646. out:
  2647. spin_unlock(ptl);
  2648. mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
  2649. if (page) {
  2650. lock_page(page);
  2651. munlock_vma_page(page);
  2652. unlock_page(page);
  2653. put_page(page);
  2654. }
  2655. }
  2656. static void split_huge_pmd_address(struct vm_area_struct *vma,
  2657. unsigned long address)
  2658. {
  2659. pgd_t *pgd;
  2660. pud_t *pud;
  2661. pmd_t *pmd;
  2662. VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
  2663. pgd = pgd_offset(vma->vm_mm, address);
  2664. if (!pgd_present(*pgd))
  2665. return;
  2666. pud = pud_offset(pgd, address);
  2667. if (!pud_present(*pud))
  2668. return;
  2669. pmd = pmd_offset(pud, address);
  2670. if (!pmd_present(*pmd) || (!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd)))
  2671. return;
  2672. /*
  2673. * Caller holds the mmap_sem write mode, so a huge pmd cannot
  2674. * materialize from under us.
  2675. */
  2676. split_huge_pmd(vma, pmd, address);
  2677. }
  2678. void vma_adjust_trans_huge(struct vm_area_struct *vma,
  2679. unsigned long start,
  2680. unsigned long end,
  2681. long adjust_next)
  2682. {
  2683. /*
  2684. * If the new start address isn't hpage aligned and it could
  2685. * previously contain an hugepage: check if we need to split
  2686. * an huge pmd.
  2687. */
  2688. if (start & ~HPAGE_PMD_MASK &&
  2689. (start & HPAGE_PMD_MASK) >= vma->vm_start &&
  2690. (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2691. split_huge_pmd_address(vma, start);
  2692. /*
  2693. * If the new end address isn't hpage aligned and it could
  2694. * previously contain an hugepage: check if we need to split
  2695. * an huge pmd.
  2696. */
  2697. if (end & ~HPAGE_PMD_MASK &&
  2698. (end & HPAGE_PMD_MASK) >= vma->vm_start &&
  2699. (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2700. split_huge_pmd_address(vma, end);
  2701. /*
  2702. * If we're also updating the vma->vm_next->vm_start, if the new
  2703. * vm_next->vm_start isn't page aligned and it could previously
  2704. * contain an hugepage: check if we need to split an huge pmd.
  2705. */
  2706. if (adjust_next > 0) {
  2707. struct vm_area_struct *next = vma->vm_next;
  2708. unsigned long nstart = next->vm_start;
  2709. nstart += adjust_next << PAGE_SHIFT;
  2710. if (nstart & ~HPAGE_PMD_MASK &&
  2711. (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
  2712. (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
  2713. split_huge_pmd_address(next, nstart);
  2714. }
  2715. }
  2716. static void freeze_page_vma(struct vm_area_struct *vma, struct page *page,
  2717. unsigned long address)
  2718. {
  2719. unsigned long haddr = address & HPAGE_PMD_MASK;
  2720. spinlock_t *ptl;
  2721. pgd_t *pgd;
  2722. pud_t *pud;
  2723. pmd_t *pmd;
  2724. pte_t *pte;
  2725. int i, nr = HPAGE_PMD_NR;
  2726. /* Skip pages which doesn't belong to the VMA */
  2727. if (address < vma->vm_start) {
  2728. int off = (vma->vm_start - address) >> PAGE_SHIFT;
  2729. page += off;
  2730. nr -= off;
  2731. address = vma->vm_start;
  2732. }
  2733. pgd = pgd_offset(vma->vm_mm, address);
  2734. if (!pgd_present(*pgd))
  2735. return;
  2736. pud = pud_offset(pgd, address);
  2737. if (!pud_present(*pud))
  2738. return;
  2739. pmd = pmd_offset(pud, address);
  2740. ptl = pmd_lock(vma->vm_mm, pmd);
  2741. if (!pmd_present(*pmd)) {
  2742. spin_unlock(ptl);
  2743. return;
  2744. }
  2745. if (pmd_trans_huge(*pmd)) {
  2746. if (page == pmd_page(*pmd))
  2747. __split_huge_pmd_locked(vma, pmd, haddr, true);
  2748. spin_unlock(ptl);
  2749. return;
  2750. }
  2751. spin_unlock(ptl);
  2752. pte = pte_offset_map_lock(vma->vm_mm, pmd, address, &ptl);
  2753. for (i = 0; i < nr; i++, address += PAGE_SIZE, page++, pte++) {
  2754. pte_t entry, swp_pte;
  2755. swp_entry_t swp_entry;
  2756. /*
  2757. * We've just crossed page table boundary: need to map next one.
  2758. * It can happen if THP was mremaped to non PMD-aligned address.
  2759. */
  2760. if (unlikely(address == haddr + HPAGE_PMD_SIZE)) {
  2761. pte_unmap_unlock(pte - 1, ptl);
  2762. pmd = mm_find_pmd(vma->vm_mm, address);
  2763. if (!pmd)
  2764. return;
  2765. pte = pte_offset_map_lock(vma->vm_mm, pmd,
  2766. address, &ptl);
  2767. }
  2768. if (!pte_present(*pte))
  2769. continue;
  2770. if (page_to_pfn(page) != pte_pfn(*pte))
  2771. continue;
  2772. flush_cache_page(vma, address, page_to_pfn(page));
  2773. entry = ptep_clear_flush(vma, address, pte);
  2774. if (pte_dirty(entry))
  2775. SetPageDirty(page);
  2776. swp_entry = make_migration_entry(page, pte_write(entry));
  2777. swp_pte = swp_entry_to_pte(swp_entry);
  2778. if (pte_soft_dirty(entry))
  2779. swp_pte = pte_swp_mksoft_dirty(swp_pte);
  2780. set_pte_at(vma->vm_mm, address, pte, swp_pte);
  2781. page_remove_rmap(page, false);
  2782. put_page(page);
  2783. }
  2784. pte_unmap_unlock(pte - 1, ptl);
  2785. }
  2786. static void freeze_page(struct anon_vma *anon_vma, struct page *page)
  2787. {
  2788. struct anon_vma_chain *avc;
  2789. pgoff_t pgoff = page_to_pgoff(page);
  2790. VM_BUG_ON_PAGE(!PageHead(page), page);
  2791. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff,
  2792. pgoff + HPAGE_PMD_NR - 1) {
  2793. unsigned long address = __vma_address(page, avc->vma);
  2794. mmu_notifier_invalidate_range_start(avc->vma->vm_mm,
  2795. address, address + HPAGE_PMD_SIZE);
  2796. freeze_page_vma(avc->vma, page, address);
  2797. mmu_notifier_invalidate_range_end(avc->vma->vm_mm,
  2798. address, address + HPAGE_PMD_SIZE);
  2799. }
  2800. }
  2801. static void unfreeze_page_vma(struct vm_area_struct *vma, struct page *page,
  2802. unsigned long address)
  2803. {
  2804. spinlock_t *ptl;
  2805. pmd_t *pmd;
  2806. pte_t *pte, entry;
  2807. swp_entry_t swp_entry;
  2808. unsigned long haddr = address & HPAGE_PMD_MASK;
  2809. int i, nr = HPAGE_PMD_NR;
  2810. /* Skip pages which doesn't belong to the VMA */
  2811. if (address < vma->vm_start) {
  2812. int off = (vma->vm_start - address) >> PAGE_SHIFT;
  2813. page += off;
  2814. nr -= off;
  2815. address = vma->vm_start;
  2816. }
  2817. pmd = mm_find_pmd(vma->vm_mm, address);
  2818. if (!pmd)
  2819. return;
  2820. pte = pte_offset_map_lock(vma->vm_mm, pmd, address, &ptl);
  2821. for (i = 0; i < nr; i++, address += PAGE_SIZE, page++, pte++) {
  2822. /*
  2823. * We've just crossed page table boundary: need to map next one.
  2824. * It can happen if THP was mremaped to non-PMD aligned address.
  2825. */
  2826. if (unlikely(address == haddr + HPAGE_PMD_SIZE)) {
  2827. pte_unmap_unlock(pte - 1, ptl);
  2828. pmd = mm_find_pmd(vma->vm_mm, address);
  2829. if (!pmd)
  2830. return;
  2831. pte = pte_offset_map_lock(vma->vm_mm, pmd,
  2832. address, &ptl);
  2833. }
  2834. if (!is_swap_pte(*pte))
  2835. continue;
  2836. swp_entry = pte_to_swp_entry(*pte);
  2837. if (!is_migration_entry(swp_entry))
  2838. continue;
  2839. if (migration_entry_to_page(swp_entry) != page)
  2840. continue;
  2841. get_page(page);
  2842. page_add_anon_rmap(page, vma, address, false);
  2843. entry = pte_mkold(mk_pte(page, vma->vm_page_prot));
  2844. if (PageDirty(page))
  2845. entry = pte_mkdirty(entry);
  2846. if (is_write_migration_entry(swp_entry))
  2847. entry = maybe_mkwrite(entry, vma);
  2848. flush_dcache_page(page);
  2849. set_pte_at(vma->vm_mm, address, pte, entry);
  2850. /* No need to invalidate - it was non-present before */
  2851. update_mmu_cache(vma, address, pte);
  2852. }
  2853. pte_unmap_unlock(pte - 1, ptl);
  2854. }
  2855. static void unfreeze_page(struct anon_vma *anon_vma, struct page *page)
  2856. {
  2857. struct anon_vma_chain *avc;
  2858. pgoff_t pgoff = page_to_pgoff(page);
  2859. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
  2860. pgoff, pgoff + HPAGE_PMD_NR - 1) {
  2861. unsigned long address = __vma_address(page, avc->vma);
  2862. mmu_notifier_invalidate_range_start(avc->vma->vm_mm,
  2863. address, address + HPAGE_PMD_SIZE);
  2864. unfreeze_page_vma(avc->vma, page, address);
  2865. mmu_notifier_invalidate_range_end(avc->vma->vm_mm,
  2866. address, address + HPAGE_PMD_SIZE);
  2867. }
  2868. }
  2869. static void __split_huge_page_tail(struct page *head, int tail,
  2870. struct lruvec *lruvec, struct list_head *list)
  2871. {
  2872. struct page *page_tail = head + tail;
  2873. VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
  2874. VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
  2875. /*
  2876. * tail_page->_count is zero and not changing from under us. But
  2877. * get_page_unless_zero() may be running from under us on the
  2878. * tail_page. If we used atomic_set() below instead of atomic_inc(), we
  2879. * would then run atomic_set() concurrently with
  2880. * get_page_unless_zero(), and atomic_set() is implemented in C not
  2881. * using locked ops. spin_unlock on x86 sometime uses locked ops
  2882. * because of PPro errata 66, 92, so unless somebody can guarantee
  2883. * atomic_set() here would be safe on all archs (and not only on x86),
  2884. * it's safer to use atomic_inc().
  2885. */
  2886. page_ref_inc(page_tail);
  2887. page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  2888. page_tail->flags |= (head->flags &
  2889. ((1L << PG_referenced) |
  2890. (1L << PG_swapbacked) |
  2891. (1L << PG_mlocked) |
  2892. (1L << PG_uptodate) |
  2893. (1L << PG_active) |
  2894. (1L << PG_locked) |
  2895. (1L << PG_unevictable) |
  2896. (1L << PG_dirty)));
  2897. /*
  2898. * After clearing PageTail the gup refcount can be released.
  2899. * Page flags also must be visible before we make the page non-compound.
  2900. */
  2901. smp_wmb();
  2902. clear_compound_head(page_tail);
  2903. if (page_is_young(head))
  2904. set_page_young(page_tail);
  2905. if (page_is_idle(head))
  2906. set_page_idle(page_tail);
  2907. /* ->mapping in first tail page is compound_mapcount */
  2908. VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
  2909. page_tail);
  2910. page_tail->mapping = head->mapping;
  2911. page_tail->index = head->index + tail;
  2912. page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
  2913. lru_add_page_tail(head, page_tail, lruvec, list);
  2914. }
  2915. static void __split_huge_page(struct page *page, struct list_head *list)
  2916. {
  2917. struct page *head = compound_head(page);
  2918. struct zone *zone = page_zone(head);
  2919. struct lruvec *lruvec;
  2920. int i;
  2921. /* prevent PageLRU to go away from under us, and freeze lru stats */
  2922. spin_lock_irq(&zone->lru_lock);
  2923. lruvec = mem_cgroup_page_lruvec(head, zone);
  2924. /* complete memcg works before add pages to LRU */
  2925. mem_cgroup_split_huge_fixup(head);
  2926. for (i = HPAGE_PMD_NR - 1; i >= 1; i--)
  2927. __split_huge_page_tail(head, i, lruvec, list);
  2928. ClearPageCompound(head);
  2929. spin_unlock_irq(&zone->lru_lock);
  2930. unfreeze_page(page_anon_vma(head), head);
  2931. for (i = 0; i < HPAGE_PMD_NR; i++) {
  2932. struct page *subpage = head + i;
  2933. if (subpage == page)
  2934. continue;
  2935. unlock_page(subpage);
  2936. /*
  2937. * Subpages may be freed if there wasn't any mapping
  2938. * like if add_to_swap() is running on a lru page that
  2939. * had its mapping zapped. And freeing these pages
  2940. * requires taking the lru_lock so we do the put_page
  2941. * of the tail pages after the split is complete.
  2942. */
  2943. put_page(subpage);
  2944. }
  2945. }
  2946. int total_mapcount(struct page *page)
  2947. {
  2948. int i, ret;
  2949. VM_BUG_ON_PAGE(PageTail(page), page);
  2950. if (likely(!PageCompound(page)))
  2951. return atomic_read(&page->_mapcount) + 1;
  2952. ret = compound_mapcount(page);
  2953. if (PageHuge(page))
  2954. return ret;
  2955. for (i = 0; i < HPAGE_PMD_NR; i++)
  2956. ret += atomic_read(&page[i]._mapcount) + 1;
  2957. if (PageDoubleMap(page))
  2958. ret -= HPAGE_PMD_NR;
  2959. return ret;
  2960. }
  2961. /*
  2962. * This function splits huge page into normal pages. @page can point to any
  2963. * subpage of huge page to split. Split doesn't change the position of @page.
  2964. *
  2965. * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
  2966. * The huge page must be locked.
  2967. *
  2968. * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
  2969. *
  2970. * Both head page and tail pages will inherit mapping, flags, and so on from
  2971. * the hugepage.
  2972. *
  2973. * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
  2974. * they are not mapped.
  2975. *
  2976. * Returns 0 if the hugepage is split successfully.
  2977. * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
  2978. * us.
  2979. */
  2980. int split_huge_page_to_list(struct page *page, struct list_head *list)
  2981. {
  2982. struct page *head = compound_head(page);
  2983. struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
  2984. struct anon_vma *anon_vma;
  2985. int count, mapcount, ret;
  2986. bool mlocked;
  2987. unsigned long flags;
  2988. VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
  2989. VM_BUG_ON_PAGE(!PageAnon(page), page);
  2990. VM_BUG_ON_PAGE(!PageLocked(page), page);
  2991. VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
  2992. VM_BUG_ON_PAGE(!PageCompound(page), page);
  2993. /*
  2994. * The caller does not necessarily hold an mmap_sem that would prevent
  2995. * the anon_vma disappearing so we first we take a reference to it
  2996. * and then lock the anon_vma for write. This is similar to
  2997. * page_lock_anon_vma_read except the write lock is taken to serialise
  2998. * against parallel split or collapse operations.
  2999. */
  3000. anon_vma = page_get_anon_vma(head);
  3001. if (!anon_vma) {
  3002. ret = -EBUSY;
  3003. goto out;
  3004. }
  3005. anon_vma_lock_write(anon_vma);
  3006. /*
  3007. * Racy check if we can split the page, before freeze_page() will
  3008. * split PMDs
  3009. */
  3010. if (total_mapcount(head) != page_count(head) - 1) {
  3011. ret = -EBUSY;
  3012. goto out_unlock;
  3013. }
  3014. mlocked = PageMlocked(page);
  3015. freeze_page(anon_vma, head);
  3016. VM_BUG_ON_PAGE(compound_mapcount(head), head);
  3017. /* Make sure the page is not on per-CPU pagevec as it takes pin */
  3018. if (mlocked)
  3019. lru_add_drain();
  3020. /* Prevent deferred_split_scan() touching ->_count */
  3021. spin_lock_irqsave(&pgdata->split_queue_lock, flags);
  3022. count = page_count(head);
  3023. mapcount = total_mapcount(head);
  3024. if (!mapcount && count == 1) {
  3025. if (!list_empty(page_deferred_list(head))) {
  3026. pgdata->split_queue_len--;
  3027. list_del(page_deferred_list(head));
  3028. }
  3029. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  3030. __split_huge_page(page, list);
  3031. ret = 0;
  3032. } else if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
  3033. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  3034. pr_alert("total_mapcount: %u, page_count(): %u\n",
  3035. mapcount, count);
  3036. if (PageTail(page))
  3037. dump_page(head, NULL);
  3038. dump_page(page, "total_mapcount(head) > 0");
  3039. BUG();
  3040. } else {
  3041. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  3042. unfreeze_page(anon_vma, head);
  3043. ret = -EBUSY;
  3044. }
  3045. out_unlock:
  3046. anon_vma_unlock_write(anon_vma);
  3047. put_anon_vma(anon_vma);
  3048. out:
  3049. count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
  3050. return ret;
  3051. }
  3052. void free_transhuge_page(struct page *page)
  3053. {
  3054. struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
  3055. unsigned long flags;
  3056. spin_lock_irqsave(&pgdata->split_queue_lock, flags);
  3057. if (!list_empty(page_deferred_list(page))) {
  3058. pgdata->split_queue_len--;
  3059. list_del(page_deferred_list(page));
  3060. }
  3061. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  3062. free_compound_page(page);
  3063. }
  3064. void deferred_split_huge_page(struct page *page)
  3065. {
  3066. struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
  3067. unsigned long flags;
  3068. VM_BUG_ON_PAGE(!PageTransHuge(page), page);
  3069. spin_lock_irqsave(&pgdata->split_queue_lock, flags);
  3070. if (list_empty(page_deferred_list(page))) {
  3071. count_vm_event(THP_DEFERRED_SPLIT_PAGE);
  3072. list_add_tail(page_deferred_list(page), &pgdata->split_queue);
  3073. pgdata->split_queue_len++;
  3074. }
  3075. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  3076. }
  3077. static unsigned long deferred_split_count(struct shrinker *shrink,
  3078. struct shrink_control *sc)
  3079. {
  3080. struct pglist_data *pgdata = NODE_DATA(sc->nid);
  3081. return ACCESS_ONCE(pgdata->split_queue_len);
  3082. }
  3083. static unsigned long deferred_split_scan(struct shrinker *shrink,
  3084. struct shrink_control *sc)
  3085. {
  3086. struct pglist_data *pgdata = NODE_DATA(sc->nid);
  3087. unsigned long flags;
  3088. LIST_HEAD(list), *pos, *next;
  3089. struct page *page;
  3090. int split = 0;
  3091. spin_lock_irqsave(&pgdata->split_queue_lock, flags);
  3092. /* Take pin on all head pages to avoid freeing them under us */
  3093. list_for_each_safe(pos, next, &pgdata->split_queue) {
  3094. page = list_entry((void *)pos, struct page, mapping);
  3095. page = compound_head(page);
  3096. if (get_page_unless_zero(page)) {
  3097. list_move(page_deferred_list(page), &list);
  3098. } else {
  3099. /* We lost race with put_compound_page() */
  3100. list_del_init(page_deferred_list(page));
  3101. pgdata->split_queue_len--;
  3102. }
  3103. if (!--sc->nr_to_scan)
  3104. break;
  3105. }
  3106. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  3107. list_for_each_safe(pos, next, &list) {
  3108. page = list_entry((void *)pos, struct page, mapping);
  3109. lock_page(page);
  3110. /* split_huge_page() removes page from list on success */
  3111. if (!split_huge_page(page))
  3112. split++;
  3113. unlock_page(page);
  3114. put_page(page);
  3115. }
  3116. spin_lock_irqsave(&pgdata->split_queue_lock, flags);
  3117. list_splice_tail(&list, &pgdata->split_queue);
  3118. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  3119. /*
  3120. * Stop shrinker if we didn't split any page, but the queue is empty.
  3121. * This can happen if pages were freed under us.
  3122. */
  3123. if (!split && list_empty(&pgdata->split_queue))
  3124. return SHRINK_STOP;
  3125. return split;
  3126. }
  3127. static struct shrinker deferred_split_shrinker = {
  3128. .count_objects = deferred_split_count,
  3129. .scan_objects = deferred_split_scan,
  3130. .seeks = DEFAULT_SEEKS,
  3131. .flags = SHRINKER_NUMA_AWARE,
  3132. };
  3133. #ifdef CONFIG_DEBUG_FS
  3134. static int split_huge_pages_set(void *data, u64 val)
  3135. {
  3136. struct zone *zone;
  3137. struct page *page;
  3138. unsigned long pfn, max_zone_pfn;
  3139. unsigned long total = 0, split = 0;
  3140. if (val != 1)
  3141. return -EINVAL;
  3142. for_each_populated_zone(zone) {
  3143. max_zone_pfn = zone_end_pfn(zone);
  3144. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
  3145. if (!pfn_valid(pfn))
  3146. continue;
  3147. page = pfn_to_page(pfn);
  3148. if (!get_page_unless_zero(page))
  3149. continue;
  3150. if (zone != page_zone(page))
  3151. goto next;
  3152. if (!PageHead(page) || !PageAnon(page) ||
  3153. PageHuge(page))
  3154. goto next;
  3155. total++;
  3156. lock_page(page);
  3157. if (!split_huge_page(page))
  3158. split++;
  3159. unlock_page(page);
  3160. next:
  3161. put_page(page);
  3162. }
  3163. }
  3164. pr_info("%lu of %lu THP split", split, total);
  3165. return 0;
  3166. }
  3167. DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
  3168. "%llu\n");
  3169. static int __init split_huge_pages_debugfs(void)
  3170. {
  3171. void *ret;
  3172. ret = debugfs_create_file("split_huge_pages", 0644, NULL, NULL,
  3173. &split_huge_pages_fops);
  3174. if (!ret)
  3175. pr_warn("Failed to create split_huge_pages in debugfs");
  3176. return 0;
  3177. }
  3178. late_initcall(split_huge_pages_debugfs);
  3179. #endif