vmalloc.c 70 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779
  1. /*
  2. * linux/mm/vmalloc.c
  3. *
  4. * Copyright (C) 1993 Linus Torvalds
  5. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  6. * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
  7. * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
  8. * Numa awareness, Christoph Lameter, SGI, June 2005
  9. */
  10. #include <linux/vmalloc.h>
  11. #include <linux/mm.h>
  12. #include <linux/module.h>
  13. #include <linux/highmem.h>
  14. #include <linux/sched/signal.h>
  15. #include <linux/slab.h>
  16. #include <linux/spinlock.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/proc_fs.h>
  19. #include <linux/seq_file.h>
  20. #include <linux/debugobjects.h>
  21. #include <linux/kallsyms.h>
  22. #include <linux/list.h>
  23. #include <linux/notifier.h>
  24. #include <linux/rbtree.h>
  25. #include <linux/radix-tree.h>
  26. #include <linux/rcupdate.h>
  27. #include <linux/pfn.h>
  28. #include <linux/kmemleak.h>
  29. #include <linux/atomic.h>
  30. #include <linux/compiler.h>
  31. #include <linux/llist.h>
  32. #include <linux/bitops.h>
  33. #include <linux/uaccess.h>
  34. #include <asm/tlbflush.h>
  35. #include <asm/shmparam.h>
  36. #include "internal.h"
  37. struct vfree_deferred {
  38. struct llist_head list;
  39. struct work_struct wq;
  40. };
  41. static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
  42. static void __vunmap(const void *, int);
  43. static void free_work(struct work_struct *w)
  44. {
  45. struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
  46. struct llist_node *t, *llnode;
  47. llist_for_each_safe(llnode, t, llist_del_all(&p->list))
  48. __vunmap((void *)llnode, 1);
  49. }
  50. /*** Page table manipulation functions ***/
  51. static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
  52. {
  53. pte_t *pte;
  54. pte = pte_offset_kernel(pmd, addr);
  55. do {
  56. pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
  57. WARN_ON(!pte_none(ptent) && !pte_present(ptent));
  58. } while (pte++, addr += PAGE_SIZE, addr != end);
  59. }
  60. static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
  61. {
  62. pmd_t *pmd;
  63. unsigned long next;
  64. pmd = pmd_offset(pud, addr);
  65. do {
  66. next = pmd_addr_end(addr, end);
  67. if (pmd_clear_huge(pmd))
  68. continue;
  69. if (pmd_none_or_clear_bad(pmd))
  70. continue;
  71. vunmap_pte_range(pmd, addr, next);
  72. } while (pmd++, addr = next, addr != end);
  73. }
  74. static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
  75. {
  76. pud_t *pud;
  77. unsigned long next;
  78. pud = pud_offset(p4d, addr);
  79. do {
  80. next = pud_addr_end(addr, end);
  81. if (pud_clear_huge(pud))
  82. continue;
  83. if (pud_none_or_clear_bad(pud))
  84. continue;
  85. vunmap_pmd_range(pud, addr, next);
  86. } while (pud++, addr = next, addr != end);
  87. }
  88. static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
  89. {
  90. p4d_t *p4d;
  91. unsigned long next;
  92. p4d = p4d_offset(pgd, addr);
  93. do {
  94. next = p4d_addr_end(addr, end);
  95. if (p4d_clear_huge(p4d))
  96. continue;
  97. if (p4d_none_or_clear_bad(p4d))
  98. continue;
  99. vunmap_pud_range(p4d, addr, next);
  100. } while (p4d++, addr = next, addr != end);
  101. }
  102. static void vunmap_page_range(unsigned long addr, unsigned long end)
  103. {
  104. pgd_t *pgd;
  105. unsigned long next;
  106. BUG_ON(addr >= end);
  107. pgd = pgd_offset_k(addr);
  108. do {
  109. next = pgd_addr_end(addr, end);
  110. if (pgd_none_or_clear_bad(pgd))
  111. continue;
  112. vunmap_p4d_range(pgd, addr, next);
  113. } while (pgd++, addr = next, addr != end);
  114. }
  115. static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
  116. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  117. {
  118. pte_t *pte;
  119. /*
  120. * nr is a running index into the array which helps higher level
  121. * callers keep track of where we're up to.
  122. */
  123. pte = pte_alloc_kernel(pmd, addr);
  124. if (!pte)
  125. return -ENOMEM;
  126. do {
  127. struct page *page = pages[*nr];
  128. if (WARN_ON(!pte_none(*pte)))
  129. return -EBUSY;
  130. if (WARN_ON(!page))
  131. return -ENOMEM;
  132. set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
  133. (*nr)++;
  134. } while (pte++, addr += PAGE_SIZE, addr != end);
  135. return 0;
  136. }
  137. static int vmap_pmd_range(pud_t *pud, unsigned long addr,
  138. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  139. {
  140. pmd_t *pmd;
  141. unsigned long next;
  142. pmd = pmd_alloc(&init_mm, pud, addr);
  143. if (!pmd)
  144. return -ENOMEM;
  145. do {
  146. next = pmd_addr_end(addr, end);
  147. if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
  148. return -ENOMEM;
  149. } while (pmd++, addr = next, addr != end);
  150. return 0;
  151. }
  152. static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
  153. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  154. {
  155. pud_t *pud;
  156. unsigned long next;
  157. pud = pud_alloc(&init_mm, p4d, addr);
  158. if (!pud)
  159. return -ENOMEM;
  160. do {
  161. next = pud_addr_end(addr, end);
  162. if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
  163. return -ENOMEM;
  164. } while (pud++, addr = next, addr != end);
  165. return 0;
  166. }
  167. static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
  168. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  169. {
  170. p4d_t *p4d;
  171. unsigned long next;
  172. p4d = p4d_alloc(&init_mm, pgd, addr);
  173. if (!p4d)
  174. return -ENOMEM;
  175. do {
  176. next = p4d_addr_end(addr, end);
  177. if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
  178. return -ENOMEM;
  179. } while (p4d++, addr = next, addr != end);
  180. return 0;
  181. }
  182. /*
  183. * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
  184. * will have pfns corresponding to the "pages" array.
  185. *
  186. * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
  187. */
  188. static int vmap_page_range_noflush(unsigned long start, unsigned long end,
  189. pgprot_t prot, struct page **pages)
  190. {
  191. pgd_t *pgd;
  192. unsigned long next;
  193. unsigned long addr = start;
  194. int err = 0;
  195. int nr = 0;
  196. BUG_ON(addr >= end);
  197. pgd = pgd_offset_k(addr);
  198. do {
  199. next = pgd_addr_end(addr, end);
  200. err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
  201. if (err)
  202. return err;
  203. } while (pgd++, addr = next, addr != end);
  204. return nr;
  205. }
  206. static int vmap_page_range(unsigned long start, unsigned long end,
  207. pgprot_t prot, struct page **pages)
  208. {
  209. int ret;
  210. ret = vmap_page_range_noflush(start, end, prot, pages);
  211. flush_cache_vmap(start, end);
  212. return ret;
  213. }
  214. int is_vmalloc_or_module_addr(const void *x)
  215. {
  216. /*
  217. * ARM, x86-64 and sparc64 put modules in a special place,
  218. * and fall back on vmalloc() if that fails. Others
  219. * just put it in the vmalloc space.
  220. */
  221. #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
  222. unsigned long addr = (unsigned long)x;
  223. if (addr >= MODULES_VADDR && addr < MODULES_END)
  224. return 1;
  225. #endif
  226. return is_vmalloc_addr(x);
  227. }
  228. /*
  229. * Walk a vmap address to the struct page it maps.
  230. */
  231. struct page *vmalloc_to_page(const void *vmalloc_addr)
  232. {
  233. unsigned long addr = (unsigned long) vmalloc_addr;
  234. struct page *page = NULL;
  235. pgd_t *pgd = pgd_offset_k(addr);
  236. p4d_t *p4d;
  237. pud_t *pud;
  238. pmd_t *pmd;
  239. pte_t *ptep, pte;
  240. /*
  241. * XXX we might need to change this if we add VIRTUAL_BUG_ON for
  242. * architectures that do not vmalloc module space
  243. */
  244. VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
  245. if (pgd_none(*pgd))
  246. return NULL;
  247. p4d = p4d_offset(pgd, addr);
  248. if (p4d_none(*p4d))
  249. return NULL;
  250. pud = pud_offset(p4d, addr);
  251. /*
  252. * Don't dereference bad PUD or PMD (below) entries. This will also
  253. * identify huge mappings, which we may encounter on architectures
  254. * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
  255. * identified as vmalloc addresses by is_vmalloc_addr(), but are
  256. * not [unambiguously] associated with a struct page, so there is
  257. * no correct value to return for them.
  258. */
  259. WARN_ON_ONCE(pud_bad(*pud));
  260. if (pud_none(*pud) || pud_bad(*pud))
  261. return NULL;
  262. pmd = pmd_offset(pud, addr);
  263. WARN_ON_ONCE(pmd_bad(*pmd));
  264. if (pmd_none(*pmd) || pmd_bad(*pmd))
  265. return NULL;
  266. ptep = pte_offset_map(pmd, addr);
  267. pte = *ptep;
  268. if (pte_present(pte))
  269. page = pte_page(pte);
  270. pte_unmap(ptep);
  271. return page;
  272. }
  273. EXPORT_SYMBOL(vmalloc_to_page);
  274. /*
  275. * Map a vmalloc()-space virtual address to the physical page frame number.
  276. */
  277. unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
  278. {
  279. return page_to_pfn(vmalloc_to_page(vmalloc_addr));
  280. }
  281. EXPORT_SYMBOL(vmalloc_to_pfn);
  282. /*** Global kva allocator ***/
  283. #define VM_LAZY_FREE 0x02
  284. #define VM_VM_AREA 0x04
  285. static DEFINE_SPINLOCK(vmap_area_lock);
  286. /* Export for kexec only */
  287. LIST_HEAD(vmap_area_list);
  288. static LLIST_HEAD(vmap_purge_list);
  289. static struct rb_root vmap_area_root = RB_ROOT;
  290. /* The vmap cache globals are protected by vmap_area_lock */
  291. static struct rb_node *free_vmap_cache;
  292. static unsigned long cached_hole_size;
  293. static unsigned long cached_vstart;
  294. static unsigned long cached_align;
  295. static unsigned long vmap_area_pcpu_hole;
  296. static struct vmap_area *__find_vmap_area(unsigned long addr)
  297. {
  298. struct rb_node *n = vmap_area_root.rb_node;
  299. while (n) {
  300. struct vmap_area *va;
  301. va = rb_entry(n, struct vmap_area, rb_node);
  302. if (addr < va->va_start)
  303. n = n->rb_left;
  304. else if (addr >= va->va_end)
  305. n = n->rb_right;
  306. else
  307. return va;
  308. }
  309. return NULL;
  310. }
  311. static void __insert_vmap_area(struct vmap_area *va)
  312. {
  313. struct rb_node **p = &vmap_area_root.rb_node;
  314. struct rb_node *parent = NULL;
  315. struct rb_node *tmp;
  316. while (*p) {
  317. struct vmap_area *tmp_va;
  318. parent = *p;
  319. tmp_va = rb_entry(parent, struct vmap_area, rb_node);
  320. if (va->va_start < tmp_va->va_end)
  321. p = &(*p)->rb_left;
  322. else if (va->va_end > tmp_va->va_start)
  323. p = &(*p)->rb_right;
  324. else
  325. BUG();
  326. }
  327. rb_link_node(&va->rb_node, parent, p);
  328. rb_insert_color(&va->rb_node, &vmap_area_root);
  329. /* address-sort this list */
  330. tmp = rb_prev(&va->rb_node);
  331. if (tmp) {
  332. struct vmap_area *prev;
  333. prev = rb_entry(tmp, struct vmap_area, rb_node);
  334. list_add_rcu(&va->list, &prev->list);
  335. } else
  336. list_add_rcu(&va->list, &vmap_area_list);
  337. }
  338. static void purge_vmap_area_lazy(void);
  339. static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
  340. /*
  341. * Allocate a region of KVA of the specified size and alignment, within the
  342. * vstart and vend.
  343. */
  344. static struct vmap_area *alloc_vmap_area(unsigned long size,
  345. unsigned long align,
  346. unsigned long vstart, unsigned long vend,
  347. int node, gfp_t gfp_mask)
  348. {
  349. struct vmap_area *va;
  350. struct rb_node *n;
  351. unsigned long addr;
  352. int purged = 0;
  353. struct vmap_area *first;
  354. BUG_ON(!size);
  355. BUG_ON(offset_in_page(size));
  356. BUG_ON(!is_power_of_2(align));
  357. might_sleep();
  358. va = kmalloc_node(sizeof(struct vmap_area),
  359. gfp_mask & GFP_RECLAIM_MASK, node);
  360. if (unlikely(!va))
  361. return ERR_PTR(-ENOMEM);
  362. /*
  363. * Only scan the relevant parts containing pointers to other objects
  364. * to avoid false negatives.
  365. */
  366. kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
  367. retry:
  368. spin_lock(&vmap_area_lock);
  369. /*
  370. * Invalidate cache if we have more permissive parameters.
  371. * cached_hole_size notes the largest hole noticed _below_
  372. * the vmap_area cached in free_vmap_cache: if size fits
  373. * into that hole, we want to scan from vstart to reuse
  374. * the hole instead of allocating above free_vmap_cache.
  375. * Note that __free_vmap_area may update free_vmap_cache
  376. * without updating cached_hole_size or cached_align.
  377. */
  378. if (!free_vmap_cache ||
  379. size < cached_hole_size ||
  380. vstart < cached_vstart ||
  381. align < cached_align) {
  382. nocache:
  383. cached_hole_size = 0;
  384. free_vmap_cache = NULL;
  385. }
  386. /* record if we encounter less permissive parameters */
  387. cached_vstart = vstart;
  388. cached_align = align;
  389. /* find starting point for our search */
  390. if (free_vmap_cache) {
  391. first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
  392. addr = ALIGN(first->va_end, align);
  393. if (addr < vstart)
  394. goto nocache;
  395. if (addr + size < addr)
  396. goto overflow;
  397. } else {
  398. addr = ALIGN(vstart, align);
  399. if (addr + size < addr)
  400. goto overflow;
  401. n = vmap_area_root.rb_node;
  402. first = NULL;
  403. while (n) {
  404. struct vmap_area *tmp;
  405. tmp = rb_entry(n, struct vmap_area, rb_node);
  406. if (tmp->va_end >= addr) {
  407. first = tmp;
  408. if (tmp->va_start <= addr)
  409. break;
  410. n = n->rb_left;
  411. } else
  412. n = n->rb_right;
  413. }
  414. if (!first)
  415. goto found;
  416. }
  417. /* from the starting point, walk areas until a suitable hole is found */
  418. while (addr + size > first->va_start && addr + size <= vend) {
  419. if (addr + cached_hole_size < first->va_start)
  420. cached_hole_size = first->va_start - addr;
  421. addr = ALIGN(first->va_end, align);
  422. if (addr + size < addr)
  423. goto overflow;
  424. if (list_is_last(&first->list, &vmap_area_list))
  425. goto found;
  426. first = list_next_entry(first, list);
  427. }
  428. found:
  429. if (addr + size > vend)
  430. goto overflow;
  431. va->va_start = addr;
  432. va->va_end = addr + size;
  433. va->flags = 0;
  434. __insert_vmap_area(va);
  435. free_vmap_cache = &va->rb_node;
  436. spin_unlock(&vmap_area_lock);
  437. BUG_ON(!IS_ALIGNED(va->va_start, align));
  438. BUG_ON(va->va_start < vstart);
  439. BUG_ON(va->va_end > vend);
  440. return va;
  441. overflow:
  442. spin_unlock(&vmap_area_lock);
  443. if (!purged) {
  444. purge_vmap_area_lazy();
  445. purged = 1;
  446. goto retry;
  447. }
  448. if (gfpflags_allow_blocking(gfp_mask)) {
  449. unsigned long freed = 0;
  450. blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
  451. if (freed > 0) {
  452. purged = 0;
  453. goto retry;
  454. }
  455. }
  456. if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
  457. pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
  458. size);
  459. kfree(va);
  460. return ERR_PTR(-EBUSY);
  461. }
  462. int register_vmap_purge_notifier(struct notifier_block *nb)
  463. {
  464. return blocking_notifier_chain_register(&vmap_notify_list, nb);
  465. }
  466. EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
  467. int unregister_vmap_purge_notifier(struct notifier_block *nb)
  468. {
  469. return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
  470. }
  471. EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
  472. static void __free_vmap_area(struct vmap_area *va)
  473. {
  474. BUG_ON(RB_EMPTY_NODE(&va->rb_node));
  475. if (free_vmap_cache) {
  476. if (va->va_end < cached_vstart) {
  477. free_vmap_cache = NULL;
  478. } else {
  479. struct vmap_area *cache;
  480. cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
  481. if (va->va_start <= cache->va_start) {
  482. free_vmap_cache = rb_prev(&va->rb_node);
  483. /*
  484. * We don't try to update cached_hole_size or
  485. * cached_align, but it won't go very wrong.
  486. */
  487. }
  488. }
  489. }
  490. rb_erase(&va->rb_node, &vmap_area_root);
  491. RB_CLEAR_NODE(&va->rb_node);
  492. list_del_rcu(&va->list);
  493. /*
  494. * Track the highest possible candidate for pcpu area
  495. * allocation. Areas outside of vmalloc area can be returned
  496. * here too, consider only end addresses which fall inside
  497. * vmalloc area proper.
  498. */
  499. if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
  500. vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
  501. kfree_rcu(va, rcu_head);
  502. }
  503. /*
  504. * Free a region of KVA allocated by alloc_vmap_area
  505. */
  506. static void free_vmap_area(struct vmap_area *va)
  507. {
  508. spin_lock(&vmap_area_lock);
  509. __free_vmap_area(va);
  510. spin_unlock(&vmap_area_lock);
  511. }
  512. /*
  513. * Clear the pagetable entries of a given vmap_area
  514. */
  515. static void unmap_vmap_area(struct vmap_area *va)
  516. {
  517. vunmap_page_range(va->va_start, va->va_end);
  518. }
  519. static void vmap_debug_free_range(unsigned long start, unsigned long end)
  520. {
  521. /*
  522. * Unmap page tables and force a TLB flush immediately if pagealloc
  523. * debugging is enabled. This catches use after free bugs similarly to
  524. * those in linear kernel virtual address space after a page has been
  525. * freed.
  526. *
  527. * All the lazy freeing logic is still retained, in order to minimise
  528. * intrusiveness of this debugging feature.
  529. *
  530. * This is going to be *slow* (linear kernel virtual address debugging
  531. * doesn't do a broadcast TLB flush so it is a lot faster).
  532. */
  533. if (debug_pagealloc_enabled()) {
  534. vunmap_page_range(start, end);
  535. flush_tlb_kernel_range(start, end);
  536. }
  537. }
  538. /*
  539. * lazy_max_pages is the maximum amount of virtual address space we gather up
  540. * before attempting to purge with a TLB flush.
  541. *
  542. * There is a tradeoff here: a larger number will cover more kernel page tables
  543. * and take slightly longer to purge, but it will linearly reduce the number of
  544. * global TLB flushes that must be performed. It would seem natural to scale
  545. * this number up linearly with the number of CPUs (because vmapping activity
  546. * could also scale linearly with the number of CPUs), however it is likely
  547. * that in practice, workloads might be constrained in other ways that mean
  548. * vmap activity will not scale linearly with CPUs. Also, I want to be
  549. * conservative and not introduce a big latency on huge systems, so go with
  550. * a less aggressive log scale. It will still be an improvement over the old
  551. * code, and it will be simple to change the scale factor if we find that it
  552. * becomes a problem on bigger systems.
  553. */
  554. static unsigned long lazy_max_pages(void)
  555. {
  556. unsigned int log;
  557. log = fls(num_online_cpus());
  558. return log * (32UL * 1024 * 1024 / PAGE_SIZE);
  559. }
  560. static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
  561. /*
  562. * Serialize vmap purging. There is no actual criticial section protected
  563. * by this look, but we want to avoid concurrent calls for performance
  564. * reasons and to make the pcpu_get_vm_areas more deterministic.
  565. */
  566. static DEFINE_MUTEX(vmap_purge_lock);
  567. /* for per-CPU blocks */
  568. static void purge_fragmented_blocks_allcpus(void);
  569. /*
  570. * called before a call to iounmap() if the caller wants vm_area_struct's
  571. * immediately freed.
  572. */
  573. void set_iounmap_nonlazy(void)
  574. {
  575. atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
  576. }
  577. /*
  578. * Purges all lazily-freed vmap areas.
  579. */
  580. static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
  581. {
  582. struct llist_node *valist;
  583. struct vmap_area *va;
  584. struct vmap_area *n_va;
  585. bool do_free = false;
  586. lockdep_assert_held(&vmap_purge_lock);
  587. valist = llist_del_all(&vmap_purge_list);
  588. llist_for_each_entry(va, valist, purge_list) {
  589. if (va->va_start < start)
  590. start = va->va_start;
  591. if (va->va_end > end)
  592. end = va->va_end;
  593. do_free = true;
  594. }
  595. if (!do_free)
  596. return false;
  597. flush_tlb_kernel_range(start, end);
  598. spin_lock(&vmap_area_lock);
  599. llist_for_each_entry_safe(va, n_va, valist, purge_list) {
  600. int nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
  601. __free_vmap_area(va);
  602. atomic_sub(nr, &vmap_lazy_nr);
  603. cond_resched_lock(&vmap_area_lock);
  604. }
  605. spin_unlock(&vmap_area_lock);
  606. return true;
  607. }
  608. /*
  609. * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
  610. * is already purging.
  611. */
  612. static void try_purge_vmap_area_lazy(void)
  613. {
  614. if (mutex_trylock(&vmap_purge_lock)) {
  615. __purge_vmap_area_lazy(ULONG_MAX, 0);
  616. mutex_unlock(&vmap_purge_lock);
  617. }
  618. }
  619. /*
  620. * Kick off a purge of the outstanding lazy areas.
  621. */
  622. static void purge_vmap_area_lazy(void)
  623. {
  624. mutex_lock(&vmap_purge_lock);
  625. purge_fragmented_blocks_allcpus();
  626. __purge_vmap_area_lazy(ULONG_MAX, 0);
  627. mutex_unlock(&vmap_purge_lock);
  628. }
  629. /*
  630. * Free a vmap area, caller ensuring that the area has been unmapped
  631. * and flush_cache_vunmap had been called for the correct range
  632. * previously.
  633. */
  634. static void free_vmap_area_noflush(struct vmap_area *va)
  635. {
  636. int nr_lazy;
  637. nr_lazy = atomic_add_return((va->va_end - va->va_start) >> PAGE_SHIFT,
  638. &vmap_lazy_nr);
  639. /* After this point, we may free va at any time */
  640. llist_add(&va->purge_list, &vmap_purge_list);
  641. if (unlikely(nr_lazy > lazy_max_pages()))
  642. try_purge_vmap_area_lazy();
  643. }
  644. /*
  645. * Free and unmap a vmap area
  646. */
  647. static void free_unmap_vmap_area(struct vmap_area *va)
  648. {
  649. flush_cache_vunmap(va->va_start, va->va_end);
  650. unmap_vmap_area(va);
  651. free_vmap_area_noflush(va);
  652. }
  653. static struct vmap_area *find_vmap_area(unsigned long addr)
  654. {
  655. struct vmap_area *va;
  656. spin_lock(&vmap_area_lock);
  657. va = __find_vmap_area(addr);
  658. spin_unlock(&vmap_area_lock);
  659. return va;
  660. }
  661. /*** Per cpu kva allocator ***/
  662. /*
  663. * vmap space is limited especially on 32 bit architectures. Ensure there is
  664. * room for at least 16 percpu vmap blocks per CPU.
  665. */
  666. /*
  667. * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
  668. * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
  669. * instead (we just need a rough idea)
  670. */
  671. #if BITS_PER_LONG == 32
  672. #define VMALLOC_SPACE (128UL*1024*1024)
  673. #else
  674. #define VMALLOC_SPACE (128UL*1024*1024*1024)
  675. #endif
  676. #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
  677. #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
  678. #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
  679. #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
  680. #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
  681. #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
  682. #define VMAP_BBMAP_BITS \
  683. VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
  684. VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
  685. VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
  686. #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
  687. static bool vmap_initialized __read_mostly = false;
  688. struct vmap_block_queue {
  689. spinlock_t lock;
  690. struct list_head free;
  691. };
  692. struct vmap_block {
  693. spinlock_t lock;
  694. struct vmap_area *va;
  695. unsigned long free, dirty;
  696. unsigned long dirty_min, dirty_max; /*< dirty range */
  697. struct list_head free_list;
  698. struct rcu_head rcu_head;
  699. struct list_head purge;
  700. };
  701. /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
  702. static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
  703. /*
  704. * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
  705. * in the free path. Could get rid of this if we change the API to return a
  706. * "cookie" from alloc, to be passed to free. But no big deal yet.
  707. */
  708. static DEFINE_SPINLOCK(vmap_block_tree_lock);
  709. static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
  710. /*
  711. * We should probably have a fallback mechanism to allocate virtual memory
  712. * out of partially filled vmap blocks. However vmap block sizing should be
  713. * fairly reasonable according to the vmalloc size, so it shouldn't be a
  714. * big problem.
  715. */
  716. static unsigned long addr_to_vb_idx(unsigned long addr)
  717. {
  718. addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
  719. addr /= VMAP_BLOCK_SIZE;
  720. return addr;
  721. }
  722. static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
  723. {
  724. unsigned long addr;
  725. addr = va_start + (pages_off << PAGE_SHIFT);
  726. BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
  727. return (void *)addr;
  728. }
  729. /**
  730. * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
  731. * block. Of course pages number can't exceed VMAP_BBMAP_BITS
  732. * @order: how many 2^order pages should be occupied in newly allocated block
  733. * @gfp_mask: flags for the page level allocator
  734. *
  735. * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
  736. */
  737. static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
  738. {
  739. struct vmap_block_queue *vbq;
  740. struct vmap_block *vb;
  741. struct vmap_area *va;
  742. unsigned long vb_idx;
  743. int node, err;
  744. void *vaddr;
  745. node = numa_node_id();
  746. vb = kmalloc_node(sizeof(struct vmap_block),
  747. gfp_mask & GFP_RECLAIM_MASK, node);
  748. if (unlikely(!vb))
  749. return ERR_PTR(-ENOMEM);
  750. va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
  751. VMALLOC_START, VMALLOC_END,
  752. node, gfp_mask);
  753. if (IS_ERR(va)) {
  754. kfree(vb);
  755. return ERR_CAST(va);
  756. }
  757. err = radix_tree_preload(gfp_mask);
  758. if (unlikely(err)) {
  759. kfree(vb);
  760. free_vmap_area(va);
  761. return ERR_PTR(err);
  762. }
  763. vaddr = vmap_block_vaddr(va->va_start, 0);
  764. spin_lock_init(&vb->lock);
  765. vb->va = va;
  766. /* At least something should be left free */
  767. BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
  768. vb->free = VMAP_BBMAP_BITS - (1UL << order);
  769. vb->dirty = 0;
  770. vb->dirty_min = VMAP_BBMAP_BITS;
  771. vb->dirty_max = 0;
  772. INIT_LIST_HEAD(&vb->free_list);
  773. vb_idx = addr_to_vb_idx(va->va_start);
  774. spin_lock(&vmap_block_tree_lock);
  775. err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
  776. spin_unlock(&vmap_block_tree_lock);
  777. BUG_ON(err);
  778. radix_tree_preload_end();
  779. vbq = &get_cpu_var(vmap_block_queue);
  780. spin_lock(&vbq->lock);
  781. list_add_tail_rcu(&vb->free_list, &vbq->free);
  782. spin_unlock(&vbq->lock);
  783. put_cpu_var(vmap_block_queue);
  784. return vaddr;
  785. }
  786. static void free_vmap_block(struct vmap_block *vb)
  787. {
  788. struct vmap_block *tmp;
  789. unsigned long vb_idx;
  790. vb_idx = addr_to_vb_idx(vb->va->va_start);
  791. spin_lock(&vmap_block_tree_lock);
  792. tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
  793. spin_unlock(&vmap_block_tree_lock);
  794. BUG_ON(tmp != vb);
  795. free_vmap_area_noflush(vb->va);
  796. kfree_rcu(vb, rcu_head);
  797. }
  798. static void purge_fragmented_blocks(int cpu)
  799. {
  800. LIST_HEAD(purge);
  801. struct vmap_block *vb;
  802. struct vmap_block *n_vb;
  803. struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
  804. rcu_read_lock();
  805. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  806. if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
  807. continue;
  808. spin_lock(&vb->lock);
  809. if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
  810. vb->free = 0; /* prevent further allocs after releasing lock */
  811. vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
  812. vb->dirty_min = 0;
  813. vb->dirty_max = VMAP_BBMAP_BITS;
  814. spin_lock(&vbq->lock);
  815. list_del_rcu(&vb->free_list);
  816. spin_unlock(&vbq->lock);
  817. spin_unlock(&vb->lock);
  818. list_add_tail(&vb->purge, &purge);
  819. } else
  820. spin_unlock(&vb->lock);
  821. }
  822. rcu_read_unlock();
  823. list_for_each_entry_safe(vb, n_vb, &purge, purge) {
  824. list_del(&vb->purge);
  825. free_vmap_block(vb);
  826. }
  827. }
  828. static void purge_fragmented_blocks_allcpus(void)
  829. {
  830. int cpu;
  831. for_each_possible_cpu(cpu)
  832. purge_fragmented_blocks(cpu);
  833. }
  834. static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
  835. {
  836. struct vmap_block_queue *vbq;
  837. struct vmap_block *vb;
  838. void *vaddr = NULL;
  839. unsigned int order;
  840. BUG_ON(offset_in_page(size));
  841. BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
  842. if (WARN_ON(size == 0)) {
  843. /*
  844. * Allocating 0 bytes isn't what caller wants since
  845. * get_order(0) returns funny result. Just warn and terminate
  846. * early.
  847. */
  848. return NULL;
  849. }
  850. order = get_order(size);
  851. rcu_read_lock();
  852. vbq = &get_cpu_var(vmap_block_queue);
  853. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  854. unsigned long pages_off;
  855. spin_lock(&vb->lock);
  856. if (vb->free < (1UL << order)) {
  857. spin_unlock(&vb->lock);
  858. continue;
  859. }
  860. pages_off = VMAP_BBMAP_BITS - vb->free;
  861. vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
  862. vb->free -= 1UL << order;
  863. if (vb->free == 0) {
  864. spin_lock(&vbq->lock);
  865. list_del_rcu(&vb->free_list);
  866. spin_unlock(&vbq->lock);
  867. }
  868. spin_unlock(&vb->lock);
  869. break;
  870. }
  871. put_cpu_var(vmap_block_queue);
  872. rcu_read_unlock();
  873. /* Allocate new block if nothing was found */
  874. if (!vaddr)
  875. vaddr = new_vmap_block(order, gfp_mask);
  876. return vaddr;
  877. }
  878. static void vb_free(const void *addr, unsigned long size)
  879. {
  880. unsigned long offset;
  881. unsigned long vb_idx;
  882. unsigned int order;
  883. struct vmap_block *vb;
  884. BUG_ON(offset_in_page(size));
  885. BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
  886. flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
  887. order = get_order(size);
  888. offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
  889. offset >>= PAGE_SHIFT;
  890. vb_idx = addr_to_vb_idx((unsigned long)addr);
  891. rcu_read_lock();
  892. vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
  893. rcu_read_unlock();
  894. BUG_ON(!vb);
  895. vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
  896. spin_lock(&vb->lock);
  897. /* Expand dirty range */
  898. vb->dirty_min = min(vb->dirty_min, offset);
  899. vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
  900. vb->dirty += 1UL << order;
  901. if (vb->dirty == VMAP_BBMAP_BITS) {
  902. BUG_ON(vb->free);
  903. spin_unlock(&vb->lock);
  904. free_vmap_block(vb);
  905. } else
  906. spin_unlock(&vb->lock);
  907. }
  908. /**
  909. * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
  910. *
  911. * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
  912. * to amortize TLB flushing overheads. What this means is that any page you
  913. * have now, may, in a former life, have been mapped into kernel virtual
  914. * address by the vmap layer and so there might be some CPUs with TLB entries
  915. * still referencing that page (additional to the regular 1:1 kernel mapping).
  916. *
  917. * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
  918. * be sure that none of the pages we have control over will have any aliases
  919. * from the vmap layer.
  920. */
  921. void vm_unmap_aliases(void)
  922. {
  923. unsigned long start = ULONG_MAX, end = 0;
  924. int cpu;
  925. int flush = 0;
  926. if (unlikely(!vmap_initialized))
  927. return;
  928. might_sleep();
  929. for_each_possible_cpu(cpu) {
  930. struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
  931. struct vmap_block *vb;
  932. rcu_read_lock();
  933. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  934. spin_lock(&vb->lock);
  935. if (vb->dirty) {
  936. unsigned long va_start = vb->va->va_start;
  937. unsigned long s, e;
  938. s = va_start + (vb->dirty_min << PAGE_SHIFT);
  939. e = va_start + (vb->dirty_max << PAGE_SHIFT);
  940. start = min(s, start);
  941. end = max(e, end);
  942. flush = 1;
  943. }
  944. spin_unlock(&vb->lock);
  945. }
  946. rcu_read_unlock();
  947. }
  948. mutex_lock(&vmap_purge_lock);
  949. purge_fragmented_blocks_allcpus();
  950. if (!__purge_vmap_area_lazy(start, end) && flush)
  951. flush_tlb_kernel_range(start, end);
  952. mutex_unlock(&vmap_purge_lock);
  953. }
  954. EXPORT_SYMBOL_GPL(vm_unmap_aliases);
  955. /**
  956. * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
  957. * @mem: the pointer returned by vm_map_ram
  958. * @count: the count passed to that vm_map_ram call (cannot unmap partial)
  959. */
  960. void vm_unmap_ram(const void *mem, unsigned int count)
  961. {
  962. unsigned long size = (unsigned long)count << PAGE_SHIFT;
  963. unsigned long addr = (unsigned long)mem;
  964. struct vmap_area *va;
  965. might_sleep();
  966. BUG_ON(!addr);
  967. BUG_ON(addr < VMALLOC_START);
  968. BUG_ON(addr > VMALLOC_END);
  969. BUG_ON(!PAGE_ALIGNED(addr));
  970. debug_check_no_locks_freed(mem, size);
  971. vmap_debug_free_range(addr, addr+size);
  972. if (likely(count <= VMAP_MAX_ALLOC)) {
  973. vb_free(mem, size);
  974. return;
  975. }
  976. va = find_vmap_area(addr);
  977. BUG_ON(!va);
  978. free_unmap_vmap_area(va);
  979. }
  980. EXPORT_SYMBOL(vm_unmap_ram);
  981. /**
  982. * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
  983. * @pages: an array of pointers to the pages to be mapped
  984. * @count: number of pages
  985. * @node: prefer to allocate data structures on this node
  986. * @prot: memory protection to use. PAGE_KERNEL for regular RAM
  987. *
  988. * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
  989. * faster than vmap so it's good. But if you mix long-life and short-life
  990. * objects with vm_map_ram(), it could consume lots of address space through
  991. * fragmentation (especially on a 32bit machine). You could see failures in
  992. * the end. Please use this function for short-lived objects.
  993. *
  994. * Returns: a pointer to the address that has been mapped, or %NULL on failure
  995. */
  996. void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
  997. {
  998. unsigned long size = (unsigned long)count << PAGE_SHIFT;
  999. unsigned long addr;
  1000. void *mem;
  1001. if (likely(count <= VMAP_MAX_ALLOC)) {
  1002. mem = vb_alloc(size, GFP_KERNEL);
  1003. if (IS_ERR(mem))
  1004. return NULL;
  1005. addr = (unsigned long)mem;
  1006. } else {
  1007. struct vmap_area *va;
  1008. va = alloc_vmap_area(size, PAGE_SIZE,
  1009. VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
  1010. if (IS_ERR(va))
  1011. return NULL;
  1012. addr = va->va_start;
  1013. mem = (void *)addr;
  1014. }
  1015. if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
  1016. vm_unmap_ram(mem, count);
  1017. return NULL;
  1018. }
  1019. return mem;
  1020. }
  1021. EXPORT_SYMBOL(vm_map_ram);
  1022. static struct vm_struct *vmlist __initdata;
  1023. /**
  1024. * vm_area_add_early - add vmap area early during boot
  1025. * @vm: vm_struct to add
  1026. *
  1027. * This function is used to add fixed kernel vm area to vmlist before
  1028. * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
  1029. * should contain proper values and the other fields should be zero.
  1030. *
  1031. * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
  1032. */
  1033. void __init vm_area_add_early(struct vm_struct *vm)
  1034. {
  1035. struct vm_struct *tmp, **p;
  1036. BUG_ON(vmap_initialized);
  1037. for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
  1038. if (tmp->addr >= vm->addr) {
  1039. BUG_ON(tmp->addr < vm->addr + vm->size);
  1040. break;
  1041. } else
  1042. BUG_ON(tmp->addr + tmp->size > vm->addr);
  1043. }
  1044. vm->next = *p;
  1045. *p = vm;
  1046. }
  1047. /**
  1048. * vm_area_register_early - register vmap area early during boot
  1049. * @vm: vm_struct to register
  1050. * @align: requested alignment
  1051. *
  1052. * This function is used to register kernel vm area before
  1053. * vmalloc_init() is called. @vm->size and @vm->flags should contain
  1054. * proper values on entry and other fields should be zero. On return,
  1055. * vm->addr contains the allocated address.
  1056. *
  1057. * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
  1058. */
  1059. void __init vm_area_register_early(struct vm_struct *vm, size_t align)
  1060. {
  1061. static size_t vm_init_off __initdata;
  1062. unsigned long addr;
  1063. addr = ALIGN(VMALLOC_START + vm_init_off, align);
  1064. vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
  1065. vm->addr = (void *)addr;
  1066. vm_area_add_early(vm);
  1067. }
  1068. void __init vmalloc_init(void)
  1069. {
  1070. struct vmap_area *va;
  1071. struct vm_struct *tmp;
  1072. int i;
  1073. for_each_possible_cpu(i) {
  1074. struct vmap_block_queue *vbq;
  1075. struct vfree_deferred *p;
  1076. vbq = &per_cpu(vmap_block_queue, i);
  1077. spin_lock_init(&vbq->lock);
  1078. INIT_LIST_HEAD(&vbq->free);
  1079. p = &per_cpu(vfree_deferred, i);
  1080. init_llist_head(&p->list);
  1081. INIT_WORK(&p->wq, free_work);
  1082. }
  1083. /* Import existing vmlist entries. */
  1084. for (tmp = vmlist; tmp; tmp = tmp->next) {
  1085. va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
  1086. va->flags = VM_VM_AREA;
  1087. va->va_start = (unsigned long)tmp->addr;
  1088. va->va_end = va->va_start + tmp->size;
  1089. va->vm = tmp;
  1090. __insert_vmap_area(va);
  1091. }
  1092. vmap_area_pcpu_hole = VMALLOC_END;
  1093. vmap_initialized = true;
  1094. }
  1095. /**
  1096. * map_kernel_range_noflush - map kernel VM area with the specified pages
  1097. * @addr: start of the VM area to map
  1098. * @size: size of the VM area to map
  1099. * @prot: page protection flags to use
  1100. * @pages: pages to map
  1101. *
  1102. * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
  1103. * specify should have been allocated using get_vm_area() and its
  1104. * friends.
  1105. *
  1106. * NOTE:
  1107. * This function does NOT do any cache flushing. The caller is
  1108. * responsible for calling flush_cache_vmap() on to-be-mapped areas
  1109. * before calling this function.
  1110. *
  1111. * RETURNS:
  1112. * The number of pages mapped on success, -errno on failure.
  1113. */
  1114. int map_kernel_range_noflush(unsigned long addr, unsigned long size,
  1115. pgprot_t prot, struct page **pages)
  1116. {
  1117. return vmap_page_range_noflush(addr, addr + size, prot, pages);
  1118. }
  1119. /**
  1120. * unmap_kernel_range_noflush - unmap kernel VM area
  1121. * @addr: start of the VM area to unmap
  1122. * @size: size of the VM area to unmap
  1123. *
  1124. * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
  1125. * specify should have been allocated using get_vm_area() and its
  1126. * friends.
  1127. *
  1128. * NOTE:
  1129. * This function does NOT do any cache flushing. The caller is
  1130. * responsible for calling flush_cache_vunmap() on to-be-mapped areas
  1131. * before calling this function and flush_tlb_kernel_range() after.
  1132. */
  1133. void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
  1134. {
  1135. vunmap_page_range(addr, addr + size);
  1136. }
  1137. EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
  1138. /**
  1139. * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
  1140. * @addr: start of the VM area to unmap
  1141. * @size: size of the VM area to unmap
  1142. *
  1143. * Similar to unmap_kernel_range_noflush() but flushes vcache before
  1144. * the unmapping and tlb after.
  1145. */
  1146. void unmap_kernel_range(unsigned long addr, unsigned long size)
  1147. {
  1148. unsigned long end = addr + size;
  1149. flush_cache_vunmap(addr, end);
  1150. vunmap_page_range(addr, end);
  1151. flush_tlb_kernel_range(addr, end);
  1152. }
  1153. EXPORT_SYMBOL_GPL(unmap_kernel_range);
  1154. int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
  1155. {
  1156. unsigned long addr = (unsigned long)area->addr;
  1157. unsigned long end = addr + get_vm_area_size(area);
  1158. int err;
  1159. err = vmap_page_range(addr, end, prot, pages);
  1160. return err > 0 ? 0 : err;
  1161. }
  1162. EXPORT_SYMBOL_GPL(map_vm_area);
  1163. static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
  1164. unsigned long flags, const void *caller)
  1165. {
  1166. spin_lock(&vmap_area_lock);
  1167. vm->flags = flags;
  1168. vm->addr = (void *)va->va_start;
  1169. vm->size = va->va_end - va->va_start;
  1170. vm->caller = caller;
  1171. va->vm = vm;
  1172. va->flags |= VM_VM_AREA;
  1173. spin_unlock(&vmap_area_lock);
  1174. }
  1175. static void clear_vm_uninitialized_flag(struct vm_struct *vm)
  1176. {
  1177. /*
  1178. * Before removing VM_UNINITIALIZED,
  1179. * we should make sure that vm has proper values.
  1180. * Pair with smp_rmb() in show_numa_info().
  1181. */
  1182. smp_wmb();
  1183. vm->flags &= ~VM_UNINITIALIZED;
  1184. }
  1185. static struct vm_struct *__get_vm_area_node(unsigned long size,
  1186. unsigned long align, unsigned long flags, unsigned long start,
  1187. unsigned long end, int node, gfp_t gfp_mask, const void *caller)
  1188. {
  1189. struct vmap_area *va;
  1190. struct vm_struct *area;
  1191. BUG_ON(in_interrupt());
  1192. size = PAGE_ALIGN(size);
  1193. if (unlikely(!size))
  1194. return NULL;
  1195. if (flags & VM_IOREMAP)
  1196. align = 1ul << clamp_t(int, get_count_order_long(size),
  1197. PAGE_SHIFT, IOREMAP_MAX_ORDER);
  1198. area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
  1199. if (unlikely(!area))
  1200. return NULL;
  1201. if (!(flags & VM_NO_GUARD))
  1202. size += PAGE_SIZE;
  1203. va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
  1204. if (IS_ERR(va)) {
  1205. kfree(area);
  1206. return NULL;
  1207. }
  1208. setup_vmalloc_vm(area, va, flags, caller);
  1209. return area;
  1210. }
  1211. struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
  1212. unsigned long start, unsigned long end)
  1213. {
  1214. return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
  1215. GFP_KERNEL, __builtin_return_address(0));
  1216. }
  1217. EXPORT_SYMBOL_GPL(__get_vm_area);
  1218. struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
  1219. unsigned long start, unsigned long end,
  1220. const void *caller)
  1221. {
  1222. return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
  1223. GFP_KERNEL, caller);
  1224. }
  1225. /**
  1226. * get_vm_area - reserve a contiguous kernel virtual area
  1227. * @size: size of the area
  1228. * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
  1229. *
  1230. * Search an area of @size in the kernel virtual mapping area,
  1231. * and reserved it for out purposes. Returns the area descriptor
  1232. * on success or %NULL on failure.
  1233. */
  1234. struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
  1235. {
  1236. return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
  1237. NUMA_NO_NODE, GFP_KERNEL,
  1238. __builtin_return_address(0));
  1239. }
  1240. struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
  1241. const void *caller)
  1242. {
  1243. return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
  1244. NUMA_NO_NODE, GFP_KERNEL, caller);
  1245. }
  1246. /**
  1247. * find_vm_area - find a continuous kernel virtual area
  1248. * @addr: base address
  1249. *
  1250. * Search for the kernel VM area starting at @addr, and return it.
  1251. * It is up to the caller to do all required locking to keep the returned
  1252. * pointer valid.
  1253. */
  1254. struct vm_struct *find_vm_area(const void *addr)
  1255. {
  1256. struct vmap_area *va;
  1257. va = find_vmap_area((unsigned long)addr);
  1258. if (va && va->flags & VM_VM_AREA)
  1259. return va->vm;
  1260. return NULL;
  1261. }
  1262. /**
  1263. * remove_vm_area - find and remove a continuous kernel virtual area
  1264. * @addr: base address
  1265. *
  1266. * Search for the kernel VM area starting at @addr, and remove it.
  1267. * This function returns the found VM area, but using it is NOT safe
  1268. * on SMP machines, except for its size or flags.
  1269. */
  1270. struct vm_struct *remove_vm_area(const void *addr)
  1271. {
  1272. struct vmap_area *va;
  1273. might_sleep();
  1274. va = find_vmap_area((unsigned long)addr);
  1275. if (va && va->flags & VM_VM_AREA) {
  1276. struct vm_struct *vm = va->vm;
  1277. spin_lock(&vmap_area_lock);
  1278. va->vm = NULL;
  1279. va->flags &= ~VM_VM_AREA;
  1280. va->flags |= VM_LAZY_FREE;
  1281. spin_unlock(&vmap_area_lock);
  1282. vmap_debug_free_range(va->va_start, va->va_end);
  1283. kasan_free_shadow(vm);
  1284. free_unmap_vmap_area(va);
  1285. return vm;
  1286. }
  1287. return NULL;
  1288. }
  1289. static void __vunmap(const void *addr, int deallocate_pages)
  1290. {
  1291. struct vm_struct *area;
  1292. if (!addr)
  1293. return;
  1294. if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
  1295. addr))
  1296. return;
  1297. area = remove_vm_area(addr);
  1298. if (unlikely(!area)) {
  1299. WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
  1300. addr);
  1301. return;
  1302. }
  1303. debug_check_no_locks_freed(addr, get_vm_area_size(area));
  1304. debug_check_no_obj_freed(addr, get_vm_area_size(area));
  1305. if (deallocate_pages) {
  1306. int i;
  1307. for (i = 0; i < area->nr_pages; i++) {
  1308. struct page *page = area->pages[i];
  1309. BUG_ON(!page);
  1310. __free_pages(page, 0);
  1311. }
  1312. kvfree(area->pages);
  1313. }
  1314. kfree(area);
  1315. return;
  1316. }
  1317. static inline void __vfree_deferred(const void *addr)
  1318. {
  1319. /*
  1320. * Use raw_cpu_ptr() because this can be called from preemptible
  1321. * context. Preemption is absolutely fine here, because the llist_add()
  1322. * implementation is lockless, so it works even if we are adding to
  1323. * nother cpu's list. schedule_work() should be fine with this too.
  1324. */
  1325. struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
  1326. if (llist_add((struct llist_node *)addr, &p->list))
  1327. schedule_work(&p->wq);
  1328. }
  1329. /**
  1330. * vfree_atomic - release memory allocated by vmalloc()
  1331. * @addr: memory base address
  1332. *
  1333. * This one is just like vfree() but can be called in any atomic context
  1334. * except NMIs.
  1335. */
  1336. void vfree_atomic(const void *addr)
  1337. {
  1338. BUG_ON(in_nmi());
  1339. kmemleak_free(addr);
  1340. if (!addr)
  1341. return;
  1342. __vfree_deferred(addr);
  1343. }
  1344. /**
  1345. * vfree - release memory allocated by vmalloc()
  1346. * @addr: memory base address
  1347. *
  1348. * Free the virtually continuous memory area starting at @addr, as
  1349. * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
  1350. * NULL, no operation is performed.
  1351. *
  1352. * Must not be called in NMI context (strictly speaking, only if we don't
  1353. * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
  1354. * conventions for vfree() arch-depenedent would be a really bad idea)
  1355. *
  1356. * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
  1357. */
  1358. void vfree(const void *addr)
  1359. {
  1360. BUG_ON(in_nmi());
  1361. kmemleak_free(addr);
  1362. if (!addr)
  1363. return;
  1364. if (unlikely(in_interrupt()))
  1365. __vfree_deferred(addr);
  1366. else
  1367. __vunmap(addr, 1);
  1368. }
  1369. EXPORT_SYMBOL(vfree);
  1370. /**
  1371. * vunmap - release virtual mapping obtained by vmap()
  1372. * @addr: memory base address
  1373. *
  1374. * Free the virtually contiguous memory area starting at @addr,
  1375. * which was created from the page array passed to vmap().
  1376. *
  1377. * Must not be called in interrupt context.
  1378. */
  1379. void vunmap(const void *addr)
  1380. {
  1381. BUG_ON(in_interrupt());
  1382. might_sleep();
  1383. if (addr)
  1384. __vunmap(addr, 0);
  1385. }
  1386. EXPORT_SYMBOL(vunmap);
  1387. /**
  1388. * vmap - map an array of pages into virtually contiguous space
  1389. * @pages: array of page pointers
  1390. * @count: number of pages to map
  1391. * @flags: vm_area->flags
  1392. * @prot: page protection for the mapping
  1393. *
  1394. * Maps @count pages from @pages into contiguous kernel virtual
  1395. * space.
  1396. */
  1397. void *vmap(struct page **pages, unsigned int count,
  1398. unsigned long flags, pgprot_t prot)
  1399. {
  1400. struct vm_struct *area;
  1401. unsigned long size; /* In bytes */
  1402. might_sleep();
  1403. if (count > totalram_pages)
  1404. return NULL;
  1405. size = (unsigned long)count << PAGE_SHIFT;
  1406. area = get_vm_area_caller(size, flags, __builtin_return_address(0));
  1407. if (!area)
  1408. return NULL;
  1409. if (map_vm_area(area, prot, pages)) {
  1410. vunmap(area->addr);
  1411. return NULL;
  1412. }
  1413. return area->addr;
  1414. }
  1415. EXPORT_SYMBOL(vmap);
  1416. static void *__vmalloc_node(unsigned long size, unsigned long align,
  1417. gfp_t gfp_mask, pgprot_t prot,
  1418. int node, const void *caller);
  1419. static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
  1420. pgprot_t prot, int node)
  1421. {
  1422. struct page **pages;
  1423. unsigned int nr_pages, array_size, i;
  1424. const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
  1425. const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
  1426. const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
  1427. 0 :
  1428. __GFP_HIGHMEM;
  1429. nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
  1430. array_size = (nr_pages * sizeof(struct page *));
  1431. area->nr_pages = nr_pages;
  1432. /* Please note that the recursion is strictly bounded. */
  1433. if (array_size > PAGE_SIZE) {
  1434. pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
  1435. PAGE_KERNEL, node, area->caller);
  1436. } else {
  1437. pages = kmalloc_node(array_size, nested_gfp, node);
  1438. }
  1439. area->pages = pages;
  1440. if (!area->pages) {
  1441. remove_vm_area(area->addr);
  1442. kfree(area);
  1443. return NULL;
  1444. }
  1445. for (i = 0; i < area->nr_pages; i++) {
  1446. struct page *page;
  1447. if (node == NUMA_NO_NODE)
  1448. page = alloc_page(alloc_mask|highmem_mask);
  1449. else
  1450. page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
  1451. if (unlikely(!page)) {
  1452. /* Successfully allocated i pages, free them in __vunmap() */
  1453. area->nr_pages = i;
  1454. goto fail;
  1455. }
  1456. area->pages[i] = page;
  1457. if (gfpflags_allow_blocking(gfp_mask|highmem_mask))
  1458. cond_resched();
  1459. }
  1460. if (map_vm_area(area, prot, pages))
  1461. goto fail;
  1462. return area->addr;
  1463. fail:
  1464. warn_alloc(gfp_mask, NULL,
  1465. "vmalloc: allocation failure, allocated %ld of %ld bytes",
  1466. (area->nr_pages*PAGE_SIZE), area->size);
  1467. vfree(area->addr);
  1468. return NULL;
  1469. }
  1470. /**
  1471. * __vmalloc_node_range - allocate virtually contiguous memory
  1472. * @size: allocation size
  1473. * @align: desired alignment
  1474. * @start: vm area range start
  1475. * @end: vm area range end
  1476. * @gfp_mask: flags for the page level allocator
  1477. * @prot: protection mask for the allocated pages
  1478. * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
  1479. * @node: node to use for allocation or NUMA_NO_NODE
  1480. * @caller: caller's return address
  1481. *
  1482. * Allocate enough pages to cover @size from the page level
  1483. * allocator with @gfp_mask flags. Map them into contiguous
  1484. * kernel virtual space, using a pagetable protection of @prot.
  1485. */
  1486. void *__vmalloc_node_range(unsigned long size, unsigned long align,
  1487. unsigned long start, unsigned long end, gfp_t gfp_mask,
  1488. pgprot_t prot, unsigned long vm_flags, int node,
  1489. const void *caller)
  1490. {
  1491. struct vm_struct *area;
  1492. void *addr;
  1493. unsigned long real_size = size;
  1494. size = PAGE_ALIGN(size);
  1495. if (!size || (size >> PAGE_SHIFT) > totalram_pages)
  1496. goto fail;
  1497. area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
  1498. vm_flags, start, end, node, gfp_mask, caller);
  1499. if (!area)
  1500. goto fail;
  1501. addr = __vmalloc_area_node(area, gfp_mask, prot, node);
  1502. if (!addr)
  1503. return NULL;
  1504. /*
  1505. * In this function, newly allocated vm_struct has VM_UNINITIALIZED
  1506. * flag. It means that vm_struct is not fully initialized.
  1507. * Now, it is fully initialized, so remove this flag here.
  1508. */
  1509. clear_vm_uninitialized_flag(area);
  1510. kmemleak_vmalloc(area, size, gfp_mask);
  1511. return addr;
  1512. fail:
  1513. warn_alloc(gfp_mask, NULL,
  1514. "vmalloc: allocation failure: %lu bytes", real_size);
  1515. return NULL;
  1516. }
  1517. /**
  1518. * __vmalloc_node - allocate virtually contiguous memory
  1519. * @size: allocation size
  1520. * @align: desired alignment
  1521. * @gfp_mask: flags for the page level allocator
  1522. * @prot: protection mask for the allocated pages
  1523. * @node: node to use for allocation or NUMA_NO_NODE
  1524. * @caller: caller's return address
  1525. *
  1526. * Allocate enough pages to cover @size from the page level
  1527. * allocator with @gfp_mask flags. Map them into contiguous
  1528. * kernel virtual space, using a pagetable protection of @prot.
  1529. *
  1530. * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
  1531. * and __GFP_NOFAIL are not supported
  1532. *
  1533. * Any use of gfp flags outside of GFP_KERNEL should be consulted
  1534. * with mm people.
  1535. *
  1536. */
  1537. static void *__vmalloc_node(unsigned long size, unsigned long align,
  1538. gfp_t gfp_mask, pgprot_t prot,
  1539. int node, const void *caller)
  1540. {
  1541. return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
  1542. gfp_mask, prot, 0, node, caller);
  1543. }
  1544. void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
  1545. {
  1546. return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
  1547. __builtin_return_address(0));
  1548. }
  1549. EXPORT_SYMBOL(__vmalloc);
  1550. static inline void *__vmalloc_node_flags(unsigned long size,
  1551. int node, gfp_t flags)
  1552. {
  1553. return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
  1554. node, __builtin_return_address(0));
  1555. }
  1556. void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
  1557. void *caller)
  1558. {
  1559. return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
  1560. }
  1561. /**
  1562. * vmalloc - allocate virtually contiguous memory
  1563. * @size: allocation size
  1564. * Allocate enough pages to cover @size from the page level
  1565. * allocator and map them into contiguous kernel virtual space.
  1566. *
  1567. * For tight control over page level allocator and protection flags
  1568. * use __vmalloc() instead.
  1569. */
  1570. void *vmalloc(unsigned long size)
  1571. {
  1572. return __vmalloc_node_flags(size, NUMA_NO_NODE,
  1573. GFP_KERNEL);
  1574. }
  1575. EXPORT_SYMBOL(vmalloc);
  1576. /**
  1577. * vzalloc - allocate virtually contiguous memory with zero fill
  1578. * @size: allocation size
  1579. * Allocate enough pages to cover @size from the page level
  1580. * allocator and map them into contiguous kernel virtual space.
  1581. * The memory allocated is set to zero.
  1582. *
  1583. * For tight control over page level allocator and protection flags
  1584. * use __vmalloc() instead.
  1585. */
  1586. void *vzalloc(unsigned long size)
  1587. {
  1588. return __vmalloc_node_flags(size, NUMA_NO_NODE,
  1589. GFP_KERNEL | __GFP_ZERO);
  1590. }
  1591. EXPORT_SYMBOL(vzalloc);
  1592. /**
  1593. * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
  1594. * @size: allocation size
  1595. *
  1596. * The resulting memory area is zeroed so it can be mapped to userspace
  1597. * without leaking data.
  1598. */
  1599. void *vmalloc_user(unsigned long size)
  1600. {
  1601. struct vm_struct *area;
  1602. void *ret;
  1603. ret = __vmalloc_node(size, SHMLBA,
  1604. GFP_KERNEL | __GFP_ZERO,
  1605. PAGE_KERNEL, NUMA_NO_NODE,
  1606. __builtin_return_address(0));
  1607. if (ret) {
  1608. area = find_vm_area(ret);
  1609. area->flags |= VM_USERMAP;
  1610. }
  1611. return ret;
  1612. }
  1613. EXPORT_SYMBOL(vmalloc_user);
  1614. /**
  1615. * vmalloc_node - allocate memory on a specific node
  1616. * @size: allocation size
  1617. * @node: numa node
  1618. *
  1619. * Allocate enough pages to cover @size from the page level
  1620. * allocator and map them into contiguous kernel virtual space.
  1621. *
  1622. * For tight control over page level allocator and protection flags
  1623. * use __vmalloc() instead.
  1624. */
  1625. void *vmalloc_node(unsigned long size, int node)
  1626. {
  1627. return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
  1628. node, __builtin_return_address(0));
  1629. }
  1630. EXPORT_SYMBOL(vmalloc_node);
  1631. /**
  1632. * vzalloc_node - allocate memory on a specific node with zero fill
  1633. * @size: allocation size
  1634. * @node: numa node
  1635. *
  1636. * Allocate enough pages to cover @size from the page level
  1637. * allocator and map them into contiguous kernel virtual space.
  1638. * The memory allocated is set to zero.
  1639. *
  1640. * For tight control over page level allocator and protection flags
  1641. * use __vmalloc_node() instead.
  1642. */
  1643. void *vzalloc_node(unsigned long size, int node)
  1644. {
  1645. return __vmalloc_node_flags(size, node,
  1646. GFP_KERNEL | __GFP_ZERO);
  1647. }
  1648. EXPORT_SYMBOL(vzalloc_node);
  1649. #ifndef PAGE_KERNEL_EXEC
  1650. # define PAGE_KERNEL_EXEC PAGE_KERNEL
  1651. #endif
  1652. /**
  1653. * vmalloc_exec - allocate virtually contiguous, executable memory
  1654. * @size: allocation size
  1655. *
  1656. * Kernel-internal function to allocate enough pages to cover @size
  1657. * the page level allocator and map them into contiguous and
  1658. * executable kernel virtual space.
  1659. *
  1660. * For tight control over page level allocator and protection flags
  1661. * use __vmalloc() instead.
  1662. */
  1663. void *vmalloc_exec(unsigned long size)
  1664. {
  1665. return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL_EXEC,
  1666. NUMA_NO_NODE, __builtin_return_address(0));
  1667. }
  1668. #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
  1669. #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
  1670. #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
  1671. #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
  1672. #else
  1673. /*
  1674. * 64b systems should always have either DMA or DMA32 zones. For others
  1675. * GFP_DMA32 should do the right thing and use the normal zone.
  1676. */
  1677. #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
  1678. #endif
  1679. /**
  1680. * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
  1681. * @size: allocation size
  1682. *
  1683. * Allocate enough 32bit PA addressable pages to cover @size from the
  1684. * page level allocator and map them into contiguous kernel virtual space.
  1685. */
  1686. void *vmalloc_32(unsigned long size)
  1687. {
  1688. return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
  1689. NUMA_NO_NODE, __builtin_return_address(0));
  1690. }
  1691. EXPORT_SYMBOL(vmalloc_32);
  1692. /**
  1693. * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
  1694. * @size: allocation size
  1695. *
  1696. * The resulting memory area is 32bit addressable and zeroed so it can be
  1697. * mapped to userspace without leaking data.
  1698. */
  1699. void *vmalloc_32_user(unsigned long size)
  1700. {
  1701. struct vm_struct *area;
  1702. void *ret;
  1703. ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
  1704. NUMA_NO_NODE, __builtin_return_address(0));
  1705. if (ret) {
  1706. area = find_vm_area(ret);
  1707. area->flags |= VM_USERMAP;
  1708. }
  1709. return ret;
  1710. }
  1711. EXPORT_SYMBOL(vmalloc_32_user);
  1712. /*
  1713. * small helper routine , copy contents to buf from addr.
  1714. * If the page is not present, fill zero.
  1715. */
  1716. static int aligned_vread(char *buf, char *addr, unsigned long count)
  1717. {
  1718. struct page *p;
  1719. int copied = 0;
  1720. while (count) {
  1721. unsigned long offset, length;
  1722. offset = offset_in_page(addr);
  1723. length = PAGE_SIZE - offset;
  1724. if (length > count)
  1725. length = count;
  1726. p = vmalloc_to_page(addr);
  1727. /*
  1728. * To do safe access to this _mapped_ area, we need
  1729. * lock. But adding lock here means that we need to add
  1730. * overhead of vmalloc()/vfree() calles for this _debug_
  1731. * interface, rarely used. Instead of that, we'll use
  1732. * kmap() and get small overhead in this access function.
  1733. */
  1734. if (p) {
  1735. /*
  1736. * we can expect USER0 is not used (see vread/vwrite's
  1737. * function description)
  1738. */
  1739. void *map = kmap_atomic(p);
  1740. memcpy(buf, map + offset, length);
  1741. kunmap_atomic(map);
  1742. } else
  1743. memset(buf, 0, length);
  1744. addr += length;
  1745. buf += length;
  1746. copied += length;
  1747. count -= length;
  1748. }
  1749. return copied;
  1750. }
  1751. static int aligned_vwrite(char *buf, char *addr, unsigned long count)
  1752. {
  1753. struct page *p;
  1754. int copied = 0;
  1755. while (count) {
  1756. unsigned long offset, length;
  1757. offset = offset_in_page(addr);
  1758. length = PAGE_SIZE - offset;
  1759. if (length > count)
  1760. length = count;
  1761. p = vmalloc_to_page(addr);
  1762. /*
  1763. * To do safe access to this _mapped_ area, we need
  1764. * lock. But adding lock here means that we need to add
  1765. * overhead of vmalloc()/vfree() calles for this _debug_
  1766. * interface, rarely used. Instead of that, we'll use
  1767. * kmap() and get small overhead in this access function.
  1768. */
  1769. if (p) {
  1770. /*
  1771. * we can expect USER0 is not used (see vread/vwrite's
  1772. * function description)
  1773. */
  1774. void *map = kmap_atomic(p);
  1775. memcpy(map + offset, buf, length);
  1776. kunmap_atomic(map);
  1777. }
  1778. addr += length;
  1779. buf += length;
  1780. copied += length;
  1781. count -= length;
  1782. }
  1783. return copied;
  1784. }
  1785. /**
  1786. * vread() - read vmalloc area in a safe way.
  1787. * @buf: buffer for reading data
  1788. * @addr: vm address.
  1789. * @count: number of bytes to be read.
  1790. *
  1791. * Returns # of bytes which addr and buf should be increased.
  1792. * (same number to @count). Returns 0 if [addr...addr+count) doesn't
  1793. * includes any intersect with alive vmalloc area.
  1794. *
  1795. * This function checks that addr is a valid vmalloc'ed area, and
  1796. * copy data from that area to a given buffer. If the given memory range
  1797. * of [addr...addr+count) includes some valid address, data is copied to
  1798. * proper area of @buf. If there are memory holes, they'll be zero-filled.
  1799. * IOREMAP area is treated as memory hole and no copy is done.
  1800. *
  1801. * If [addr...addr+count) doesn't includes any intersects with alive
  1802. * vm_struct area, returns 0. @buf should be kernel's buffer.
  1803. *
  1804. * Note: In usual ops, vread() is never necessary because the caller
  1805. * should know vmalloc() area is valid and can use memcpy().
  1806. * This is for routines which have to access vmalloc area without
  1807. * any informaion, as /dev/kmem.
  1808. *
  1809. */
  1810. long vread(char *buf, char *addr, unsigned long count)
  1811. {
  1812. struct vmap_area *va;
  1813. struct vm_struct *vm;
  1814. char *vaddr, *buf_start = buf;
  1815. unsigned long buflen = count;
  1816. unsigned long n;
  1817. /* Don't allow overflow */
  1818. if ((unsigned long) addr + count < count)
  1819. count = -(unsigned long) addr;
  1820. spin_lock(&vmap_area_lock);
  1821. list_for_each_entry(va, &vmap_area_list, list) {
  1822. if (!count)
  1823. break;
  1824. if (!(va->flags & VM_VM_AREA))
  1825. continue;
  1826. vm = va->vm;
  1827. vaddr = (char *) vm->addr;
  1828. if (addr >= vaddr + get_vm_area_size(vm))
  1829. continue;
  1830. while (addr < vaddr) {
  1831. if (count == 0)
  1832. goto finished;
  1833. *buf = '\0';
  1834. buf++;
  1835. addr++;
  1836. count--;
  1837. }
  1838. n = vaddr + get_vm_area_size(vm) - addr;
  1839. if (n > count)
  1840. n = count;
  1841. if (!(vm->flags & VM_IOREMAP))
  1842. aligned_vread(buf, addr, n);
  1843. else /* IOREMAP area is treated as memory hole */
  1844. memset(buf, 0, n);
  1845. buf += n;
  1846. addr += n;
  1847. count -= n;
  1848. }
  1849. finished:
  1850. spin_unlock(&vmap_area_lock);
  1851. if (buf == buf_start)
  1852. return 0;
  1853. /* zero-fill memory holes */
  1854. if (buf != buf_start + buflen)
  1855. memset(buf, 0, buflen - (buf - buf_start));
  1856. return buflen;
  1857. }
  1858. /**
  1859. * vwrite() - write vmalloc area in a safe way.
  1860. * @buf: buffer for source data
  1861. * @addr: vm address.
  1862. * @count: number of bytes to be read.
  1863. *
  1864. * Returns # of bytes which addr and buf should be incresed.
  1865. * (same number to @count).
  1866. * If [addr...addr+count) doesn't includes any intersect with valid
  1867. * vmalloc area, returns 0.
  1868. *
  1869. * This function checks that addr is a valid vmalloc'ed area, and
  1870. * copy data from a buffer to the given addr. If specified range of
  1871. * [addr...addr+count) includes some valid address, data is copied from
  1872. * proper area of @buf. If there are memory holes, no copy to hole.
  1873. * IOREMAP area is treated as memory hole and no copy is done.
  1874. *
  1875. * If [addr...addr+count) doesn't includes any intersects with alive
  1876. * vm_struct area, returns 0. @buf should be kernel's buffer.
  1877. *
  1878. * Note: In usual ops, vwrite() is never necessary because the caller
  1879. * should know vmalloc() area is valid and can use memcpy().
  1880. * This is for routines which have to access vmalloc area without
  1881. * any informaion, as /dev/kmem.
  1882. */
  1883. long vwrite(char *buf, char *addr, unsigned long count)
  1884. {
  1885. struct vmap_area *va;
  1886. struct vm_struct *vm;
  1887. char *vaddr;
  1888. unsigned long n, buflen;
  1889. int copied = 0;
  1890. /* Don't allow overflow */
  1891. if ((unsigned long) addr + count < count)
  1892. count = -(unsigned long) addr;
  1893. buflen = count;
  1894. spin_lock(&vmap_area_lock);
  1895. list_for_each_entry(va, &vmap_area_list, list) {
  1896. if (!count)
  1897. break;
  1898. if (!(va->flags & VM_VM_AREA))
  1899. continue;
  1900. vm = va->vm;
  1901. vaddr = (char *) vm->addr;
  1902. if (addr >= vaddr + get_vm_area_size(vm))
  1903. continue;
  1904. while (addr < vaddr) {
  1905. if (count == 0)
  1906. goto finished;
  1907. buf++;
  1908. addr++;
  1909. count--;
  1910. }
  1911. n = vaddr + get_vm_area_size(vm) - addr;
  1912. if (n > count)
  1913. n = count;
  1914. if (!(vm->flags & VM_IOREMAP)) {
  1915. aligned_vwrite(buf, addr, n);
  1916. copied++;
  1917. }
  1918. buf += n;
  1919. addr += n;
  1920. count -= n;
  1921. }
  1922. finished:
  1923. spin_unlock(&vmap_area_lock);
  1924. if (!copied)
  1925. return 0;
  1926. return buflen;
  1927. }
  1928. /**
  1929. * remap_vmalloc_range_partial - map vmalloc pages to userspace
  1930. * @vma: vma to cover
  1931. * @uaddr: target user address to start at
  1932. * @kaddr: virtual address of vmalloc kernel memory
  1933. * @size: size of map area
  1934. *
  1935. * Returns: 0 for success, -Exxx on failure
  1936. *
  1937. * This function checks that @kaddr is a valid vmalloc'ed area,
  1938. * and that it is big enough to cover the range starting at
  1939. * @uaddr in @vma. Will return failure if that criteria isn't
  1940. * met.
  1941. *
  1942. * Similar to remap_pfn_range() (see mm/memory.c)
  1943. */
  1944. int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
  1945. void *kaddr, unsigned long size)
  1946. {
  1947. struct vm_struct *area;
  1948. size = PAGE_ALIGN(size);
  1949. if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
  1950. return -EINVAL;
  1951. area = find_vm_area(kaddr);
  1952. if (!area)
  1953. return -EINVAL;
  1954. if (!(area->flags & VM_USERMAP))
  1955. return -EINVAL;
  1956. if (kaddr + size > area->addr + area->size)
  1957. return -EINVAL;
  1958. do {
  1959. struct page *page = vmalloc_to_page(kaddr);
  1960. int ret;
  1961. ret = vm_insert_page(vma, uaddr, page);
  1962. if (ret)
  1963. return ret;
  1964. uaddr += PAGE_SIZE;
  1965. kaddr += PAGE_SIZE;
  1966. size -= PAGE_SIZE;
  1967. } while (size > 0);
  1968. vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
  1969. return 0;
  1970. }
  1971. EXPORT_SYMBOL(remap_vmalloc_range_partial);
  1972. /**
  1973. * remap_vmalloc_range - map vmalloc pages to userspace
  1974. * @vma: vma to cover (map full range of vma)
  1975. * @addr: vmalloc memory
  1976. * @pgoff: number of pages into addr before first page to map
  1977. *
  1978. * Returns: 0 for success, -Exxx on failure
  1979. *
  1980. * This function checks that addr is a valid vmalloc'ed area, and
  1981. * that it is big enough to cover the vma. Will return failure if
  1982. * that criteria isn't met.
  1983. *
  1984. * Similar to remap_pfn_range() (see mm/memory.c)
  1985. */
  1986. int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
  1987. unsigned long pgoff)
  1988. {
  1989. return remap_vmalloc_range_partial(vma, vma->vm_start,
  1990. addr + (pgoff << PAGE_SHIFT),
  1991. vma->vm_end - vma->vm_start);
  1992. }
  1993. EXPORT_SYMBOL(remap_vmalloc_range);
  1994. /*
  1995. * Implement a stub for vmalloc_sync_all() if the architecture chose not to
  1996. * have one.
  1997. */
  1998. void __weak vmalloc_sync_all(void)
  1999. {
  2000. }
  2001. static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
  2002. {
  2003. pte_t ***p = data;
  2004. if (p) {
  2005. *(*p) = pte;
  2006. (*p)++;
  2007. }
  2008. return 0;
  2009. }
  2010. /**
  2011. * alloc_vm_area - allocate a range of kernel address space
  2012. * @size: size of the area
  2013. * @ptes: returns the PTEs for the address space
  2014. *
  2015. * Returns: NULL on failure, vm_struct on success
  2016. *
  2017. * This function reserves a range of kernel address space, and
  2018. * allocates pagetables to map that range. No actual mappings
  2019. * are created.
  2020. *
  2021. * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
  2022. * allocated for the VM area are returned.
  2023. */
  2024. struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
  2025. {
  2026. struct vm_struct *area;
  2027. area = get_vm_area_caller(size, VM_IOREMAP,
  2028. __builtin_return_address(0));
  2029. if (area == NULL)
  2030. return NULL;
  2031. /*
  2032. * This ensures that page tables are constructed for this region
  2033. * of kernel virtual address space and mapped into init_mm.
  2034. */
  2035. if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
  2036. size, f, ptes ? &ptes : NULL)) {
  2037. free_vm_area(area);
  2038. return NULL;
  2039. }
  2040. return area;
  2041. }
  2042. EXPORT_SYMBOL_GPL(alloc_vm_area);
  2043. void free_vm_area(struct vm_struct *area)
  2044. {
  2045. struct vm_struct *ret;
  2046. ret = remove_vm_area(area->addr);
  2047. BUG_ON(ret != area);
  2048. kfree(area);
  2049. }
  2050. EXPORT_SYMBOL_GPL(free_vm_area);
  2051. #ifdef CONFIG_SMP
  2052. static struct vmap_area *node_to_va(struct rb_node *n)
  2053. {
  2054. return rb_entry_safe(n, struct vmap_area, rb_node);
  2055. }
  2056. /**
  2057. * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
  2058. * @end: target address
  2059. * @pnext: out arg for the next vmap_area
  2060. * @pprev: out arg for the previous vmap_area
  2061. *
  2062. * Returns: %true if either or both of next and prev are found,
  2063. * %false if no vmap_area exists
  2064. *
  2065. * Find vmap_areas end addresses of which enclose @end. ie. if not
  2066. * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
  2067. */
  2068. static bool pvm_find_next_prev(unsigned long end,
  2069. struct vmap_area **pnext,
  2070. struct vmap_area **pprev)
  2071. {
  2072. struct rb_node *n = vmap_area_root.rb_node;
  2073. struct vmap_area *va = NULL;
  2074. while (n) {
  2075. va = rb_entry(n, struct vmap_area, rb_node);
  2076. if (end < va->va_end)
  2077. n = n->rb_left;
  2078. else if (end > va->va_end)
  2079. n = n->rb_right;
  2080. else
  2081. break;
  2082. }
  2083. if (!va)
  2084. return false;
  2085. if (va->va_end > end) {
  2086. *pnext = va;
  2087. *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
  2088. } else {
  2089. *pprev = va;
  2090. *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
  2091. }
  2092. return true;
  2093. }
  2094. /**
  2095. * pvm_determine_end - find the highest aligned address between two vmap_areas
  2096. * @pnext: in/out arg for the next vmap_area
  2097. * @pprev: in/out arg for the previous vmap_area
  2098. * @align: alignment
  2099. *
  2100. * Returns: determined end address
  2101. *
  2102. * Find the highest aligned address between *@pnext and *@pprev below
  2103. * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
  2104. * down address is between the end addresses of the two vmap_areas.
  2105. *
  2106. * Please note that the address returned by this function may fall
  2107. * inside *@pnext vmap_area. The caller is responsible for checking
  2108. * that.
  2109. */
  2110. static unsigned long pvm_determine_end(struct vmap_area **pnext,
  2111. struct vmap_area **pprev,
  2112. unsigned long align)
  2113. {
  2114. const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
  2115. unsigned long addr;
  2116. if (*pnext)
  2117. addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
  2118. else
  2119. addr = vmalloc_end;
  2120. while (*pprev && (*pprev)->va_end > addr) {
  2121. *pnext = *pprev;
  2122. *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
  2123. }
  2124. return addr;
  2125. }
  2126. /**
  2127. * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
  2128. * @offsets: array containing offset of each area
  2129. * @sizes: array containing size of each area
  2130. * @nr_vms: the number of areas to allocate
  2131. * @align: alignment, all entries in @offsets and @sizes must be aligned to this
  2132. *
  2133. * Returns: kmalloc'd vm_struct pointer array pointing to allocated
  2134. * vm_structs on success, %NULL on failure
  2135. *
  2136. * Percpu allocator wants to use congruent vm areas so that it can
  2137. * maintain the offsets among percpu areas. This function allocates
  2138. * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
  2139. * be scattered pretty far, distance between two areas easily going up
  2140. * to gigabytes. To avoid interacting with regular vmallocs, these
  2141. * areas are allocated from top.
  2142. *
  2143. * Despite its complicated look, this allocator is rather simple. It
  2144. * does everything top-down and scans areas from the end looking for
  2145. * matching slot. While scanning, if any of the areas overlaps with
  2146. * existing vmap_area, the base address is pulled down to fit the
  2147. * area. Scanning is repeated till all the areas fit and then all
  2148. * necessary data structures are inserted and the result is returned.
  2149. */
  2150. struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
  2151. const size_t *sizes, int nr_vms,
  2152. size_t align)
  2153. {
  2154. const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
  2155. const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
  2156. struct vmap_area **vas, *prev, *next;
  2157. struct vm_struct **vms;
  2158. int area, area2, last_area, term_area;
  2159. unsigned long base, start, end, last_end;
  2160. bool purged = false;
  2161. /* verify parameters and allocate data structures */
  2162. BUG_ON(offset_in_page(align) || !is_power_of_2(align));
  2163. for (last_area = 0, area = 0; area < nr_vms; area++) {
  2164. start = offsets[area];
  2165. end = start + sizes[area];
  2166. /* is everything aligned properly? */
  2167. BUG_ON(!IS_ALIGNED(offsets[area], align));
  2168. BUG_ON(!IS_ALIGNED(sizes[area], align));
  2169. /* detect the area with the highest address */
  2170. if (start > offsets[last_area])
  2171. last_area = area;
  2172. for (area2 = area + 1; area2 < nr_vms; area2++) {
  2173. unsigned long start2 = offsets[area2];
  2174. unsigned long end2 = start2 + sizes[area2];
  2175. BUG_ON(start2 < end && start < end2);
  2176. }
  2177. }
  2178. last_end = offsets[last_area] + sizes[last_area];
  2179. if (vmalloc_end - vmalloc_start < last_end) {
  2180. WARN_ON(true);
  2181. return NULL;
  2182. }
  2183. vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
  2184. vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
  2185. if (!vas || !vms)
  2186. goto err_free2;
  2187. for (area = 0; area < nr_vms; area++) {
  2188. vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
  2189. vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
  2190. if (!vas[area] || !vms[area])
  2191. goto err_free;
  2192. }
  2193. retry:
  2194. spin_lock(&vmap_area_lock);
  2195. /* start scanning - we scan from the top, begin with the last area */
  2196. area = term_area = last_area;
  2197. start = offsets[area];
  2198. end = start + sizes[area];
  2199. if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
  2200. base = vmalloc_end - last_end;
  2201. goto found;
  2202. }
  2203. base = pvm_determine_end(&next, &prev, align) - end;
  2204. while (true) {
  2205. BUG_ON(next && next->va_end <= base + end);
  2206. BUG_ON(prev && prev->va_end > base + end);
  2207. /*
  2208. * base might have underflowed, add last_end before
  2209. * comparing.
  2210. */
  2211. if (base + last_end < vmalloc_start + last_end) {
  2212. spin_unlock(&vmap_area_lock);
  2213. if (!purged) {
  2214. purge_vmap_area_lazy();
  2215. purged = true;
  2216. goto retry;
  2217. }
  2218. goto err_free;
  2219. }
  2220. /*
  2221. * If next overlaps, move base downwards so that it's
  2222. * right below next and then recheck.
  2223. */
  2224. if (next && next->va_start < base + end) {
  2225. base = pvm_determine_end(&next, &prev, align) - end;
  2226. term_area = area;
  2227. continue;
  2228. }
  2229. /*
  2230. * If prev overlaps, shift down next and prev and move
  2231. * base so that it's right below new next and then
  2232. * recheck.
  2233. */
  2234. if (prev && prev->va_end > base + start) {
  2235. next = prev;
  2236. prev = node_to_va(rb_prev(&next->rb_node));
  2237. base = pvm_determine_end(&next, &prev, align) - end;
  2238. term_area = area;
  2239. continue;
  2240. }
  2241. /*
  2242. * This area fits, move on to the previous one. If
  2243. * the previous one is the terminal one, we're done.
  2244. */
  2245. area = (area + nr_vms - 1) % nr_vms;
  2246. if (area == term_area)
  2247. break;
  2248. start = offsets[area];
  2249. end = start + sizes[area];
  2250. pvm_find_next_prev(base + end, &next, &prev);
  2251. }
  2252. found:
  2253. /* we've found a fitting base, insert all va's */
  2254. for (area = 0; area < nr_vms; area++) {
  2255. struct vmap_area *va = vas[area];
  2256. va->va_start = base + offsets[area];
  2257. va->va_end = va->va_start + sizes[area];
  2258. __insert_vmap_area(va);
  2259. }
  2260. vmap_area_pcpu_hole = base + offsets[last_area];
  2261. spin_unlock(&vmap_area_lock);
  2262. /* insert all vm's */
  2263. for (area = 0; area < nr_vms; area++)
  2264. setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
  2265. pcpu_get_vm_areas);
  2266. kfree(vas);
  2267. return vms;
  2268. err_free:
  2269. for (area = 0; area < nr_vms; area++) {
  2270. kfree(vas[area]);
  2271. kfree(vms[area]);
  2272. }
  2273. err_free2:
  2274. kfree(vas);
  2275. kfree(vms);
  2276. return NULL;
  2277. }
  2278. /**
  2279. * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
  2280. * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
  2281. * @nr_vms: the number of allocated areas
  2282. *
  2283. * Free vm_structs and the array allocated by pcpu_get_vm_areas().
  2284. */
  2285. void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
  2286. {
  2287. int i;
  2288. for (i = 0; i < nr_vms; i++)
  2289. free_vm_area(vms[i]);
  2290. kfree(vms);
  2291. }
  2292. #endif /* CONFIG_SMP */
  2293. #ifdef CONFIG_PROC_FS
  2294. static void *s_start(struct seq_file *m, loff_t *pos)
  2295. __acquires(&vmap_area_lock)
  2296. {
  2297. spin_lock(&vmap_area_lock);
  2298. return seq_list_start(&vmap_area_list, *pos);
  2299. }
  2300. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  2301. {
  2302. return seq_list_next(p, &vmap_area_list, pos);
  2303. }
  2304. static void s_stop(struct seq_file *m, void *p)
  2305. __releases(&vmap_area_lock)
  2306. {
  2307. spin_unlock(&vmap_area_lock);
  2308. }
  2309. static void show_numa_info(struct seq_file *m, struct vm_struct *v)
  2310. {
  2311. if (IS_ENABLED(CONFIG_NUMA)) {
  2312. unsigned int nr, *counters = m->private;
  2313. if (!counters)
  2314. return;
  2315. if (v->flags & VM_UNINITIALIZED)
  2316. return;
  2317. /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
  2318. smp_rmb();
  2319. memset(counters, 0, nr_node_ids * sizeof(unsigned int));
  2320. for (nr = 0; nr < v->nr_pages; nr++)
  2321. counters[page_to_nid(v->pages[nr])]++;
  2322. for_each_node_state(nr, N_HIGH_MEMORY)
  2323. if (counters[nr])
  2324. seq_printf(m, " N%u=%u", nr, counters[nr]);
  2325. }
  2326. }
  2327. static int s_show(struct seq_file *m, void *p)
  2328. {
  2329. struct vmap_area *va;
  2330. struct vm_struct *v;
  2331. va = list_entry(p, struct vmap_area, list);
  2332. /*
  2333. * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
  2334. * behalf of vmap area is being tear down or vm_map_ram allocation.
  2335. */
  2336. if (!(va->flags & VM_VM_AREA)) {
  2337. seq_printf(m, "0x%pK-0x%pK %7ld %s\n",
  2338. (void *)va->va_start, (void *)va->va_end,
  2339. va->va_end - va->va_start,
  2340. va->flags & VM_LAZY_FREE ? "unpurged vm_area" : "vm_map_ram");
  2341. return 0;
  2342. }
  2343. v = va->vm;
  2344. seq_printf(m, "0x%pK-0x%pK %7ld",
  2345. v->addr, v->addr + v->size, v->size);
  2346. if (v->caller)
  2347. seq_printf(m, " %pS", v->caller);
  2348. if (v->nr_pages)
  2349. seq_printf(m, " pages=%d", v->nr_pages);
  2350. if (v->phys_addr)
  2351. seq_printf(m, " phys=%pa", &v->phys_addr);
  2352. if (v->flags & VM_IOREMAP)
  2353. seq_puts(m, " ioremap");
  2354. if (v->flags & VM_ALLOC)
  2355. seq_puts(m, " vmalloc");
  2356. if (v->flags & VM_MAP)
  2357. seq_puts(m, " vmap");
  2358. if (v->flags & VM_USERMAP)
  2359. seq_puts(m, " user");
  2360. if (is_vmalloc_addr(v->pages))
  2361. seq_puts(m, " vpages");
  2362. show_numa_info(m, v);
  2363. seq_putc(m, '\n');
  2364. return 0;
  2365. }
  2366. static const struct seq_operations vmalloc_op = {
  2367. .start = s_start,
  2368. .next = s_next,
  2369. .stop = s_stop,
  2370. .show = s_show,
  2371. };
  2372. static int vmalloc_open(struct inode *inode, struct file *file)
  2373. {
  2374. return seq_open_private(file, &vmalloc_op,
  2375. nr_node_ids * sizeof(unsigned int));
  2376. }
  2377. static const struct file_operations proc_vmalloc_operations = {
  2378. .open = vmalloc_open,
  2379. .read = seq_read,
  2380. .llseek = seq_lseek,
  2381. .release = seq_release_private,
  2382. };
  2383. static int __init proc_vmalloc_init(void)
  2384. {
  2385. if (IS_ENABLED(CONFIG_NUMA))
  2386. proc_create("vmallocinfo", S_IRUSR, NULL,
  2387. &proc_vmalloc_operations);
  2388. else
  2389. proc_create_seq("vmallocinfo", S_IRUSR, NULL, &vmalloc_op);
  2390. return 0;
  2391. }
  2392. module_init(proc_vmalloc_init);
  2393. #endif