vc4_crtc.c 30 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079
  1. /*
  2. * Copyright (C) 2015 Broadcom
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License version 2 as
  6. * published by the Free Software Foundation.
  7. */
  8. /**
  9. * DOC: VC4 CRTC module
  10. *
  11. * In VC4, the Pixel Valve is what most closely corresponds to the
  12. * DRM's concept of a CRTC. The PV generates video timings from the
  13. * output's clock plus its configuration. It pulls scaled pixels from
  14. * the HVS at that timing, and feeds it to the encoder.
  15. *
  16. * However, the DRM CRTC also collects the configuration of all the
  17. * DRM planes attached to it. As a result, this file also manages
  18. * setup of the VC4 HVS's display elements on the CRTC.
  19. *
  20. * The 2835 has 3 different pixel valves. pv0 in the audio power
  21. * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the
  22. * image domain can feed either HDMI or the SDTV controller. The
  23. * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
  24. * SDTV, etc.) according to which output type is chosen in the mux.
  25. *
  26. * For power management, the pixel valve's registers are all clocked
  27. * by the AXI clock, while the timings and FIFOs make use of the
  28. * output-specific clock. Since the encoders also directly consume
  29. * the CPRMAN clocks, and know what timings they need, they are the
  30. * ones that set the clock.
  31. */
  32. #include "drm_atomic.h"
  33. #include "drm_atomic_helper.h"
  34. #include "drm_crtc_helper.h"
  35. #include "linux/clk.h"
  36. #include "drm_fb_cma_helper.h"
  37. #include "linux/component.h"
  38. #include "linux/of_device.h"
  39. #include "vc4_drv.h"
  40. #include "vc4_regs.h"
  41. struct vc4_crtc {
  42. struct drm_crtc base;
  43. const struct vc4_crtc_data *data;
  44. void __iomem *regs;
  45. /* Timestamp at start of vblank irq - unaffected by lock delays. */
  46. ktime_t t_vblank;
  47. /* Which HVS channel we're using for our CRTC. */
  48. int channel;
  49. u8 lut_r[256];
  50. u8 lut_g[256];
  51. u8 lut_b[256];
  52. /* Size in pixels of the COB memory allocated to this CRTC. */
  53. u32 cob_size;
  54. struct drm_pending_vblank_event *event;
  55. };
  56. struct vc4_crtc_state {
  57. struct drm_crtc_state base;
  58. /* Dlist area for this CRTC configuration. */
  59. struct drm_mm_node mm;
  60. };
  61. static inline struct vc4_crtc *
  62. to_vc4_crtc(struct drm_crtc *crtc)
  63. {
  64. return (struct vc4_crtc *)crtc;
  65. }
  66. static inline struct vc4_crtc_state *
  67. to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
  68. {
  69. return (struct vc4_crtc_state *)crtc_state;
  70. }
  71. struct vc4_crtc_data {
  72. /* Which channel of the HVS this pixelvalve sources from. */
  73. int hvs_channel;
  74. enum vc4_encoder_type encoder_types[4];
  75. };
  76. #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
  77. #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
  78. #define CRTC_REG(reg) { reg, #reg }
  79. static const struct {
  80. u32 reg;
  81. const char *name;
  82. } crtc_regs[] = {
  83. CRTC_REG(PV_CONTROL),
  84. CRTC_REG(PV_V_CONTROL),
  85. CRTC_REG(PV_VSYNCD_EVEN),
  86. CRTC_REG(PV_HORZA),
  87. CRTC_REG(PV_HORZB),
  88. CRTC_REG(PV_VERTA),
  89. CRTC_REG(PV_VERTB),
  90. CRTC_REG(PV_VERTA_EVEN),
  91. CRTC_REG(PV_VERTB_EVEN),
  92. CRTC_REG(PV_INTEN),
  93. CRTC_REG(PV_INTSTAT),
  94. CRTC_REG(PV_STAT),
  95. CRTC_REG(PV_HACT_ACT),
  96. };
  97. static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
  98. {
  99. int i;
  100. for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
  101. DRM_INFO("0x%04x (%s): 0x%08x\n",
  102. crtc_regs[i].reg, crtc_regs[i].name,
  103. CRTC_READ(crtc_regs[i].reg));
  104. }
  105. }
  106. #ifdef CONFIG_DEBUG_FS
  107. int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
  108. {
  109. struct drm_info_node *node = (struct drm_info_node *)m->private;
  110. struct drm_device *dev = node->minor->dev;
  111. int crtc_index = (uintptr_t)node->info_ent->data;
  112. struct drm_crtc *crtc;
  113. struct vc4_crtc *vc4_crtc;
  114. int i;
  115. i = 0;
  116. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  117. if (i == crtc_index)
  118. break;
  119. i++;
  120. }
  121. if (!crtc)
  122. return 0;
  123. vc4_crtc = to_vc4_crtc(crtc);
  124. for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
  125. seq_printf(m, "%s (0x%04x): 0x%08x\n",
  126. crtc_regs[i].name, crtc_regs[i].reg,
  127. CRTC_READ(crtc_regs[i].reg));
  128. }
  129. return 0;
  130. }
  131. #endif
  132. int vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
  133. unsigned int flags, int *vpos, int *hpos,
  134. ktime_t *stime, ktime_t *etime,
  135. const struct drm_display_mode *mode)
  136. {
  137. struct vc4_dev *vc4 = to_vc4_dev(dev);
  138. struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
  139. u32 val;
  140. int fifo_lines;
  141. int vblank_lines;
  142. int ret = 0;
  143. /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
  144. /* Get optional system timestamp before query. */
  145. if (stime)
  146. *stime = ktime_get();
  147. /*
  148. * Read vertical scanline which is currently composed for our
  149. * pixelvalve by the HVS, and also the scaler status.
  150. */
  151. val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
  152. /* Get optional system timestamp after query. */
  153. if (etime)
  154. *etime = ktime_get();
  155. /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
  156. /* Vertical position of hvs composed scanline. */
  157. *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
  158. *hpos = 0;
  159. if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
  160. *vpos /= 2;
  161. /* Use hpos to correct for field offset in interlaced mode. */
  162. if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
  163. *hpos += mode->crtc_htotal / 2;
  164. }
  165. /* This is the offset we need for translating hvs -> pv scanout pos. */
  166. fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
  167. if (fifo_lines > 0)
  168. ret |= DRM_SCANOUTPOS_VALID;
  169. /* HVS more than fifo_lines into frame for compositing? */
  170. if (*vpos > fifo_lines) {
  171. /*
  172. * We are in active scanout and can get some meaningful results
  173. * from HVS. The actual PV scanout can not trail behind more
  174. * than fifo_lines as that is the fifo's capacity. Assume that
  175. * in active scanout the HVS and PV work in lockstep wrt. HVS
  176. * refilling the fifo and PV consuming from the fifo, ie.
  177. * whenever the PV consumes and frees up a scanline in the
  178. * fifo, the HVS will immediately refill it, therefore
  179. * incrementing vpos. Therefore we choose HVS read position -
  180. * fifo size in scanlines as a estimate of the real scanout
  181. * position of the PV.
  182. */
  183. *vpos -= fifo_lines + 1;
  184. ret |= DRM_SCANOUTPOS_ACCURATE;
  185. return ret;
  186. }
  187. /*
  188. * Less: This happens when we are in vblank and the HVS, after getting
  189. * the VSTART restart signal from the PV, just started refilling its
  190. * fifo with new lines from the top-most lines of the new framebuffers.
  191. * The PV does not scan out in vblank, so does not remove lines from
  192. * the fifo, so the fifo will be full quickly and the HVS has to pause.
  193. * We can't get meaningful readings wrt. scanline position of the PV
  194. * and need to make things up in a approximative but consistent way.
  195. */
  196. ret |= DRM_SCANOUTPOS_IN_VBLANK;
  197. vblank_lines = mode->vtotal - mode->vdisplay;
  198. if (flags & DRM_CALLED_FROM_VBLIRQ) {
  199. /*
  200. * Assume the irq handler got called close to first
  201. * line of vblank, so PV has about a full vblank
  202. * scanlines to go, and as a base timestamp use the
  203. * one taken at entry into vblank irq handler, so it
  204. * is not affected by random delays due to lock
  205. * contention on event_lock or vblank_time lock in
  206. * the core.
  207. */
  208. *vpos = -vblank_lines;
  209. if (stime)
  210. *stime = vc4_crtc->t_vblank;
  211. if (etime)
  212. *etime = vc4_crtc->t_vblank;
  213. /*
  214. * If the HVS fifo is not yet full then we know for certain
  215. * we are at the very beginning of vblank, as the hvs just
  216. * started refilling, and the stime and etime timestamps
  217. * truly correspond to start of vblank.
  218. */
  219. if ((val & SCALER_DISPSTATX_FULL) != SCALER_DISPSTATX_FULL)
  220. ret |= DRM_SCANOUTPOS_ACCURATE;
  221. } else {
  222. /*
  223. * No clue where we are inside vblank. Return a vpos of zero,
  224. * which will cause calling code to just return the etime
  225. * timestamp uncorrected. At least this is no worse than the
  226. * standard fallback.
  227. */
  228. *vpos = 0;
  229. }
  230. return ret;
  231. }
  232. int vc4_crtc_get_vblank_timestamp(struct drm_device *dev, unsigned int crtc_id,
  233. int *max_error, struct timeval *vblank_time,
  234. unsigned flags)
  235. {
  236. struct vc4_dev *vc4 = to_vc4_dev(dev);
  237. struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
  238. struct drm_crtc *crtc = &vc4_crtc->base;
  239. struct drm_crtc_state *state = crtc->state;
  240. /* Helper routine in DRM core does all the work: */
  241. return drm_calc_vbltimestamp_from_scanoutpos(dev, crtc_id, max_error,
  242. vblank_time, flags,
  243. &state->adjusted_mode);
  244. }
  245. static void vc4_crtc_destroy(struct drm_crtc *crtc)
  246. {
  247. drm_crtc_cleanup(crtc);
  248. }
  249. static void
  250. vc4_crtc_lut_load(struct drm_crtc *crtc)
  251. {
  252. struct drm_device *dev = crtc->dev;
  253. struct vc4_dev *vc4 = to_vc4_dev(dev);
  254. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  255. u32 i;
  256. /* The LUT memory is laid out with each HVS channel in order,
  257. * each of which takes 256 writes for R, 256 for G, then 256
  258. * for B.
  259. */
  260. HVS_WRITE(SCALER_GAMADDR,
  261. SCALER_GAMADDR_AUTOINC |
  262. (vc4_crtc->channel * 3 * crtc->gamma_size));
  263. for (i = 0; i < crtc->gamma_size; i++)
  264. HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
  265. for (i = 0; i < crtc->gamma_size; i++)
  266. HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
  267. for (i = 0; i < crtc->gamma_size; i++)
  268. HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
  269. }
  270. static int
  271. vc4_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
  272. uint32_t size)
  273. {
  274. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  275. u32 i;
  276. for (i = 0; i < size; i++) {
  277. vc4_crtc->lut_r[i] = r[i] >> 8;
  278. vc4_crtc->lut_g[i] = g[i] >> 8;
  279. vc4_crtc->lut_b[i] = b[i] >> 8;
  280. }
  281. vc4_crtc_lut_load(crtc);
  282. return 0;
  283. }
  284. static u32 vc4_get_fifo_full_level(u32 format)
  285. {
  286. static const u32 fifo_len_bytes = 64;
  287. static const u32 hvs_latency_pix = 6;
  288. switch (format) {
  289. case PV_CONTROL_FORMAT_DSIV_16:
  290. case PV_CONTROL_FORMAT_DSIC_16:
  291. return fifo_len_bytes - 2 * hvs_latency_pix;
  292. case PV_CONTROL_FORMAT_DSIV_18:
  293. return fifo_len_bytes - 14;
  294. case PV_CONTROL_FORMAT_24:
  295. case PV_CONTROL_FORMAT_DSIV_24:
  296. default:
  297. return fifo_len_bytes - 3 * hvs_latency_pix;
  298. }
  299. }
  300. /*
  301. * Returns the clock select bit for the connector attached to the
  302. * CRTC.
  303. */
  304. static int vc4_get_clock_select(struct drm_crtc *crtc)
  305. {
  306. struct drm_connector *connector;
  307. drm_for_each_connector(connector, crtc->dev) {
  308. if (connector->state->crtc == crtc) {
  309. struct drm_encoder *encoder = connector->encoder;
  310. struct vc4_encoder *vc4_encoder =
  311. to_vc4_encoder(encoder);
  312. return vc4_encoder->clock_select;
  313. }
  314. }
  315. return -1;
  316. }
  317. static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
  318. {
  319. struct drm_device *dev = crtc->dev;
  320. struct vc4_dev *vc4 = to_vc4_dev(dev);
  321. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  322. struct drm_crtc_state *state = crtc->state;
  323. struct drm_display_mode *mode = &state->adjusted_mode;
  324. bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
  325. u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
  326. u32 format = PV_CONTROL_FORMAT_24;
  327. bool debug_dump_regs = false;
  328. int clock_select = vc4_get_clock_select(crtc);
  329. if (debug_dump_regs) {
  330. DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
  331. vc4_crtc_dump_regs(vc4_crtc);
  332. }
  333. /* Reset the PV fifo. */
  334. CRTC_WRITE(PV_CONTROL, 0);
  335. CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
  336. CRTC_WRITE(PV_CONTROL, 0);
  337. CRTC_WRITE(PV_HORZA,
  338. VC4_SET_FIELD((mode->htotal -
  339. mode->hsync_end) * pixel_rep,
  340. PV_HORZA_HBP) |
  341. VC4_SET_FIELD((mode->hsync_end -
  342. mode->hsync_start) * pixel_rep,
  343. PV_HORZA_HSYNC));
  344. CRTC_WRITE(PV_HORZB,
  345. VC4_SET_FIELD((mode->hsync_start -
  346. mode->hdisplay) * pixel_rep,
  347. PV_HORZB_HFP) |
  348. VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
  349. CRTC_WRITE(PV_VERTA,
  350. VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
  351. PV_VERTA_VBP) |
  352. VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
  353. PV_VERTA_VSYNC));
  354. CRTC_WRITE(PV_VERTB,
  355. VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
  356. PV_VERTB_VFP) |
  357. VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
  358. if (interlace) {
  359. CRTC_WRITE(PV_VERTA_EVEN,
  360. VC4_SET_FIELD(mode->crtc_vtotal -
  361. mode->crtc_vsync_end - 1,
  362. PV_VERTA_VBP) |
  363. VC4_SET_FIELD(mode->crtc_vsync_end -
  364. mode->crtc_vsync_start,
  365. PV_VERTA_VSYNC));
  366. CRTC_WRITE(PV_VERTB_EVEN,
  367. VC4_SET_FIELD(mode->crtc_vsync_start -
  368. mode->crtc_vdisplay,
  369. PV_VERTB_VFP) |
  370. VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
  371. /* We set up first field even mode for HDMI. VEC's
  372. * NTSC mode would want first field odd instead, once
  373. * we support it (to do so, set ODD_FIRST and put the
  374. * delay in VSYNCD_EVEN instead).
  375. */
  376. CRTC_WRITE(PV_V_CONTROL,
  377. PV_VCONTROL_CONTINUOUS |
  378. PV_VCONTROL_INTERLACE |
  379. VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
  380. PV_VCONTROL_ODD_DELAY));
  381. CRTC_WRITE(PV_VSYNCD_EVEN, 0);
  382. } else {
  383. CRTC_WRITE(PV_V_CONTROL, PV_VCONTROL_CONTINUOUS);
  384. }
  385. CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
  386. CRTC_WRITE(PV_CONTROL,
  387. VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
  388. VC4_SET_FIELD(vc4_get_fifo_full_level(format),
  389. PV_CONTROL_FIFO_LEVEL) |
  390. VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
  391. PV_CONTROL_CLR_AT_START |
  392. PV_CONTROL_TRIGGER_UNDERFLOW |
  393. PV_CONTROL_WAIT_HSTART |
  394. VC4_SET_FIELD(clock_select, PV_CONTROL_CLK_SELECT) |
  395. PV_CONTROL_FIFO_CLR |
  396. PV_CONTROL_EN);
  397. HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
  398. SCALER_DISPBKGND_AUTOHS |
  399. SCALER_DISPBKGND_GAMMA |
  400. (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
  401. /* Reload the LUT, since the SRAMs would have been disabled if
  402. * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
  403. */
  404. vc4_crtc_lut_load(crtc);
  405. if (debug_dump_regs) {
  406. DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
  407. vc4_crtc_dump_regs(vc4_crtc);
  408. }
  409. }
  410. static void require_hvs_enabled(struct drm_device *dev)
  411. {
  412. struct vc4_dev *vc4 = to_vc4_dev(dev);
  413. WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
  414. SCALER_DISPCTRL_ENABLE);
  415. }
  416. static void vc4_crtc_disable(struct drm_crtc *crtc)
  417. {
  418. struct drm_device *dev = crtc->dev;
  419. struct vc4_dev *vc4 = to_vc4_dev(dev);
  420. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  421. u32 chan = vc4_crtc->channel;
  422. int ret;
  423. require_hvs_enabled(dev);
  424. /* Disable vblank irq handling before crtc is disabled. */
  425. drm_crtc_vblank_off(crtc);
  426. CRTC_WRITE(PV_V_CONTROL,
  427. CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
  428. ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
  429. WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
  430. if (HVS_READ(SCALER_DISPCTRLX(chan)) &
  431. SCALER_DISPCTRLX_ENABLE) {
  432. HVS_WRITE(SCALER_DISPCTRLX(chan),
  433. SCALER_DISPCTRLX_RESET);
  434. /* While the docs say that reset is self-clearing, it
  435. * seems it doesn't actually.
  436. */
  437. HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
  438. }
  439. /* Once we leave, the scaler should be disabled and its fifo empty. */
  440. WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
  441. WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
  442. SCALER_DISPSTATX_MODE) !=
  443. SCALER_DISPSTATX_MODE_DISABLED);
  444. WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
  445. (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
  446. SCALER_DISPSTATX_EMPTY);
  447. }
  448. static void vc4_crtc_enable(struct drm_crtc *crtc)
  449. {
  450. struct drm_device *dev = crtc->dev;
  451. struct vc4_dev *vc4 = to_vc4_dev(dev);
  452. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  453. struct drm_crtc_state *state = crtc->state;
  454. struct drm_display_mode *mode = &state->adjusted_mode;
  455. require_hvs_enabled(dev);
  456. /* Turn on the scaler, which will wait for vstart to start
  457. * compositing.
  458. */
  459. HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
  460. VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
  461. VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
  462. SCALER_DISPCTRLX_ENABLE);
  463. /* Turn on the pixel valve, which will emit the vstart signal. */
  464. CRTC_WRITE(PV_V_CONTROL,
  465. CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
  466. /* Enable vblank irq handling after crtc is started. */
  467. drm_crtc_vblank_on(crtc);
  468. }
  469. static bool vc4_crtc_mode_fixup(struct drm_crtc *crtc,
  470. const struct drm_display_mode *mode,
  471. struct drm_display_mode *adjusted_mode)
  472. {
  473. /* Do not allow doublescan modes from user space */
  474. if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) {
  475. DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
  476. crtc->base.id);
  477. return false;
  478. }
  479. return true;
  480. }
  481. static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
  482. struct drm_crtc_state *state)
  483. {
  484. struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
  485. struct drm_device *dev = crtc->dev;
  486. struct vc4_dev *vc4 = to_vc4_dev(dev);
  487. struct drm_plane *plane;
  488. unsigned long flags;
  489. const struct drm_plane_state *plane_state;
  490. u32 dlist_count = 0;
  491. int ret;
  492. /* The pixelvalve can only feed one encoder (and encoders are
  493. * 1:1 with connectors.)
  494. */
  495. if (hweight32(state->connector_mask) > 1)
  496. return -EINVAL;
  497. drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
  498. dlist_count += vc4_plane_dlist_size(plane_state);
  499. dlist_count++; /* Account for SCALER_CTL0_END. */
  500. spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
  501. ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
  502. dlist_count, 1, 0);
  503. spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
  504. if (ret)
  505. return ret;
  506. return 0;
  507. }
  508. static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
  509. struct drm_crtc_state *old_state)
  510. {
  511. struct drm_device *dev = crtc->dev;
  512. struct vc4_dev *vc4 = to_vc4_dev(dev);
  513. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  514. struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
  515. struct drm_plane *plane;
  516. bool debug_dump_regs = false;
  517. u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
  518. u32 __iomem *dlist_next = dlist_start;
  519. if (debug_dump_regs) {
  520. DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
  521. vc4_hvs_dump_state(dev);
  522. }
  523. /* Copy all the active planes' dlist contents to the hardware dlist. */
  524. drm_atomic_crtc_for_each_plane(plane, crtc) {
  525. dlist_next += vc4_plane_write_dlist(plane, dlist_next);
  526. }
  527. writel(SCALER_CTL0_END, dlist_next);
  528. dlist_next++;
  529. WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
  530. if (crtc->state->event) {
  531. unsigned long flags;
  532. crtc->state->event->pipe = drm_crtc_index(crtc);
  533. WARN_ON(drm_crtc_vblank_get(crtc) != 0);
  534. spin_lock_irqsave(&dev->event_lock, flags);
  535. vc4_crtc->event = crtc->state->event;
  536. crtc->state->event = NULL;
  537. HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
  538. vc4_state->mm.start);
  539. spin_unlock_irqrestore(&dev->event_lock, flags);
  540. } else {
  541. HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
  542. vc4_state->mm.start);
  543. }
  544. if (debug_dump_regs) {
  545. DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
  546. vc4_hvs_dump_state(dev);
  547. }
  548. }
  549. int vc4_enable_vblank(struct drm_device *dev, unsigned int crtc_id)
  550. {
  551. struct vc4_dev *vc4 = to_vc4_dev(dev);
  552. struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
  553. CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
  554. return 0;
  555. }
  556. void vc4_disable_vblank(struct drm_device *dev, unsigned int crtc_id)
  557. {
  558. struct vc4_dev *vc4 = to_vc4_dev(dev);
  559. struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
  560. CRTC_WRITE(PV_INTEN, 0);
  561. }
  562. /* Must be called with the event lock held */
  563. bool vc4_event_pending(struct drm_crtc *crtc)
  564. {
  565. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  566. return !!vc4_crtc->event;
  567. }
  568. static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
  569. {
  570. struct drm_crtc *crtc = &vc4_crtc->base;
  571. struct drm_device *dev = crtc->dev;
  572. struct vc4_dev *vc4 = to_vc4_dev(dev);
  573. struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
  574. u32 chan = vc4_crtc->channel;
  575. unsigned long flags;
  576. spin_lock_irqsave(&dev->event_lock, flags);
  577. if (vc4_crtc->event &&
  578. (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)))) {
  579. drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
  580. vc4_crtc->event = NULL;
  581. drm_crtc_vblank_put(crtc);
  582. }
  583. spin_unlock_irqrestore(&dev->event_lock, flags);
  584. }
  585. static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
  586. {
  587. struct vc4_crtc *vc4_crtc = data;
  588. u32 stat = CRTC_READ(PV_INTSTAT);
  589. irqreturn_t ret = IRQ_NONE;
  590. if (stat & PV_INT_VFP_START) {
  591. vc4_crtc->t_vblank = ktime_get();
  592. CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
  593. drm_crtc_handle_vblank(&vc4_crtc->base);
  594. vc4_crtc_handle_page_flip(vc4_crtc);
  595. ret = IRQ_HANDLED;
  596. }
  597. return ret;
  598. }
  599. struct vc4_async_flip_state {
  600. struct drm_crtc *crtc;
  601. struct drm_framebuffer *fb;
  602. struct drm_pending_vblank_event *event;
  603. struct vc4_seqno_cb cb;
  604. };
  605. /* Called when the V3D execution for the BO being flipped to is done, so that
  606. * we can actually update the plane's address to point to it.
  607. */
  608. static void
  609. vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
  610. {
  611. struct vc4_async_flip_state *flip_state =
  612. container_of(cb, struct vc4_async_flip_state, cb);
  613. struct drm_crtc *crtc = flip_state->crtc;
  614. struct drm_device *dev = crtc->dev;
  615. struct vc4_dev *vc4 = to_vc4_dev(dev);
  616. struct drm_plane *plane = crtc->primary;
  617. vc4_plane_async_set_fb(plane, flip_state->fb);
  618. if (flip_state->event) {
  619. unsigned long flags;
  620. spin_lock_irqsave(&dev->event_lock, flags);
  621. drm_crtc_send_vblank_event(crtc, flip_state->event);
  622. spin_unlock_irqrestore(&dev->event_lock, flags);
  623. }
  624. drm_crtc_vblank_put(crtc);
  625. drm_framebuffer_unreference(flip_state->fb);
  626. kfree(flip_state);
  627. up(&vc4->async_modeset);
  628. }
  629. /* Implements async (non-vblank-synced) page flips.
  630. *
  631. * The page flip ioctl needs to return immediately, so we grab the
  632. * modeset semaphore on the pipe, and queue the address update for
  633. * when V3D is done with the BO being flipped to.
  634. */
  635. static int vc4_async_page_flip(struct drm_crtc *crtc,
  636. struct drm_framebuffer *fb,
  637. struct drm_pending_vblank_event *event,
  638. uint32_t flags)
  639. {
  640. struct drm_device *dev = crtc->dev;
  641. struct vc4_dev *vc4 = to_vc4_dev(dev);
  642. struct drm_plane *plane = crtc->primary;
  643. int ret = 0;
  644. struct vc4_async_flip_state *flip_state;
  645. struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
  646. struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
  647. flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
  648. if (!flip_state)
  649. return -ENOMEM;
  650. drm_framebuffer_reference(fb);
  651. flip_state->fb = fb;
  652. flip_state->crtc = crtc;
  653. flip_state->event = event;
  654. /* Make sure all other async modesetes have landed. */
  655. ret = down_interruptible(&vc4->async_modeset);
  656. if (ret) {
  657. drm_framebuffer_unreference(fb);
  658. kfree(flip_state);
  659. return ret;
  660. }
  661. WARN_ON(drm_crtc_vblank_get(crtc) != 0);
  662. /* Immediately update the plane's legacy fb pointer, so that later
  663. * modeset prep sees the state that will be present when the semaphore
  664. * is released.
  665. */
  666. drm_atomic_set_fb_for_plane(plane->state, fb);
  667. plane->fb = fb;
  668. vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
  669. vc4_async_page_flip_complete);
  670. /* Driver takes ownership of state on successful async commit. */
  671. return 0;
  672. }
  673. static int vc4_page_flip(struct drm_crtc *crtc,
  674. struct drm_framebuffer *fb,
  675. struct drm_pending_vblank_event *event,
  676. uint32_t flags)
  677. {
  678. if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
  679. return vc4_async_page_flip(crtc, fb, event, flags);
  680. else
  681. return drm_atomic_helper_page_flip(crtc, fb, event, flags);
  682. }
  683. static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
  684. {
  685. struct vc4_crtc_state *vc4_state;
  686. vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
  687. if (!vc4_state)
  688. return NULL;
  689. __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
  690. return &vc4_state->base;
  691. }
  692. static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
  693. struct drm_crtc_state *state)
  694. {
  695. struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
  696. struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
  697. if (vc4_state->mm.allocated) {
  698. unsigned long flags;
  699. spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
  700. drm_mm_remove_node(&vc4_state->mm);
  701. spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
  702. }
  703. drm_atomic_helper_crtc_destroy_state(crtc, state);
  704. }
  705. static const struct drm_crtc_funcs vc4_crtc_funcs = {
  706. .set_config = drm_atomic_helper_set_config,
  707. .destroy = vc4_crtc_destroy,
  708. .page_flip = vc4_page_flip,
  709. .set_property = NULL,
  710. .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
  711. .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
  712. .reset = drm_atomic_helper_crtc_reset,
  713. .atomic_duplicate_state = vc4_crtc_duplicate_state,
  714. .atomic_destroy_state = vc4_crtc_destroy_state,
  715. .gamma_set = vc4_crtc_gamma_set,
  716. };
  717. static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
  718. .mode_set_nofb = vc4_crtc_mode_set_nofb,
  719. .disable = vc4_crtc_disable,
  720. .enable = vc4_crtc_enable,
  721. .mode_fixup = vc4_crtc_mode_fixup,
  722. .atomic_check = vc4_crtc_atomic_check,
  723. .atomic_flush = vc4_crtc_atomic_flush,
  724. };
  725. static const struct vc4_crtc_data pv0_data = {
  726. .hvs_channel = 0,
  727. .encoder_types = {
  728. [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
  729. [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
  730. },
  731. };
  732. static const struct vc4_crtc_data pv1_data = {
  733. .hvs_channel = 2,
  734. .encoder_types = {
  735. [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
  736. [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
  737. },
  738. };
  739. static const struct vc4_crtc_data pv2_data = {
  740. .hvs_channel = 1,
  741. .encoder_types = {
  742. [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI,
  743. [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
  744. },
  745. };
  746. static const struct of_device_id vc4_crtc_dt_match[] = {
  747. { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
  748. { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
  749. { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
  750. {}
  751. };
  752. static void vc4_set_crtc_possible_masks(struct drm_device *drm,
  753. struct drm_crtc *crtc)
  754. {
  755. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  756. const struct vc4_crtc_data *crtc_data = vc4_crtc->data;
  757. const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types;
  758. struct drm_encoder *encoder;
  759. drm_for_each_encoder(encoder, drm) {
  760. struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
  761. int i;
  762. for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) {
  763. if (vc4_encoder->type == encoder_types[i]) {
  764. vc4_encoder->clock_select = i;
  765. encoder->possible_crtcs |= drm_crtc_mask(crtc);
  766. break;
  767. }
  768. }
  769. }
  770. }
  771. static void
  772. vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
  773. {
  774. struct drm_device *drm = vc4_crtc->base.dev;
  775. struct vc4_dev *vc4 = to_vc4_dev(drm);
  776. u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
  777. /* Top/base are supposed to be 4-pixel aligned, but the
  778. * Raspberry Pi firmware fills the low bits (which are
  779. * presumably ignored).
  780. */
  781. u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
  782. u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
  783. vc4_crtc->cob_size = top - base + 4;
  784. }
  785. static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
  786. {
  787. struct platform_device *pdev = to_platform_device(dev);
  788. struct drm_device *drm = dev_get_drvdata(master);
  789. struct vc4_dev *vc4 = to_vc4_dev(drm);
  790. struct vc4_crtc *vc4_crtc;
  791. struct drm_crtc *crtc;
  792. struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
  793. const struct of_device_id *match;
  794. int ret, i;
  795. vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
  796. if (!vc4_crtc)
  797. return -ENOMEM;
  798. crtc = &vc4_crtc->base;
  799. match = of_match_device(vc4_crtc_dt_match, dev);
  800. if (!match)
  801. return -ENODEV;
  802. vc4_crtc->data = match->data;
  803. vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
  804. if (IS_ERR(vc4_crtc->regs))
  805. return PTR_ERR(vc4_crtc->regs);
  806. /* For now, we create just the primary and the legacy cursor
  807. * planes. We should be able to stack more planes on easily,
  808. * but to do that we would need to compute the bandwidth
  809. * requirement of the plane configuration, and reject ones
  810. * that will take too much.
  811. */
  812. primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
  813. if (IS_ERR(primary_plane)) {
  814. dev_err(dev, "failed to construct primary plane\n");
  815. ret = PTR_ERR(primary_plane);
  816. goto err;
  817. }
  818. drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
  819. &vc4_crtc_funcs, NULL);
  820. drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
  821. primary_plane->crtc = crtc;
  822. vc4->crtc[drm_crtc_index(crtc)] = vc4_crtc;
  823. vc4_crtc->channel = vc4_crtc->data->hvs_channel;
  824. drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
  825. /* Set up some arbitrary number of planes. We're not limited
  826. * by a set number of physical registers, just the space in
  827. * the HVS (16k) and how small an plane can be (28 bytes).
  828. * However, each plane we set up takes up some memory, and
  829. * increases the cost of looping over planes, which atomic
  830. * modesetting does quite a bit. As a result, we pick a
  831. * modest number of planes to expose, that should hopefully
  832. * still cover any sane usecase.
  833. */
  834. for (i = 0; i < 8; i++) {
  835. struct drm_plane *plane =
  836. vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
  837. if (IS_ERR(plane))
  838. continue;
  839. plane->possible_crtcs = 1 << drm_crtc_index(crtc);
  840. }
  841. /* Set up the legacy cursor after overlay initialization,
  842. * since we overlay planes on the CRTC in the order they were
  843. * initialized.
  844. */
  845. cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
  846. if (!IS_ERR(cursor_plane)) {
  847. cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc);
  848. cursor_plane->crtc = crtc;
  849. crtc->cursor = cursor_plane;
  850. }
  851. vc4_crtc_get_cob_allocation(vc4_crtc);
  852. CRTC_WRITE(PV_INTEN, 0);
  853. CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
  854. ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
  855. vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
  856. if (ret)
  857. goto err_destroy_planes;
  858. vc4_set_crtc_possible_masks(drm, crtc);
  859. for (i = 0; i < crtc->gamma_size; i++) {
  860. vc4_crtc->lut_r[i] = i;
  861. vc4_crtc->lut_g[i] = i;
  862. vc4_crtc->lut_b[i] = i;
  863. }
  864. platform_set_drvdata(pdev, vc4_crtc);
  865. return 0;
  866. err_destroy_planes:
  867. list_for_each_entry_safe(destroy_plane, temp,
  868. &drm->mode_config.plane_list, head) {
  869. if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc))
  870. destroy_plane->funcs->destroy(destroy_plane);
  871. }
  872. err:
  873. return ret;
  874. }
  875. static void vc4_crtc_unbind(struct device *dev, struct device *master,
  876. void *data)
  877. {
  878. struct platform_device *pdev = to_platform_device(dev);
  879. struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
  880. vc4_crtc_destroy(&vc4_crtc->base);
  881. CRTC_WRITE(PV_INTEN, 0);
  882. platform_set_drvdata(pdev, NULL);
  883. }
  884. static const struct component_ops vc4_crtc_ops = {
  885. .bind = vc4_crtc_bind,
  886. .unbind = vc4_crtc_unbind,
  887. };
  888. static int vc4_crtc_dev_probe(struct platform_device *pdev)
  889. {
  890. return component_add(&pdev->dev, &vc4_crtc_ops);
  891. }
  892. static int vc4_crtc_dev_remove(struct platform_device *pdev)
  893. {
  894. component_del(&pdev->dev, &vc4_crtc_ops);
  895. return 0;
  896. }
  897. struct platform_driver vc4_crtc_driver = {
  898. .probe = vc4_crtc_dev_probe,
  899. .remove = vc4_crtc_dev_remove,
  900. .driver = {
  901. .name = "vc4_crtc",
  902. .of_match_table = vc4_crtc_dt_match,
  903. },
  904. };