ravb_main.c 54 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182
  1. /* Renesas Ethernet AVB device driver
  2. *
  3. * Copyright (C) 2014-2015 Renesas Electronics Corporation
  4. * Copyright (C) 2015 Renesas Solutions Corp.
  5. * Copyright (C) 2015-2016 Cogent Embedded, Inc. <source@cogentembedded.com>
  6. *
  7. * Based on the SuperH Ethernet driver
  8. *
  9. * This program is free software; you can redistribute it and/or modify it
  10. * under the terms and conditions of the GNU General Public License version 2,
  11. * as published by the Free Software Foundation.
  12. */
  13. #include <linux/cache.h>
  14. #include <linux/clk.h>
  15. #include <linux/delay.h>
  16. #include <linux/dma-mapping.h>
  17. #include <linux/err.h>
  18. #include <linux/etherdevice.h>
  19. #include <linux/ethtool.h>
  20. #include <linux/if_vlan.h>
  21. #include <linux/kernel.h>
  22. #include <linux/list.h>
  23. #include <linux/module.h>
  24. #include <linux/net_tstamp.h>
  25. #include <linux/of.h>
  26. #include <linux/of_device.h>
  27. #include <linux/of_irq.h>
  28. #include <linux/of_mdio.h>
  29. #include <linux/of_net.h>
  30. #include <linux/pm_runtime.h>
  31. #include <linux/slab.h>
  32. #include <linux/spinlock.h>
  33. #include <asm/div64.h>
  34. #include "ravb.h"
  35. #define RAVB_DEF_MSG_ENABLE \
  36. (NETIF_MSG_LINK | \
  37. NETIF_MSG_TIMER | \
  38. NETIF_MSG_RX_ERR | \
  39. NETIF_MSG_TX_ERR)
  40. static const char *ravb_rx_irqs[NUM_RX_QUEUE] = {
  41. "ch0", /* RAVB_BE */
  42. "ch1", /* RAVB_NC */
  43. };
  44. static const char *ravb_tx_irqs[NUM_TX_QUEUE] = {
  45. "ch18", /* RAVB_BE */
  46. "ch19", /* RAVB_NC */
  47. };
  48. void ravb_modify(struct net_device *ndev, enum ravb_reg reg, u32 clear,
  49. u32 set)
  50. {
  51. ravb_write(ndev, (ravb_read(ndev, reg) & ~clear) | set, reg);
  52. }
  53. int ravb_wait(struct net_device *ndev, enum ravb_reg reg, u32 mask, u32 value)
  54. {
  55. int i;
  56. for (i = 0; i < 10000; i++) {
  57. if ((ravb_read(ndev, reg) & mask) == value)
  58. return 0;
  59. udelay(10);
  60. }
  61. return -ETIMEDOUT;
  62. }
  63. static int ravb_config(struct net_device *ndev)
  64. {
  65. int error;
  66. /* Set config mode */
  67. ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
  68. /* Check if the operating mode is changed to the config mode */
  69. error = ravb_wait(ndev, CSR, CSR_OPS, CSR_OPS_CONFIG);
  70. if (error)
  71. netdev_err(ndev, "failed to switch device to config mode\n");
  72. return error;
  73. }
  74. static void ravb_set_duplex(struct net_device *ndev)
  75. {
  76. struct ravb_private *priv = netdev_priv(ndev);
  77. ravb_modify(ndev, ECMR, ECMR_DM, priv->duplex ? ECMR_DM : 0);
  78. }
  79. static void ravb_set_rate(struct net_device *ndev)
  80. {
  81. struct ravb_private *priv = netdev_priv(ndev);
  82. switch (priv->speed) {
  83. case 100: /* 100BASE */
  84. ravb_write(ndev, GECMR_SPEED_100, GECMR);
  85. break;
  86. case 1000: /* 1000BASE */
  87. ravb_write(ndev, GECMR_SPEED_1000, GECMR);
  88. break;
  89. }
  90. }
  91. static void ravb_set_buffer_align(struct sk_buff *skb)
  92. {
  93. u32 reserve = (unsigned long)skb->data & (RAVB_ALIGN - 1);
  94. if (reserve)
  95. skb_reserve(skb, RAVB_ALIGN - reserve);
  96. }
  97. /* Get MAC address from the MAC address registers
  98. *
  99. * Ethernet AVB device doesn't have ROM for MAC address.
  100. * This function gets the MAC address that was used by a bootloader.
  101. */
  102. static void ravb_read_mac_address(struct net_device *ndev, const u8 *mac)
  103. {
  104. if (mac) {
  105. ether_addr_copy(ndev->dev_addr, mac);
  106. } else {
  107. u32 mahr = ravb_read(ndev, MAHR);
  108. u32 malr = ravb_read(ndev, MALR);
  109. ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
  110. ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
  111. ndev->dev_addr[2] = (mahr >> 8) & 0xFF;
  112. ndev->dev_addr[3] = (mahr >> 0) & 0xFF;
  113. ndev->dev_addr[4] = (malr >> 8) & 0xFF;
  114. ndev->dev_addr[5] = (malr >> 0) & 0xFF;
  115. }
  116. }
  117. static void ravb_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
  118. {
  119. struct ravb_private *priv = container_of(ctrl, struct ravb_private,
  120. mdiobb);
  121. ravb_modify(priv->ndev, PIR, mask, set ? mask : 0);
  122. }
  123. /* MDC pin control */
  124. static void ravb_set_mdc(struct mdiobb_ctrl *ctrl, int level)
  125. {
  126. ravb_mdio_ctrl(ctrl, PIR_MDC, level);
  127. }
  128. /* Data I/O pin control */
  129. static void ravb_set_mdio_dir(struct mdiobb_ctrl *ctrl, int output)
  130. {
  131. ravb_mdio_ctrl(ctrl, PIR_MMD, output);
  132. }
  133. /* Set data bit */
  134. static void ravb_set_mdio_data(struct mdiobb_ctrl *ctrl, int value)
  135. {
  136. ravb_mdio_ctrl(ctrl, PIR_MDO, value);
  137. }
  138. /* Get data bit */
  139. static int ravb_get_mdio_data(struct mdiobb_ctrl *ctrl)
  140. {
  141. struct ravb_private *priv = container_of(ctrl, struct ravb_private,
  142. mdiobb);
  143. return (ravb_read(priv->ndev, PIR) & PIR_MDI) != 0;
  144. }
  145. /* MDIO bus control struct */
  146. static struct mdiobb_ops bb_ops = {
  147. .owner = THIS_MODULE,
  148. .set_mdc = ravb_set_mdc,
  149. .set_mdio_dir = ravb_set_mdio_dir,
  150. .set_mdio_data = ravb_set_mdio_data,
  151. .get_mdio_data = ravb_get_mdio_data,
  152. };
  153. /* Free skb's and DMA buffers for Ethernet AVB */
  154. static void ravb_ring_free(struct net_device *ndev, int q)
  155. {
  156. struct ravb_private *priv = netdev_priv(ndev);
  157. int ring_size;
  158. int i;
  159. /* Free RX skb ringbuffer */
  160. if (priv->rx_skb[q]) {
  161. for (i = 0; i < priv->num_rx_ring[q]; i++)
  162. dev_kfree_skb(priv->rx_skb[q][i]);
  163. }
  164. kfree(priv->rx_skb[q]);
  165. priv->rx_skb[q] = NULL;
  166. /* Free TX skb ringbuffer */
  167. if (priv->tx_skb[q]) {
  168. for (i = 0; i < priv->num_tx_ring[q]; i++)
  169. dev_kfree_skb(priv->tx_skb[q][i]);
  170. }
  171. kfree(priv->tx_skb[q]);
  172. priv->tx_skb[q] = NULL;
  173. /* Free aligned TX buffers */
  174. kfree(priv->tx_align[q]);
  175. priv->tx_align[q] = NULL;
  176. if (priv->rx_ring[q]) {
  177. ring_size = sizeof(struct ravb_ex_rx_desc) *
  178. (priv->num_rx_ring[q] + 1);
  179. dma_free_coherent(ndev->dev.parent, ring_size, priv->rx_ring[q],
  180. priv->rx_desc_dma[q]);
  181. priv->rx_ring[q] = NULL;
  182. }
  183. if (priv->tx_ring[q]) {
  184. ring_size = sizeof(struct ravb_tx_desc) *
  185. (priv->num_tx_ring[q] * NUM_TX_DESC + 1);
  186. dma_free_coherent(ndev->dev.parent, ring_size, priv->tx_ring[q],
  187. priv->tx_desc_dma[q]);
  188. priv->tx_ring[q] = NULL;
  189. }
  190. }
  191. /* Format skb and descriptor buffer for Ethernet AVB */
  192. static void ravb_ring_format(struct net_device *ndev, int q)
  193. {
  194. struct ravb_private *priv = netdev_priv(ndev);
  195. struct ravb_ex_rx_desc *rx_desc;
  196. struct ravb_tx_desc *tx_desc;
  197. struct ravb_desc *desc;
  198. int rx_ring_size = sizeof(*rx_desc) * priv->num_rx_ring[q];
  199. int tx_ring_size = sizeof(*tx_desc) * priv->num_tx_ring[q] *
  200. NUM_TX_DESC;
  201. dma_addr_t dma_addr;
  202. int i;
  203. priv->cur_rx[q] = 0;
  204. priv->cur_tx[q] = 0;
  205. priv->dirty_rx[q] = 0;
  206. priv->dirty_tx[q] = 0;
  207. memset(priv->rx_ring[q], 0, rx_ring_size);
  208. /* Build RX ring buffer */
  209. for (i = 0; i < priv->num_rx_ring[q]; i++) {
  210. /* RX descriptor */
  211. rx_desc = &priv->rx_ring[q][i];
  212. rx_desc->ds_cc = cpu_to_le16(PKT_BUF_SZ);
  213. dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data,
  214. PKT_BUF_SZ,
  215. DMA_FROM_DEVICE);
  216. /* We just set the data size to 0 for a failed mapping which
  217. * should prevent DMA from happening...
  218. */
  219. if (dma_mapping_error(ndev->dev.parent, dma_addr))
  220. rx_desc->ds_cc = cpu_to_le16(0);
  221. rx_desc->dptr = cpu_to_le32(dma_addr);
  222. rx_desc->die_dt = DT_FEMPTY;
  223. }
  224. rx_desc = &priv->rx_ring[q][i];
  225. rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
  226. rx_desc->die_dt = DT_LINKFIX; /* type */
  227. memset(priv->tx_ring[q], 0, tx_ring_size);
  228. /* Build TX ring buffer */
  229. for (i = 0, tx_desc = priv->tx_ring[q]; i < priv->num_tx_ring[q];
  230. i++, tx_desc++) {
  231. tx_desc->die_dt = DT_EEMPTY;
  232. tx_desc++;
  233. tx_desc->die_dt = DT_EEMPTY;
  234. }
  235. tx_desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
  236. tx_desc->die_dt = DT_LINKFIX; /* type */
  237. /* RX descriptor base address for best effort */
  238. desc = &priv->desc_bat[RX_QUEUE_OFFSET + q];
  239. desc->die_dt = DT_LINKFIX; /* type */
  240. desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
  241. /* TX descriptor base address for best effort */
  242. desc = &priv->desc_bat[q];
  243. desc->die_dt = DT_LINKFIX; /* type */
  244. desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
  245. }
  246. /* Init skb and descriptor buffer for Ethernet AVB */
  247. static int ravb_ring_init(struct net_device *ndev, int q)
  248. {
  249. struct ravb_private *priv = netdev_priv(ndev);
  250. struct sk_buff *skb;
  251. int ring_size;
  252. int i;
  253. /* Allocate RX and TX skb rings */
  254. priv->rx_skb[q] = kcalloc(priv->num_rx_ring[q],
  255. sizeof(*priv->rx_skb[q]), GFP_KERNEL);
  256. priv->tx_skb[q] = kcalloc(priv->num_tx_ring[q],
  257. sizeof(*priv->tx_skb[q]), GFP_KERNEL);
  258. if (!priv->rx_skb[q] || !priv->tx_skb[q])
  259. goto error;
  260. for (i = 0; i < priv->num_rx_ring[q]; i++) {
  261. skb = netdev_alloc_skb(ndev, PKT_BUF_SZ + RAVB_ALIGN - 1);
  262. if (!skb)
  263. goto error;
  264. ravb_set_buffer_align(skb);
  265. priv->rx_skb[q][i] = skb;
  266. }
  267. /* Allocate rings for the aligned buffers */
  268. priv->tx_align[q] = kmalloc(DPTR_ALIGN * priv->num_tx_ring[q] +
  269. DPTR_ALIGN - 1, GFP_KERNEL);
  270. if (!priv->tx_align[q])
  271. goto error;
  272. /* Allocate all RX descriptors. */
  273. ring_size = sizeof(struct ravb_ex_rx_desc) * (priv->num_rx_ring[q] + 1);
  274. priv->rx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
  275. &priv->rx_desc_dma[q],
  276. GFP_KERNEL);
  277. if (!priv->rx_ring[q])
  278. goto error;
  279. priv->dirty_rx[q] = 0;
  280. /* Allocate all TX descriptors. */
  281. ring_size = sizeof(struct ravb_tx_desc) *
  282. (priv->num_tx_ring[q] * NUM_TX_DESC + 1);
  283. priv->tx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
  284. &priv->tx_desc_dma[q],
  285. GFP_KERNEL);
  286. if (!priv->tx_ring[q])
  287. goto error;
  288. return 0;
  289. error:
  290. ravb_ring_free(ndev, q);
  291. return -ENOMEM;
  292. }
  293. /* E-MAC init function */
  294. static void ravb_emac_init(struct net_device *ndev)
  295. {
  296. struct ravb_private *priv = netdev_priv(ndev);
  297. /* Receive frame limit set register */
  298. ravb_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, RFLR);
  299. /* PAUSE prohibition */
  300. ravb_write(ndev, ECMR_ZPF | (priv->duplex ? ECMR_DM : 0) |
  301. ECMR_TE | ECMR_RE, ECMR);
  302. ravb_set_rate(ndev);
  303. /* Set MAC address */
  304. ravb_write(ndev,
  305. (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
  306. (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
  307. ravb_write(ndev,
  308. (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
  309. /* E-MAC status register clear */
  310. ravb_write(ndev, ECSR_ICD | ECSR_MPD, ECSR);
  311. /* E-MAC interrupt enable register */
  312. ravb_write(ndev, ECSIPR_ICDIP | ECSIPR_MPDIP | ECSIPR_LCHNGIP, ECSIPR);
  313. }
  314. /* Device init function for Ethernet AVB */
  315. static int ravb_dmac_init(struct net_device *ndev)
  316. {
  317. struct ravb_private *priv = netdev_priv(ndev);
  318. int error;
  319. /* Set CONFIG mode */
  320. error = ravb_config(ndev);
  321. if (error)
  322. return error;
  323. error = ravb_ring_init(ndev, RAVB_BE);
  324. if (error)
  325. return error;
  326. error = ravb_ring_init(ndev, RAVB_NC);
  327. if (error) {
  328. ravb_ring_free(ndev, RAVB_BE);
  329. return error;
  330. }
  331. /* Descriptor format */
  332. ravb_ring_format(ndev, RAVB_BE);
  333. ravb_ring_format(ndev, RAVB_NC);
  334. #if defined(__LITTLE_ENDIAN)
  335. ravb_modify(ndev, CCC, CCC_BOC, 0);
  336. #else
  337. ravb_modify(ndev, CCC, CCC_BOC, CCC_BOC);
  338. #endif
  339. /* Set AVB RX */
  340. ravb_write(ndev,
  341. RCR_EFFS | RCR_ENCF | RCR_ETS0 | RCR_ESF | 0x18000000, RCR);
  342. /* Set FIFO size */
  343. ravb_write(ndev, TGC_TQP_AVBMODE1 | 0x00222200, TGC);
  344. /* Timestamp enable */
  345. ravb_write(ndev, TCCR_TFEN, TCCR);
  346. /* Interrupt init: */
  347. if (priv->chip_id == RCAR_GEN3) {
  348. /* Clear DIL.DPLx */
  349. ravb_write(ndev, 0, DIL);
  350. /* Set queue specific interrupt */
  351. ravb_write(ndev, CIE_CRIE | CIE_CTIE | CIE_CL0M, CIE);
  352. }
  353. /* Frame receive */
  354. ravb_write(ndev, RIC0_FRE0 | RIC0_FRE1, RIC0);
  355. /* Disable FIFO full warning */
  356. ravb_write(ndev, 0, RIC1);
  357. /* Receive FIFO full error, descriptor empty */
  358. ravb_write(ndev, RIC2_QFE0 | RIC2_QFE1 | RIC2_RFFE, RIC2);
  359. /* Frame transmitted, timestamp FIFO updated */
  360. ravb_write(ndev, TIC_FTE0 | TIC_FTE1 | TIC_TFUE, TIC);
  361. /* Setting the control will start the AVB-DMAC process. */
  362. ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_OPERATION);
  363. return 0;
  364. }
  365. /* Free TX skb function for AVB-IP */
  366. static int ravb_tx_free(struct net_device *ndev, int q)
  367. {
  368. struct ravb_private *priv = netdev_priv(ndev);
  369. struct net_device_stats *stats = &priv->stats[q];
  370. struct ravb_tx_desc *desc;
  371. int free_num = 0;
  372. int entry;
  373. u32 size;
  374. for (; priv->cur_tx[q] - priv->dirty_tx[q] > 0; priv->dirty_tx[q]++) {
  375. entry = priv->dirty_tx[q] % (priv->num_tx_ring[q] *
  376. NUM_TX_DESC);
  377. desc = &priv->tx_ring[q][entry];
  378. if (desc->die_dt != DT_FEMPTY)
  379. break;
  380. /* Descriptor type must be checked before all other reads */
  381. dma_rmb();
  382. size = le16_to_cpu(desc->ds_tagl) & TX_DS;
  383. /* Free the original skb. */
  384. if (priv->tx_skb[q][entry / NUM_TX_DESC]) {
  385. dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
  386. size, DMA_TO_DEVICE);
  387. /* Last packet descriptor? */
  388. if (entry % NUM_TX_DESC == NUM_TX_DESC - 1) {
  389. entry /= NUM_TX_DESC;
  390. dev_kfree_skb_any(priv->tx_skb[q][entry]);
  391. priv->tx_skb[q][entry] = NULL;
  392. stats->tx_packets++;
  393. }
  394. free_num++;
  395. }
  396. stats->tx_bytes += size;
  397. desc->die_dt = DT_EEMPTY;
  398. }
  399. return free_num;
  400. }
  401. static void ravb_get_tx_tstamp(struct net_device *ndev)
  402. {
  403. struct ravb_private *priv = netdev_priv(ndev);
  404. struct ravb_tstamp_skb *ts_skb, *ts_skb2;
  405. struct skb_shared_hwtstamps shhwtstamps;
  406. struct sk_buff *skb;
  407. struct timespec64 ts;
  408. u16 tag, tfa_tag;
  409. int count;
  410. u32 tfa2;
  411. count = (ravb_read(ndev, TSR) & TSR_TFFL) >> 8;
  412. while (count--) {
  413. tfa2 = ravb_read(ndev, TFA2);
  414. tfa_tag = (tfa2 & TFA2_TST) >> 16;
  415. ts.tv_nsec = (u64)ravb_read(ndev, TFA0);
  416. ts.tv_sec = ((u64)(tfa2 & TFA2_TSV) << 32) |
  417. ravb_read(ndev, TFA1);
  418. memset(&shhwtstamps, 0, sizeof(shhwtstamps));
  419. shhwtstamps.hwtstamp = timespec64_to_ktime(ts);
  420. list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list,
  421. list) {
  422. skb = ts_skb->skb;
  423. tag = ts_skb->tag;
  424. list_del(&ts_skb->list);
  425. kfree(ts_skb);
  426. if (tag == tfa_tag) {
  427. skb_tstamp_tx(skb, &shhwtstamps);
  428. break;
  429. }
  430. }
  431. ravb_modify(ndev, TCCR, TCCR_TFR, TCCR_TFR);
  432. }
  433. }
  434. /* Packet receive function for Ethernet AVB */
  435. static bool ravb_rx(struct net_device *ndev, int *quota, int q)
  436. {
  437. struct ravb_private *priv = netdev_priv(ndev);
  438. int entry = priv->cur_rx[q] % priv->num_rx_ring[q];
  439. int boguscnt = (priv->dirty_rx[q] + priv->num_rx_ring[q]) -
  440. priv->cur_rx[q];
  441. struct net_device_stats *stats = &priv->stats[q];
  442. struct ravb_ex_rx_desc *desc;
  443. struct sk_buff *skb;
  444. dma_addr_t dma_addr;
  445. struct timespec64 ts;
  446. u8 desc_status;
  447. u16 pkt_len;
  448. int limit;
  449. boguscnt = min(boguscnt, *quota);
  450. limit = boguscnt;
  451. desc = &priv->rx_ring[q][entry];
  452. while (desc->die_dt != DT_FEMPTY) {
  453. /* Descriptor type must be checked before all other reads */
  454. dma_rmb();
  455. desc_status = desc->msc;
  456. pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
  457. if (--boguscnt < 0)
  458. break;
  459. /* We use 0-byte descriptors to mark the DMA mapping errors */
  460. if (!pkt_len)
  461. continue;
  462. if (desc_status & MSC_MC)
  463. stats->multicast++;
  464. if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF |
  465. MSC_CEEF)) {
  466. stats->rx_errors++;
  467. if (desc_status & MSC_CRC)
  468. stats->rx_crc_errors++;
  469. if (desc_status & MSC_RFE)
  470. stats->rx_frame_errors++;
  471. if (desc_status & (MSC_RTLF | MSC_RTSF))
  472. stats->rx_length_errors++;
  473. if (desc_status & MSC_CEEF)
  474. stats->rx_missed_errors++;
  475. } else {
  476. u32 get_ts = priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE;
  477. skb = priv->rx_skb[q][entry];
  478. priv->rx_skb[q][entry] = NULL;
  479. dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
  480. PKT_BUF_SZ,
  481. DMA_FROM_DEVICE);
  482. get_ts &= (q == RAVB_NC) ?
  483. RAVB_RXTSTAMP_TYPE_V2_L2_EVENT :
  484. ~RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
  485. if (get_ts) {
  486. struct skb_shared_hwtstamps *shhwtstamps;
  487. shhwtstamps = skb_hwtstamps(skb);
  488. memset(shhwtstamps, 0, sizeof(*shhwtstamps));
  489. ts.tv_sec = ((u64) le16_to_cpu(desc->ts_sh) <<
  490. 32) | le32_to_cpu(desc->ts_sl);
  491. ts.tv_nsec = le32_to_cpu(desc->ts_n);
  492. shhwtstamps->hwtstamp = timespec64_to_ktime(ts);
  493. }
  494. skb_put(skb, pkt_len);
  495. skb->protocol = eth_type_trans(skb, ndev);
  496. napi_gro_receive(&priv->napi[q], skb);
  497. stats->rx_packets++;
  498. stats->rx_bytes += pkt_len;
  499. }
  500. entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q];
  501. desc = &priv->rx_ring[q][entry];
  502. }
  503. /* Refill the RX ring buffers. */
  504. for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
  505. entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
  506. desc = &priv->rx_ring[q][entry];
  507. desc->ds_cc = cpu_to_le16(PKT_BUF_SZ);
  508. if (!priv->rx_skb[q][entry]) {
  509. skb = netdev_alloc_skb(ndev,
  510. PKT_BUF_SZ + RAVB_ALIGN - 1);
  511. if (!skb)
  512. break; /* Better luck next round. */
  513. ravb_set_buffer_align(skb);
  514. dma_addr = dma_map_single(ndev->dev.parent, skb->data,
  515. le16_to_cpu(desc->ds_cc),
  516. DMA_FROM_DEVICE);
  517. skb_checksum_none_assert(skb);
  518. /* We just set the data size to 0 for a failed mapping
  519. * which should prevent DMA from happening...
  520. */
  521. if (dma_mapping_error(ndev->dev.parent, dma_addr))
  522. desc->ds_cc = cpu_to_le16(0);
  523. desc->dptr = cpu_to_le32(dma_addr);
  524. priv->rx_skb[q][entry] = skb;
  525. }
  526. /* Descriptor type must be set after all the above writes */
  527. dma_wmb();
  528. desc->die_dt = DT_FEMPTY;
  529. }
  530. *quota -= limit - (++boguscnt);
  531. return boguscnt <= 0;
  532. }
  533. static void ravb_rcv_snd_disable(struct net_device *ndev)
  534. {
  535. /* Disable TX and RX */
  536. ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
  537. }
  538. static void ravb_rcv_snd_enable(struct net_device *ndev)
  539. {
  540. /* Enable TX and RX */
  541. ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
  542. }
  543. /* function for waiting dma process finished */
  544. static int ravb_stop_dma(struct net_device *ndev)
  545. {
  546. int error;
  547. /* Wait for stopping the hardware TX process */
  548. error = ravb_wait(ndev, TCCR,
  549. TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3, 0);
  550. if (error)
  551. return error;
  552. error = ravb_wait(ndev, CSR, CSR_TPO0 | CSR_TPO1 | CSR_TPO2 | CSR_TPO3,
  553. 0);
  554. if (error)
  555. return error;
  556. /* Stop the E-MAC's RX/TX processes. */
  557. ravb_rcv_snd_disable(ndev);
  558. /* Wait for stopping the RX DMA process */
  559. error = ravb_wait(ndev, CSR, CSR_RPO, 0);
  560. if (error)
  561. return error;
  562. /* Stop AVB-DMAC process */
  563. return ravb_config(ndev);
  564. }
  565. /* E-MAC interrupt handler */
  566. static void ravb_emac_interrupt_unlocked(struct net_device *ndev)
  567. {
  568. struct ravb_private *priv = netdev_priv(ndev);
  569. u32 ecsr, psr;
  570. ecsr = ravb_read(ndev, ECSR);
  571. ravb_write(ndev, ecsr, ECSR); /* clear interrupt */
  572. if (ecsr & ECSR_ICD)
  573. ndev->stats.tx_carrier_errors++;
  574. if (ecsr & ECSR_LCHNG) {
  575. /* Link changed */
  576. if (priv->no_avb_link)
  577. return;
  578. psr = ravb_read(ndev, PSR);
  579. if (priv->avb_link_active_low)
  580. psr ^= PSR_LMON;
  581. if (!(psr & PSR_LMON)) {
  582. /* DIsable RX and TX */
  583. ravb_rcv_snd_disable(ndev);
  584. } else {
  585. /* Enable RX and TX */
  586. ravb_rcv_snd_enable(ndev);
  587. }
  588. }
  589. }
  590. static irqreturn_t ravb_emac_interrupt(int irq, void *dev_id)
  591. {
  592. struct net_device *ndev = dev_id;
  593. struct ravb_private *priv = netdev_priv(ndev);
  594. spin_lock(&priv->lock);
  595. ravb_emac_interrupt_unlocked(ndev);
  596. mmiowb();
  597. spin_unlock(&priv->lock);
  598. return IRQ_HANDLED;
  599. }
  600. /* Error interrupt handler */
  601. static void ravb_error_interrupt(struct net_device *ndev)
  602. {
  603. struct ravb_private *priv = netdev_priv(ndev);
  604. u32 eis, ris2;
  605. eis = ravb_read(ndev, EIS);
  606. ravb_write(ndev, ~EIS_QFS, EIS);
  607. if (eis & EIS_QFS) {
  608. ris2 = ravb_read(ndev, RIS2);
  609. ravb_write(ndev, ~(RIS2_QFF0 | RIS2_RFFF), RIS2);
  610. /* Receive Descriptor Empty int */
  611. if (ris2 & RIS2_QFF0)
  612. priv->stats[RAVB_BE].rx_over_errors++;
  613. /* Receive Descriptor Empty int */
  614. if (ris2 & RIS2_QFF1)
  615. priv->stats[RAVB_NC].rx_over_errors++;
  616. /* Receive FIFO Overflow int */
  617. if (ris2 & RIS2_RFFF)
  618. priv->rx_fifo_errors++;
  619. }
  620. }
  621. static bool ravb_queue_interrupt(struct net_device *ndev, int q)
  622. {
  623. struct ravb_private *priv = netdev_priv(ndev);
  624. u32 ris0 = ravb_read(ndev, RIS0);
  625. u32 ric0 = ravb_read(ndev, RIC0);
  626. u32 tis = ravb_read(ndev, TIS);
  627. u32 tic = ravb_read(ndev, TIC);
  628. if (((ris0 & ric0) & BIT(q)) || ((tis & tic) & BIT(q))) {
  629. if (napi_schedule_prep(&priv->napi[q])) {
  630. /* Mask RX and TX interrupts */
  631. if (priv->chip_id == RCAR_GEN2) {
  632. ravb_write(ndev, ric0 & ~BIT(q), RIC0);
  633. ravb_write(ndev, tic & ~BIT(q), TIC);
  634. } else {
  635. ravb_write(ndev, BIT(q), RID0);
  636. ravb_write(ndev, BIT(q), TID);
  637. }
  638. __napi_schedule(&priv->napi[q]);
  639. } else {
  640. netdev_warn(ndev,
  641. "ignoring interrupt, rx status 0x%08x, rx mask 0x%08x,\n",
  642. ris0, ric0);
  643. netdev_warn(ndev,
  644. " tx status 0x%08x, tx mask 0x%08x.\n",
  645. tis, tic);
  646. }
  647. return true;
  648. }
  649. return false;
  650. }
  651. static bool ravb_timestamp_interrupt(struct net_device *ndev)
  652. {
  653. u32 tis = ravb_read(ndev, TIS);
  654. if (tis & TIS_TFUF) {
  655. ravb_write(ndev, ~TIS_TFUF, TIS);
  656. ravb_get_tx_tstamp(ndev);
  657. return true;
  658. }
  659. return false;
  660. }
  661. static irqreturn_t ravb_interrupt(int irq, void *dev_id)
  662. {
  663. struct net_device *ndev = dev_id;
  664. struct ravb_private *priv = netdev_priv(ndev);
  665. irqreturn_t result = IRQ_NONE;
  666. u32 iss;
  667. spin_lock(&priv->lock);
  668. /* Get interrupt status */
  669. iss = ravb_read(ndev, ISS);
  670. /* Received and transmitted interrupts */
  671. if (iss & (ISS_FRS | ISS_FTS | ISS_TFUS)) {
  672. int q;
  673. /* Timestamp updated */
  674. if (ravb_timestamp_interrupt(ndev))
  675. result = IRQ_HANDLED;
  676. /* Network control and best effort queue RX/TX */
  677. for (q = RAVB_NC; q >= RAVB_BE; q--) {
  678. if (ravb_queue_interrupt(ndev, q))
  679. result = IRQ_HANDLED;
  680. }
  681. }
  682. /* E-MAC status summary */
  683. if (iss & ISS_MS) {
  684. ravb_emac_interrupt_unlocked(ndev);
  685. result = IRQ_HANDLED;
  686. }
  687. /* Error status summary */
  688. if (iss & ISS_ES) {
  689. ravb_error_interrupt(ndev);
  690. result = IRQ_HANDLED;
  691. }
  692. /* gPTP interrupt status summary */
  693. if (iss & ISS_CGIS) {
  694. ravb_ptp_interrupt(ndev);
  695. result = IRQ_HANDLED;
  696. }
  697. mmiowb();
  698. spin_unlock(&priv->lock);
  699. return result;
  700. }
  701. /* Timestamp/Error/gPTP interrupt handler */
  702. static irqreturn_t ravb_multi_interrupt(int irq, void *dev_id)
  703. {
  704. struct net_device *ndev = dev_id;
  705. struct ravb_private *priv = netdev_priv(ndev);
  706. irqreturn_t result = IRQ_NONE;
  707. u32 iss;
  708. spin_lock(&priv->lock);
  709. /* Get interrupt status */
  710. iss = ravb_read(ndev, ISS);
  711. /* Timestamp updated */
  712. if ((iss & ISS_TFUS) && ravb_timestamp_interrupt(ndev))
  713. result = IRQ_HANDLED;
  714. /* Error status summary */
  715. if (iss & ISS_ES) {
  716. ravb_error_interrupt(ndev);
  717. result = IRQ_HANDLED;
  718. }
  719. /* gPTP interrupt status summary */
  720. if (iss & ISS_CGIS) {
  721. ravb_ptp_interrupt(ndev);
  722. result = IRQ_HANDLED;
  723. }
  724. mmiowb();
  725. spin_unlock(&priv->lock);
  726. return result;
  727. }
  728. static irqreturn_t ravb_dma_interrupt(int irq, void *dev_id, int q)
  729. {
  730. struct net_device *ndev = dev_id;
  731. struct ravb_private *priv = netdev_priv(ndev);
  732. irqreturn_t result = IRQ_NONE;
  733. spin_lock(&priv->lock);
  734. /* Network control/Best effort queue RX/TX */
  735. if (ravb_queue_interrupt(ndev, q))
  736. result = IRQ_HANDLED;
  737. mmiowb();
  738. spin_unlock(&priv->lock);
  739. return result;
  740. }
  741. static irqreturn_t ravb_be_interrupt(int irq, void *dev_id)
  742. {
  743. return ravb_dma_interrupt(irq, dev_id, RAVB_BE);
  744. }
  745. static irqreturn_t ravb_nc_interrupt(int irq, void *dev_id)
  746. {
  747. return ravb_dma_interrupt(irq, dev_id, RAVB_NC);
  748. }
  749. static int ravb_poll(struct napi_struct *napi, int budget)
  750. {
  751. struct net_device *ndev = napi->dev;
  752. struct ravb_private *priv = netdev_priv(ndev);
  753. unsigned long flags;
  754. int q = napi - priv->napi;
  755. int mask = BIT(q);
  756. int quota = budget;
  757. u32 ris0, tis;
  758. for (;;) {
  759. tis = ravb_read(ndev, TIS);
  760. ris0 = ravb_read(ndev, RIS0);
  761. if (!((ris0 & mask) || (tis & mask)))
  762. break;
  763. /* Processing RX Descriptor Ring */
  764. if (ris0 & mask) {
  765. /* Clear RX interrupt */
  766. ravb_write(ndev, ~mask, RIS0);
  767. if (ravb_rx(ndev, &quota, q))
  768. goto out;
  769. }
  770. /* Processing TX Descriptor Ring */
  771. if (tis & mask) {
  772. spin_lock_irqsave(&priv->lock, flags);
  773. /* Clear TX interrupt */
  774. ravb_write(ndev, ~mask, TIS);
  775. ravb_tx_free(ndev, q);
  776. netif_wake_subqueue(ndev, q);
  777. mmiowb();
  778. spin_unlock_irqrestore(&priv->lock, flags);
  779. }
  780. }
  781. napi_complete(napi);
  782. /* Re-enable RX/TX interrupts */
  783. spin_lock_irqsave(&priv->lock, flags);
  784. if (priv->chip_id == RCAR_GEN2) {
  785. ravb_modify(ndev, RIC0, mask, mask);
  786. ravb_modify(ndev, TIC, mask, mask);
  787. } else {
  788. ravb_write(ndev, mask, RIE0);
  789. ravb_write(ndev, mask, TIE);
  790. }
  791. mmiowb();
  792. spin_unlock_irqrestore(&priv->lock, flags);
  793. /* Receive error message handling */
  794. priv->rx_over_errors = priv->stats[RAVB_BE].rx_over_errors;
  795. priv->rx_over_errors += priv->stats[RAVB_NC].rx_over_errors;
  796. if (priv->rx_over_errors != ndev->stats.rx_over_errors) {
  797. ndev->stats.rx_over_errors = priv->rx_over_errors;
  798. netif_err(priv, rx_err, ndev, "Receive Descriptor Empty\n");
  799. }
  800. if (priv->rx_fifo_errors != ndev->stats.rx_fifo_errors) {
  801. ndev->stats.rx_fifo_errors = priv->rx_fifo_errors;
  802. netif_err(priv, rx_err, ndev, "Receive FIFO Overflow\n");
  803. }
  804. out:
  805. return budget - quota;
  806. }
  807. /* PHY state control function */
  808. static void ravb_adjust_link(struct net_device *ndev)
  809. {
  810. struct ravb_private *priv = netdev_priv(ndev);
  811. struct phy_device *phydev = ndev->phydev;
  812. bool new_state = false;
  813. if (phydev->link) {
  814. if (phydev->duplex != priv->duplex) {
  815. new_state = true;
  816. priv->duplex = phydev->duplex;
  817. ravb_set_duplex(ndev);
  818. }
  819. if (phydev->speed != priv->speed) {
  820. new_state = true;
  821. priv->speed = phydev->speed;
  822. ravb_set_rate(ndev);
  823. }
  824. if (!priv->link) {
  825. ravb_modify(ndev, ECMR, ECMR_TXF, 0);
  826. new_state = true;
  827. priv->link = phydev->link;
  828. if (priv->no_avb_link)
  829. ravb_rcv_snd_enable(ndev);
  830. }
  831. } else if (priv->link) {
  832. new_state = true;
  833. priv->link = 0;
  834. priv->speed = 0;
  835. priv->duplex = -1;
  836. if (priv->no_avb_link)
  837. ravb_rcv_snd_disable(ndev);
  838. }
  839. if (new_state && netif_msg_link(priv))
  840. phy_print_status(phydev);
  841. }
  842. /* PHY init function */
  843. static int ravb_phy_init(struct net_device *ndev)
  844. {
  845. struct device_node *np = ndev->dev.parent->of_node;
  846. struct ravb_private *priv = netdev_priv(ndev);
  847. struct phy_device *phydev;
  848. struct device_node *pn;
  849. int err;
  850. priv->link = 0;
  851. priv->speed = 0;
  852. priv->duplex = -1;
  853. /* Try connecting to PHY */
  854. pn = of_parse_phandle(np, "phy-handle", 0);
  855. if (!pn) {
  856. /* In the case of a fixed PHY, the DT node associated
  857. * to the PHY is the Ethernet MAC DT node.
  858. */
  859. if (of_phy_is_fixed_link(np)) {
  860. err = of_phy_register_fixed_link(np);
  861. if (err)
  862. return err;
  863. }
  864. pn = of_node_get(np);
  865. }
  866. phydev = of_phy_connect(ndev, pn, ravb_adjust_link, 0,
  867. priv->phy_interface);
  868. of_node_put(pn);
  869. if (!phydev) {
  870. netdev_err(ndev, "failed to connect PHY\n");
  871. return -ENOENT;
  872. }
  873. /* This driver only support 10/100Mbit speeds on Gen3
  874. * at this time.
  875. */
  876. if (priv->chip_id == RCAR_GEN3) {
  877. int err;
  878. err = phy_set_max_speed(phydev, SPEED_100);
  879. if (err) {
  880. netdev_err(ndev, "failed to limit PHY to 100Mbit/s\n");
  881. phy_disconnect(phydev);
  882. return err;
  883. }
  884. netdev_info(ndev, "limited PHY to 100Mbit/s\n");
  885. }
  886. /* 10BASE is not supported */
  887. phydev->supported &= ~PHY_10BT_FEATURES;
  888. phy_attached_info(phydev);
  889. return 0;
  890. }
  891. /* PHY control start function */
  892. static int ravb_phy_start(struct net_device *ndev)
  893. {
  894. int error;
  895. error = ravb_phy_init(ndev);
  896. if (error)
  897. return error;
  898. phy_start(ndev->phydev);
  899. return 0;
  900. }
  901. static int ravb_get_link_ksettings(struct net_device *ndev,
  902. struct ethtool_link_ksettings *cmd)
  903. {
  904. struct ravb_private *priv = netdev_priv(ndev);
  905. int error = -ENODEV;
  906. unsigned long flags;
  907. if (ndev->phydev) {
  908. spin_lock_irqsave(&priv->lock, flags);
  909. error = phy_ethtool_ksettings_get(ndev->phydev, cmd);
  910. spin_unlock_irqrestore(&priv->lock, flags);
  911. }
  912. return error;
  913. }
  914. static int ravb_set_link_ksettings(struct net_device *ndev,
  915. const struct ethtool_link_ksettings *cmd)
  916. {
  917. struct ravb_private *priv = netdev_priv(ndev);
  918. unsigned long flags;
  919. int error;
  920. if (!ndev->phydev)
  921. return -ENODEV;
  922. spin_lock_irqsave(&priv->lock, flags);
  923. /* Disable TX and RX */
  924. ravb_rcv_snd_disable(ndev);
  925. error = phy_ethtool_ksettings_set(ndev->phydev, cmd);
  926. if (error)
  927. goto error_exit;
  928. if (cmd->base.duplex == DUPLEX_FULL)
  929. priv->duplex = 1;
  930. else
  931. priv->duplex = 0;
  932. ravb_set_duplex(ndev);
  933. error_exit:
  934. mdelay(1);
  935. /* Enable TX and RX */
  936. ravb_rcv_snd_enable(ndev);
  937. mmiowb();
  938. spin_unlock_irqrestore(&priv->lock, flags);
  939. return error;
  940. }
  941. static int ravb_nway_reset(struct net_device *ndev)
  942. {
  943. struct ravb_private *priv = netdev_priv(ndev);
  944. int error = -ENODEV;
  945. unsigned long flags;
  946. if (ndev->phydev) {
  947. spin_lock_irqsave(&priv->lock, flags);
  948. error = phy_start_aneg(ndev->phydev);
  949. spin_unlock_irqrestore(&priv->lock, flags);
  950. }
  951. return error;
  952. }
  953. static u32 ravb_get_msglevel(struct net_device *ndev)
  954. {
  955. struct ravb_private *priv = netdev_priv(ndev);
  956. return priv->msg_enable;
  957. }
  958. static void ravb_set_msglevel(struct net_device *ndev, u32 value)
  959. {
  960. struct ravb_private *priv = netdev_priv(ndev);
  961. priv->msg_enable = value;
  962. }
  963. static const char ravb_gstrings_stats[][ETH_GSTRING_LEN] = {
  964. "rx_queue_0_current",
  965. "tx_queue_0_current",
  966. "rx_queue_0_dirty",
  967. "tx_queue_0_dirty",
  968. "rx_queue_0_packets",
  969. "tx_queue_0_packets",
  970. "rx_queue_0_bytes",
  971. "tx_queue_0_bytes",
  972. "rx_queue_0_mcast_packets",
  973. "rx_queue_0_errors",
  974. "rx_queue_0_crc_errors",
  975. "rx_queue_0_frame_errors",
  976. "rx_queue_0_length_errors",
  977. "rx_queue_0_missed_errors",
  978. "rx_queue_0_over_errors",
  979. "rx_queue_1_current",
  980. "tx_queue_1_current",
  981. "rx_queue_1_dirty",
  982. "tx_queue_1_dirty",
  983. "rx_queue_1_packets",
  984. "tx_queue_1_packets",
  985. "rx_queue_1_bytes",
  986. "tx_queue_1_bytes",
  987. "rx_queue_1_mcast_packets",
  988. "rx_queue_1_errors",
  989. "rx_queue_1_crc_errors",
  990. "rx_queue_1_frame_errors",
  991. "rx_queue_1_length_errors",
  992. "rx_queue_1_missed_errors",
  993. "rx_queue_1_over_errors",
  994. };
  995. #define RAVB_STATS_LEN ARRAY_SIZE(ravb_gstrings_stats)
  996. static int ravb_get_sset_count(struct net_device *netdev, int sset)
  997. {
  998. switch (sset) {
  999. case ETH_SS_STATS:
  1000. return RAVB_STATS_LEN;
  1001. default:
  1002. return -EOPNOTSUPP;
  1003. }
  1004. }
  1005. static void ravb_get_ethtool_stats(struct net_device *ndev,
  1006. struct ethtool_stats *stats, u64 *data)
  1007. {
  1008. struct ravb_private *priv = netdev_priv(ndev);
  1009. int i = 0;
  1010. int q;
  1011. /* Device-specific stats */
  1012. for (q = RAVB_BE; q < NUM_RX_QUEUE; q++) {
  1013. struct net_device_stats *stats = &priv->stats[q];
  1014. data[i++] = priv->cur_rx[q];
  1015. data[i++] = priv->cur_tx[q];
  1016. data[i++] = priv->dirty_rx[q];
  1017. data[i++] = priv->dirty_tx[q];
  1018. data[i++] = stats->rx_packets;
  1019. data[i++] = stats->tx_packets;
  1020. data[i++] = stats->rx_bytes;
  1021. data[i++] = stats->tx_bytes;
  1022. data[i++] = stats->multicast;
  1023. data[i++] = stats->rx_errors;
  1024. data[i++] = stats->rx_crc_errors;
  1025. data[i++] = stats->rx_frame_errors;
  1026. data[i++] = stats->rx_length_errors;
  1027. data[i++] = stats->rx_missed_errors;
  1028. data[i++] = stats->rx_over_errors;
  1029. }
  1030. }
  1031. static void ravb_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
  1032. {
  1033. switch (stringset) {
  1034. case ETH_SS_STATS:
  1035. memcpy(data, *ravb_gstrings_stats, sizeof(ravb_gstrings_stats));
  1036. break;
  1037. }
  1038. }
  1039. static void ravb_get_ringparam(struct net_device *ndev,
  1040. struct ethtool_ringparam *ring)
  1041. {
  1042. struct ravb_private *priv = netdev_priv(ndev);
  1043. ring->rx_max_pending = BE_RX_RING_MAX;
  1044. ring->tx_max_pending = BE_TX_RING_MAX;
  1045. ring->rx_pending = priv->num_rx_ring[RAVB_BE];
  1046. ring->tx_pending = priv->num_tx_ring[RAVB_BE];
  1047. }
  1048. static int ravb_set_ringparam(struct net_device *ndev,
  1049. struct ethtool_ringparam *ring)
  1050. {
  1051. struct ravb_private *priv = netdev_priv(ndev);
  1052. int error;
  1053. if (ring->tx_pending > BE_TX_RING_MAX ||
  1054. ring->rx_pending > BE_RX_RING_MAX ||
  1055. ring->tx_pending < BE_TX_RING_MIN ||
  1056. ring->rx_pending < BE_RX_RING_MIN)
  1057. return -EINVAL;
  1058. if (ring->rx_mini_pending || ring->rx_jumbo_pending)
  1059. return -EINVAL;
  1060. if (netif_running(ndev)) {
  1061. netif_device_detach(ndev);
  1062. /* Stop PTP Clock driver */
  1063. if (priv->chip_id == RCAR_GEN2)
  1064. ravb_ptp_stop(ndev);
  1065. /* Wait for DMA stopping */
  1066. error = ravb_stop_dma(ndev);
  1067. if (error) {
  1068. netdev_err(ndev,
  1069. "cannot set ringparam! Any AVB processes are still running?\n");
  1070. return error;
  1071. }
  1072. synchronize_irq(ndev->irq);
  1073. /* Free all the skb's in the RX queue and the DMA buffers. */
  1074. ravb_ring_free(ndev, RAVB_BE);
  1075. ravb_ring_free(ndev, RAVB_NC);
  1076. }
  1077. /* Set new parameters */
  1078. priv->num_rx_ring[RAVB_BE] = ring->rx_pending;
  1079. priv->num_tx_ring[RAVB_BE] = ring->tx_pending;
  1080. if (netif_running(ndev)) {
  1081. error = ravb_dmac_init(ndev);
  1082. if (error) {
  1083. netdev_err(ndev,
  1084. "%s: ravb_dmac_init() failed, error %d\n",
  1085. __func__, error);
  1086. return error;
  1087. }
  1088. ravb_emac_init(ndev);
  1089. /* Initialise PTP Clock driver */
  1090. if (priv->chip_id == RCAR_GEN2)
  1091. ravb_ptp_init(ndev, priv->pdev);
  1092. netif_device_attach(ndev);
  1093. }
  1094. return 0;
  1095. }
  1096. static int ravb_get_ts_info(struct net_device *ndev,
  1097. struct ethtool_ts_info *info)
  1098. {
  1099. struct ravb_private *priv = netdev_priv(ndev);
  1100. info->so_timestamping =
  1101. SOF_TIMESTAMPING_TX_SOFTWARE |
  1102. SOF_TIMESTAMPING_RX_SOFTWARE |
  1103. SOF_TIMESTAMPING_SOFTWARE |
  1104. SOF_TIMESTAMPING_TX_HARDWARE |
  1105. SOF_TIMESTAMPING_RX_HARDWARE |
  1106. SOF_TIMESTAMPING_RAW_HARDWARE;
  1107. info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
  1108. info->rx_filters =
  1109. (1 << HWTSTAMP_FILTER_NONE) |
  1110. (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
  1111. (1 << HWTSTAMP_FILTER_ALL);
  1112. info->phc_index = ptp_clock_index(priv->ptp.clock);
  1113. return 0;
  1114. }
  1115. static const struct ethtool_ops ravb_ethtool_ops = {
  1116. .nway_reset = ravb_nway_reset,
  1117. .get_msglevel = ravb_get_msglevel,
  1118. .set_msglevel = ravb_set_msglevel,
  1119. .get_link = ethtool_op_get_link,
  1120. .get_strings = ravb_get_strings,
  1121. .get_ethtool_stats = ravb_get_ethtool_stats,
  1122. .get_sset_count = ravb_get_sset_count,
  1123. .get_ringparam = ravb_get_ringparam,
  1124. .set_ringparam = ravb_set_ringparam,
  1125. .get_ts_info = ravb_get_ts_info,
  1126. .get_link_ksettings = ravb_get_link_ksettings,
  1127. .set_link_ksettings = ravb_set_link_ksettings,
  1128. };
  1129. static inline int ravb_hook_irq(unsigned int irq, irq_handler_t handler,
  1130. struct net_device *ndev, struct device *dev,
  1131. const char *ch)
  1132. {
  1133. char *name;
  1134. int error;
  1135. name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s", ndev->name, ch);
  1136. if (!name)
  1137. return -ENOMEM;
  1138. error = request_irq(irq, handler, 0, name, ndev);
  1139. if (error)
  1140. netdev_err(ndev, "cannot request IRQ %s\n", name);
  1141. return error;
  1142. }
  1143. /* Network device open function for Ethernet AVB */
  1144. static int ravb_open(struct net_device *ndev)
  1145. {
  1146. struct ravb_private *priv = netdev_priv(ndev);
  1147. struct platform_device *pdev = priv->pdev;
  1148. struct device *dev = &pdev->dev;
  1149. int error;
  1150. napi_enable(&priv->napi[RAVB_BE]);
  1151. napi_enable(&priv->napi[RAVB_NC]);
  1152. if (priv->chip_id == RCAR_GEN2) {
  1153. error = request_irq(ndev->irq, ravb_interrupt, IRQF_SHARED,
  1154. ndev->name, ndev);
  1155. if (error) {
  1156. netdev_err(ndev, "cannot request IRQ\n");
  1157. goto out_napi_off;
  1158. }
  1159. } else {
  1160. error = ravb_hook_irq(ndev->irq, ravb_multi_interrupt, ndev,
  1161. dev, "ch22:multi");
  1162. if (error)
  1163. goto out_napi_off;
  1164. error = ravb_hook_irq(priv->emac_irq, ravb_emac_interrupt, ndev,
  1165. dev, "ch24:emac");
  1166. if (error)
  1167. goto out_free_irq;
  1168. error = ravb_hook_irq(priv->rx_irqs[RAVB_BE], ravb_be_interrupt,
  1169. ndev, dev, "ch0:rx_be");
  1170. if (error)
  1171. goto out_free_irq_emac;
  1172. error = ravb_hook_irq(priv->tx_irqs[RAVB_BE], ravb_be_interrupt,
  1173. ndev, dev, "ch18:tx_be");
  1174. if (error)
  1175. goto out_free_irq_be_rx;
  1176. error = ravb_hook_irq(priv->rx_irqs[RAVB_NC], ravb_nc_interrupt,
  1177. ndev, dev, "ch1:rx_nc");
  1178. if (error)
  1179. goto out_free_irq_be_tx;
  1180. error = ravb_hook_irq(priv->tx_irqs[RAVB_NC], ravb_nc_interrupt,
  1181. ndev, dev, "ch19:tx_nc");
  1182. if (error)
  1183. goto out_free_irq_nc_rx;
  1184. }
  1185. /* Device init */
  1186. error = ravb_dmac_init(ndev);
  1187. if (error)
  1188. goto out_free_irq_nc_tx;
  1189. ravb_emac_init(ndev);
  1190. /* Initialise PTP Clock driver */
  1191. if (priv->chip_id == RCAR_GEN2)
  1192. ravb_ptp_init(ndev, priv->pdev);
  1193. netif_tx_start_all_queues(ndev);
  1194. /* PHY control start */
  1195. error = ravb_phy_start(ndev);
  1196. if (error)
  1197. goto out_ptp_stop;
  1198. return 0;
  1199. out_ptp_stop:
  1200. /* Stop PTP Clock driver */
  1201. if (priv->chip_id == RCAR_GEN2)
  1202. ravb_ptp_stop(ndev);
  1203. out_free_irq_nc_tx:
  1204. if (priv->chip_id == RCAR_GEN2)
  1205. goto out_free_irq;
  1206. free_irq(priv->tx_irqs[RAVB_NC], ndev);
  1207. out_free_irq_nc_rx:
  1208. free_irq(priv->rx_irqs[RAVB_NC], ndev);
  1209. out_free_irq_be_tx:
  1210. free_irq(priv->tx_irqs[RAVB_BE], ndev);
  1211. out_free_irq_be_rx:
  1212. free_irq(priv->rx_irqs[RAVB_BE], ndev);
  1213. out_free_irq_emac:
  1214. free_irq(priv->emac_irq, ndev);
  1215. out_free_irq:
  1216. free_irq(ndev->irq, ndev);
  1217. out_napi_off:
  1218. napi_disable(&priv->napi[RAVB_NC]);
  1219. napi_disable(&priv->napi[RAVB_BE]);
  1220. return error;
  1221. }
  1222. /* Timeout function for Ethernet AVB */
  1223. static void ravb_tx_timeout(struct net_device *ndev)
  1224. {
  1225. struct ravb_private *priv = netdev_priv(ndev);
  1226. netif_err(priv, tx_err, ndev,
  1227. "transmit timed out, status %08x, resetting...\n",
  1228. ravb_read(ndev, ISS));
  1229. /* tx_errors count up */
  1230. ndev->stats.tx_errors++;
  1231. schedule_work(&priv->work);
  1232. }
  1233. static void ravb_tx_timeout_work(struct work_struct *work)
  1234. {
  1235. struct ravb_private *priv = container_of(work, struct ravb_private,
  1236. work);
  1237. struct net_device *ndev = priv->ndev;
  1238. netif_tx_stop_all_queues(ndev);
  1239. /* Stop PTP Clock driver */
  1240. if (priv->chip_id == RCAR_GEN2)
  1241. ravb_ptp_stop(ndev);
  1242. /* Wait for DMA stopping */
  1243. ravb_stop_dma(ndev);
  1244. ravb_ring_free(ndev, RAVB_BE);
  1245. ravb_ring_free(ndev, RAVB_NC);
  1246. /* Device init */
  1247. ravb_dmac_init(ndev);
  1248. ravb_emac_init(ndev);
  1249. /* Initialise PTP Clock driver */
  1250. if (priv->chip_id == RCAR_GEN2)
  1251. ravb_ptp_init(ndev, priv->pdev);
  1252. netif_tx_start_all_queues(ndev);
  1253. }
  1254. /* Packet transmit function for Ethernet AVB */
  1255. static netdev_tx_t ravb_start_xmit(struct sk_buff *skb, struct net_device *ndev)
  1256. {
  1257. struct ravb_private *priv = netdev_priv(ndev);
  1258. u16 q = skb_get_queue_mapping(skb);
  1259. struct ravb_tstamp_skb *ts_skb;
  1260. struct ravb_tx_desc *desc;
  1261. unsigned long flags;
  1262. u32 dma_addr;
  1263. void *buffer;
  1264. u32 entry;
  1265. u32 len;
  1266. spin_lock_irqsave(&priv->lock, flags);
  1267. if (priv->cur_tx[q] - priv->dirty_tx[q] > (priv->num_tx_ring[q] - 1) *
  1268. NUM_TX_DESC) {
  1269. netif_err(priv, tx_queued, ndev,
  1270. "still transmitting with the full ring!\n");
  1271. netif_stop_subqueue(ndev, q);
  1272. spin_unlock_irqrestore(&priv->lock, flags);
  1273. return NETDEV_TX_BUSY;
  1274. }
  1275. entry = priv->cur_tx[q] % (priv->num_tx_ring[q] * NUM_TX_DESC);
  1276. priv->tx_skb[q][entry / NUM_TX_DESC] = skb;
  1277. if (skb_put_padto(skb, ETH_ZLEN))
  1278. goto drop;
  1279. buffer = PTR_ALIGN(priv->tx_align[q], DPTR_ALIGN) +
  1280. entry / NUM_TX_DESC * DPTR_ALIGN;
  1281. len = PTR_ALIGN(skb->data, DPTR_ALIGN) - skb->data;
  1282. memcpy(buffer, skb->data, len);
  1283. dma_addr = dma_map_single(ndev->dev.parent, buffer, len, DMA_TO_DEVICE);
  1284. if (dma_mapping_error(ndev->dev.parent, dma_addr))
  1285. goto drop;
  1286. desc = &priv->tx_ring[q][entry];
  1287. desc->ds_tagl = cpu_to_le16(len);
  1288. desc->dptr = cpu_to_le32(dma_addr);
  1289. buffer = skb->data + len;
  1290. len = skb->len - len;
  1291. dma_addr = dma_map_single(ndev->dev.parent, buffer, len, DMA_TO_DEVICE);
  1292. if (dma_mapping_error(ndev->dev.parent, dma_addr))
  1293. goto unmap;
  1294. desc++;
  1295. desc->ds_tagl = cpu_to_le16(len);
  1296. desc->dptr = cpu_to_le32(dma_addr);
  1297. /* TX timestamp required */
  1298. if (q == RAVB_NC) {
  1299. ts_skb = kmalloc(sizeof(*ts_skb), GFP_ATOMIC);
  1300. if (!ts_skb) {
  1301. desc--;
  1302. dma_unmap_single(ndev->dev.parent, dma_addr, len,
  1303. DMA_TO_DEVICE);
  1304. goto unmap;
  1305. }
  1306. ts_skb->skb = skb;
  1307. ts_skb->tag = priv->ts_skb_tag++;
  1308. priv->ts_skb_tag &= 0x3ff;
  1309. list_add_tail(&ts_skb->list, &priv->ts_skb_list);
  1310. /* TAG and timestamp required flag */
  1311. skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
  1312. desc->tagh_tsr = (ts_skb->tag >> 4) | TX_TSR;
  1313. desc->ds_tagl |= le16_to_cpu(ts_skb->tag << 12);
  1314. }
  1315. skb_tx_timestamp(skb);
  1316. /* Descriptor type must be set after all the above writes */
  1317. dma_wmb();
  1318. desc->die_dt = DT_FEND;
  1319. desc--;
  1320. desc->die_dt = DT_FSTART;
  1321. ravb_modify(ndev, TCCR, TCCR_TSRQ0 << q, TCCR_TSRQ0 << q);
  1322. priv->cur_tx[q] += NUM_TX_DESC;
  1323. if (priv->cur_tx[q] - priv->dirty_tx[q] >
  1324. (priv->num_tx_ring[q] - 1) * NUM_TX_DESC && !ravb_tx_free(ndev, q))
  1325. netif_stop_subqueue(ndev, q);
  1326. exit:
  1327. mmiowb();
  1328. spin_unlock_irqrestore(&priv->lock, flags);
  1329. return NETDEV_TX_OK;
  1330. unmap:
  1331. dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
  1332. le16_to_cpu(desc->ds_tagl), DMA_TO_DEVICE);
  1333. drop:
  1334. dev_kfree_skb_any(skb);
  1335. priv->tx_skb[q][entry / NUM_TX_DESC] = NULL;
  1336. goto exit;
  1337. }
  1338. static u16 ravb_select_queue(struct net_device *ndev, struct sk_buff *skb,
  1339. void *accel_priv, select_queue_fallback_t fallback)
  1340. {
  1341. /* If skb needs TX timestamp, it is handled in network control queue */
  1342. return (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ? RAVB_NC :
  1343. RAVB_BE;
  1344. }
  1345. static struct net_device_stats *ravb_get_stats(struct net_device *ndev)
  1346. {
  1347. struct ravb_private *priv = netdev_priv(ndev);
  1348. struct net_device_stats *nstats, *stats0, *stats1;
  1349. nstats = &ndev->stats;
  1350. stats0 = &priv->stats[RAVB_BE];
  1351. stats1 = &priv->stats[RAVB_NC];
  1352. nstats->tx_dropped += ravb_read(ndev, TROCR);
  1353. ravb_write(ndev, 0, TROCR); /* (write clear) */
  1354. nstats->collisions += ravb_read(ndev, CDCR);
  1355. ravb_write(ndev, 0, CDCR); /* (write clear) */
  1356. nstats->tx_carrier_errors += ravb_read(ndev, LCCR);
  1357. ravb_write(ndev, 0, LCCR); /* (write clear) */
  1358. nstats->tx_carrier_errors += ravb_read(ndev, CERCR);
  1359. ravb_write(ndev, 0, CERCR); /* (write clear) */
  1360. nstats->tx_carrier_errors += ravb_read(ndev, CEECR);
  1361. ravb_write(ndev, 0, CEECR); /* (write clear) */
  1362. nstats->rx_packets = stats0->rx_packets + stats1->rx_packets;
  1363. nstats->tx_packets = stats0->tx_packets + stats1->tx_packets;
  1364. nstats->rx_bytes = stats0->rx_bytes + stats1->rx_bytes;
  1365. nstats->tx_bytes = stats0->tx_bytes + stats1->tx_bytes;
  1366. nstats->multicast = stats0->multicast + stats1->multicast;
  1367. nstats->rx_errors = stats0->rx_errors + stats1->rx_errors;
  1368. nstats->rx_crc_errors = stats0->rx_crc_errors + stats1->rx_crc_errors;
  1369. nstats->rx_frame_errors =
  1370. stats0->rx_frame_errors + stats1->rx_frame_errors;
  1371. nstats->rx_length_errors =
  1372. stats0->rx_length_errors + stats1->rx_length_errors;
  1373. nstats->rx_missed_errors =
  1374. stats0->rx_missed_errors + stats1->rx_missed_errors;
  1375. nstats->rx_over_errors =
  1376. stats0->rx_over_errors + stats1->rx_over_errors;
  1377. return nstats;
  1378. }
  1379. /* Update promiscuous bit */
  1380. static void ravb_set_rx_mode(struct net_device *ndev)
  1381. {
  1382. struct ravb_private *priv = netdev_priv(ndev);
  1383. unsigned long flags;
  1384. spin_lock_irqsave(&priv->lock, flags);
  1385. ravb_modify(ndev, ECMR, ECMR_PRM,
  1386. ndev->flags & IFF_PROMISC ? ECMR_PRM : 0);
  1387. mmiowb();
  1388. spin_unlock_irqrestore(&priv->lock, flags);
  1389. }
  1390. /* Device close function for Ethernet AVB */
  1391. static int ravb_close(struct net_device *ndev)
  1392. {
  1393. struct ravb_private *priv = netdev_priv(ndev);
  1394. struct ravb_tstamp_skb *ts_skb, *ts_skb2;
  1395. netif_tx_stop_all_queues(ndev);
  1396. /* Disable interrupts by clearing the interrupt masks. */
  1397. ravb_write(ndev, 0, RIC0);
  1398. ravb_write(ndev, 0, RIC2);
  1399. ravb_write(ndev, 0, TIC);
  1400. /* Stop PTP Clock driver */
  1401. if (priv->chip_id == RCAR_GEN2)
  1402. ravb_ptp_stop(ndev);
  1403. /* Set the config mode to stop the AVB-DMAC's processes */
  1404. if (ravb_stop_dma(ndev) < 0)
  1405. netdev_err(ndev,
  1406. "device will be stopped after h/w processes are done.\n");
  1407. /* Clear the timestamp list */
  1408. list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) {
  1409. list_del(&ts_skb->list);
  1410. kfree(ts_skb);
  1411. }
  1412. /* PHY disconnect */
  1413. if (ndev->phydev) {
  1414. phy_stop(ndev->phydev);
  1415. phy_disconnect(ndev->phydev);
  1416. }
  1417. if (priv->chip_id != RCAR_GEN2) {
  1418. free_irq(priv->tx_irqs[RAVB_NC], ndev);
  1419. free_irq(priv->rx_irqs[RAVB_NC], ndev);
  1420. free_irq(priv->tx_irqs[RAVB_BE], ndev);
  1421. free_irq(priv->rx_irqs[RAVB_BE], ndev);
  1422. free_irq(priv->emac_irq, ndev);
  1423. }
  1424. free_irq(ndev->irq, ndev);
  1425. napi_disable(&priv->napi[RAVB_NC]);
  1426. napi_disable(&priv->napi[RAVB_BE]);
  1427. /* Free all the skb's in the RX queue and the DMA buffers. */
  1428. ravb_ring_free(ndev, RAVB_BE);
  1429. ravb_ring_free(ndev, RAVB_NC);
  1430. return 0;
  1431. }
  1432. static int ravb_hwtstamp_get(struct net_device *ndev, struct ifreq *req)
  1433. {
  1434. struct ravb_private *priv = netdev_priv(ndev);
  1435. struct hwtstamp_config config;
  1436. config.flags = 0;
  1437. config.tx_type = priv->tstamp_tx_ctrl ? HWTSTAMP_TX_ON :
  1438. HWTSTAMP_TX_OFF;
  1439. if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_V2_L2_EVENT)
  1440. config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
  1441. else if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_ALL)
  1442. config.rx_filter = HWTSTAMP_FILTER_ALL;
  1443. else
  1444. config.rx_filter = HWTSTAMP_FILTER_NONE;
  1445. return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
  1446. -EFAULT : 0;
  1447. }
  1448. /* Control hardware time stamping */
  1449. static int ravb_hwtstamp_set(struct net_device *ndev, struct ifreq *req)
  1450. {
  1451. struct ravb_private *priv = netdev_priv(ndev);
  1452. struct hwtstamp_config config;
  1453. u32 tstamp_rx_ctrl = RAVB_RXTSTAMP_ENABLED;
  1454. u32 tstamp_tx_ctrl;
  1455. if (copy_from_user(&config, req->ifr_data, sizeof(config)))
  1456. return -EFAULT;
  1457. /* Reserved for future extensions */
  1458. if (config.flags)
  1459. return -EINVAL;
  1460. switch (config.tx_type) {
  1461. case HWTSTAMP_TX_OFF:
  1462. tstamp_tx_ctrl = 0;
  1463. break;
  1464. case HWTSTAMP_TX_ON:
  1465. tstamp_tx_ctrl = RAVB_TXTSTAMP_ENABLED;
  1466. break;
  1467. default:
  1468. return -ERANGE;
  1469. }
  1470. switch (config.rx_filter) {
  1471. case HWTSTAMP_FILTER_NONE:
  1472. tstamp_rx_ctrl = 0;
  1473. break;
  1474. case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
  1475. tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
  1476. break;
  1477. default:
  1478. config.rx_filter = HWTSTAMP_FILTER_ALL;
  1479. tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_ALL;
  1480. }
  1481. priv->tstamp_tx_ctrl = tstamp_tx_ctrl;
  1482. priv->tstamp_rx_ctrl = tstamp_rx_ctrl;
  1483. return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
  1484. -EFAULT : 0;
  1485. }
  1486. /* ioctl to device function */
  1487. static int ravb_do_ioctl(struct net_device *ndev, struct ifreq *req, int cmd)
  1488. {
  1489. struct phy_device *phydev = ndev->phydev;
  1490. if (!netif_running(ndev))
  1491. return -EINVAL;
  1492. if (!phydev)
  1493. return -ENODEV;
  1494. switch (cmd) {
  1495. case SIOCGHWTSTAMP:
  1496. return ravb_hwtstamp_get(ndev, req);
  1497. case SIOCSHWTSTAMP:
  1498. return ravb_hwtstamp_set(ndev, req);
  1499. }
  1500. return phy_mii_ioctl(phydev, req, cmd);
  1501. }
  1502. static const struct net_device_ops ravb_netdev_ops = {
  1503. .ndo_open = ravb_open,
  1504. .ndo_stop = ravb_close,
  1505. .ndo_start_xmit = ravb_start_xmit,
  1506. .ndo_select_queue = ravb_select_queue,
  1507. .ndo_get_stats = ravb_get_stats,
  1508. .ndo_set_rx_mode = ravb_set_rx_mode,
  1509. .ndo_tx_timeout = ravb_tx_timeout,
  1510. .ndo_do_ioctl = ravb_do_ioctl,
  1511. .ndo_validate_addr = eth_validate_addr,
  1512. .ndo_set_mac_address = eth_mac_addr,
  1513. .ndo_change_mtu = eth_change_mtu,
  1514. };
  1515. /* MDIO bus init function */
  1516. static int ravb_mdio_init(struct ravb_private *priv)
  1517. {
  1518. struct platform_device *pdev = priv->pdev;
  1519. struct device *dev = &pdev->dev;
  1520. int error;
  1521. /* Bitbang init */
  1522. priv->mdiobb.ops = &bb_ops;
  1523. /* MII controller setting */
  1524. priv->mii_bus = alloc_mdio_bitbang(&priv->mdiobb);
  1525. if (!priv->mii_bus)
  1526. return -ENOMEM;
  1527. /* Hook up MII support for ethtool */
  1528. priv->mii_bus->name = "ravb_mii";
  1529. priv->mii_bus->parent = dev;
  1530. snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
  1531. pdev->name, pdev->id);
  1532. /* Register MDIO bus */
  1533. error = of_mdiobus_register(priv->mii_bus, dev->of_node);
  1534. if (error)
  1535. goto out_free_bus;
  1536. return 0;
  1537. out_free_bus:
  1538. free_mdio_bitbang(priv->mii_bus);
  1539. return error;
  1540. }
  1541. /* MDIO bus release function */
  1542. static int ravb_mdio_release(struct ravb_private *priv)
  1543. {
  1544. /* Unregister mdio bus */
  1545. mdiobus_unregister(priv->mii_bus);
  1546. /* Free bitbang info */
  1547. free_mdio_bitbang(priv->mii_bus);
  1548. return 0;
  1549. }
  1550. static const struct of_device_id ravb_match_table[] = {
  1551. { .compatible = "renesas,etheravb-r8a7790", .data = (void *)RCAR_GEN2 },
  1552. { .compatible = "renesas,etheravb-r8a7794", .data = (void *)RCAR_GEN2 },
  1553. { .compatible = "renesas,etheravb-rcar-gen2", .data = (void *)RCAR_GEN2 },
  1554. { .compatible = "renesas,etheravb-r8a7795", .data = (void *)RCAR_GEN3 },
  1555. { .compatible = "renesas,etheravb-rcar-gen3", .data = (void *)RCAR_GEN3 },
  1556. { }
  1557. };
  1558. MODULE_DEVICE_TABLE(of, ravb_match_table);
  1559. static int ravb_set_gti(struct net_device *ndev)
  1560. {
  1561. struct device *dev = ndev->dev.parent;
  1562. struct device_node *np = dev->of_node;
  1563. unsigned long rate;
  1564. struct clk *clk;
  1565. uint64_t inc;
  1566. clk = of_clk_get(np, 0);
  1567. if (IS_ERR(clk)) {
  1568. dev_err(dev, "could not get clock\n");
  1569. return PTR_ERR(clk);
  1570. }
  1571. rate = clk_get_rate(clk);
  1572. clk_put(clk);
  1573. if (!rate)
  1574. return -EINVAL;
  1575. inc = 1000000000ULL << 20;
  1576. do_div(inc, rate);
  1577. if (inc < GTI_TIV_MIN || inc > GTI_TIV_MAX) {
  1578. dev_err(dev, "gti.tiv increment 0x%llx is outside the range 0x%x - 0x%x\n",
  1579. inc, GTI_TIV_MIN, GTI_TIV_MAX);
  1580. return -EINVAL;
  1581. }
  1582. ravb_write(ndev, inc, GTI);
  1583. return 0;
  1584. }
  1585. static void ravb_set_config_mode(struct net_device *ndev)
  1586. {
  1587. struct ravb_private *priv = netdev_priv(ndev);
  1588. if (priv->chip_id == RCAR_GEN2) {
  1589. ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
  1590. /* Set CSEL value */
  1591. ravb_modify(ndev, CCC, CCC_CSEL, CCC_CSEL_HPB);
  1592. } else {
  1593. ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG |
  1594. CCC_GAC | CCC_CSEL_HPB);
  1595. }
  1596. }
  1597. static int ravb_probe(struct platform_device *pdev)
  1598. {
  1599. struct device_node *np = pdev->dev.of_node;
  1600. struct ravb_private *priv;
  1601. enum ravb_chip_id chip_id;
  1602. struct net_device *ndev;
  1603. int error, irq, q;
  1604. struct resource *res;
  1605. int i;
  1606. if (!np) {
  1607. dev_err(&pdev->dev,
  1608. "this driver is required to be instantiated from device tree\n");
  1609. return -EINVAL;
  1610. }
  1611. /* Get base address */
  1612. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1613. if (!res) {
  1614. dev_err(&pdev->dev, "invalid resource\n");
  1615. return -EINVAL;
  1616. }
  1617. ndev = alloc_etherdev_mqs(sizeof(struct ravb_private),
  1618. NUM_TX_QUEUE, NUM_RX_QUEUE);
  1619. if (!ndev)
  1620. return -ENOMEM;
  1621. pm_runtime_enable(&pdev->dev);
  1622. pm_runtime_get_sync(&pdev->dev);
  1623. /* The Ether-specific entries in the device structure. */
  1624. ndev->base_addr = res->start;
  1625. chip_id = (enum ravb_chip_id)of_device_get_match_data(&pdev->dev);
  1626. if (chip_id == RCAR_GEN3)
  1627. irq = platform_get_irq_byname(pdev, "ch22");
  1628. else
  1629. irq = platform_get_irq(pdev, 0);
  1630. if (irq < 0) {
  1631. error = irq;
  1632. goto out_release;
  1633. }
  1634. ndev->irq = irq;
  1635. SET_NETDEV_DEV(ndev, &pdev->dev);
  1636. priv = netdev_priv(ndev);
  1637. priv->ndev = ndev;
  1638. priv->pdev = pdev;
  1639. priv->num_tx_ring[RAVB_BE] = BE_TX_RING_SIZE;
  1640. priv->num_rx_ring[RAVB_BE] = BE_RX_RING_SIZE;
  1641. priv->num_tx_ring[RAVB_NC] = NC_TX_RING_SIZE;
  1642. priv->num_rx_ring[RAVB_NC] = NC_RX_RING_SIZE;
  1643. priv->addr = devm_ioremap_resource(&pdev->dev, res);
  1644. if (IS_ERR(priv->addr)) {
  1645. error = PTR_ERR(priv->addr);
  1646. goto out_release;
  1647. }
  1648. spin_lock_init(&priv->lock);
  1649. INIT_WORK(&priv->work, ravb_tx_timeout_work);
  1650. priv->phy_interface = of_get_phy_mode(np);
  1651. priv->no_avb_link = of_property_read_bool(np, "renesas,no-ether-link");
  1652. priv->avb_link_active_low =
  1653. of_property_read_bool(np, "renesas,ether-link-active-low");
  1654. if (chip_id == RCAR_GEN3) {
  1655. irq = platform_get_irq_byname(pdev, "ch24");
  1656. if (irq < 0) {
  1657. error = irq;
  1658. goto out_release;
  1659. }
  1660. priv->emac_irq = irq;
  1661. for (i = 0; i < NUM_RX_QUEUE; i++) {
  1662. irq = platform_get_irq_byname(pdev, ravb_rx_irqs[i]);
  1663. if (irq < 0) {
  1664. error = irq;
  1665. goto out_release;
  1666. }
  1667. priv->rx_irqs[i] = irq;
  1668. }
  1669. for (i = 0; i < NUM_TX_QUEUE; i++) {
  1670. irq = platform_get_irq_byname(pdev, ravb_tx_irqs[i]);
  1671. if (irq < 0) {
  1672. error = irq;
  1673. goto out_release;
  1674. }
  1675. priv->tx_irqs[i] = irq;
  1676. }
  1677. }
  1678. priv->chip_id = chip_id;
  1679. /* Set function */
  1680. ndev->netdev_ops = &ravb_netdev_ops;
  1681. ndev->ethtool_ops = &ravb_ethtool_ops;
  1682. /* Set AVB config mode */
  1683. ravb_set_config_mode(ndev);
  1684. /* Set GTI value */
  1685. error = ravb_set_gti(ndev);
  1686. if (error)
  1687. goto out_release;
  1688. /* Request GTI loading */
  1689. ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
  1690. /* Allocate descriptor base address table */
  1691. priv->desc_bat_size = sizeof(struct ravb_desc) * DBAT_ENTRY_NUM;
  1692. priv->desc_bat = dma_alloc_coherent(ndev->dev.parent, priv->desc_bat_size,
  1693. &priv->desc_bat_dma, GFP_KERNEL);
  1694. if (!priv->desc_bat) {
  1695. dev_err(&pdev->dev,
  1696. "Cannot allocate desc base address table (size %d bytes)\n",
  1697. priv->desc_bat_size);
  1698. error = -ENOMEM;
  1699. goto out_release;
  1700. }
  1701. for (q = RAVB_BE; q < DBAT_ENTRY_NUM; q++)
  1702. priv->desc_bat[q].die_dt = DT_EOS;
  1703. ravb_write(ndev, priv->desc_bat_dma, DBAT);
  1704. /* Initialise HW timestamp list */
  1705. INIT_LIST_HEAD(&priv->ts_skb_list);
  1706. /* Initialise PTP Clock driver */
  1707. if (chip_id != RCAR_GEN2)
  1708. ravb_ptp_init(ndev, pdev);
  1709. /* Debug message level */
  1710. priv->msg_enable = RAVB_DEF_MSG_ENABLE;
  1711. /* Read and set MAC address */
  1712. ravb_read_mac_address(ndev, of_get_mac_address(np));
  1713. if (!is_valid_ether_addr(ndev->dev_addr)) {
  1714. dev_warn(&pdev->dev,
  1715. "no valid MAC address supplied, using a random one\n");
  1716. eth_hw_addr_random(ndev);
  1717. }
  1718. /* MDIO bus init */
  1719. error = ravb_mdio_init(priv);
  1720. if (error) {
  1721. dev_err(&pdev->dev, "failed to initialize MDIO\n");
  1722. goto out_dma_free;
  1723. }
  1724. netif_napi_add(ndev, &priv->napi[RAVB_BE], ravb_poll, 64);
  1725. netif_napi_add(ndev, &priv->napi[RAVB_NC], ravb_poll, 64);
  1726. /* Network device register */
  1727. error = register_netdev(ndev);
  1728. if (error)
  1729. goto out_napi_del;
  1730. /* Print device information */
  1731. netdev_info(ndev, "Base address at %#x, %pM, IRQ %d.\n",
  1732. (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
  1733. platform_set_drvdata(pdev, ndev);
  1734. return 0;
  1735. out_napi_del:
  1736. netif_napi_del(&priv->napi[RAVB_NC]);
  1737. netif_napi_del(&priv->napi[RAVB_BE]);
  1738. ravb_mdio_release(priv);
  1739. out_dma_free:
  1740. dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
  1741. priv->desc_bat_dma);
  1742. /* Stop PTP Clock driver */
  1743. if (chip_id != RCAR_GEN2)
  1744. ravb_ptp_stop(ndev);
  1745. out_release:
  1746. if (ndev)
  1747. free_netdev(ndev);
  1748. pm_runtime_put(&pdev->dev);
  1749. pm_runtime_disable(&pdev->dev);
  1750. return error;
  1751. }
  1752. static int ravb_remove(struct platform_device *pdev)
  1753. {
  1754. struct net_device *ndev = platform_get_drvdata(pdev);
  1755. struct ravb_private *priv = netdev_priv(ndev);
  1756. /* Stop PTP Clock driver */
  1757. if (priv->chip_id != RCAR_GEN2)
  1758. ravb_ptp_stop(ndev);
  1759. dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
  1760. priv->desc_bat_dma);
  1761. /* Set reset mode */
  1762. ravb_write(ndev, CCC_OPC_RESET, CCC);
  1763. pm_runtime_put_sync(&pdev->dev);
  1764. unregister_netdev(ndev);
  1765. netif_napi_del(&priv->napi[RAVB_NC]);
  1766. netif_napi_del(&priv->napi[RAVB_BE]);
  1767. ravb_mdio_release(priv);
  1768. pm_runtime_disable(&pdev->dev);
  1769. free_netdev(ndev);
  1770. platform_set_drvdata(pdev, NULL);
  1771. return 0;
  1772. }
  1773. static int __maybe_unused ravb_suspend(struct device *dev)
  1774. {
  1775. struct net_device *ndev = dev_get_drvdata(dev);
  1776. int ret = 0;
  1777. if (netif_running(ndev)) {
  1778. netif_device_detach(ndev);
  1779. ret = ravb_close(ndev);
  1780. }
  1781. return ret;
  1782. }
  1783. static int __maybe_unused ravb_resume(struct device *dev)
  1784. {
  1785. struct net_device *ndev = dev_get_drvdata(dev);
  1786. struct ravb_private *priv = netdev_priv(ndev);
  1787. int ret = 0;
  1788. /* All register have been reset to default values.
  1789. * Restore all registers which where setup at probe time and
  1790. * reopen device if it was running before system suspended.
  1791. */
  1792. /* Set AVB config mode */
  1793. ravb_set_config_mode(ndev);
  1794. /* Set GTI value */
  1795. ret = ravb_set_gti(ndev);
  1796. if (ret)
  1797. return ret;
  1798. /* Request GTI loading */
  1799. ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
  1800. /* Restore descriptor base address table */
  1801. ravb_write(ndev, priv->desc_bat_dma, DBAT);
  1802. if (netif_running(ndev)) {
  1803. ret = ravb_open(ndev);
  1804. if (ret < 0)
  1805. return ret;
  1806. netif_device_attach(ndev);
  1807. }
  1808. return ret;
  1809. }
  1810. static int __maybe_unused ravb_runtime_nop(struct device *dev)
  1811. {
  1812. /* Runtime PM callback shared between ->runtime_suspend()
  1813. * and ->runtime_resume(). Simply returns success.
  1814. *
  1815. * This driver re-initializes all registers after
  1816. * pm_runtime_get_sync() anyway so there is no need
  1817. * to save and restore registers here.
  1818. */
  1819. return 0;
  1820. }
  1821. static const struct dev_pm_ops ravb_dev_pm_ops = {
  1822. SET_SYSTEM_SLEEP_PM_OPS(ravb_suspend, ravb_resume)
  1823. SET_RUNTIME_PM_OPS(ravb_runtime_nop, ravb_runtime_nop, NULL)
  1824. };
  1825. static struct platform_driver ravb_driver = {
  1826. .probe = ravb_probe,
  1827. .remove = ravb_remove,
  1828. .driver = {
  1829. .name = "ravb",
  1830. .pm = &ravb_dev_pm_ops,
  1831. .of_match_table = ravb_match_table,
  1832. },
  1833. };
  1834. module_platform_driver(ravb_driver);
  1835. MODULE_AUTHOR("Mitsuhiro Kimura, Masaru Nagai");
  1836. MODULE_DESCRIPTION("Renesas Ethernet AVB driver");
  1837. MODULE_LICENSE("GPL v2");