process.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552
  1. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  2. #include <linux/errno.h>
  3. #include <linux/kernel.h>
  4. #include <linux/mm.h>
  5. #include <linux/smp.h>
  6. #include <linux/prctl.h>
  7. #include <linux/slab.h>
  8. #include <linux/sched.h>
  9. #include <linux/sched/idle.h>
  10. #include <linux/sched/debug.h>
  11. #include <linux/sched/task.h>
  12. #include <linux/sched/task_stack.h>
  13. #include <linux/init.h>
  14. #include <linux/export.h>
  15. #include <linux/pm.h>
  16. #include <linux/tick.h>
  17. #include <linux/random.h>
  18. #include <linux/user-return-notifier.h>
  19. #include <linux/dmi.h>
  20. #include <linux/utsname.h>
  21. #include <linux/stackprotector.h>
  22. #include <linux/tick.h>
  23. #include <linux/cpuidle.h>
  24. #include <trace/events/power.h>
  25. #include <linux/hw_breakpoint.h>
  26. #include <asm/cpu.h>
  27. #include <asm/apic.h>
  28. #include <asm/syscalls.h>
  29. #include <linux/uaccess.h>
  30. #include <asm/mwait.h>
  31. #include <asm/fpu/internal.h>
  32. #include <asm/debugreg.h>
  33. #include <asm/nmi.h>
  34. #include <asm/tlbflush.h>
  35. #include <asm/mce.h>
  36. #include <asm/vm86.h>
  37. #include <asm/switch_to.h>
  38. #include <asm/desc.h>
  39. /*
  40. * per-CPU TSS segments. Threads are completely 'soft' on Linux,
  41. * no more per-task TSS's. The TSS size is kept cacheline-aligned
  42. * so they are allowed to end up in the .data..cacheline_aligned
  43. * section. Since TSS's are completely CPU-local, we want them
  44. * on exact cacheline boundaries, to eliminate cacheline ping-pong.
  45. */
  46. __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = {
  47. .x86_tss = {
  48. .sp0 = TOP_OF_INIT_STACK,
  49. #ifdef CONFIG_X86_32
  50. .ss0 = __KERNEL_DS,
  51. .ss1 = __KERNEL_CS,
  52. .io_bitmap_base = INVALID_IO_BITMAP_OFFSET,
  53. #endif
  54. },
  55. #ifdef CONFIG_X86_32
  56. /*
  57. * Note that the .io_bitmap member must be extra-big. This is because
  58. * the CPU will access an additional byte beyond the end of the IO
  59. * permission bitmap. The extra byte must be all 1 bits, and must
  60. * be within the limit.
  61. */
  62. .io_bitmap = { [0 ... IO_BITMAP_LONGS] = ~0 },
  63. #endif
  64. #ifdef CONFIG_X86_32
  65. .SYSENTER_stack_canary = STACK_END_MAGIC,
  66. #endif
  67. };
  68. EXPORT_PER_CPU_SYMBOL(cpu_tss);
  69. DEFINE_PER_CPU(bool, __tss_limit_invalid);
  70. EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
  71. /*
  72. * this gets called so that we can store lazy state into memory and copy the
  73. * current task into the new thread.
  74. */
  75. int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
  76. {
  77. memcpy(dst, src, arch_task_struct_size);
  78. #ifdef CONFIG_VM86
  79. dst->thread.vm86 = NULL;
  80. #endif
  81. return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
  82. }
  83. /*
  84. * Free current thread data structures etc..
  85. */
  86. void exit_thread(struct task_struct *tsk)
  87. {
  88. struct thread_struct *t = &tsk->thread;
  89. unsigned long *bp = t->io_bitmap_ptr;
  90. struct fpu *fpu = &t->fpu;
  91. if (bp) {
  92. struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu());
  93. t->io_bitmap_ptr = NULL;
  94. clear_thread_flag(TIF_IO_BITMAP);
  95. /*
  96. * Careful, clear this in the TSS too:
  97. */
  98. memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
  99. t->io_bitmap_max = 0;
  100. put_cpu();
  101. kfree(bp);
  102. }
  103. free_vm86(t);
  104. fpu__drop(fpu);
  105. }
  106. void flush_thread(void)
  107. {
  108. struct task_struct *tsk = current;
  109. flush_ptrace_hw_breakpoint(tsk);
  110. memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
  111. fpu__clear(&tsk->thread.fpu);
  112. }
  113. static void hard_disable_TSC(void)
  114. {
  115. cr4_set_bits(X86_CR4_TSD);
  116. }
  117. void disable_TSC(void)
  118. {
  119. preempt_disable();
  120. if (!test_and_set_thread_flag(TIF_NOTSC))
  121. /*
  122. * Must flip the CPU state synchronously with
  123. * TIF_NOTSC in the current running context.
  124. */
  125. hard_disable_TSC();
  126. preempt_enable();
  127. }
  128. static void hard_enable_TSC(void)
  129. {
  130. cr4_clear_bits(X86_CR4_TSD);
  131. }
  132. static void enable_TSC(void)
  133. {
  134. preempt_disable();
  135. if (test_and_clear_thread_flag(TIF_NOTSC))
  136. /*
  137. * Must flip the CPU state synchronously with
  138. * TIF_NOTSC in the current running context.
  139. */
  140. hard_enable_TSC();
  141. preempt_enable();
  142. }
  143. int get_tsc_mode(unsigned long adr)
  144. {
  145. unsigned int val;
  146. if (test_thread_flag(TIF_NOTSC))
  147. val = PR_TSC_SIGSEGV;
  148. else
  149. val = PR_TSC_ENABLE;
  150. return put_user(val, (unsigned int __user *)adr);
  151. }
  152. int set_tsc_mode(unsigned int val)
  153. {
  154. if (val == PR_TSC_SIGSEGV)
  155. disable_TSC();
  156. else if (val == PR_TSC_ENABLE)
  157. enable_TSC();
  158. else
  159. return -EINVAL;
  160. return 0;
  161. }
  162. void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
  163. struct tss_struct *tss)
  164. {
  165. struct thread_struct *prev, *next;
  166. prev = &prev_p->thread;
  167. next = &next_p->thread;
  168. if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
  169. test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
  170. unsigned long debugctl = get_debugctlmsr();
  171. debugctl &= ~DEBUGCTLMSR_BTF;
  172. if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
  173. debugctl |= DEBUGCTLMSR_BTF;
  174. update_debugctlmsr(debugctl);
  175. }
  176. if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
  177. test_tsk_thread_flag(next_p, TIF_NOTSC)) {
  178. /* prev and next are different */
  179. if (test_tsk_thread_flag(next_p, TIF_NOTSC))
  180. hard_disable_TSC();
  181. else
  182. hard_enable_TSC();
  183. }
  184. if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
  185. /*
  186. * Copy the relevant range of the IO bitmap.
  187. * Normally this is 128 bytes or less:
  188. */
  189. memcpy(tss->io_bitmap, next->io_bitmap_ptr,
  190. max(prev->io_bitmap_max, next->io_bitmap_max));
  191. /*
  192. * Make sure that the TSS limit is correct for the CPU
  193. * to notice the IO bitmap.
  194. */
  195. refresh_tss_limit();
  196. } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
  197. /*
  198. * Clear any possible leftover bits:
  199. */
  200. memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
  201. }
  202. propagate_user_return_notify(prev_p, next_p);
  203. }
  204. /*
  205. * Idle related variables and functions
  206. */
  207. unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
  208. EXPORT_SYMBOL(boot_option_idle_override);
  209. static void (*x86_idle)(void);
  210. #ifndef CONFIG_SMP
  211. static inline void play_dead(void)
  212. {
  213. BUG();
  214. }
  215. #endif
  216. void arch_cpu_idle_enter(void)
  217. {
  218. tsc_verify_tsc_adjust(false);
  219. local_touch_nmi();
  220. }
  221. void arch_cpu_idle_dead(void)
  222. {
  223. play_dead();
  224. }
  225. /*
  226. * Called from the generic idle code.
  227. */
  228. void arch_cpu_idle(void)
  229. {
  230. x86_idle();
  231. }
  232. /*
  233. * We use this if we don't have any better idle routine..
  234. */
  235. void __cpuidle default_idle(void)
  236. {
  237. trace_cpu_idle_rcuidle(1, smp_processor_id());
  238. safe_halt();
  239. trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
  240. }
  241. #ifdef CONFIG_APM_MODULE
  242. EXPORT_SYMBOL(default_idle);
  243. #endif
  244. #ifdef CONFIG_XEN
  245. bool xen_set_default_idle(void)
  246. {
  247. bool ret = !!x86_idle;
  248. x86_idle = default_idle;
  249. return ret;
  250. }
  251. #endif
  252. void stop_this_cpu(void *dummy)
  253. {
  254. local_irq_disable();
  255. /*
  256. * Remove this CPU:
  257. */
  258. set_cpu_online(smp_processor_id(), false);
  259. disable_local_APIC();
  260. mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
  261. for (;;)
  262. halt();
  263. }
  264. /*
  265. * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
  266. * states (local apic timer and TSC stop).
  267. */
  268. static void amd_e400_idle(void)
  269. {
  270. /*
  271. * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
  272. * gets set after static_cpu_has() places have been converted via
  273. * alternatives.
  274. */
  275. if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
  276. default_idle();
  277. return;
  278. }
  279. tick_broadcast_enter();
  280. default_idle();
  281. /*
  282. * The switch back from broadcast mode needs to be called with
  283. * interrupts disabled.
  284. */
  285. local_irq_disable();
  286. tick_broadcast_exit();
  287. local_irq_enable();
  288. }
  289. /*
  290. * Intel Core2 and older machines prefer MWAIT over HALT for C1.
  291. * We can't rely on cpuidle installing MWAIT, because it will not load
  292. * on systems that support only C1 -- so the boot default must be MWAIT.
  293. *
  294. * Some AMD machines are the opposite, they depend on using HALT.
  295. *
  296. * So for default C1, which is used during boot until cpuidle loads,
  297. * use MWAIT-C1 on Intel HW that has it, else use HALT.
  298. */
  299. static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
  300. {
  301. if (c->x86_vendor != X86_VENDOR_INTEL)
  302. return 0;
  303. if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR))
  304. return 0;
  305. return 1;
  306. }
  307. /*
  308. * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
  309. * with interrupts enabled and no flags, which is backwards compatible with the
  310. * original MWAIT implementation.
  311. */
  312. static __cpuidle void mwait_idle(void)
  313. {
  314. if (!current_set_polling_and_test()) {
  315. trace_cpu_idle_rcuidle(1, smp_processor_id());
  316. if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
  317. mb(); /* quirk */
  318. clflush((void *)&current_thread_info()->flags);
  319. mb(); /* quirk */
  320. }
  321. __monitor((void *)&current_thread_info()->flags, 0, 0);
  322. if (!need_resched())
  323. __sti_mwait(0, 0);
  324. else
  325. local_irq_enable();
  326. trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
  327. } else {
  328. local_irq_enable();
  329. }
  330. __current_clr_polling();
  331. }
  332. void select_idle_routine(const struct cpuinfo_x86 *c)
  333. {
  334. #ifdef CONFIG_SMP
  335. if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
  336. pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
  337. #endif
  338. if (x86_idle || boot_option_idle_override == IDLE_POLL)
  339. return;
  340. if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
  341. pr_info("using AMD E400 aware idle routine\n");
  342. x86_idle = amd_e400_idle;
  343. } else if (prefer_mwait_c1_over_halt(c)) {
  344. pr_info("using mwait in idle threads\n");
  345. x86_idle = mwait_idle;
  346. } else
  347. x86_idle = default_idle;
  348. }
  349. void amd_e400_c1e_apic_setup(void)
  350. {
  351. if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
  352. pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
  353. local_irq_disable();
  354. tick_broadcast_force();
  355. local_irq_enable();
  356. }
  357. }
  358. void __init arch_post_acpi_subsys_init(void)
  359. {
  360. u32 lo, hi;
  361. if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
  362. return;
  363. /*
  364. * AMD E400 detection needs to happen after ACPI has been enabled. If
  365. * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
  366. * MSR_K8_INT_PENDING_MSG.
  367. */
  368. rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
  369. if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
  370. return;
  371. boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
  372. if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
  373. mark_tsc_unstable("TSC halt in AMD C1E");
  374. pr_info("System has AMD C1E enabled\n");
  375. }
  376. static int __init idle_setup(char *str)
  377. {
  378. if (!str)
  379. return -EINVAL;
  380. if (!strcmp(str, "poll")) {
  381. pr_info("using polling idle threads\n");
  382. boot_option_idle_override = IDLE_POLL;
  383. cpu_idle_poll_ctrl(true);
  384. } else if (!strcmp(str, "halt")) {
  385. /*
  386. * When the boot option of idle=halt is added, halt is
  387. * forced to be used for CPU idle. In such case CPU C2/C3
  388. * won't be used again.
  389. * To continue to load the CPU idle driver, don't touch
  390. * the boot_option_idle_override.
  391. */
  392. x86_idle = default_idle;
  393. boot_option_idle_override = IDLE_HALT;
  394. } else if (!strcmp(str, "nomwait")) {
  395. /*
  396. * If the boot option of "idle=nomwait" is added,
  397. * it means that mwait will be disabled for CPU C2/C3
  398. * states. In such case it won't touch the variable
  399. * of boot_option_idle_override.
  400. */
  401. boot_option_idle_override = IDLE_NOMWAIT;
  402. } else
  403. return -1;
  404. return 0;
  405. }
  406. early_param("idle", idle_setup);
  407. unsigned long arch_align_stack(unsigned long sp)
  408. {
  409. if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
  410. sp -= get_random_int() % 8192;
  411. return sp & ~0xf;
  412. }
  413. unsigned long arch_randomize_brk(struct mm_struct *mm)
  414. {
  415. return randomize_page(mm->brk, 0x02000000);
  416. }
  417. /*
  418. * Return saved PC of a blocked thread.
  419. * What is this good for? it will be always the scheduler or ret_from_fork.
  420. */
  421. unsigned long thread_saved_pc(struct task_struct *tsk)
  422. {
  423. struct inactive_task_frame *frame =
  424. (struct inactive_task_frame *) READ_ONCE(tsk->thread.sp);
  425. return READ_ONCE_NOCHECK(frame->ret_addr);
  426. }
  427. /*
  428. * Called from fs/proc with a reference on @p to find the function
  429. * which called into schedule(). This needs to be done carefully
  430. * because the task might wake up and we might look at a stack
  431. * changing under us.
  432. */
  433. unsigned long get_wchan(struct task_struct *p)
  434. {
  435. unsigned long start, bottom, top, sp, fp, ip, ret = 0;
  436. int count = 0;
  437. if (!p || p == current || p->state == TASK_RUNNING)
  438. return 0;
  439. if (!try_get_task_stack(p))
  440. return 0;
  441. start = (unsigned long)task_stack_page(p);
  442. if (!start)
  443. goto out;
  444. /*
  445. * Layout of the stack page:
  446. *
  447. * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
  448. * PADDING
  449. * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
  450. * stack
  451. * ----------- bottom = start
  452. *
  453. * The tasks stack pointer points at the location where the
  454. * framepointer is stored. The data on the stack is:
  455. * ... IP FP ... IP FP
  456. *
  457. * We need to read FP and IP, so we need to adjust the upper
  458. * bound by another unsigned long.
  459. */
  460. top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
  461. top -= 2 * sizeof(unsigned long);
  462. bottom = start;
  463. sp = READ_ONCE(p->thread.sp);
  464. if (sp < bottom || sp > top)
  465. goto out;
  466. fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
  467. do {
  468. if (fp < bottom || fp > top)
  469. goto out;
  470. ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
  471. if (!in_sched_functions(ip)) {
  472. ret = ip;
  473. goto out;
  474. }
  475. fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
  476. } while (count++ < 16 && p->state != TASK_RUNNING);
  477. out:
  478. put_task_stack(p);
  479. return ret;
  480. }