wmi.c 44 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667
  1. /*
  2. * Copyright (c) 2012-2016 Qualcomm Atheros, Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/moduleparam.h>
  17. #include <linux/etherdevice.h>
  18. #include <linux/if_arp.h>
  19. #include "wil6210.h"
  20. #include "txrx.h"
  21. #include "wmi.h"
  22. #include "trace.h"
  23. static uint max_assoc_sta = WIL6210_MAX_CID;
  24. module_param(max_assoc_sta, uint, S_IRUGO | S_IWUSR);
  25. MODULE_PARM_DESC(max_assoc_sta, " Max number of stations associated to the AP");
  26. int agg_wsize; /* = 0; */
  27. module_param(agg_wsize, int, S_IRUGO | S_IWUSR);
  28. MODULE_PARM_DESC(agg_wsize, " Window size for Tx Block Ack after connect;"
  29. " 0 - use default; < 0 - don't auto-establish");
  30. u8 led_id = WIL_LED_INVALID_ID;
  31. module_param(led_id, byte, S_IRUGO);
  32. MODULE_PARM_DESC(led_id,
  33. " 60G device led enablement. Set the led ID (0-2) to enable");
  34. /**
  35. * WMI event receiving - theory of operations
  36. *
  37. * When firmware about to report WMI event, it fills memory area
  38. * in the mailbox and raises misc. IRQ. Thread interrupt handler invoked for
  39. * the misc IRQ, function @wmi_recv_cmd called by thread IRQ handler.
  40. *
  41. * @wmi_recv_cmd reads event, allocates memory chunk and attaches it to the
  42. * event list @wil->pending_wmi_ev. Then, work queue @wil->wmi_wq wakes up
  43. * and handles events within the @wmi_event_worker. Every event get detached
  44. * from list, processed and deleted.
  45. *
  46. * Purpose for this mechanism is to release IRQ thread; otherwise,
  47. * if WMI event handling involves another WMI command flow, this 2-nd flow
  48. * won't be completed because of blocked IRQ thread.
  49. */
  50. /**
  51. * Addressing - theory of operations
  52. *
  53. * There are several buses present on the WIL6210 card.
  54. * Same memory areas are visible at different address on
  55. * the different busses. There are 3 main bus masters:
  56. * - MAC CPU (ucode)
  57. * - User CPU (firmware)
  58. * - AHB (host)
  59. *
  60. * On the PCI bus, there is one BAR (BAR0) of 2Mb size, exposing
  61. * AHB addresses starting from 0x880000
  62. *
  63. * Internally, firmware uses addresses that allows faster access but
  64. * are invisible from the host. To read from these addresses, alternative
  65. * AHB address must be used.
  66. *
  67. * Memory mapping
  68. * Linker address PCI/Host address
  69. * 0x880000 .. 0xa80000 2Mb BAR0
  70. * 0x800000 .. 0x807000 0x900000 .. 0x907000 28k DCCM
  71. * 0x840000 .. 0x857000 0x908000 .. 0x91f000 92k PERIPH
  72. */
  73. /**
  74. * @fw_mapping provides memory remapping table
  75. *
  76. * array size should be in sync with the declaration in the wil6210.h
  77. */
  78. const struct fw_map fw_mapping[] = {
  79. {0x000000, 0x040000, 0x8c0000, "fw_code"}, /* FW code RAM 256k */
  80. {0x800000, 0x808000, 0x900000, "fw_data"}, /* FW data RAM 32k */
  81. {0x840000, 0x860000, 0x908000, "fw_peri"}, /* periph. data RAM 128k */
  82. {0x880000, 0x88a000, 0x880000, "rgf"}, /* various RGF 40k */
  83. {0x88a000, 0x88b000, 0x88a000, "AGC_tbl"}, /* AGC table 4k */
  84. {0x88b000, 0x88c000, 0x88b000, "rgf_ext"}, /* Pcie_ext_rgf 4k */
  85. {0x88c000, 0x88c200, 0x88c000, "mac_rgf_ext"}, /* mac_ext_rgf 512b */
  86. {0x8c0000, 0x949000, 0x8c0000, "upper"}, /* upper area 548k */
  87. /*
  88. * 920000..930000 ucode code RAM
  89. * 930000..932000 ucode data RAM
  90. * 932000..949000 back-door debug data
  91. */
  92. };
  93. struct blink_on_off_time led_blink_time[] = {
  94. {WIL_LED_BLINK_ON_SLOW_MS, WIL_LED_BLINK_OFF_SLOW_MS},
  95. {WIL_LED_BLINK_ON_MED_MS, WIL_LED_BLINK_OFF_MED_MS},
  96. {WIL_LED_BLINK_ON_FAST_MS, WIL_LED_BLINK_OFF_FAST_MS},
  97. };
  98. u8 led_polarity = LED_POLARITY_LOW_ACTIVE;
  99. /**
  100. * return AHB address for given firmware/ucode internal (linker) address
  101. * @x - internal address
  102. * If address have no valid AHB mapping, return 0
  103. */
  104. static u32 wmi_addr_remap(u32 x)
  105. {
  106. uint i;
  107. for (i = 0; i < ARRAY_SIZE(fw_mapping); i++) {
  108. if ((x >= fw_mapping[i].from) && (x < fw_mapping[i].to))
  109. return x + fw_mapping[i].host - fw_mapping[i].from;
  110. }
  111. return 0;
  112. }
  113. /**
  114. * Check address validity for WMI buffer; remap if needed
  115. * @ptr - internal (linker) fw/ucode address
  116. *
  117. * Valid buffer should be DWORD aligned
  118. *
  119. * return address for accessing buffer from the host;
  120. * if buffer is not valid, return NULL.
  121. */
  122. void __iomem *wmi_buffer(struct wil6210_priv *wil, __le32 ptr_)
  123. {
  124. u32 off;
  125. u32 ptr = le32_to_cpu(ptr_);
  126. if (ptr % 4)
  127. return NULL;
  128. ptr = wmi_addr_remap(ptr);
  129. if (ptr < WIL6210_FW_HOST_OFF)
  130. return NULL;
  131. off = HOSTADDR(ptr);
  132. if (off > WIL6210_MEM_SIZE - 4)
  133. return NULL;
  134. return wil->csr + off;
  135. }
  136. /**
  137. * Check address validity
  138. */
  139. void __iomem *wmi_addr(struct wil6210_priv *wil, u32 ptr)
  140. {
  141. u32 off;
  142. if (ptr % 4)
  143. return NULL;
  144. if (ptr < WIL6210_FW_HOST_OFF)
  145. return NULL;
  146. off = HOSTADDR(ptr);
  147. if (off > WIL6210_MEM_SIZE - 4)
  148. return NULL;
  149. return wil->csr + off;
  150. }
  151. int wmi_read_hdr(struct wil6210_priv *wil, __le32 ptr,
  152. struct wil6210_mbox_hdr *hdr)
  153. {
  154. void __iomem *src = wmi_buffer(wil, ptr);
  155. if (!src)
  156. return -EINVAL;
  157. wil_memcpy_fromio_32(hdr, src, sizeof(*hdr));
  158. return 0;
  159. }
  160. static int __wmi_send(struct wil6210_priv *wil, u16 cmdid, void *buf, u16 len)
  161. {
  162. struct {
  163. struct wil6210_mbox_hdr hdr;
  164. struct wmi_cmd_hdr wmi;
  165. } __packed cmd = {
  166. .hdr = {
  167. .type = WIL_MBOX_HDR_TYPE_WMI,
  168. .flags = 0,
  169. .len = cpu_to_le16(sizeof(cmd.wmi) + len),
  170. },
  171. .wmi = {
  172. .mid = 0,
  173. .command_id = cpu_to_le16(cmdid),
  174. },
  175. };
  176. struct wil6210_mbox_ring *r = &wil->mbox_ctl.tx;
  177. struct wil6210_mbox_ring_desc d_head;
  178. u32 next_head;
  179. void __iomem *dst;
  180. void __iomem *head = wmi_addr(wil, r->head);
  181. uint retry;
  182. int rc = 0;
  183. if (sizeof(cmd) + len > r->entry_size) {
  184. wil_err(wil, "WMI size too large: %d bytes, max is %d\n",
  185. (int)(sizeof(cmd) + len), r->entry_size);
  186. return -ERANGE;
  187. }
  188. might_sleep();
  189. if (!test_bit(wil_status_fwready, wil->status)) {
  190. wil_err(wil, "WMI: cannot send command while FW not ready\n");
  191. return -EAGAIN;
  192. }
  193. if (!head) {
  194. wil_err(wil, "WMI head is garbage: 0x%08x\n", r->head);
  195. return -EINVAL;
  196. }
  197. wil_halp_vote(wil);
  198. /* read Tx head till it is not busy */
  199. for (retry = 5; retry > 0; retry--) {
  200. wil_memcpy_fromio_32(&d_head, head, sizeof(d_head));
  201. if (d_head.sync == 0)
  202. break;
  203. msleep(20);
  204. }
  205. if (d_head.sync != 0) {
  206. wil_err(wil, "WMI head busy\n");
  207. rc = -EBUSY;
  208. goto out;
  209. }
  210. /* next head */
  211. next_head = r->base + ((r->head - r->base + sizeof(d_head)) % r->size);
  212. wil_dbg_wmi(wil, "Head 0x%08x -> 0x%08x\n", r->head, next_head);
  213. /* wait till FW finish with previous command */
  214. for (retry = 5; retry > 0; retry--) {
  215. if (!test_bit(wil_status_fwready, wil->status)) {
  216. wil_err(wil, "WMI: cannot send command while FW not ready\n");
  217. rc = -EAGAIN;
  218. goto out;
  219. }
  220. r->tail = wil_r(wil, RGF_MBOX +
  221. offsetof(struct wil6210_mbox_ctl, tx.tail));
  222. if (next_head != r->tail)
  223. break;
  224. msleep(20);
  225. }
  226. if (next_head == r->tail) {
  227. wil_err(wil, "WMI ring full\n");
  228. rc = -EBUSY;
  229. goto out;
  230. }
  231. dst = wmi_buffer(wil, d_head.addr);
  232. if (!dst) {
  233. wil_err(wil, "invalid WMI buffer: 0x%08x\n",
  234. le32_to_cpu(d_head.addr));
  235. rc = -EAGAIN;
  236. goto out;
  237. }
  238. cmd.hdr.seq = cpu_to_le16(++wil->wmi_seq);
  239. /* set command */
  240. wil_dbg_wmi(wil, "WMI command 0x%04x [%d]\n", cmdid, len);
  241. wil_hex_dump_wmi("Cmd ", DUMP_PREFIX_OFFSET, 16, 1, &cmd,
  242. sizeof(cmd), true);
  243. wil_hex_dump_wmi("cmd ", DUMP_PREFIX_OFFSET, 16, 1, buf,
  244. len, true);
  245. wil_memcpy_toio_32(dst, &cmd, sizeof(cmd));
  246. wil_memcpy_toio_32(dst + sizeof(cmd), buf, len);
  247. /* mark entry as full */
  248. wil_w(wil, r->head + offsetof(struct wil6210_mbox_ring_desc, sync), 1);
  249. /* advance next ptr */
  250. wil_w(wil, RGF_MBOX + offsetof(struct wil6210_mbox_ctl, tx.head),
  251. r->head = next_head);
  252. trace_wil6210_wmi_cmd(&cmd.wmi, buf, len);
  253. /* interrupt to FW */
  254. wil_w(wil, RGF_USER_USER_ICR + offsetof(struct RGF_ICR, ICS),
  255. SW_INT_MBOX);
  256. out:
  257. wil_halp_unvote(wil);
  258. return rc;
  259. }
  260. int wmi_send(struct wil6210_priv *wil, u16 cmdid, void *buf, u16 len)
  261. {
  262. int rc;
  263. mutex_lock(&wil->wmi_mutex);
  264. rc = __wmi_send(wil, cmdid, buf, len);
  265. mutex_unlock(&wil->wmi_mutex);
  266. return rc;
  267. }
  268. /*=== Event handlers ===*/
  269. static void wmi_evt_ready(struct wil6210_priv *wil, int id, void *d, int len)
  270. {
  271. struct wireless_dev *wdev = wil->wdev;
  272. struct wmi_ready_event *evt = d;
  273. wil->n_mids = evt->numof_additional_mids;
  274. wil_info(wil, "FW ver. %s(SW %d); MAC %pM; %d MID's\n",
  275. wil->fw_version, le32_to_cpu(evt->sw_version),
  276. evt->mac, wil->n_mids);
  277. /* ignore MAC address, we already have it from the boot loader */
  278. strlcpy(wdev->wiphy->fw_version, wil->fw_version,
  279. sizeof(wdev->wiphy->fw_version));
  280. wil_set_recovery_state(wil, fw_recovery_idle);
  281. set_bit(wil_status_fwready, wil->status);
  282. /* let the reset sequence continue */
  283. complete(&wil->wmi_ready);
  284. }
  285. static void wmi_evt_rx_mgmt(struct wil6210_priv *wil, int id, void *d, int len)
  286. {
  287. struct wmi_rx_mgmt_packet_event *data = d;
  288. struct wiphy *wiphy = wil_to_wiphy(wil);
  289. struct ieee80211_mgmt *rx_mgmt_frame =
  290. (struct ieee80211_mgmt *)data->payload;
  291. int flen = len - offsetof(struct wmi_rx_mgmt_packet_event, payload);
  292. int ch_no;
  293. u32 freq;
  294. struct ieee80211_channel *channel;
  295. s32 signal;
  296. __le16 fc;
  297. u32 d_len;
  298. u16 d_status;
  299. if (flen < 0) {
  300. wil_err(wil, "MGMT Rx: short event, len %d\n", len);
  301. return;
  302. }
  303. d_len = le32_to_cpu(data->info.len);
  304. if (d_len != flen) {
  305. wil_err(wil,
  306. "MGMT Rx: length mismatch, d_len %d should be %d\n",
  307. d_len, flen);
  308. return;
  309. }
  310. ch_no = data->info.channel + 1;
  311. freq = ieee80211_channel_to_frequency(ch_no, NL80211_BAND_60GHZ);
  312. channel = ieee80211_get_channel(wiphy, freq);
  313. signal = data->info.sqi;
  314. d_status = le16_to_cpu(data->info.status);
  315. fc = rx_mgmt_frame->frame_control;
  316. wil_dbg_wmi(wil, "MGMT Rx: channel %d MCS %d SNR %d SQI %d%%\n",
  317. data->info.channel, data->info.mcs, data->info.snr,
  318. data->info.sqi);
  319. wil_dbg_wmi(wil, "status 0x%04x len %d fc 0x%04x\n", d_status, d_len,
  320. le16_to_cpu(fc));
  321. wil_dbg_wmi(wil, "qid %d mid %d cid %d\n",
  322. data->info.qid, data->info.mid, data->info.cid);
  323. wil_hex_dump_wmi("MGMT Rx ", DUMP_PREFIX_OFFSET, 16, 1, rx_mgmt_frame,
  324. d_len, true);
  325. if (!channel) {
  326. wil_err(wil, "Frame on unsupported channel\n");
  327. return;
  328. }
  329. if (ieee80211_is_beacon(fc) || ieee80211_is_probe_resp(fc)) {
  330. struct cfg80211_bss *bss;
  331. u64 tsf = le64_to_cpu(rx_mgmt_frame->u.beacon.timestamp);
  332. u16 cap = le16_to_cpu(rx_mgmt_frame->u.beacon.capab_info);
  333. u16 bi = le16_to_cpu(rx_mgmt_frame->u.beacon.beacon_int);
  334. const u8 *ie_buf = rx_mgmt_frame->u.beacon.variable;
  335. size_t ie_len = d_len - offsetof(struct ieee80211_mgmt,
  336. u.beacon.variable);
  337. wil_dbg_wmi(wil, "Capability info : 0x%04x\n", cap);
  338. wil_dbg_wmi(wil, "TSF : 0x%016llx\n", tsf);
  339. wil_dbg_wmi(wil, "Beacon interval : %d\n", bi);
  340. wil_hex_dump_wmi("IE ", DUMP_PREFIX_OFFSET, 16, 1, ie_buf,
  341. ie_len, true);
  342. wil_dbg_wmi(wil, "Capability info : 0x%04x\n", cap);
  343. bss = cfg80211_inform_bss_frame(wiphy, channel, rx_mgmt_frame,
  344. d_len, signal, GFP_KERNEL);
  345. if (bss) {
  346. wil_dbg_wmi(wil, "Added BSS %pM\n",
  347. rx_mgmt_frame->bssid);
  348. cfg80211_put_bss(wiphy, bss);
  349. } else {
  350. wil_err(wil, "cfg80211_inform_bss_frame() failed\n");
  351. }
  352. } else {
  353. mutex_lock(&wil->p2p_wdev_mutex);
  354. cfg80211_rx_mgmt(wil->radio_wdev, freq, signal,
  355. (void *)rx_mgmt_frame, d_len, 0);
  356. mutex_unlock(&wil->p2p_wdev_mutex);
  357. }
  358. }
  359. static void wmi_evt_tx_mgmt(struct wil6210_priv *wil, int id, void *d, int len)
  360. {
  361. struct wmi_tx_mgmt_packet_event *data = d;
  362. struct ieee80211_mgmt *mgmt_frame =
  363. (struct ieee80211_mgmt *)data->payload;
  364. int flen = len - offsetof(struct wmi_tx_mgmt_packet_event, payload);
  365. wil_hex_dump_wmi("MGMT Tx ", DUMP_PREFIX_OFFSET, 16, 1, mgmt_frame,
  366. flen, true);
  367. }
  368. static void wmi_evt_scan_complete(struct wil6210_priv *wil, int id,
  369. void *d, int len)
  370. {
  371. mutex_lock(&wil->p2p_wdev_mutex);
  372. if (wil->scan_request) {
  373. struct wmi_scan_complete_event *data = d;
  374. struct cfg80211_scan_info info = {
  375. .aborted = (data->status != WMI_SCAN_SUCCESS),
  376. };
  377. wil_dbg_wmi(wil, "SCAN_COMPLETE(0x%08x)\n", data->status);
  378. wil_dbg_misc(wil, "Complete scan_request 0x%p aborted %d\n",
  379. wil->scan_request, info.aborted);
  380. del_timer_sync(&wil->scan_timer);
  381. cfg80211_scan_done(wil->scan_request, &info);
  382. wil->radio_wdev = wil->wdev;
  383. wil->scan_request = NULL;
  384. } else {
  385. wil_err(wil, "SCAN_COMPLETE while not scanning\n");
  386. }
  387. mutex_unlock(&wil->p2p_wdev_mutex);
  388. }
  389. static void wmi_evt_connect(struct wil6210_priv *wil, int id, void *d, int len)
  390. {
  391. struct net_device *ndev = wil_to_ndev(wil);
  392. struct wireless_dev *wdev = wil->wdev;
  393. struct wmi_connect_event *evt = d;
  394. int ch; /* channel number */
  395. struct station_info sinfo;
  396. u8 *assoc_req_ie, *assoc_resp_ie;
  397. size_t assoc_req_ielen, assoc_resp_ielen;
  398. /* capinfo(u16) + listen_interval(u16) + IEs */
  399. const size_t assoc_req_ie_offset = sizeof(u16) * 2;
  400. /* capinfo(u16) + status_code(u16) + associd(u16) + IEs */
  401. const size_t assoc_resp_ie_offset = sizeof(u16) * 3;
  402. int rc;
  403. if (len < sizeof(*evt)) {
  404. wil_err(wil, "Connect event too short : %d bytes\n", len);
  405. return;
  406. }
  407. if (len != sizeof(*evt) + evt->beacon_ie_len + evt->assoc_req_len +
  408. evt->assoc_resp_len) {
  409. wil_err(wil,
  410. "Connect event corrupted : %d != %d + %d + %d + %d\n",
  411. len, (int)sizeof(*evt), evt->beacon_ie_len,
  412. evt->assoc_req_len, evt->assoc_resp_len);
  413. return;
  414. }
  415. if (evt->cid >= WIL6210_MAX_CID) {
  416. wil_err(wil, "Connect CID invalid : %d\n", evt->cid);
  417. return;
  418. }
  419. ch = evt->channel + 1;
  420. wil_info(wil, "Connect %pM channel [%d] cid %d\n",
  421. evt->bssid, ch, evt->cid);
  422. wil_hex_dump_wmi("connect AI : ", DUMP_PREFIX_OFFSET, 16, 1,
  423. evt->assoc_info, len - sizeof(*evt), true);
  424. /* figure out IE's */
  425. assoc_req_ie = &evt->assoc_info[evt->beacon_ie_len +
  426. assoc_req_ie_offset];
  427. assoc_req_ielen = evt->assoc_req_len - assoc_req_ie_offset;
  428. if (evt->assoc_req_len <= assoc_req_ie_offset) {
  429. assoc_req_ie = NULL;
  430. assoc_req_ielen = 0;
  431. }
  432. assoc_resp_ie = &evt->assoc_info[evt->beacon_ie_len +
  433. evt->assoc_req_len +
  434. assoc_resp_ie_offset];
  435. assoc_resp_ielen = evt->assoc_resp_len - assoc_resp_ie_offset;
  436. if (evt->assoc_resp_len <= assoc_resp_ie_offset) {
  437. assoc_resp_ie = NULL;
  438. assoc_resp_ielen = 0;
  439. }
  440. mutex_lock(&wil->mutex);
  441. if (test_bit(wil_status_resetting, wil->status) ||
  442. !test_bit(wil_status_fwready, wil->status)) {
  443. wil_err(wil, "status_resetting, cancel connect event, CID %d\n",
  444. evt->cid);
  445. mutex_unlock(&wil->mutex);
  446. /* no need for cleanup, wil_reset will do that */
  447. return;
  448. }
  449. if ((wdev->iftype == NL80211_IFTYPE_STATION) ||
  450. (wdev->iftype == NL80211_IFTYPE_P2P_CLIENT)) {
  451. if (!test_bit(wil_status_fwconnecting, wil->status)) {
  452. wil_err(wil, "Not in connecting state\n");
  453. mutex_unlock(&wil->mutex);
  454. return;
  455. }
  456. del_timer_sync(&wil->connect_timer);
  457. } else if ((wdev->iftype == NL80211_IFTYPE_AP) ||
  458. (wdev->iftype == NL80211_IFTYPE_P2P_GO)) {
  459. if (wil->sta[evt->cid].status != wil_sta_unused) {
  460. wil_err(wil, "%s: AP: Invalid status %d for CID %d\n",
  461. __func__, wil->sta[evt->cid].status, evt->cid);
  462. mutex_unlock(&wil->mutex);
  463. return;
  464. }
  465. }
  466. /* FIXME FW can transmit only ucast frames to peer */
  467. /* FIXME real ring_id instead of hard coded 0 */
  468. ether_addr_copy(wil->sta[evt->cid].addr, evt->bssid);
  469. wil->sta[evt->cid].status = wil_sta_conn_pending;
  470. rc = wil_tx_init(wil, evt->cid);
  471. if (rc) {
  472. wil_err(wil, "%s: config tx vring failed for CID %d, rc (%d)\n",
  473. __func__, evt->cid, rc);
  474. wmi_disconnect_sta(wil, wil->sta[evt->cid].addr,
  475. WLAN_REASON_UNSPECIFIED, false);
  476. } else {
  477. wil_info(wil, "%s: successful connection to CID %d\n",
  478. __func__, evt->cid);
  479. }
  480. if ((wdev->iftype == NL80211_IFTYPE_STATION) ||
  481. (wdev->iftype == NL80211_IFTYPE_P2P_CLIENT)) {
  482. if (rc) {
  483. netif_tx_stop_all_queues(ndev);
  484. netif_carrier_off(ndev);
  485. wil_err(wil,
  486. "%s: cfg80211_connect_result with failure\n",
  487. __func__);
  488. cfg80211_connect_result(ndev, evt->bssid, NULL, 0,
  489. NULL, 0,
  490. WLAN_STATUS_UNSPECIFIED_FAILURE,
  491. GFP_KERNEL);
  492. goto out;
  493. } else {
  494. cfg80211_connect_result(ndev, evt->bssid,
  495. assoc_req_ie, assoc_req_ielen,
  496. assoc_resp_ie, assoc_resp_ielen,
  497. WLAN_STATUS_SUCCESS,
  498. GFP_KERNEL);
  499. }
  500. } else if ((wdev->iftype == NL80211_IFTYPE_AP) ||
  501. (wdev->iftype == NL80211_IFTYPE_P2P_GO)) {
  502. if (rc)
  503. goto out;
  504. memset(&sinfo, 0, sizeof(sinfo));
  505. sinfo.generation = wil->sinfo_gen++;
  506. if (assoc_req_ie) {
  507. sinfo.assoc_req_ies = assoc_req_ie;
  508. sinfo.assoc_req_ies_len = assoc_req_ielen;
  509. }
  510. cfg80211_new_sta(ndev, evt->bssid, &sinfo, GFP_KERNEL);
  511. } else {
  512. wil_err(wil, "%s: unhandled iftype %d for CID %d\n",
  513. __func__, wdev->iftype, evt->cid);
  514. goto out;
  515. }
  516. wil->sta[evt->cid].status = wil_sta_connected;
  517. set_bit(wil_status_fwconnected, wil->status);
  518. netif_tx_wake_all_queues(ndev);
  519. out:
  520. if (rc)
  521. wil->sta[evt->cid].status = wil_sta_unused;
  522. clear_bit(wil_status_fwconnecting, wil->status);
  523. mutex_unlock(&wil->mutex);
  524. }
  525. static void wmi_evt_disconnect(struct wil6210_priv *wil, int id,
  526. void *d, int len)
  527. {
  528. struct wmi_disconnect_event *evt = d;
  529. u16 reason_code = le16_to_cpu(evt->protocol_reason_status);
  530. wil_info(wil, "Disconnect %pM reason [proto %d wmi %d]\n",
  531. evt->bssid, reason_code, evt->disconnect_reason);
  532. wil->sinfo_gen++;
  533. mutex_lock(&wil->mutex);
  534. wil6210_disconnect(wil, evt->bssid, reason_code, true);
  535. mutex_unlock(&wil->mutex);
  536. }
  537. /*
  538. * Firmware reports EAPOL frame using WME event.
  539. * Reconstruct Ethernet frame and deliver it via normal Rx
  540. */
  541. static void wmi_evt_eapol_rx(struct wil6210_priv *wil, int id,
  542. void *d, int len)
  543. {
  544. struct net_device *ndev = wil_to_ndev(wil);
  545. struct wmi_eapol_rx_event *evt = d;
  546. u16 eapol_len = le16_to_cpu(evt->eapol_len);
  547. int sz = eapol_len + ETH_HLEN;
  548. struct sk_buff *skb;
  549. struct ethhdr *eth;
  550. int cid;
  551. struct wil_net_stats *stats = NULL;
  552. wil_dbg_wmi(wil, "EAPOL len %d from %pM\n", eapol_len,
  553. evt->src_mac);
  554. cid = wil_find_cid(wil, evt->src_mac);
  555. if (cid >= 0)
  556. stats = &wil->sta[cid].stats;
  557. if (eapol_len > 196) { /* TODO: revisit size limit */
  558. wil_err(wil, "EAPOL too large\n");
  559. return;
  560. }
  561. skb = alloc_skb(sz, GFP_KERNEL);
  562. if (!skb) {
  563. wil_err(wil, "Failed to allocate skb\n");
  564. return;
  565. }
  566. eth = (struct ethhdr *)skb_put(skb, ETH_HLEN);
  567. ether_addr_copy(eth->h_dest, ndev->dev_addr);
  568. ether_addr_copy(eth->h_source, evt->src_mac);
  569. eth->h_proto = cpu_to_be16(ETH_P_PAE);
  570. memcpy(skb_put(skb, eapol_len), evt->eapol, eapol_len);
  571. skb->protocol = eth_type_trans(skb, ndev);
  572. if (likely(netif_rx_ni(skb) == NET_RX_SUCCESS)) {
  573. ndev->stats.rx_packets++;
  574. ndev->stats.rx_bytes += sz;
  575. if (stats) {
  576. stats->rx_packets++;
  577. stats->rx_bytes += sz;
  578. }
  579. } else {
  580. ndev->stats.rx_dropped++;
  581. if (stats)
  582. stats->rx_dropped++;
  583. }
  584. }
  585. static void wmi_evt_vring_en(struct wil6210_priv *wil, int id, void *d, int len)
  586. {
  587. struct wmi_vring_en_event *evt = d;
  588. u8 vri = evt->vring_index;
  589. wil_dbg_wmi(wil, "Enable vring %d\n", vri);
  590. if (vri >= ARRAY_SIZE(wil->vring_tx)) {
  591. wil_err(wil, "Enable for invalid vring %d\n", vri);
  592. return;
  593. }
  594. wil->vring_tx_data[vri].dot1x_open = true;
  595. if (vri == wil->bcast_vring) /* no BA for bcast */
  596. return;
  597. if (agg_wsize >= 0)
  598. wil_addba_tx_request(wil, vri, agg_wsize);
  599. }
  600. static void wmi_evt_ba_status(struct wil6210_priv *wil, int id, void *d,
  601. int len)
  602. {
  603. struct wmi_ba_status_event *evt = d;
  604. struct vring_tx_data *txdata;
  605. wil_dbg_wmi(wil, "BACK[%d] %s {%d} timeout %d AMSDU%s\n",
  606. evt->ringid,
  607. evt->status == WMI_BA_AGREED ? "OK" : "N/A",
  608. evt->agg_wsize, __le16_to_cpu(evt->ba_timeout),
  609. evt->amsdu ? "+" : "-");
  610. if (evt->ringid >= WIL6210_MAX_TX_RINGS) {
  611. wil_err(wil, "invalid ring id %d\n", evt->ringid);
  612. return;
  613. }
  614. if (evt->status != WMI_BA_AGREED) {
  615. evt->ba_timeout = 0;
  616. evt->agg_wsize = 0;
  617. evt->amsdu = 0;
  618. }
  619. txdata = &wil->vring_tx_data[evt->ringid];
  620. txdata->agg_timeout = le16_to_cpu(evt->ba_timeout);
  621. txdata->agg_wsize = evt->agg_wsize;
  622. txdata->agg_amsdu = evt->amsdu;
  623. txdata->addba_in_progress = false;
  624. }
  625. static void wmi_evt_addba_rx_req(struct wil6210_priv *wil, int id, void *d,
  626. int len)
  627. {
  628. struct wmi_rcp_addba_req_event *evt = d;
  629. wil_addba_rx_request(wil, evt->cidxtid, evt->dialog_token,
  630. evt->ba_param_set, evt->ba_timeout,
  631. evt->ba_seq_ctrl);
  632. }
  633. static void wmi_evt_delba(struct wil6210_priv *wil, int id, void *d, int len)
  634. __acquires(&sta->tid_rx_lock) __releases(&sta->tid_rx_lock)
  635. {
  636. struct wmi_delba_event *evt = d;
  637. u8 cid, tid;
  638. u16 reason = __le16_to_cpu(evt->reason);
  639. struct wil_sta_info *sta;
  640. struct wil_tid_ampdu_rx *r;
  641. might_sleep();
  642. parse_cidxtid(evt->cidxtid, &cid, &tid);
  643. wil_dbg_wmi(wil, "DELBA CID %d TID %d from %s reason %d\n",
  644. cid, tid,
  645. evt->from_initiator ? "originator" : "recipient",
  646. reason);
  647. if (!evt->from_initiator) {
  648. int i;
  649. /* find Tx vring it belongs to */
  650. for (i = 0; i < ARRAY_SIZE(wil->vring2cid_tid); i++) {
  651. if ((wil->vring2cid_tid[i][0] == cid) &&
  652. (wil->vring2cid_tid[i][1] == tid)) {
  653. struct vring_tx_data *txdata =
  654. &wil->vring_tx_data[i];
  655. wil_dbg_wmi(wil, "DELBA Tx vring %d\n", i);
  656. txdata->agg_timeout = 0;
  657. txdata->agg_wsize = 0;
  658. txdata->addba_in_progress = false;
  659. break; /* max. 1 matching ring */
  660. }
  661. }
  662. if (i >= ARRAY_SIZE(wil->vring2cid_tid))
  663. wil_err(wil, "DELBA: unable to find Tx vring\n");
  664. return;
  665. }
  666. sta = &wil->sta[cid];
  667. spin_lock_bh(&sta->tid_rx_lock);
  668. r = sta->tid_rx[tid];
  669. sta->tid_rx[tid] = NULL;
  670. wil_tid_ampdu_rx_free(wil, r);
  671. spin_unlock_bh(&sta->tid_rx_lock);
  672. }
  673. /**
  674. * Some events are ignored for purpose; and need not be interpreted as
  675. * "unhandled events"
  676. */
  677. static void wmi_evt_ignore(struct wil6210_priv *wil, int id, void *d, int len)
  678. {
  679. wil_dbg_wmi(wil, "Ignore event 0x%04x len %d\n", id, len);
  680. }
  681. static const struct {
  682. int eventid;
  683. void (*handler)(struct wil6210_priv *wil, int eventid,
  684. void *data, int data_len);
  685. } wmi_evt_handlers[] = {
  686. {WMI_READY_EVENTID, wmi_evt_ready},
  687. {WMI_FW_READY_EVENTID, wmi_evt_ignore},
  688. {WMI_RX_MGMT_PACKET_EVENTID, wmi_evt_rx_mgmt},
  689. {WMI_TX_MGMT_PACKET_EVENTID, wmi_evt_tx_mgmt},
  690. {WMI_SCAN_COMPLETE_EVENTID, wmi_evt_scan_complete},
  691. {WMI_CONNECT_EVENTID, wmi_evt_connect},
  692. {WMI_DISCONNECT_EVENTID, wmi_evt_disconnect},
  693. {WMI_EAPOL_RX_EVENTID, wmi_evt_eapol_rx},
  694. {WMI_BA_STATUS_EVENTID, wmi_evt_ba_status},
  695. {WMI_RCP_ADDBA_REQ_EVENTID, wmi_evt_addba_rx_req},
  696. {WMI_DELBA_EVENTID, wmi_evt_delba},
  697. {WMI_VRING_EN_EVENTID, wmi_evt_vring_en},
  698. {WMI_DATA_PORT_OPEN_EVENTID, wmi_evt_ignore},
  699. };
  700. /*
  701. * Run in IRQ context
  702. * Extract WMI command from mailbox. Queue it to the @wil->pending_wmi_ev
  703. * that will be eventually handled by the @wmi_event_worker in the thread
  704. * context of thread "wil6210_wmi"
  705. */
  706. void wmi_recv_cmd(struct wil6210_priv *wil)
  707. {
  708. struct wil6210_mbox_ring_desc d_tail;
  709. struct wil6210_mbox_hdr hdr;
  710. struct wil6210_mbox_ring *r = &wil->mbox_ctl.rx;
  711. struct pending_wmi_event *evt;
  712. u8 *cmd;
  713. void __iomem *src;
  714. ulong flags;
  715. unsigned n;
  716. unsigned int num_immed_reply = 0;
  717. if (!test_bit(wil_status_mbox_ready, wil->status)) {
  718. wil_err(wil, "Reset in progress. Cannot handle WMI event\n");
  719. return;
  720. }
  721. for (n = 0;; n++) {
  722. u16 len;
  723. bool q;
  724. bool immed_reply = false;
  725. r->head = wil_r(wil, RGF_MBOX +
  726. offsetof(struct wil6210_mbox_ctl, rx.head));
  727. if (r->tail == r->head)
  728. break;
  729. wil_dbg_wmi(wil, "Mbox head %08x tail %08x\n",
  730. r->head, r->tail);
  731. /* read cmd descriptor from tail */
  732. wil_memcpy_fromio_32(&d_tail, wil->csr + HOSTADDR(r->tail),
  733. sizeof(struct wil6210_mbox_ring_desc));
  734. if (d_tail.sync == 0) {
  735. wil_err(wil, "Mbox evt not owned by FW?\n");
  736. break;
  737. }
  738. /* read cmd header from descriptor */
  739. if (0 != wmi_read_hdr(wil, d_tail.addr, &hdr)) {
  740. wil_err(wil, "Mbox evt at 0x%08x?\n",
  741. le32_to_cpu(d_tail.addr));
  742. break;
  743. }
  744. len = le16_to_cpu(hdr.len);
  745. wil_dbg_wmi(wil, "Mbox evt %04x %04x %04x %02x\n",
  746. le16_to_cpu(hdr.seq), len, le16_to_cpu(hdr.type),
  747. hdr.flags);
  748. /* read cmd buffer from descriptor */
  749. src = wmi_buffer(wil, d_tail.addr) +
  750. sizeof(struct wil6210_mbox_hdr);
  751. evt = kmalloc(ALIGN(offsetof(struct pending_wmi_event,
  752. event.wmi) + len, 4),
  753. GFP_KERNEL);
  754. if (!evt)
  755. break;
  756. evt->event.hdr = hdr;
  757. cmd = (void *)&evt->event.wmi;
  758. wil_memcpy_fromio_32(cmd, src, len);
  759. /* mark entry as empty */
  760. wil_w(wil, r->tail +
  761. offsetof(struct wil6210_mbox_ring_desc, sync), 0);
  762. /* indicate */
  763. if ((hdr.type == WIL_MBOX_HDR_TYPE_WMI) &&
  764. (len >= sizeof(struct wmi_cmd_hdr))) {
  765. struct wmi_cmd_hdr *wmi = &evt->event.wmi;
  766. u16 id = le16_to_cpu(wmi->command_id);
  767. u32 tstamp = le32_to_cpu(wmi->fw_timestamp);
  768. spin_lock_irqsave(&wil->wmi_ev_lock, flags);
  769. if (wil->reply_id && wil->reply_id == id) {
  770. if (wil->reply_buf) {
  771. memcpy(wil->reply_buf, wmi,
  772. min(len, wil->reply_size));
  773. immed_reply = true;
  774. }
  775. }
  776. spin_unlock_irqrestore(&wil->wmi_ev_lock, flags);
  777. wil_dbg_wmi(wil, "WMI event 0x%04x MID %d @%d msec\n",
  778. id, wmi->mid, tstamp);
  779. trace_wil6210_wmi_event(wmi, &wmi[1],
  780. len - sizeof(*wmi));
  781. }
  782. wil_hex_dump_wmi("evt ", DUMP_PREFIX_OFFSET, 16, 1,
  783. &evt->event.hdr, sizeof(hdr) + len, true);
  784. /* advance tail */
  785. r->tail = r->base + ((r->tail - r->base +
  786. sizeof(struct wil6210_mbox_ring_desc)) % r->size);
  787. wil_w(wil, RGF_MBOX +
  788. offsetof(struct wil6210_mbox_ctl, rx.tail), r->tail);
  789. if (immed_reply) {
  790. wil_dbg_wmi(wil, "%s: Complete WMI 0x%04x\n",
  791. __func__, wil->reply_id);
  792. kfree(evt);
  793. num_immed_reply++;
  794. complete(&wil->wmi_call);
  795. } else {
  796. /* add to the pending list */
  797. spin_lock_irqsave(&wil->wmi_ev_lock, flags);
  798. list_add_tail(&evt->list, &wil->pending_wmi_ev);
  799. spin_unlock_irqrestore(&wil->wmi_ev_lock, flags);
  800. q = queue_work(wil->wmi_wq, &wil->wmi_event_worker);
  801. wil_dbg_wmi(wil, "queue_work -> %d\n", q);
  802. }
  803. }
  804. /* normally, 1 event per IRQ should be processed */
  805. wil_dbg_wmi(wil, "%s -> %d events queued, %d completed\n", __func__,
  806. n - num_immed_reply, num_immed_reply);
  807. }
  808. int wmi_call(struct wil6210_priv *wil, u16 cmdid, void *buf, u16 len,
  809. u16 reply_id, void *reply, u8 reply_size, int to_msec)
  810. {
  811. int rc;
  812. unsigned long remain;
  813. mutex_lock(&wil->wmi_mutex);
  814. spin_lock(&wil->wmi_ev_lock);
  815. wil->reply_id = reply_id;
  816. wil->reply_buf = reply;
  817. wil->reply_size = reply_size;
  818. spin_unlock(&wil->wmi_ev_lock);
  819. rc = __wmi_send(wil, cmdid, buf, len);
  820. if (rc)
  821. goto out;
  822. remain = wait_for_completion_timeout(&wil->wmi_call,
  823. msecs_to_jiffies(to_msec));
  824. if (0 == remain) {
  825. wil_err(wil, "wmi_call(0x%04x->0x%04x) timeout %d msec\n",
  826. cmdid, reply_id, to_msec);
  827. rc = -ETIME;
  828. } else {
  829. wil_dbg_wmi(wil,
  830. "wmi_call(0x%04x->0x%04x) completed in %d msec\n",
  831. cmdid, reply_id,
  832. to_msec - jiffies_to_msecs(remain));
  833. }
  834. out:
  835. spin_lock(&wil->wmi_ev_lock);
  836. wil->reply_id = 0;
  837. wil->reply_buf = NULL;
  838. wil->reply_size = 0;
  839. spin_unlock(&wil->wmi_ev_lock);
  840. mutex_unlock(&wil->wmi_mutex);
  841. return rc;
  842. }
  843. int wmi_echo(struct wil6210_priv *wil)
  844. {
  845. struct wmi_echo_cmd cmd = {
  846. .value = cpu_to_le32(0x12345678),
  847. };
  848. return wmi_call(wil, WMI_ECHO_CMDID, &cmd, sizeof(cmd),
  849. WMI_ECHO_RSP_EVENTID, NULL, 0, 50);
  850. }
  851. int wmi_set_mac_address(struct wil6210_priv *wil, void *addr)
  852. {
  853. struct wmi_set_mac_address_cmd cmd;
  854. ether_addr_copy(cmd.mac, addr);
  855. wil_dbg_wmi(wil, "Set MAC %pM\n", addr);
  856. return wmi_send(wil, WMI_SET_MAC_ADDRESS_CMDID, &cmd, sizeof(cmd));
  857. }
  858. int wmi_led_cfg(struct wil6210_priv *wil, bool enable)
  859. {
  860. int rc = 0;
  861. struct wmi_led_cfg_cmd cmd = {
  862. .led_mode = enable,
  863. .id = led_id,
  864. .slow_blink_cfg.blink_on =
  865. cpu_to_le32(led_blink_time[WIL_LED_TIME_SLOW].on_ms),
  866. .slow_blink_cfg.blink_off =
  867. cpu_to_le32(led_blink_time[WIL_LED_TIME_SLOW].off_ms),
  868. .medium_blink_cfg.blink_on =
  869. cpu_to_le32(led_blink_time[WIL_LED_TIME_MED].on_ms),
  870. .medium_blink_cfg.blink_off =
  871. cpu_to_le32(led_blink_time[WIL_LED_TIME_MED].off_ms),
  872. .fast_blink_cfg.blink_on =
  873. cpu_to_le32(led_blink_time[WIL_LED_TIME_FAST].on_ms),
  874. .fast_blink_cfg.blink_off =
  875. cpu_to_le32(led_blink_time[WIL_LED_TIME_FAST].off_ms),
  876. .led_polarity = led_polarity,
  877. };
  878. struct {
  879. struct wmi_cmd_hdr wmi;
  880. struct wmi_led_cfg_done_event evt;
  881. } __packed reply;
  882. if (led_id == WIL_LED_INVALID_ID)
  883. goto out;
  884. if (led_id > WIL_LED_MAX_ID) {
  885. wil_err(wil, "Invalid led id %d\n", led_id);
  886. rc = -EINVAL;
  887. goto out;
  888. }
  889. wil_dbg_wmi(wil,
  890. "%s led %d\n",
  891. enable ? "enabling" : "disabling", led_id);
  892. rc = wmi_call(wil, WMI_LED_CFG_CMDID, &cmd, sizeof(cmd),
  893. WMI_LED_CFG_DONE_EVENTID, &reply, sizeof(reply),
  894. 100);
  895. if (rc)
  896. goto out;
  897. if (reply.evt.status) {
  898. wil_err(wil, "led %d cfg failed with status %d\n",
  899. led_id, le32_to_cpu(reply.evt.status));
  900. rc = -EINVAL;
  901. }
  902. out:
  903. return rc;
  904. }
  905. int wmi_pcp_start(struct wil6210_priv *wil, int bi, u8 wmi_nettype,
  906. u8 chan, u8 hidden_ssid, u8 is_go)
  907. {
  908. int rc;
  909. struct wmi_pcp_start_cmd cmd = {
  910. .bcon_interval = cpu_to_le16(bi),
  911. .network_type = wmi_nettype,
  912. .disable_sec_offload = 1,
  913. .channel = chan - 1,
  914. .pcp_max_assoc_sta = max_assoc_sta,
  915. .hidden_ssid = hidden_ssid,
  916. .is_go = is_go,
  917. };
  918. struct {
  919. struct wmi_cmd_hdr wmi;
  920. struct wmi_pcp_started_event evt;
  921. } __packed reply;
  922. if (!wil->privacy)
  923. cmd.disable_sec = 1;
  924. if ((cmd.pcp_max_assoc_sta > WIL6210_MAX_CID) ||
  925. (cmd.pcp_max_assoc_sta <= 0)) {
  926. wil_info(wil,
  927. "Requested connection limit %u, valid values are 1 - %d. Setting to %d\n",
  928. max_assoc_sta, WIL6210_MAX_CID, WIL6210_MAX_CID);
  929. cmd.pcp_max_assoc_sta = WIL6210_MAX_CID;
  930. }
  931. /*
  932. * Processing time may be huge, in case of secure AP it takes about
  933. * 3500ms for FW to start AP
  934. */
  935. rc = wmi_call(wil, WMI_PCP_START_CMDID, &cmd, sizeof(cmd),
  936. WMI_PCP_STARTED_EVENTID, &reply, sizeof(reply), 5000);
  937. if (rc)
  938. return rc;
  939. if (reply.evt.status != WMI_FW_STATUS_SUCCESS)
  940. rc = -EINVAL;
  941. if (wmi_nettype != WMI_NETTYPE_P2P)
  942. /* Don't fail due to error in the led configuration */
  943. wmi_led_cfg(wil, true);
  944. return rc;
  945. }
  946. int wmi_pcp_stop(struct wil6210_priv *wil)
  947. {
  948. int rc;
  949. rc = wmi_led_cfg(wil, false);
  950. if (rc)
  951. return rc;
  952. return wmi_call(wil, WMI_PCP_STOP_CMDID, NULL, 0,
  953. WMI_PCP_STOPPED_EVENTID, NULL, 0, 20);
  954. }
  955. int wmi_set_ssid(struct wil6210_priv *wil, u8 ssid_len, const void *ssid)
  956. {
  957. struct wmi_set_ssid_cmd cmd = {
  958. .ssid_len = cpu_to_le32(ssid_len),
  959. };
  960. if (ssid_len > sizeof(cmd.ssid))
  961. return -EINVAL;
  962. memcpy(cmd.ssid, ssid, ssid_len);
  963. return wmi_send(wil, WMI_SET_SSID_CMDID, &cmd, sizeof(cmd));
  964. }
  965. int wmi_get_ssid(struct wil6210_priv *wil, u8 *ssid_len, void *ssid)
  966. {
  967. int rc;
  968. struct {
  969. struct wmi_cmd_hdr wmi;
  970. struct wmi_set_ssid_cmd cmd;
  971. } __packed reply;
  972. int len; /* reply.cmd.ssid_len in CPU order */
  973. rc = wmi_call(wil, WMI_GET_SSID_CMDID, NULL, 0, WMI_GET_SSID_EVENTID,
  974. &reply, sizeof(reply), 20);
  975. if (rc)
  976. return rc;
  977. len = le32_to_cpu(reply.cmd.ssid_len);
  978. if (len > sizeof(reply.cmd.ssid))
  979. return -EINVAL;
  980. *ssid_len = len;
  981. memcpy(ssid, reply.cmd.ssid, len);
  982. return 0;
  983. }
  984. int wmi_set_channel(struct wil6210_priv *wil, int channel)
  985. {
  986. struct wmi_set_pcp_channel_cmd cmd = {
  987. .channel = channel - 1,
  988. };
  989. return wmi_send(wil, WMI_SET_PCP_CHANNEL_CMDID, &cmd, sizeof(cmd));
  990. }
  991. int wmi_get_channel(struct wil6210_priv *wil, int *channel)
  992. {
  993. int rc;
  994. struct {
  995. struct wmi_cmd_hdr wmi;
  996. struct wmi_set_pcp_channel_cmd cmd;
  997. } __packed reply;
  998. rc = wmi_call(wil, WMI_GET_PCP_CHANNEL_CMDID, NULL, 0,
  999. WMI_GET_PCP_CHANNEL_EVENTID, &reply, sizeof(reply), 20);
  1000. if (rc)
  1001. return rc;
  1002. if (reply.cmd.channel > 3)
  1003. return -EINVAL;
  1004. *channel = reply.cmd.channel + 1;
  1005. return 0;
  1006. }
  1007. int wmi_p2p_cfg(struct wil6210_priv *wil, int channel, int bi)
  1008. {
  1009. int rc;
  1010. struct wmi_p2p_cfg_cmd cmd = {
  1011. .discovery_mode = WMI_DISCOVERY_MODE_PEER2PEER,
  1012. .bcon_interval = cpu_to_le16(bi),
  1013. .channel = channel - 1,
  1014. };
  1015. struct {
  1016. struct wmi_cmd_hdr wmi;
  1017. struct wmi_p2p_cfg_done_event evt;
  1018. } __packed reply;
  1019. wil_dbg_wmi(wil, "sending WMI_P2P_CFG_CMDID\n");
  1020. rc = wmi_call(wil, WMI_P2P_CFG_CMDID, &cmd, sizeof(cmd),
  1021. WMI_P2P_CFG_DONE_EVENTID, &reply, sizeof(reply), 300);
  1022. if (!rc && reply.evt.status != WMI_FW_STATUS_SUCCESS) {
  1023. wil_err(wil, "P2P_CFG failed. status %d\n", reply.evt.status);
  1024. rc = -EINVAL;
  1025. }
  1026. return rc;
  1027. }
  1028. int wmi_start_listen(struct wil6210_priv *wil)
  1029. {
  1030. int rc;
  1031. struct {
  1032. struct wmi_cmd_hdr wmi;
  1033. struct wmi_listen_started_event evt;
  1034. } __packed reply;
  1035. wil_dbg_wmi(wil, "sending WMI_START_LISTEN_CMDID\n");
  1036. rc = wmi_call(wil, WMI_START_LISTEN_CMDID, NULL, 0,
  1037. WMI_LISTEN_STARTED_EVENTID, &reply, sizeof(reply), 300);
  1038. if (!rc && reply.evt.status != WMI_FW_STATUS_SUCCESS) {
  1039. wil_err(wil, "device failed to start listen. status %d\n",
  1040. reply.evt.status);
  1041. rc = -EINVAL;
  1042. }
  1043. return rc;
  1044. }
  1045. int wmi_start_search(struct wil6210_priv *wil)
  1046. {
  1047. int rc;
  1048. struct {
  1049. struct wmi_cmd_hdr wmi;
  1050. struct wmi_search_started_event evt;
  1051. } __packed reply;
  1052. wil_dbg_wmi(wil, "sending WMI_START_SEARCH_CMDID\n");
  1053. rc = wmi_call(wil, WMI_START_SEARCH_CMDID, NULL, 0,
  1054. WMI_SEARCH_STARTED_EVENTID, &reply, sizeof(reply), 300);
  1055. if (!rc && reply.evt.status != WMI_FW_STATUS_SUCCESS) {
  1056. wil_err(wil, "device failed to start search. status %d\n",
  1057. reply.evt.status);
  1058. rc = -EINVAL;
  1059. }
  1060. return rc;
  1061. }
  1062. int wmi_stop_discovery(struct wil6210_priv *wil)
  1063. {
  1064. int rc;
  1065. wil_dbg_wmi(wil, "sending WMI_DISCOVERY_STOP_CMDID\n");
  1066. rc = wmi_call(wil, WMI_DISCOVERY_STOP_CMDID, NULL, 0,
  1067. WMI_DISCOVERY_STOPPED_EVENTID, NULL, 0, 100);
  1068. if (rc)
  1069. wil_err(wil, "Failed to stop discovery\n");
  1070. return rc;
  1071. }
  1072. int wmi_del_cipher_key(struct wil6210_priv *wil, u8 key_index,
  1073. const void *mac_addr, int key_usage)
  1074. {
  1075. struct wmi_delete_cipher_key_cmd cmd = {
  1076. .key_index = key_index,
  1077. };
  1078. if (mac_addr)
  1079. memcpy(cmd.mac, mac_addr, WMI_MAC_LEN);
  1080. return wmi_send(wil, WMI_DELETE_CIPHER_KEY_CMDID, &cmd, sizeof(cmd));
  1081. }
  1082. int wmi_add_cipher_key(struct wil6210_priv *wil, u8 key_index,
  1083. const void *mac_addr, int key_len, const void *key,
  1084. int key_usage)
  1085. {
  1086. struct wmi_add_cipher_key_cmd cmd = {
  1087. .key_index = key_index,
  1088. .key_usage = key_usage,
  1089. .key_len = key_len,
  1090. };
  1091. if (!key || (key_len > sizeof(cmd.key)))
  1092. return -EINVAL;
  1093. memcpy(cmd.key, key, key_len);
  1094. if (mac_addr)
  1095. memcpy(cmd.mac, mac_addr, WMI_MAC_LEN);
  1096. return wmi_send(wil, WMI_ADD_CIPHER_KEY_CMDID, &cmd, sizeof(cmd));
  1097. }
  1098. int wmi_set_ie(struct wil6210_priv *wil, u8 type, u16 ie_len, const void *ie)
  1099. {
  1100. static const char *const names[] = {
  1101. [WMI_FRAME_BEACON] = "BEACON",
  1102. [WMI_FRAME_PROBE_REQ] = "PROBE_REQ",
  1103. [WMI_FRAME_PROBE_RESP] = "WMI_FRAME_PROBE_RESP",
  1104. [WMI_FRAME_ASSOC_REQ] = "WMI_FRAME_ASSOC_REQ",
  1105. [WMI_FRAME_ASSOC_RESP] = "WMI_FRAME_ASSOC_RESP",
  1106. };
  1107. int rc;
  1108. u16 len = sizeof(struct wmi_set_appie_cmd) + ie_len;
  1109. struct wmi_set_appie_cmd *cmd = kzalloc(len, GFP_KERNEL);
  1110. if (!cmd) {
  1111. rc = -ENOMEM;
  1112. goto out;
  1113. }
  1114. if (!ie)
  1115. ie_len = 0;
  1116. cmd->mgmt_frm_type = type;
  1117. /* BUG: FW API define ieLen as u8. Will fix FW */
  1118. cmd->ie_len = cpu_to_le16(ie_len);
  1119. memcpy(cmd->ie_info, ie, ie_len);
  1120. rc = wmi_send(wil, WMI_SET_APPIE_CMDID, cmd, len);
  1121. kfree(cmd);
  1122. out:
  1123. if (rc) {
  1124. const char *name = type < ARRAY_SIZE(names) ?
  1125. names[type] : "??";
  1126. wil_err(wil, "set_ie(%d %s) failed : %d\n", type, name, rc);
  1127. }
  1128. return rc;
  1129. }
  1130. /**
  1131. * wmi_rxon - turn radio on/off
  1132. * @on: turn on if true, off otherwise
  1133. *
  1134. * Only switch radio. Channel should be set separately.
  1135. * No timeout for rxon - radio turned on forever unless some other call
  1136. * turns it off
  1137. */
  1138. int wmi_rxon(struct wil6210_priv *wil, bool on)
  1139. {
  1140. int rc;
  1141. struct {
  1142. struct wmi_cmd_hdr wmi;
  1143. struct wmi_listen_started_event evt;
  1144. } __packed reply;
  1145. wil_info(wil, "%s(%s)\n", __func__, on ? "on" : "off");
  1146. if (on) {
  1147. rc = wmi_call(wil, WMI_START_LISTEN_CMDID, NULL, 0,
  1148. WMI_LISTEN_STARTED_EVENTID,
  1149. &reply, sizeof(reply), 100);
  1150. if ((rc == 0) && (reply.evt.status != WMI_FW_STATUS_SUCCESS))
  1151. rc = -EINVAL;
  1152. } else {
  1153. rc = wmi_call(wil, WMI_DISCOVERY_STOP_CMDID, NULL, 0,
  1154. WMI_DISCOVERY_STOPPED_EVENTID, NULL, 0, 20);
  1155. }
  1156. return rc;
  1157. }
  1158. int wmi_rx_chain_add(struct wil6210_priv *wil, struct vring *vring)
  1159. {
  1160. struct wireless_dev *wdev = wil->wdev;
  1161. struct net_device *ndev = wil_to_ndev(wil);
  1162. struct wmi_cfg_rx_chain_cmd cmd = {
  1163. .action = WMI_RX_CHAIN_ADD,
  1164. .rx_sw_ring = {
  1165. .max_mpdu_size = cpu_to_le16(wil_mtu2macbuf(mtu_max)),
  1166. .ring_mem_base = cpu_to_le64(vring->pa),
  1167. .ring_size = cpu_to_le16(vring->size),
  1168. },
  1169. .mid = 0, /* TODO - what is it? */
  1170. .decap_trans_type = WMI_DECAP_TYPE_802_3,
  1171. .reorder_type = WMI_RX_SW_REORDER,
  1172. .host_thrsh = cpu_to_le16(rx_ring_overflow_thrsh),
  1173. };
  1174. struct {
  1175. struct wmi_cmd_hdr wmi;
  1176. struct wmi_cfg_rx_chain_done_event evt;
  1177. } __packed evt;
  1178. int rc;
  1179. if (wdev->iftype == NL80211_IFTYPE_MONITOR) {
  1180. struct ieee80211_channel *ch = wdev->preset_chandef.chan;
  1181. cmd.sniffer_cfg.mode = cpu_to_le32(WMI_SNIFFER_ON);
  1182. if (ch)
  1183. cmd.sniffer_cfg.channel = ch->hw_value - 1;
  1184. cmd.sniffer_cfg.phy_info_mode =
  1185. cpu_to_le32(ndev->type == ARPHRD_IEEE80211_RADIOTAP);
  1186. cmd.sniffer_cfg.phy_support =
  1187. cpu_to_le32((wil->monitor_flags & MONITOR_FLAG_CONTROL)
  1188. ? WMI_SNIFFER_CP : WMI_SNIFFER_BOTH_PHYS);
  1189. } else {
  1190. /* Initialize offload (in non-sniffer mode).
  1191. * Linux IP stack always calculates IP checksum
  1192. * HW always calculate TCP/UDP checksum
  1193. */
  1194. cmd.l3_l4_ctrl |= (1 << L3_L4_CTRL_TCPIP_CHECKSUM_EN_POS);
  1195. }
  1196. if (rx_align_2)
  1197. cmd.l2_802_3_offload_ctrl |=
  1198. L2_802_3_OFFLOAD_CTRL_SNAP_KEEP_MSK;
  1199. /* typical time for secure PCP is 840ms */
  1200. rc = wmi_call(wil, WMI_CFG_RX_CHAIN_CMDID, &cmd, sizeof(cmd),
  1201. WMI_CFG_RX_CHAIN_DONE_EVENTID, &evt, sizeof(evt), 2000);
  1202. if (rc)
  1203. return rc;
  1204. vring->hwtail = le32_to_cpu(evt.evt.rx_ring_tail_ptr);
  1205. wil_dbg_misc(wil, "Rx init: status %d tail 0x%08x\n",
  1206. le32_to_cpu(evt.evt.status), vring->hwtail);
  1207. if (le32_to_cpu(evt.evt.status) != WMI_CFG_RX_CHAIN_SUCCESS)
  1208. rc = -EINVAL;
  1209. return rc;
  1210. }
  1211. int wmi_get_temperature(struct wil6210_priv *wil, u32 *t_bb, u32 *t_rf)
  1212. {
  1213. int rc;
  1214. struct wmi_temp_sense_cmd cmd = {
  1215. .measure_baseband_en = cpu_to_le32(!!t_bb),
  1216. .measure_rf_en = cpu_to_le32(!!t_rf),
  1217. .measure_mode = cpu_to_le32(TEMPERATURE_MEASURE_NOW),
  1218. };
  1219. struct {
  1220. struct wmi_cmd_hdr wmi;
  1221. struct wmi_temp_sense_done_event evt;
  1222. } __packed reply;
  1223. rc = wmi_call(wil, WMI_TEMP_SENSE_CMDID, &cmd, sizeof(cmd),
  1224. WMI_TEMP_SENSE_DONE_EVENTID, &reply, sizeof(reply), 100);
  1225. if (rc)
  1226. return rc;
  1227. if (t_bb)
  1228. *t_bb = le32_to_cpu(reply.evt.baseband_t1000);
  1229. if (t_rf)
  1230. *t_rf = le32_to_cpu(reply.evt.rf_t1000);
  1231. return 0;
  1232. }
  1233. int wmi_disconnect_sta(struct wil6210_priv *wil, const u8 *mac, u16 reason,
  1234. bool full_disconnect)
  1235. {
  1236. int rc;
  1237. u16 reason_code;
  1238. struct wmi_disconnect_sta_cmd cmd = {
  1239. .disconnect_reason = cpu_to_le16(reason),
  1240. };
  1241. struct {
  1242. struct wmi_cmd_hdr wmi;
  1243. struct wmi_disconnect_event evt;
  1244. } __packed reply;
  1245. ether_addr_copy(cmd.dst_mac, mac);
  1246. wil_dbg_wmi(wil, "%s(%pM, reason %d)\n", __func__, mac, reason);
  1247. rc = wmi_call(wil, WMI_DISCONNECT_STA_CMDID, &cmd, sizeof(cmd),
  1248. WMI_DISCONNECT_EVENTID, &reply, sizeof(reply), 1000);
  1249. /* failure to disconnect in reasonable time treated as FW error */
  1250. if (rc) {
  1251. wil_fw_error_recovery(wil);
  1252. return rc;
  1253. }
  1254. if (full_disconnect) {
  1255. /* call event handler manually after processing wmi_call,
  1256. * to avoid deadlock - disconnect event handler acquires
  1257. * wil->mutex while it is already held here
  1258. */
  1259. reason_code = le16_to_cpu(reply.evt.protocol_reason_status);
  1260. wil_dbg_wmi(wil, "Disconnect %pM reason [proto %d wmi %d]\n",
  1261. reply.evt.bssid, reason_code,
  1262. reply.evt.disconnect_reason);
  1263. wil->sinfo_gen++;
  1264. wil6210_disconnect(wil, reply.evt.bssid, reason_code, true);
  1265. }
  1266. return 0;
  1267. }
  1268. int wmi_addba(struct wil6210_priv *wil, u8 ringid, u8 size, u16 timeout)
  1269. {
  1270. struct wmi_vring_ba_en_cmd cmd = {
  1271. .ringid = ringid,
  1272. .agg_max_wsize = size,
  1273. .ba_timeout = cpu_to_le16(timeout),
  1274. .amsdu = 0,
  1275. };
  1276. wil_dbg_wmi(wil, "%s(ring %d size %d timeout %d)\n", __func__,
  1277. ringid, size, timeout);
  1278. return wmi_send(wil, WMI_VRING_BA_EN_CMDID, &cmd, sizeof(cmd));
  1279. }
  1280. int wmi_delba_tx(struct wil6210_priv *wil, u8 ringid, u16 reason)
  1281. {
  1282. struct wmi_vring_ba_dis_cmd cmd = {
  1283. .ringid = ringid,
  1284. .reason = cpu_to_le16(reason),
  1285. };
  1286. wil_dbg_wmi(wil, "%s(ring %d reason %d)\n", __func__,
  1287. ringid, reason);
  1288. return wmi_send(wil, WMI_VRING_BA_DIS_CMDID, &cmd, sizeof(cmd));
  1289. }
  1290. int wmi_delba_rx(struct wil6210_priv *wil, u8 cidxtid, u16 reason)
  1291. {
  1292. struct wmi_rcp_delba_cmd cmd = {
  1293. .cidxtid = cidxtid,
  1294. .reason = cpu_to_le16(reason),
  1295. };
  1296. wil_dbg_wmi(wil, "%s(CID %d TID %d reason %d)\n", __func__,
  1297. cidxtid & 0xf, (cidxtid >> 4) & 0xf, reason);
  1298. return wmi_send(wil, WMI_RCP_DELBA_CMDID, &cmd, sizeof(cmd));
  1299. }
  1300. int wmi_addba_rx_resp(struct wil6210_priv *wil, u8 cid, u8 tid, u8 token,
  1301. u16 status, bool amsdu, u16 agg_wsize, u16 timeout)
  1302. {
  1303. int rc;
  1304. struct wmi_rcp_addba_resp_cmd cmd = {
  1305. .cidxtid = mk_cidxtid(cid, tid),
  1306. .dialog_token = token,
  1307. .status_code = cpu_to_le16(status),
  1308. /* bit 0: A-MSDU supported
  1309. * bit 1: policy (should be 0 for us)
  1310. * bits 2..5: TID
  1311. * bits 6..15: buffer size
  1312. */
  1313. .ba_param_set = cpu_to_le16((amsdu ? 1 : 0) | (tid << 2) |
  1314. (agg_wsize << 6)),
  1315. .ba_timeout = cpu_to_le16(timeout),
  1316. };
  1317. struct {
  1318. struct wmi_cmd_hdr wmi;
  1319. struct wmi_rcp_addba_resp_sent_event evt;
  1320. } __packed reply;
  1321. wil_dbg_wmi(wil,
  1322. "ADDBA response for CID %d TID %d size %d timeout %d status %d AMSDU%s\n",
  1323. cid, tid, agg_wsize, timeout, status, amsdu ? "+" : "-");
  1324. rc = wmi_call(wil, WMI_RCP_ADDBA_RESP_CMDID, &cmd, sizeof(cmd),
  1325. WMI_RCP_ADDBA_RESP_SENT_EVENTID, &reply, sizeof(reply),
  1326. 100);
  1327. if (rc)
  1328. return rc;
  1329. if (reply.evt.status) {
  1330. wil_err(wil, "ADDBA response failed with status %d\n",
  1331. le16_to_cpu(reply.evt.status));
  1332. rc = -EINVAL;
  1333. }
  1334. return rc;
  1335. }
  1336. void wmi_event_flush(struct wil6210_priv *wil)
  1337. {
  1338. struct pending_wmi_event *evt, *t;
  1339. wil_dbg_wmi(wil, "%s()\n", __func__);
  1340. list_for_each_entry_safe(evt, t, &wil->pending_wmi_ev, list) {
  1341. list_del(&evt->list);
  1342. kfree(evt);
  1343. }
  1344. }
  1345. static bool wmi_evt_call_handler(struct wil6210_priv *wil, int id,
  1346. void *d, int len)
  1347. {
  1348. uint i;
  1349. for (i = 0; i < ARRAY_SIZE(wmi_evt_handlers); i++) {
  1350. if (wmi_evt_handlers[i].eventid == id) {
  1351. wmi_evt_handlers[i].handler(wil, id, d, len);
  1352. return true;
  1353. }
  1354. }
  1355. return false;
  1356. }
  1357. static void wmi_event_handle(struct wil6210_priv *wil,
  1358. struct wil6210_mbox_hdr *hdr)
  1359. {
  1360. u16 len = le16_to_cpu(hdr->len);
  1361. if ((hdr->type == WIL_MBOX_HDR_TYPE_WMI) &&
  1362. (len >= sizeof(struct wmi_cmd_hdr))) {
  1363. struct wmi_cmd_hdr *wmi = (void *)(&hdr[1]);
  1364. void *evt_data = (void *)(&wmi[1]);
  1365. u16 id = le16_to_cpu(wmi->command_id);
  1366. wil_dbg_wmi(wil, "Handle WMI 0x%04x (reply_id 0x%04x)\n",
  1367. id, wil->reply_id);
  1368. /* check if someone waits for this event */
  1369. if (wil->reply_id && wil->reply_id == id) {
  1370. WARN_ON(wil->reply_buf);
  1371. wmi_evt_call_handler(wil, id, evt_data,
  1372. len - sizeof(*wmi));
  1373. wil_dbg_wmi(wil, "%s: Complete WMI 0x%04x\n",
  1374. __func__, id);
  1375. complete(&wil->wmi_call);
  1376. return;
  1377. }
  1378. /* unsolicited event */
  1379. /* search for handler */
  1380. if (!wmi_evt_call_handler(wil, id, evt_data,
  1381. len - sizeof(*wmi))) {
  1382. wil_info(wil, "Unhandled event 0x%04x\n", id);
  1383. }
  1384. } else {
  1385. wil_err(wil, "Unknown event type\n");
  1386. print_hex_dump(KERN_ERR, "evt?? ", DUMP_PREFIX_OFFSET, 16, 1,
  1387. hdr, sizeof(*hdr) + len, true);
  1388. }
  1389. }
  1390. /*
  1391. * Retrieve next WMI event from the pending list
  1392. */
  1393. static struct list_head *next_wmi_ev(struct wil6210_priv *wil)
  1394. {
  1395. ulong flags;
  1396. struct list_head *ret = NULL;
  1397. spin_lock_irqsave(&wil->wmi_ev_lock, flags);
  1398. if (!list_empty(&wil->pending_wmi_ev)) {
  1399. ret = wil->pending_wmi_ev.next;
  1400. list_del(ret);
  1401. }
  1402. spin_unlock_irqrestore(&wil->wmi_ev_lock, flags);
  1403. return ret;
  1404. }
  1405. /*
  1406. * Handler for the WMI events
  1407. */
  1408. void wmi_event_worker(struct work_struct *work)
  1409. {
  1410. struct wil6210_priv *wil = container_of(work, struct wil6210_priv,
  1411. wmi_event_worker);
  1412. struct pending_wmi_event *evt;
  1413. struct list_head *lh;
  1414. wil_dbg_wmi(wil, "Start %s\n", __func__);
  1415. while ((lh = next_wmi_ev(wil)) != NULL) {
  1416. evt = list_entry(lh, struct pending_wmi_event, list);
  1417. wmi_event_handle(wil, &evt->event.hdr);
  1418. kfree(evt);
  1419. }
  1420. wil_dbg_wmi(wil, "Finished %s\n", __func__);
  1421. }