sdma_v3_0.c 42 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511
  1. /*
  2. * Copyright 2014 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. * Authors: Alex Deucher
  23. */
  24. #include <linux/firmware.h>
  25. #include <drm/drmP.h>
  26. #include "amdgpu.h"
  27. #include "amdgpu_ucode.h"
  28. #include "amdgpu_trace.h"
  29. #include "vi.h"
  30. #include "vid.h"
  31. #include "oss/oss_3_0_d.h"
  32. #include "oss/oss_3_0_sh_mask.h"
  33. #include "gmc/gmc_8_1_d.h"
  34. #include "gmc/gmc_8_1_sh_mask.h"
  35. #include "gca/gfx_8_0_d.h"
  36. #include "gca/gfx_8_0_enum.h"
  37. #include "gca/gfx_8_0_sh_mask.h"
  38. #include "bif/bif_5_0_d.h"
  39. #include "bif/bif_5_0_sh_mask.h"
  40. #include "tonga_sdma_pkt_open.h"
  41. static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev);
  42. static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev);
  43. static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev);
  44. static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev);
  45. MODULE_FIRMWARE("amdgpu/tonga_sdma.bin");
  46. MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin");
  47. MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin");
  48. MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin");
  49. static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
  50. {
  51. SDMA0_REGISTER_OFFSET,
  52. SDMA1_REGISTER_OFFSET
  53. };
  54. static const u32 golden_settings_tonga_a11[] =
  55. {
  56. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  57. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  58. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  59. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  60. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  61. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  62. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  63. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  64. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  65. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  66. };
  67. static const u32 tonga_mgcg_cgcg_init[] =
  68. {
  69. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  70. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  71. };
  72. static const u32 cz_golden_settings_a11[] =
  73. {
  74. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  75. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  76. mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
  77. mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
  78. mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  79. mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  80. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  81. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  82. mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100,
  83. mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800,
  84. mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  85. mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  86. };
  87. static const u32 cz_mgcg_cgcg_init[] =
  88. {
  89. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  90. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  91. };
  92. /*
  93. * sDMA - System DMA
  94. * Starting with CIK, the GPU has new asynchronous
  95. * DMA engines. These engines are used for compute
  96. * and gfx. There are two DMA engines (SDMA0, SDMA1)
  97. * and each one supports 1 ring buffer used for gfx
  98. * and 2 queues used for compute.
  99. *
  100. * The programming model is very similar to the CP
  101. * (ring buffer, IBs, etc.), but sDMA has it's own
  102. * packet format that is different from the PM4 format
  103. * used by the CP. sDMA supports copying data, writing
  104. * embedded data, solid fills, and a number of other
  105. * things. It also has support for tiling/detiling of
  106. * buffers.
  107. */
  108. static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev)
  109. {
  110. switch (adev->asic_type) {
  111. case CHIP_TONGA:
  112. amdgpu_program_register_sequence(adev,
  113. tonga_mgcg_cgcg_init,
  114. (const u32)ARRAY_SIZE(tonga_mgcg_cgcg_init));
  115. amdgpu_program_register_sequence(adev,
  116. golden_settings_tonga_a11,
  117. (const u32)ARRAY_SIZE(golden_settings_tonga_a11));
  118. break;
  119. case CHIP_CARRIZO:
  120. amdgpu_program_register_sequence(adev,
  121. cz_mgcg_cgcg_init,
  122. (const u32)ARRAY_SIZE(cz_mgcg_cgcg_init));
  123. amdgpu_program_register_sequence(adev,
  124. cz_golden_settings_a11,
  125. (const u32)ARRAY_SIZE(cz_golden_settings_a11));
  126. break;
  127. default:
  128. break;
  129. }
  130. }
  131. /**
  132. * sdma_v3_0_init_microcode - load ucode images from disk
  133. *
  134. * @adev: amdgpu_device pointer
  135. *
  136. * Use the firmware interface to load the ucode images into
  137. * the driver (not loaded into hw).
  138. * Returns 0 on success, error on failure.
  139. */
  140. static int sdma_v3_0_init_microcode(struct amdgpu_device *adev)
  141. {
  142. const char *chip_name;
  143. char fw_name[30];
  144. int err, i;
  145. struct amdgpu_firmware_info *info = NULL;
  146. const struct common_firmware_header *header = NULL;
  147. DRM_DEBUG("\n");
  148. switch (adev->asic_type) {
  149. case CHIP_TONGA:
  150. chip_name = "tonga";
  151. break;
  152. case CHIP_CARRIZO:
  153. chip_name = "carrizo";
  154. break;
  155. default: BUG();
  156. }
  157. for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
  158. if (i == 0)
  159. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
  160. else
  161. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
  162. err = request_firmware(&adev->sdma[i].fw, fw_name, adev->dev);
  163. if (err)
  164. goto out;
  165. err = amdgpu_ucode_validate(adev->sdma[i].fw);
  166. if (err)
  167. goto out;
  168. if (adev->firmware.smu_load) {
  169. info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
  170. info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
  171. info->fw = adev->sdma[i].fw;
  172. header = (const struct common_firmware_header *)info->fw->data;
  173. adev->firmware.fw_size +=
  174. ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
  175. }
  176. }
  177. out:
  178. if (err) {
  179. printk(KERN_ERR
  180. "sdma_v3_0: Failed to load firmware \"%s\"\n",
  181. fw_name);
  182. for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
  183. release_firmware(adev->sdma[i].fw);
  184. adev->sdma[i].fw = NULL;
  185. }
  186. }
  187. return err;
  188. }
  189. /**
  190. * sdma_v3_0_ring_get_rptr - get the current read pointer
  191. *
  192. * @ring: amdgpu ring pointer
  193. *
  194. * Get the current rptr from the hardware (VI+).
  195. */
  196. static uint32_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring)
  197. {
  198. u32 rptr;
  199. /* XXX check if swapping is necessary on BE */
  200. rptr = ring->adev->wb.wb[ring->rptr_offs] >> 2;
  201. return rptr;
  202. }
  203. /**
  204. * sdma_v3_0_ring_get_wptr - get the current write pointer
  205. *
  206. * @ring: amdgpu ring pointer
  207. *
  208. * Get the current wptr from the hardware (VI+).
  209. */
  210. static uint32_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring)
  211. {
  212. struct amdgpu_device *adev = ring->adev;
  213. u32 wptr;
  214. if (ring->use_doorbell) {
  215. /* XXX check if swapping is necessary on BE */
  216. wptr = ring->adev->wb.wb[ring->wptr_offs] >> 2;
  217. } else {
  218. int me = (ring == &ring->adev->sdma[0].ring) ? 0 : 1;
  219. wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me]) >> 2;
  220. }
  221. return wptr;
  222. }
  223. /**
  224. * sdma_v3_0_ring_set_wptr - commit the write pointer
  225. *
  226. * @ring: amdgpu ring pointer
  227. *
  228. * Write the wptr back to the hardware (VI+).
  229. */
  230. static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring)
  231. {
  232. struct amdgpu_device *adev = ring->adev;
  233. if (ring->use_doorbell) {
  234. /* XXX check if swapping is necessary on BE */
  235. adev->wb.wb[ring->wptr_offs] = ring->wptr << 2;
  236. WDOORBELL32(ring->doorbell_index, ring->wptr << 2);
  237. } else {
  238. int me = (ring == &ring->adev->sdma[0].ring) ? 0 : 1;
  239. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me], ring->wptr << 2);
  240. }
  241. }
  242. /**
  243. * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine
  244. *
  245. * @ring: amdgpu ring pointer
  246. * @ib: IB object to schedule
  247. *
  248. * Schedule an IB in the DMA ring (VI).
  249. */
  250. static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring,
  251. struct amdgpu_ib *ib)
  252. {
  253. u32 vmid = (ib->vm ? ib->vm->ids[ring->idx].id : 0) & 0xf;
  254. u32 next_rptr = ring->wptr + 5;
  255. while ((next_rptr & 7) != 2)
  256. next_rptr++;
  257. next_rptr += 6;
  258. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  259. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
  260. amdgpu_ring_write(ring, lower_32_bits(ring->next_rptr_gpu_addr) & 0xfffffffc);
  261. amdgpu_ring_write(ring, upper_32_bits(ring->next_rptr_gpu_addr));
  262. amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
  263. amdgpu_ring_write(ring, next_rptr);
  264. /* IB packet must end on a 8 DW boundary */
  265. while ((ring->wptr & 7) != 2)
  266. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_NOP));
  267. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
  268. SDMA_PKT_INDIRECT_HEADER_VMID(vmid));
  269. /* base must be 32 byte aligned */
  270. amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
  271. amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
  272. amdgpu_ring_write(ring, ib->length_dw);
  273. amdgpu_ring_write(ring, 0);
  274. amdgpu_ring_write(ring, 0);
  275. }
  276. /**
  277. * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
  278. *
  279. * @ring: amdgpu ring pointer
  280. *
  281. * Emit an hdp flush packet on the requested DMA ring.
  282. */
  283. static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
  284. {
  285. u32 ref_and_mask = 0;
  286. if (ring == &ring->adev->sdma[0].ring)
  287. ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
  288. else
  289. ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
  290. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  291. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
  292. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
  293. amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
  294. amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
  295. amdgpu_ring_write(ring, ref_and_mask); /* reference */
  296. amdgpu_ring_write(ring, ref_and_mask); /* mask */
  297. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  298. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  299. }
  300. /**
  301. * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring
  302. *
  303. * @ring: amdgpu ring pointer
  304. * @fence: amdgpu fence object
  305. *
  306. * Add a DMA fence packet to the ring to write
  307. * the fence seq number and DMA trap packet to generate
  308. * an interrupt if needed (VI).
  309. */
  310. static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
  311. unsigned flags)
  312. {
  313. bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
  314. /* write the fence */
  315. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  316. amdgpu_ring_write(ring, lower_32_bits(addr));
  317. amdgpu_ring_write(ring, upper_32_bits(addr));
  318. amdgpu_ring_write(ring, lower_32_bits(seq));
  319. /* optionally write high bits as well */
  320. if (write64bit) {
  321. addr += 4;
  322. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  323. amdgpu_ring_write(ring, lower_32_bits(addr));
  324. amdgpu_ring_write(ring, upper_32_bits(addr));
  325. amdgpu_ring_write(ring, upper_32_bits(seq));
  326. }
  327. /* generate an interrupt */
  328. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
  329. amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
  330. }
  331. /**
  332. * sdma_v3_0_ring_emit_semaphore - emit a semaphore on the dma ring
  333. *
  334. * @ring: amdgpu_ring structure holding ring information
  335. * @semaphore: amdgpu semaphore object
  336. * @emit_wait: wait or signal semaphore
  337. *
  338. * Add a DMA semaphore packet to the ring wait on or signal
  339. * other rings (VI).
  340. */
  341. static bool sdma_v3_0_ring_emit_semaphore(struct amdgpu_ring *ring,
  342. struct amdgpu_semaphore *semaphore,
  343. bool emit_wait)
  344. {
  345. u64 addr = semaphore->gpu_addr;
  346. u32 sig = emit_wait ? 0 : 1;
  347. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SEM) |
  348. SDMA_PKT_SEMAPHORE_HEADER_SIGNAL(sig));
  349. amdgpu_ring_write(ring, lower_32_bits(addr) & 0xfffffff8);
  350. amdgpu_ring_write(ring, upper_32_bits(addr));
  351. return true;
  352. }
  353. /**
  354. * sdma_v3_0_gfx_stop - stop the gfx async dma engines
  355. *
  356. * @adev: amdgpu_device pointer
  357. *
  358. * Stop the gfx async dma ring buffers (VI).
  359. */
  360. static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev)
  361. {
  362. struct amdgpu_ring *sdma0 = &adev->sdma[0].ring;
  363. struct amdgpu_ring *sdma1 = &adev->sdma[1].ring;
  364. u32 rb_cntl, ib_cntl;
  365. int i;
  366. if ((adev->mman.buffer_funcs_ring == sdma0) ||
  367. (adev->mman.buffer_funcs_ring == sdma1))
  368. amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);
  369. for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
  370. rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
  371. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
  372. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  373. ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
  374. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
  375. WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
  376. }
  377. sdma0->ready = false;
  378. sdma1->ready = false;
  379. }
  380. /**
  381. * sdma_v3_0_rlc_stop - stop the compute async dma engines
  382. *
  383. * @adev: amdgpu_device pointer
  384. *
  385. * Stop the compute async dma queues (VI).
  386. */
  387. static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev)
  388. {
  389. /* XXX todo */
  390. }
  391. /**
  392. * sdma_v3_0_ctx_switch_enable - stop the async dma engines context switch
  393. *
  394. * @adev: amdgpu_device pointer
  395. * @enable: enable/disable the DMA MEs context switch.
  396. *
  397. * Halt or unhalt the async dma engines context switch (VI).
  398. */
  399. static void sdma_v3_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
  400. {
  401. u32 f32_cntl;
  402. int i;
  403. for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
  404. f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]);
  405. if (enable)
  406. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  407. AUTO_CTXSW_ENABLE, 1);
  408. else
  409. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  410. AUTO_CTXSW_ENABLE, 0);
  411. WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl);
  412. }
  413. }
  414. /**
  415. * sdma_v3_0_enable - stop the async dma engines
  416. *
  417. * @adev: amdgpu_device pointer
  418. * @enable: enable/disable the DMA MEs.
  419. *
  420. * Halt or unhalt the async dma engines (VI).
  421. */
  422. static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable)
  423. {
  424. u32 f32_cntl;
  425. int i;
  426. if (enable == false) {
  427. sdma_v3_0_gfx_stop(adev);
  428. sdma_v3_0_rlc_stop(adev);
  429. }
  430. for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
  431. f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
  432. if (enable)
  433. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
  434. else
  435. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
  436. WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
  437. }
  438. }
  439. /**
  440. * sdma_v3_0_gfx_resume - setup and start the async dma engines
  441. *
  442. * @adev: amdgpu_device pointer
  443. *
  444. * Set up the gfx DMA ring buffers and enable them (VI).
  445. * Returns 0 for success, error for failure.
  446. */
  447. static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev)
  448. {
  449. struct amdgpu_ring *ring;
  450. u32 rb_cntl, ib_cntl;
  451. u32 rb_bufsz;
  452. u32 wb_offset;
  453. u32 doorbell;
  454. int i, j, r;
  455. for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
  456. ring = &adev->sdma[i].ring;
  457. wb_offset = (ring->rptr_offs * 4);
  458. mutex_lock(&adev->srbm_mutex);
  459. for (j = 0; j < 16; j++) {
  460. vi_srbm_select(adev, 0, 0, 0, j);
  461. /* SDMA GFX */
  462. WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
  463. WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
  464. }
  465. vi_srbm_select(adev, 0, 0, 0, 0);
  466. mutex_unlock(&adev->srbm_mutex);
  467. WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
  468. /* Set ring buffer size in dwords */
  469. rb_bufsz = order_base_2(ring->ring_size / 4);
  470. rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
  471. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
  472. #ifdef __BIG_ENDIAN
  473. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
  474. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
  475. RPTR_WRITEBACK_SWAP_ENABLE, 1);
  476. #endif
  477. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  478. /* Initialize the ring buffer's read and write pointers */
  479. WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
  480. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0);
  481. /* set the wb address whether it's enabled or not */
  482. WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
  483. upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
  484. WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
  485. lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
  486. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
  487. WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
  488. WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
  489. ring->wptr = 0;
  490. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], ring->wptr << 2);
  491. doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]);
  492. if (ring->use_doorbell) {
  493. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL,
  494. OFFSET, ring->doorbell_index);
  495. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
  496. } else {
  497. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
  498. }
  499. WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell);
  500. /* enable DMA RB */
  501. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
  502. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  503. ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
  504. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
  505. #ifdef __BIG_ENDIAN
  506. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
  507. #endif
  508. /* enable DMA IBs */
  509. WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
  510. ring->ready = true;
  511. r = amdgpu_ring_test_ring(ring);
  512. if (r) {
  513. ring->ready = false;
  514. return r;
  515. }
  516. if (adev->mman.buffer_funcs_ring == ring)
  517. amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size);
  518. }
  519. return 0;
  520. }
  521. /**
  522. * sdma_v3_0_rlc_resume - setup and start the async dma engines
  523. *
  524. * @adev: amdgpu_device pointer
  525. *
  526. * Set up the compute DMA queues and enable them (VI).
  527. * Returns 0 for success, error for failure.
  528. */
  529. static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev)
  530. {
  531. /* XXX todo */
  532. return 0;
  533. }
  534. /**
  535. * sdma_v3_0_load_microcode - load the sDMA ME ucode
  536. *
  537. * @adev: amdgpu_device pointer
  538. *
  539. * Loads the sDMA0/1 ucode.
  540. * Returns 0 for success, -EINVAL if the ucode is not available.
  541. */
  542. static int sdma_v3_0_load_microcode(struct amdgpu_device *adev)
  543. {
  544. const struct sdma_firmware_header_v1_0 *hdr;
  545. const __le32 *fw_data;
  546. u32 fw_size;
  547. int i, j;
  548. if (!adev->sdma[0].fw || !adev->sdma[1].fw)
  549. return -EINVAL;
  550. /* halt the MEs */
  551. sdma_v3_0_enable(adev, false);
  552. for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
  553. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma[i].fw->data;
  554. amdgpu_ucode_print_sdma_hdr(&hdr->header);
  555. fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
  556. adev->sdma[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
  557. fw_data = (const __le32 *)
  558. (adev->sdma[i].fw->data +
  559. le32_to_cpu(hdr->header.ucode_array_offset_bytes));
  560. WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0);
  561. for (j = 0; j < fw_size; j++)
  562. WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++));
  563. WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma[i].fw_version);
  564. }
  565. return 0;
  566. }
  567. /**
  568. * sdma_v3_0_start - setup and start the async dma engines
  569. *
  570. * @adev: amdgpu_device pointer
  571. *
  572. * Set up the DMA engines and enable them (VI).
  573. * Returns 0 for success, error for failure.
  574. */
  575. static int sdma_v3_0_start(struct amdgpu_device *adev)
  576. {
  577. int r;
  578. if (!adev->firmware.smu_load) {
  579. r = sdma_v3_0_load_microcode(adev);
  580. if (r)
  581. return r;
  582. } else {
  583. r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
  584. AMDGPU_UCODE_ID_SDMA0);
  585. if (r)
  586. return -EINVAL;
  587. r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
  588. AMDGPU_UCODE_ID_SDMA1);
  589. if (r)
  590. return -EINVAL;
  591. }
  592. /* unhalt the MEs */
  593. sdma_v3_0_enable(adev, true);
  594. /* enable sdma ring preemption */
  595. sdma_v3_0_ctx_switch_enable(adev, true);
  596. /* start the gfx rings and rlc compute queues */
  597. r = sdma_v3_0_gfx_resume(adev);
  598. if (r)
  599. return r;
  600. r = sdma_v3_0_rlc_resume(adev);
  601. if (r)
  602. return r;
  603. return 0;
  604. }
  605. /**
  606. * sdma_v3_0_ring_test_ring - simple async dma engine test
  607. *
  608. * @ring: amdgpu_ring structure holding ring information
  609. *
  610. * Test the DMA engine by writing using it to write an
  611. * value to memory. (VI).
  612. * Returns 0 for success, error for failure.
  613. */
  614. static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring)
  615. {
  616. struct amdgpu_device *adev = ring->adev;
  617. unsigned i;
  618. unsigned index;
  619. int r;
  620. u32 tmp;
  621. u64 gpu_addr;
  622. r = amdgpu_wb_get(adev, &index);
  623. if (r) {
  624. dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
  625. return r;
  626. }
  627. gpu_addr = adev->wb.gpu_addr + (index * 4);
  628. tmp = 0xCAFEDEAD;
  629. adev->wb.wb[index] = cpu_to_le32(tmp);
  630. r = amdgpu_ring_lock(ring, 5);
  631. if (r) {
  632. DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
  633. amdgpu_wb_free(adev, index);
  634. return r;
  635. }
  636. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  637. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
  638. amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
  639. amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
  640. amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
  641. amdgpu_ring_write(ring, 0xDEADBEEF);
  642. amdgpu_ring_unlock_commit(ring);
  643. for (i = 0; i < adev->usec_timeout; i++) {
  644. tmp = le32_to_cpu(adev->wb.wb[index]);
  645. if (tmp == 0xDEADBEEF)
  646. break;
  647. DRM_UDELAY(1);
  648. }
  649. if (i < adev->usec_timeout) {
  650. DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
  651. } else {
  652. DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
  653. ring->idx, tmp);
  654. r = -EINVAL;
  655. }
  656. amdgpu_wb_free(adev, index);
  657. return r;
  658. }
  659. /**
  660. * sdma_v3_0_ring_test_ib - test an IB on the DMA engine
  661. *
  662. * @ring: amdgpu_ring structure holding ring information
  663. *
  664. * Test a simple IB in the DMA ring (VI).
  665. * Returns 0 on success, error on failure.
  666. */
  667. static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring)
  668. {
  669. struct amdgpu_device *adev = ring->adev;
  670. struct amdgpu_ib ib;
  671. unsigned i;
  672. unsigned index;
  673. int r;
  674. u32 tmp = 0;
  675. u64 gpu_addr;
  676. r = amdgpu_wb_get(adev, &index);
  677. if (r) {
  678. dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
  679. return r;
  680. }
  681. gpu_addr = adev->wb.gpu_addr + (index * 4);
  682. tmp = 0xCAFEDEAD;
  683. adev->wb.wb[index] = cpu_to_le32(tmp);
  684. r = amdgpu_ib_get(ring, NULL, 256, &ib);
  685. if (r) {
  686. amdgpu_wb_free(adev, index);
  687. DRM_ERROR("amdgpu: failed to get ib (%d).\n", r);
  688. return r;
  689. }
  690. ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  691. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
  692. ib.ptr[1] = lower_32_bits(gpu_addr);
  693. ib.ptr[2] = upper_32_bits(gpu_addr);
  694. ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
  695. ib.ptr[4] = 0xDEADBEEF;
  696. ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  697. ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  698. ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  699. ib.length_dw = 8;
  700. r = amdgpu_ib_schedule(adev, 1, &ib, AMDGPU_FENCE_OWNER_UNDEFINED);
  701. if (r) {
  702. amdgpu_ib_free(adev, &ib);
  703. amdgpu_wb_free(adev, index);
  704. DRM_ERROR("amdgpu: failed to schedule ib (%d).\n", r);
  705. return r;
  706. }
  707. r = amdgpu_fence_wait(ib.fence, false);
  708. if (r) {
  709. amdgpu_ib_free(adev, &ib);
  710. amdgpu_wb_free(adev, index);
  711. DRM_ERROR("amdgpu: fence wait failed (%d).\n", r);
  712. return r;
  713. }
  714. for (i = 0; i < adev->usec_timeout; i++) {
  715. tmp = le32_to_cpu(adev->wb.wb[index]);
  716. if (tmp == 0xDEADBEEF)
  717. break;
  718. DRM_UDELAY(1);
  719. }
  720. if (i < adev->usec_timeout) {
  721. DRM_INFO("ib test on ring %d succeeded in %u usecs\n",
  722. ib.fence->ring->idx, i);
  723. } else {
  724. DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
  725. r = -EINVAL;
  726. }
  727. amdgpu_ib_free(adev, &ib);
  728. amdgpu_wb_free(adev, index);
  729. return r;
  730. }
  731. /**
  732. * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART
  733. *
  734. * @ib: indirect buffer to fill with commands
  735. * @pe: addr of the page entry
  736. * @src: src addr to copy from
  737. * @count: number of page entries to update
  738. *
  739. * Update PTEs by copying them from the GART using sDMA (CIK).
  740. */
  741. static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib,
  742. uint64_t pe, uint64_t src,
  743. unsigned count)
  744. {
  745. while (count) {
  746. unsigned bytes = count * 8;
  747. if (bytes > 0x1FFFF8)
  748. bytes = 0x1FFFF8;
  749. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  750. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  751. ib->ptr[ib->length_dw++] = bytes;
  752. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  753. ib->ptr[ib->length_dw++] = lower_32_bits(src);
  754. ib->ptr[ib->length_dw++] = upper_32_bits(src);
  755. ib->ptr[ib->length_dw++] = lower_32_bits(pe);
  756. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  757. pe += bytes;
  758. src += bytes;
  759. count -= bytes / 8;
  760. }
  761. }
  762. /**
  763. * sdma_v3_0_vm_write_pte - update PTEs by writing them manually
  764. *
  765. * @ib: indirect buffer to fill with commands
  766. * @pe: addr of the page entry
  767. * @addr: dst addr to write into pe
  768. * @count: number of page entries to update
  769. * @incr: increase next addr by incr bytes
  770. * @flags: access flags
  771. *
  772. * Update PTEs by writing them manually using sDMA (CIK).
  773. */
  774. static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib,
  775. uint64_t pe,
  776. uint64_t addr, unsigned count,
  777. uint32_t incr, uint32_t flags)
  778. {
  779. uint64_t value;
  780. unsigned ndw;
  781. while (count) {
  782. ndw = count * 2;
  783. if (ndw > 0xFFFFE)
  784. ndw = 0xFFFFE;
  785. /* for non-physically contiguous pages (system) */
  786. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  787. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  788. ib->ptr[ib->length_dw++] = pe;
  789. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  790. ib->ptr[ib->length_dw++] = ndw;
  791. for (; ndw > 0; ndw -= 2, --count, pe += 8) {
  792. if (flags & AMDGPU_PTE_SYSTEM) {
  793. value = amdgpu_vm_map_gart(ib->ring->adev, addr);
  794. value &= 0xFFFFFFFFFFFFF000ULL;
  795. } else if (flags & AMDGPU_PTE_VALID) {
  796. value = addr;
  797. } else {
  798. value = 0;
  799. }
  800. addr += incr;
  801. value |= flags;
  802. ib->ptr[ib->length_dw++] = value;
  803. ib->ptr[ib->length_dw++] = upper_32_bits(value);
  804. }
  805. }
  806. }
  807. /**
  808. * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA
  809. *
  810. * @ib: indirect buffer to fill with commands
  811. * @pe: addr of the page entry
  812. * @addr: dst addr to write into pe
  813. * @count: number of page entries to update
  814. * @incr: increase next addr by incr bytes
  815. * @flags: access flags
  816. *
  817. * Update the page tables using sDMA (CIK).
  818. */
  819. static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib,
  820. uint64_t pe,
  821. uint64_t addr, unsigned count,
  822. uint32_t incr, uint32_t flags)
  823. {
  824. uint64_t value;
  825. unsigned ndw;
  826. while (count) {
  827. ndw = count;
  828. if (ndw > 0x7FFFF)
  829. ndw = 0x7FFFF;
  830. if (flags & AMDGPU_PTE_VALID)
  831. value = addr;
  832. else
  833. value = 0;
  834. /* for physically contiguous pages (vram) */
  835. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
  836. ib->ptr[ib->length_dw++] = pe; /* dst addr */
  837. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  838. ib->ptr[ib->length_dw++] = flags; /* mask */
  839. ib->ptr[ib->length_dw++] = 0;
  840. ib->ptr[ib->length_dw++] = value; /* value */
  841. ib->ptr[ib->length_dw++] = upper_32_bits(value);
  842. ib->ptr[ib->length_dw++] = incr; /* increment size */
  843. ib->ptr[ib->length_dw++] = 0;
  844. ib->ptr[ib->length_dw++] = ndw; /* number of entries */
  845. pe += ndw * 8;
  846. addr += ndw * incr;
  847. count -= ndw;
  848. }
  849. }
  850. /**
  851. * sdma_v3_0_vm_pad_ib - pad the IB to the required number of dw
  852. *
  853. * @ib: indirect buffer to fill with padding
  854. *
  855. */
  856. static void sdma_v3_0_vm_pad_ib(struct amdgpu_ib *ib)
  857. {
  858. while (ib->length_dw & 0x7)
  859. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
  860. }
  861. /**
  862. * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA
  863. *
  864. * @ring: amdgpu_ring pointer
  865. * @vm: amdgpu_vm pointer
  866. *
  867. * Update the page table base and flush the VM TLB
  868. * using sDMA (VI).
  869. */
  870. static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
  871. unsigned vm_id, uint64_t pd_addr)
  872. {
  873. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  874. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  875. if (vm_id < 8) {
  876. amdgpu_ring_write(ring, (mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + vm_id));
  877. } else {
  878. amdgpu_ring_write(ring, (mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vm_id - 8));
  879. }
  880. amdgpu_ring_write(ring, pd_addr >> 12);
  881. /* flush TLB */
  882. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  883. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  884. amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST);
  885. amdgpu_ring_write(ring, 1 << vm_id);
  886. /* wait for flush */
  887. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  888. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  889. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
  890. amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
  891. amdgpu_ring_write(ring, 0);
  892. amdgpu_ring_write(ring, 0); /* reference */
  893. amdgpu_ring_write(ring, 0); /* mask */
  894. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  895. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  896. }
  897. static int sdma_v3_0_early_init(void *handle)
  898. {
  899. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  900. sdma_v3_0_set_ring_funcs(adev);
  901. sdma_v3_0_set_buffer_funcs(adev);
  902. sdma_v3_0_set_vm_pte_funcs(adev);
  903. sdma_v3_0_set_irq_funcs(adev);
  904. return 0;
  905. }
  906. static int sdma_v3_0_sw_init(void *handle)
  907. {
  908. struct amdgpu_ring *ring;
  909. int r;
  910. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  911. /* SDMA trap event */
  912. r = amdgpu_irq_add_id(adev, 224, &adev->sdma_trap_irq);
  913. if (r)
  914. return r;
  915. /* SDMA Privileged inst */
  916. r = amdgpu_irq_add_id(adev, 241, &adev->sdma_illegal_inst_irq);
  917. if (r)
  918. return r;
  919. /* SDMA Privileged inst */
  920. r = amdgpu_irq_add_id(adev, 247, &adev->sdma_illegal_inst_irq);
  921. if (r)
  922. return r;
  923. r = sdma_v3_0_init_microcode(adev);
  924. if (r) {
  925. DRM_ERROR("Failed to load sdma firmware!\n");
  926. return r;
  927. }
  928. ring = &adev->sdma[0].ring;
  929. ring->ring_obj = NULL;
  930. ring->use_doorbell = true;
  931. ring->doorbell_index = AMDGPU_DOORBELL_sDMA_ENGINE0;
  932. ring = &adev->sdma[1].ring;
  933. ring->ring_obj = NULL;
  934. ring->use_doorbell = true;
  935. ring->doorbell_index = AMDGPU_DOORBELL_sDMA_ENGINE1;
  936. ring = &adev->sdma[0].ring;
  937. sprintf(ring->name, "sdma0");
  938. r = amdgpu_ring_init(adev, ring, 256 * 1024,
  939. SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 0xf,
  940. &adev->sdma_trap_irq, AMDGPU_SDMA_IRQ_TRAP0,
  941. AMDGPU_RING_TYPE_SDMA);
  942. if (r)
  943. return r;
  944. ring = &adev->sdma[1].ring;
  945. sprintf(ring->name, "sdma1");
  946. r = amdgpu_ring_init(adev, ring, 256 * 1024,
  947. SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 0xf,
  948. &adev->sdma_trap_irq, AMDGPU_SDMA_IRQ_TRAP1,
  949. AMDGPU_RING_TYPE_SDMA);
  950. if (r)
  951. return r;
  952. return r;
  953. }
  954. static int sdma_v3_0_sw_fini(void *handle)
  955. {
  956. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  957. amdgpu_ring_fini(&adev->sdma[0].ring);
  958. amdgpu_ring_fini(&adev->sdma[1].ring);
  959. return 0;
  960. }
  961. static int sdma_v3_0_hw_init(void *handle)
  962. {
  963. int r;
  964. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  965. sdma_v3_0_init_golden_registers(adev);
  966. r = sdma_v3_0_start(adev);
  967. if (r)
  968. return r;
  969. return r;
  970. }
  971. static int sdma_v3_0_hw_fini(void *handle)
  972. {
  973. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  974. sdma_v3_0_ctx_switch_enable(adev, false);
  975. sdma_v3_0_enable(adev, false);
  976. return 0;
  977. }
  978. static int sdma_v3_0_suspend(void *handle)
  979. {
  980. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  981. return sdma_v3_0_hw_fini(adev);
  982. }
  983. static int sdma_v3_0_resume(void *handle)
  984. {
  985. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  986. return sdma_v3_0_hw_init(adev);
  987. }
  988. static bool sdma_v3_0_is_idle(void *handle)
  989. {
  990. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  991. u32 tmp = RREG32(mmSRBM_STATUS2);
  992. if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
  993. SRBM_STATUS2__SDMA1_BUSY_MASK))
  994. return false;
  995. return true;
  996. }
  997. static int sdma_v3_0_wait_for_idle(void *handle)
  998. {
  999. unsigned i;
  1000. u32 tmp;
  1001. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1002. for (i = 0; i < adev->usec_timeout; i++) {
  1003. tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
  1004. SRBM_STATUS2__SDMA1_BUSY_MASK);
  1005. if (!tmp)
  1006. return 0;
  1007. udelay(1);
  1008. }
  1009. return -ETIMEDOUT;
  1010. }
  1011. static void sdma_v3_0_print_status(void *handle)
  1012. {
  1013. int i, j;
  1014. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1015. dev_info(adev->dev, "VI SDMA registers\n");
  1016. dev_info(adev->dev, " SRBM_STATUS2=0x%08X\n",
  1017. RREG32(mmSRBM_STATUS2));
  1018. for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
  1019. dev_info(adev->dev, " SDMA%d_STATUS_REG=0x%08X\n",
  1020. i, RREG32(mmSDMA0_STATUS_REG + sdma_offsets[i]));
  1021. dev_info(adev->dev, " SDMA%d_F32_CNTL=0x%08X\n",
  1022. i, RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]));
  1023. dev_info(adev->dev, " SDMA%d_CNTL=0x%08X\n",
  1024. i, RREG32(mmSDMA0_CNTL + sdma_offsets[i]));
  1025. dev_info(adev->dev, " SDMA%d_SEM_WAIT_FAIL_TIMER_CNTL=0x%08X\n",
  1026. i, RREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i]));
  1027. dev_info(adev->dev, " SDMA%d_GFX_IB_CNTL=0x%08X\n",
  1028. i, RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]));
  1029. dev_info(adev->dev, " SDMA%d_GFX_RB_CNTL=0x%08X\n",
  1030. i, RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]));
  1031. dev_info(adev->dev, " SDMA%d_GFX_RB_RPTR=0x%08X\n",
  1032. i, RREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i]));
  1033. dev_info(adev->dev, " SDMA%d_GFX_RB_WPTR=0x%08X\n",
  1034. i, RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i]));
  1035. dev_info(adev->dev, " SDMA%d_GFX_RB_RPTR_ADDR_HI=0x%08X\n",
  1036. i, RREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i]));
  1037. dev_info(adev->dev, " SDMA%d_GFX_RB_RPTR_ADDR_LO=0x%08X\n",
  1038. i, RREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i]));
  1039. dev_info(adev->dev, " SDMA%d_GFX_RB_BASE=0x%08X\n",
  1040. i, RREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i]));
  1041. dev_info(adev->dev, " SDMA%d_GFX_RB_BASE_HI=0x%08X\n",
  1042. i, RREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i]));
  1043. dev_info(adev->dev, " SDMA%d_GFX_DOORBELL=0x%08X\n",
  1044. i, RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]));
  1045. mutex_lock(&adev->srbm_mutex);
  1046. for (j = 0; j < 16; j++) {
  1047. vi_srbm_select(adev, 0, 0, 0, j);
  1048. dev_info(adev->dev, " VM %d:\n", j);
  1049. dev_info(adev->dev, " SDMA%d_GFX_VIRTUAL_ADDR=0x%08X\n",
  1050. i, RREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i]));
  1051. dev_info(adev->dev, " SDMA%d_GFX_APE1_CNTL=0x%08X\n",
  1052. i, RREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i]));
  1053. }
  1054. vi_srbm_select(adev, 0, 0, 0, 0);
  1055. mutex_unlock(&adev->srbm_mutex);
  1056. }
  1057. }
  1058. static int sdma_v3_0_soft_reset(void *handle)
  1059. {
  1060. u32 srbm_soft_reset = 0;
  1061. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1062. u32 tmp = RREG32(mmSRBM_STATUS2);
  1063. if (tmp & SRBM_STATUS2__SDMA_BUSY_MASK) {
  1064. /* sdma0 */
  1065. tmp = RREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET);
  1066. tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
  1067. WREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET, tmp);
  1068. srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
  1069. }
  1070. if (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK) {
  1071. /* sdma1 */
  1072. tmp = RREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET);
  1073. tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
  1074. WREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET, tmp);
  1075. srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
  1076. }
  1077. if (srbm_soft_reset) {
  1078. sdma_v3_0_print_status((void *)adev);
  1079. tmp = RREG32(mmSRBM_SOFT_RESET);
  1080. tmp |= srbm_soft_reset;
  1081. dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
  1082. WREG32(mmSRBM_SOFT_RESET, tmp);
  1083. tmp = RREG32(mmSRBM_SOFT_RESET);
  1084. udelay(50);
  1085. tmp &= ~srbm_soft_reset;
  1086. WREG32(mmSRBM_SOFT_RESET, tmp);
  1087. tmp = RREG32(mmSRBM_SOFT_RESET);
  1088. /* Wait a little for things to settle down */
  1089. udelay(50);
  1090. sdma_v3_0_print_status((void *)adev);
  1091. }
  1092. return 0;
  1093. }
  1094. static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev,
  1095. struct amdgpu_irq_src *source,
  1096. unsigned type,
  1097. enum amdgpu_interrupt_state state)
  1098. {
  1099. u32 sdma_cntl;
  1100. switch (type) {
  1101. case AMDGPU_SDMA_IRQ_TRAP0:
  1102. switch (state) {
  1103. case AMDGPU_IRQ_STATE_DISABLE:
  1104. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
  1105. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
  1106. WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
  1107. break;
  1108. case AMDGPU_IRQ_STATE_ENABLE:
  1109. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
  1110. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
  1111. WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
  1112. break;
  1113. default:
  1114. break;
  1115. }
  1116. break;
  1117. case AMDGPU_SDMA_IRQ_TRAP1:
  1118. switch (state) {
  1119. case AMDGPU_IRQ_STATE_DISABLE:
  1120. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
  1121. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
  1122. WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
  1123. break;
  1124. case AMDGPU_IRQ_STATE_ENABLE:
  1125. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
  1126. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
  1127. WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
  1128. break;
  1129. default:
  1130. break;
  1131. }
  1132. break;
  1133. default:
  1134. break;
  1135. }
  1136. return 0;
  1137. }
  1138. static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev,
  1139. struct amdgpu_irq_src *source,
  1140. struct amdgpu_iv_entry *entry)
  1141. {
  1142. u8 instance_id, queue_id;
  1143. instance_id = (entry->ring_id & 0x3) >> 0;
  1144. queue_id = (entry->ring_id & 0xc) >> 2;
  1145. DRM_DEBUG("IH: SDMA trap\n");
  1146. switch (instance_id) {
  1147. case 0:
  1148. switch (queue_id) {
  1149. case 0:
  1150. amdgpu_fence_process(&adev->sdma[0].ring);
  1151. break;
  1152. case 1:
  1153. /* XXX compute */
  1154. break;
  1155. case 2:
  1156. /* XXX compute */
  1157. break;
  1158. }
  1159. break;
  1160. case 1:
  1161. switch (queue_id) {
  1162. case 0:
  1163. amdgpu_fence_process(&adev->sdma[1].ring);
  1164. break;
  1165. case 1:
  1166. /* XXX compute */
  1167. break;
  1168. case 2:
  1169. /* XXX compute */
  1170. break;
  1171. }
  1172. break;
  1173. }
  1174. return 0;
  1175. }
  1176. static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev,
  1177. struct amdgpu_irq_src *source,
  1178. struct amdgpu_iv_entry *entry)
  1179. {
  1180. DRM_ERROR("Illegal instruction in SDMA command stream\n");
  1181. schedule_work(&adev->reset_work);
  1182. return 0;
  1183. }
  1184. static int sdma_v3_0_set_clockgating_state(void *handle,
  1185. enum amd_clockgating_state state)
  1186. {
  1187. return 0;
  1188. }
  1189. static int sdma_v3_0_set_powergating_state(void *handle,
  1190. enum amd_powergating_state state)
  1191. {
  1192. return 0;
  1193. }
  1194. const struct amd_ip_funcs sdma_v3_0_ip_funcs = {
  1195. .early_init = sdma_v3_0_early_init,
  1196. .late_init = NULL,
  1197. .sw_init = sdma_v3_0_sw_init,
  1198. .sw_fini = sdma_v3_0_sw_fini,
  1199. .hw_init = sdma_v3_0_hw_init,
  1200. .hw_fini = sdma_v3_0_hw_fini,
  1201. .suspend = sdma_v3_0_suspend,
  1202. .resume = sdma_v3_0_resume,
  1203. .is_idle = sdma_v3_0_is_idle,
  1204. .wait_for_idle = sdma_v3_0_wait_for_idle,
  1205. .soft_reset = sdma_v3_0_soft_reset,
  1206. .print_status = sdma_v3_0_print_status,
  1207. .set_clockgating_state = sdma_v3_0_set_clockgating_state,
  1208. .set_powergating_state = sdma_v3_0_set_powergating_state,
  1209. };
  1210. /**
  1211. * sdma_v3_0_ring_is_lockup - Check if the DMA engine is locked up
  1212. *
  1213. * @ring: amdgpu_ring structure holding ring information
  1214. *
  1215. * Check if the async DMA engine is locked up (VI).
  1216. * Returns true if the engine appears to be locked up, false if not.
  1217. */
  1218. static bool sdma_v3_0_ring_is_lockup(struct amdgpu_ring *ring)
  1219. {
  1220. if (sdma_v3_0_is_idle(ring->adev)) {
  1221. amdgpu_ring_lockup_update(ring);
  1222. return false;
  1223. }
  1224. return amdgpu_ring_test_lockup(ring);
  1225. }
  1226. static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = {
  1227. .get_rptr = sdma_v3_0_ring_get_rptr,
  1228. .get_wptr = sdma_v3_0_ring_get_wptr,
  1229. .set_wptr = sdma_v3_0_ring_set_wptr,
  1230. .parse_cs = NULL,
  1231. .emit_ib = sdma_v3_0_ring_emit_ib,
  1232. .emit_fence = sdma_v3_0_ring_emit_fence,
  1233. .emit_semaphore = sdma_v3_0_ring_emit_semaphore,
  1234. .emit_vm_flush = sdma_v3_0_ring_emit_vm_flush,
  1235. .emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush,
  1236. .test_ring = sdma_v3_0_ring_test_ring,
  1237. .test_ib = sdma_v3_0_ring_test_ib,
  1238. .is_lockup = sdma_v3_0_ring_is_lockup,
  1239. };
  1240. static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev)
  1241. {
  1242. adev->sdma[0].ring.funcs = &sdma_v3_0_ring_funcs;
  1243. adev->sdma[1].ring.funcs = &sdma_v3_0_ring_funcs;
  1244. }
  1245. static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = {
  1246. .set = sdma_v3_0_set_trap_irq_state,
  1247. .process = sdma_v3_0_process_trap_irq,
  1248. };
  1249. static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = {
  1250. .process = sdma_v3_0_process_illegal_inst_irq,
  1251. };
  1252. static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev)
  1253. {
  1254. adev->sdma_trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
  1255. adev->sdma_trap_irq.funcs = &sdma_v3_0_trap_irq_funcs;
  1256. adev->sdma_illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs;
  1257. }
  1258. /**
  1259. * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine
  1260. *
  1261. * @ring: amdgpu_ring structure holding ring information
  1262. * @src_offset: src GPU address
  1263. * @dst_offset: dst GPU address
  1264. * @byte_count: number of bytes to xfer
  1265. *
  1266. * Copy GPU buffers using the DMA engine (VI).
  1267. * Used by the amdgpu ttm implementation to move pages if
  1268. * registered as the asic copy callback.
  1269. */
  1270. static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ring *ring,
  1271. uint64_t src_offset,
  1272. uint64_t dst_offset,
  1273. uint32_t byte_count)
  1274. {
  1275. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  1276. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR));
  1277. amdgpu_ring_write(ring, byte_count);
  1278. amdgpu_ring_write(ring, 0); /* src/dst endian swap */
  1279. amdgpu_ring_write(ring, lower_32_bits(src_offset));
  1280. amdgpu_ring_write(ring, upper_32_bits(src_offset));
  1281. amdgpu_ring_write(ring, lower_32_bits(dst_offset));
  1282. amdgpu_ring_write(ring, upper_32_bits(dst_offset));
  1283. }
  1284. /**
  1285. * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine
  1286. *
  1287. * @ring: amdgpu_ring structure holding ring information
  1288. * @src_data: value to write to buffer
  1289. * @dst_offset: dst GPU address
  1290. * @byte_count: number of bytes to xfer
  1291. *
  1292. * Fill GPU buffers using the DMA engine (VI).
  1293. */
  1294. static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ring *ring,
  1295. uint32_t src_data,
  1296. uint64_t dst_offset,
  1297. uint32_t byte_count)
  1298. {
  1299. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL));
  1300. amdgpu_ring_write(ring, lower_32_bits(dst_offset));
  1301. amdgpu_ring_write(ring, upper_32_bits(dst_offset));
  1302. amdgpu_ring_write(ring, src_data);
  1303. amdgpu_ring_write(ring, byte_count);
  1304. }
  1305. static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = {
  1306. .copy_max_bytes = 0x1fffff,
  1307. .copy_num_dw = 7,
  1308. .emit_copy_buffer = sdma_v3_0_emit_copy_buffer,
  1309. .fill_max_bytes = 0x1fffff,
  1310. .fill_num_dw = 5,
  1311. .emit_fill_buffer = sdma_v3_0_emit_fill_buffer,
  1312. };
  1313. static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev)
  1314. {
  1315. if (adev->mman.buffer_funcs == NULL) {
  1316. adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs;
  1317. adev->mman.buffer_funcs_ring = &adev->sdma[0].ring;
  1318. }
  1319. }
  1320. static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = {
  1321. .copy_pte = sdma_v3_0_vm_copy_pte,
  1322. .write_pte = sdma_v3_0_vm_write_pte,
  1323. .set_pte_pde = sdma_v3_0_vm_set_pte_pde,
  1324. .pad_ib = sdma_v3_0_vm_pad_ib,
  1325. };
  1326. static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev)
  1327. {
  1328. if (adev->vm_manager.vm_pte_funcs == NULL) {
  1329. adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs;
  1330. adev->vm_manager.vm_pte_funcs_ring = &adev->sdma[0].ring;
  1331. }
  1332. }