compiler.h 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366
  1. /* SPDX-License-Identifier: GPL-2.0 */
  2. #ifndef __LINUX_COMPILER_H
  3. #define __LINUX_COMPILER_H
  4. #include <linux/compiler_types.h>
  5. #ifndef __ASSEMBLY__
  6. #ifdef __KERNEL__
  7. /*
  8. * Note: DISABLE_BRANCH_PROFILING can be used by special lowlevel code
  9. * to disable branch tracing on a per file basis.
  10. */
  11. #if defined(CONFIG_TRACE_BRANCH_PROFILING) \
  12. && !defined(DISABLE_BRANCH_PROFILING) && !defined(__CHECKER__)
  13. void ftrace_likely_update(struct ftrace_likely_data *f, int val,
  14. int expect, int is_constant);
  15. #define likely_notrace(x) __builtin_expect(!!(x), 1)
  16. #define unlikely_notrace(x) __builtin_expect(!!(x), 0)
  17. #define __branch_check__(x, expect, is_constant) ({ \
  18. long ______r; \
  19. static struct ftrace_likely_data \
  20. __aligned(4) \
  21. __section("_ftrace_annotated_branch") \
  22. ______f = { \
  23. .data.func = __func__, \
  24. .data.file = __FILE__, \
  25. .data.line = __LINE__, \
  26. }; \
  27. ______r = __builtin_expect(!!(x), expect); \
  28. ftrace_likely_update(&______f, ______r, \
  29. expect, is_constant); \
  30. ______r; \
  31. })
  32. /*
  33. * Using __builtin_constant_p(x) to ignore cases where the return
  34. * value is always the same. This idea is taken from a similar patch
  35. * written by Daniel Walker.
  36. */
  37. # ifndef likely
  38. # define likely(x) (__branch_check__(x, 1, __builtin_constant_p(x)))
  39. # endif
  40. # ifndef unlikely
  41. # define unlikely(x) (__branch_check__(x, 0, __builtin_constant_p(x)))
  42. # endif
  43. #ifdef CONFIG_PROFILE_ALL_BRANCHES
  44. /*
  45. * "Define 'is'", Bill Clinton
  46. * "Define 'if'", Steven Rostedt
  47. */
  48. #define if(cond, ...) __trace_if( (cond , ## __VA_ARGS__) )
  49. #define __trace_if(cond) \
  50. if (__builtin_constant_p(!!(cond)) ? !!(cond) : \
  51. ({ \
  52. int ______r; \
  53. static struct ftrace_branch_data \
  54. __aligned(4) \
  55. __section("_ftrace_branch") \
  56. ______f = { \
  57. .func = __func__, \
  58. .file = __FILE__, \
  59. .line = __LINE__, \
  60. }; \
  61. ______r = !!(cond); \
  62. ______f.miss_hit[______r]++; \
  63. ______r; \
  64. }))
  65. #endif /* CONFIG_PROFILE_ALL_BRANCHES */
  66. #else
  67. # define likely(x) __builtin_expect(!!(x), 1)
  68. # define unlikely(x) __builtin_expect(!!(x), 0)
  69. #endif
  70. /* Optimization barrier */
  71. #ifndef barrier
  72. # define barrier() __memory_barrier()
  73. #endif
  74. #ifndef barrier_data
  75. # define barrier_data(ptr) barrier()
  76. #endif
  77. /* workaround for GCC PR82365 if needed */
  78. #ifndef barrier_before_unreachable
  79. # define barrier_before_unreachable() do { } while (0)
  80. #endif
  81. /* Unreachable code */
  82. #ifdef CONFIG_STACK_VALIDATION
  83. /*
  84. * These macros help objtool understand GCC code flow for unreachable code.
  85. * The __COUNTER__ based labels are a hack to make each instance of the macros
  86. * unique, to convince GCC not to merge duplicate inline asm statements.
  87. */
  88. #define annotate_reachable() ({ \
  89. asm volatile("%c0:\n\t" \
  90. ".pushsection .discard.reachable\n\t" \
  91. ".long %c0b - .\n\t" \
  92. ".popsection\n\t" : : "i" (__COUNTER__)); \
  93. })
  94. #define annotate_unreachable() ({ \
  95. asm volatile("%c0:\n\t" \
  96. ".pushsection .discard.unreachable\n\t" \
  97. ".long %c0b - .\n\t" \
  98. ".popsection\n\t" : : "i" (__COUNTER__)); \
  99. })
  100. #define ASM_UNREACHABLE \
  101. "999:\n\t" \
  102. ".pushsection .discard.unreachable\n\t" \
  103. ".long 999b - .\n\t" \
  104. ".popsection\n\t"
  105. #else
  106. #define annotate_reachable()
  107. #define annotate_unreachable()
  108. #endif
  109. #ifndef ASM_UNREACHABLE
  110. # define ASM_UNREACHABLE
  111. #endif
  112. #ifndef unreachable
  113. # define unreachable() do { \
  114. annotate_unreachable(); \
  115. __builtin_unreachable(); \
  116. } while (0)
  117. #endif
  118. /*
  119. * KENTRY - kernel entry point
  120. * This can be used to annotate symbols (functions or data) that are used
  121. * without their linker symbol being referenced explicitly. For example,
  122. * interrupt vector handlers, or functions in the kernel image that are found
  123. * programatically.
  124. *
  125. * Not required for symbols exported with EXPORT_SYMBOL, or initcalls. Those
  126. * are handled in their own way (with KEEP() in linker scripts).
  127. *
  128. * KENTRY can be avoided if the symbols in question are marked as KEEP() in the
  129. * linker script. For example an architecture could KEEP() its entire
  130. * boot/exception vector code rather than annotate each function and data.
  131. */
  132. #ifndef KENTRY
  133. # define KENTRY(sym) \
  134. extern typeof(sym) sym; \
  135. static const unsigned long __kentry_##sym \
  136. __used \
  137. __section("___kentry" "+" #sym ) \
  138. = (unsigned long)&sym;
  139. #endif
  140. #ifndef RELOC_HIDE
  141. # define RELOC_HIDE(ptr, off) \
  142. ({ unsigned long __ptr; \
  143. __ptr = (unsigned long) (ptr); \
  144. (typeof(ptr)) (__ptr + (off)); })
  145. #endif
  146. #ifndef OPTIMIZER_HIDE_VAR
  147. #define OPTIMIZER_HIDE_VAR(var) barrier()
  148. #endif
  149. /* Not-quite-unique ID. */
  150. #ifndef __UNIQUE_ID
  151. # define __UNIQUE_ID(prefix) __PASTE(__PASTE(__UNIQUE_ID_, prefix), __LINE__)
  152. #endif
  153. #include <uapi/linux/types.h>
  154. #define __READ_ONCE_SIZE \
  155. ({ \
  156. switch (size) { \
  157. case 1: *(__u8 *)res = *(volatile __u8 *)p; break; \
  158. case 2: *(__u16 *)res = *(volatile __u16 *)p; break; \
  159. case 4: *(__u32 *)res = *(volatile __u32 *)p; break; \
  160. case 8: *(__u64 *)res = *(volatile __u64 *)p; break; \
  161. default: \
  162. barrier(); \
  163. __builtin_memcpy((void *)res, (const void *)p, size); \
  164. barrier(); \
  165. } \
  166. })
  167. static __always_inline
  168. void __read_once_size(const volatile void *p, void *res, int size)
  169. {
  170. __READ_ONCE_SIZE;
  171. }
  172. #ifdef CONFIG_KASAN
  173. /*
  174. * We can't declare function 'inline' because __no_sanitize_address confilcts
  175. * with inlining. Attempt to inline it may cause a build failure.
  176. * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=67368
  177. * '__maybe_unused' allows us to avoid defined-but-not-used warnings.
  178. */
  179. # define __no_kasan_or_inline __no_sanitize_address __maybe_unused
  180. #else
  181. # define __no_kasan_or_inline __always_inline
  182. #endif
  183. static __no_kasan_or_inline
  184. void __read_once_size_nocheck(const volatile void *p, void *res, int size)
  185. {
  186. __READ_ONCE_SIZE;
  187. }
  188. static __always_inline void __write_once_size(volatile void *p, void *res, int size)
  189. {
  190. switch (size) {
  191. case 1: *(volatile __u8 *)p = *(__u8 *)res; break;
  192. case 2: *(volatile __u16 *)p = *(__u16 *)res; break;
  193. case 4: *(volatile __u32 *)p = *(__u32 *)res; break;
  194. case 8: *(volatile __u64 *)p = *(__u64 *)res; break;
  195. default:
  196. barrier();
  197. __builtin_memcpy((void *)p, (const void *)res, size);
  198. barrier();
  199. }
  200. }
  201. /*
  202. * Prevent the compiler from merging or refetching reads or writes. The
  203. * compiler is also forbidden from reordering successive instances of
  204. * READ_ONCE and WRITE_ONCE, but only when the compiler is aware of some
  205. * particular ordering. One way to make the compiler aware of ordering is to
  206. * put the two invocations of READ_ONCE or WRITE_ONCE in different C
  207. * statements.
  208. *
  209. * These two macros will also work on aggregate data types like structs or
  210. * unions. If the size of the accessed data type exceeds the word size of
  211. * the machine (e.g., 32 bits or 64 bits) READ_ONCE() and WRITE_ONCE() will
  212. * fall back to memcpy(). There's at least two memcpy()s: one for the
  213. * __builtin_memcpy() and then one for the macro doing the copy of variable
  214. * - '__u' allocated on the stack.
  215. *
  216. * Their two major use cases are: (1) Mediating communication between
  217. * process-level code and irq/NMI handlers, all running on the same CPU,
  218. * and (2) Ensuring that the compiler does not fold, spindle, or otherwise
  219. * mutilate accesses that either do not require ordering or that interact
  220. * with an explicit memory barrier or atomic instruction that provides the
  221. * required ordering.
  222. */
  223. #include <asm/barrier.h>
  224. #include <linux/kasan-checks.h>
  225. #define __READ_ONCE(x, check) \
  226. ({ \
  227. union { typeof(x) __val; char __c[1]; } __u; \
  228. if (check) \
  229. __read_once_size(&(x), __u.__c, sizeof(x)); \
  230. else \
  231. __read_once_size_nocheck(&(x), __u.__c, sizeof(x)); \
  232. smp_read_barrier_depends(); /* Enforce dependency ordering from x */ \
  233. __u.__val; \
  234. })
  235. #define READ_ONCE(x) __READ_ONCE(x, 1)
  236. /*
  237. * Use READ_ONCE_NOCHECK() instead of READ_ONCE() if you need
  238. * to hide memory access from KASAN.
  239. */
  240. #define READ_ONCE_NOCHECK(x) __READ_ONCE(x, 0)
  241. static __no_kasan_or_inline
  242. unsigned long read_word_at_a_time(const void *addr)
  243. {
  244. kasan_check_read(addr, 1);
  245. return *(unsigned long *)addr;
  246. }
  247. #define WRITE_ONCE(x, val) \
  248. ({ \
  249. union { typeof(x) __val; char __c[1]; } __u = \
  250. { .__val = (__force typeof(x)) (val) }; \
  251. __write_once_size(&(x), __u.__c, sizeof(x)); \
  252. __u.__val; \
  253. })
  254. #endif /* __KERNEL__ */
  255. /*
  256. * Force the compiler to emit 'sym' as a symbol, so that we can reference
  257. * it from inline assembler. Necessary in case 'sym' could be inlined
  258. * otherwise, or eliminated entirely due to lack of references that are
  259. * visible to the compiler.
  260. */
  261. #define __ADDRESSABLE(sym) \
  262. static void * __section(".discard.addressable") __used \
  263. __PASTE(__addressable_##sym, __LINE__) = (void *)&sym;
  264. /**
  265. * offset_to_ptr - convert a relative memory offset to an absolute pointer
  266. * @off: the address of the 32-bit offset value
  267. */
  268. static inline void *offset_to_ptr(const int *off)
  269. {
  270. return (void *)((unsigned long)off + *off);
  271. }
  272. #endif /* __ASSEMBLY__ */
  273. /* Compile time object size, -1 for unknown */
  274. #ifndef __compiletime_object_size
  275. # define __compiletime_object_size(obj) -1
  276. #endif
  277. #ifndef __compiletime_warning
  278. # define __compiletime_warning(message)
  279. #endif
  280. #ifndef __compiletime_error
  281. # define __compiletime_error(message)
  282. /*
  283. * Sparse complains of variable sized arrays due to the temporary variable in
  284. * __compiletime_assert. Unfortunately we can't just expand it out to make
  285. * sparse see a constant array size without breaking compiletime_assert on old
  286. * versions of GCC (e.g. 4.2.4), so hide the array from sparse altogether.
  287. */
  288. # ifndef __CHECKER__
  289. # define __compiletime_error_fallback(condition) \
  290. do { ((void)sizeof(char[1 - 2 * condition])); } while (0)
  291. # endif
  292. #endif
  293. #ifndef __compiletime_error_fallback
  294. # define __compiletime_error_fallback(condition) do { } while (0)
  295. #endif
  296. #ifdef __OPTIMIZE__
  297. # define __compiletime_assert(condition, msg, prefix, suffix) \
  298. do { \
  299. int __cond = !(condition); \
  300. extern void prefix ## suffix(void) __compiletime_error(msg); \
  301. if (__cond) \
  302. prefix ## suffix(); \
  303. __compiletime_error_fallback(__cond); \
  304. } while (0)
  305. #else
  306. # define __compiletime_assert(condition, msg, prefix, suffix) do { } while (0)
  307. #endif
  308. #define _compiletime_assert(condition, msg, prefix, suffix) \
  309. __compiletime_assert(condition, msg, prefix, suffix)
  310. /**
  311. * compiletime_assert - break build and emit msg if condition is false
  312. * @condition: a compile-time constant condition to check
  313. * @msg: a message to emit if condition is false
  314. *
  315. * In tradition of POSIX assert, this macro will break the build if the
  316. * supplied condition is *false*, emitting the supplied error message if the
  317. * compiler has support to do so.
  318. */
  319. #define compiletime_assert(condition, msg) \
  320. _compiletime_assert(condition, msg, __compiletime_assert_, __LINE__)
  321. #define compiletime_assert_atomic_type(t) \
  322. compiletime_assert(__native_word(t), \
  323. "Need native word sized stores/loads for atomicity.")
  324. /* &a[0] degrades to a pointer: a different type from an array */
  325. #define __must_be_array(a) BUILD_BUG_ON_ZERO(__same_type((a), &(a)[0]))
  326. #endif /* __LINUX_COMPILER_H */