e820.c 30 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214
  1. /*
  2. * Handle the memory map.
  3. * The functions here do the job until bootmem takes over.
  4. *
  5. * Getting sanitize_e820_map() in sync with i386 version by applying change:
  6. * - Provisions for empty E820 memory regions (reported by certain BIOSes).
  7. * Alex Achenbach <xela@slit.de>, December 2002.
  8. * Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
  9. *
  10. */
  11. #include <linux/kernel.h>
  12. #include <linux/types.h>
  13. #include <linux/init.h>
  14. #include <linux/crash_dump.h>
  15. #include <linux/export.h>
  16. #include <linux/bootmem.h>
  17. #include <linux/pfn.h>
  18. #include <linux/suspend.h>
  19. #include <linux/acpi.h>
  20. #include <linux/firmware-map.h>
  21. #include <linux/memblock.h>
  22. #include <linux/sort.h>
  23. #include <asm/e820.h>
  24. #include <asm/proto.h>
  25. #include <asm/setup.h>
  26. #include <asm/cpufeature.h>
  27. /*
  28. * The e820 map is the map that gets modified e.g. with command line parameters
  29. * and that is also registered with modifications in the kernel resource tree
  30. * with the iomem_resource as parent.
  31. *
  32. * The e820_saved is directly saved after the BIOS-provided memory map is
  33. * copied. It doesn't get modified afterwards. It's registered for the
  34. * /sys/firmware/memmap interface.
  35. *
  36. * That memory map is not modified and is used as base for kexec. The kexec'd
  37. * kernel should get the same memory map as the firmware provides. Then the
  38. * user can e.g. boot the original kernel with mem=1G while still booting the
  39. * next kernel with full memory.
  40. */
  41. static struct e820map initial_e820 __initdata;
  42. static struct e820map initial_e820_saved __initdata;
  43. struct e820map *e820 __refdata = &initial_e820;
  44. struct e820map *e820_saved __refdata = &initial_e820_saved;
  45. /* For PCI or other memory-mapped resources */
  46. unsigned long pci_mem_start = 0xaeedbabe;
  47. #ifdef CONFIG_PCI
  48. EXPORT_SYMBOL(pci_mem_start);
  49. #endif
  50. /*
  51. * This function checks if any part of the range <start,end> is mapped
  52. * with type.
  53. */
  54. int
  55. e820_any_mapped(u64 start, u64 end, unsigned type)
  56. {
  57. int i;
  58. for (i = 0; i < e820->nr_map; i++) {
  59. struct e820entry *ei = &e820->map[i];
  60. if (type && ei->type != type)
  61. continue;
  62. if (ei->addr >= end || ei->addr + ei->size <= start)
  63. continue;
  64. return 1;
  65. }
  66. return 0;
  67. }
  68. EXPORT_SYMBOL_GPL(e820_any_mapped);
  69. /*
  70. * This function checks if the entire range <start,end> is mapped with type.
  71. *
  72. * Note: this function only works correct if the e820 table is sorted and
  73. * not-overlapping, which is the case
  74. */
  75. int __init e820_all_mapped(u64 start, u64 end, unsigned type)
  76. {
  77. int i;
  78. for (i = 0; i < e820->nr_map; i++) {
  79. struct e820entry *ei = &e820->map[i];
  80. if (type && ei->type != type)
  81. continue;
  82. /* is the region (part) in overlap with the current region ?*/
  83. if (ei->addr >= end || ei->addr + ei->size <= start)
  84. continue;
  85. /* if the region is at the beginning of <start,end> we move
  86. * start to the end of the region since it's ok until there
  87. */
  88. if (ei->addr <= start)
  89. start = ei->addr + ei->size;
  90. /*
  91. * if start is now at or beyond end, we're done, full
  92. * coverage
  93. */
  94. if (start >= end)
  95. return 1;
  96. }
  97. return 0;
  98. }
  99. /*
  100. * Add a memory region to the kernel e820 map.
  101. */
  102. static void __init __e820_add_region(struct e820map *e820x, u64 start, u64 size,
  103. int type)
  104. {
  105. int x = e820x->nr_map;
  106. if (x >= ARRAY_SIZE(e820x->map)) {
  107. printk(KERN_ERR "e820: too many entries; ignoring [mem %#010llx-%#010llx]\n",
  108. (unsigned long long) start,
  109. (unsigned long long) (start + size - 1));
  110. return;
  111. }
  112. e820x->map[x].addr = start;
  113. e820x->map[x].size = size;
  114. e820x->map[x].type = type;
  115. e820x->nr_map++;
  116. }
  117. void __init e820_add_region(u64 start, u64 size, int type)
  118. {
  119. __e820_add_region(e820, start, size, type);
  120. }
  121. static void __init e820_print_type(u32 type)
  122. {
  123. switch (type) {
  124. case E820_RAM:
  125. case E820_RESERVED_KERN:
  126. printk(KERN_CONT "usable");
  127. break;
  128. case E820_RESERVED:
  129. printk(KERN_CONT "reserved");
  130. break;
  131. case E820_ACPI:
  132. printk(KERN_CONT "ACPI data");
  133. break;
  134. case E820_NVS:
  135. printk(KERN_CONT "ACPI NVS");
  136. break;
  137. case E820_UNUSABLE:
  138. printk(KERN_CONT "unusable");
  139. break;
  140. case E820_PMEM:
  141. case E820_PRAM:
  142. printk(KERN_CONT "persistent (type %u)", type);
  143. break;
  144. default:
  145. printk(KERN_CONT "type %u", type);
  146. break;
  147. }
  148. }
  149. void __init e820_print_map(char *who)
  150. {
  151. int i;
  152. for (i = 0; i < e820->nr_map; i++) {
  153. printk(KERN_INFO "%s: [mem %#018Lx-%#018Lx] ", who,
  154. (unsigned long long) e820->map[i].addr,
  155. (unsigned long long)
  156. (e820->map[i].addr + e820->map[i].size - 1));
  157. e820_print_type(e820->map[i].type);
  158. printk(KERN_CONT "\n");
  159. }
  160. }
  161. /*
  162. * Sanitize the BIOS e820 map.
  163. *
  164. * Some e820 responses include overlapping entries. The following
  165. * replaces the original e820 map with a new one, removing overlaps,
  166. * and resolving conflicting memory types in favor of highest
  167. * numbered type.
  168. *
  169. * The input parameter biosmap points to an array of 'struct
  170. * e820entry' which on entry has elements in the range [0, *pnr_map)
  171. * valid, and which has space for up to max_nr_map entries.
  172. * On return, the resulting sanitized e820 map entries will be in
  173. * overwritten in the same location, starting at biosmap.
  174. *
  175. * The integer pointed to by pnr_map must be valid on entry (the
  176. * current number of valid entries located at biosmap). If the
  177. * sanitizing succeeds the *pnr_map will be updated with the new
  178. * number of valid entries (something no more than max_nr_map).
  179. *
  180. * The return value from sanitize_e820_map() is zero if it
  181. * successfully 'sanitized' the map entries passed in, and is -1
  182. * if it did nothing, which can happen if either of (1) it was
  183. * only passed one map entry, or (2) any of the input map entries
  184. * were invalid (start + size < start, meaning that the size was
  185. * so big the described memory range wrapped around through zero.)
  186. *
  187. * Visually we're performing the following
  188. * (1,2,3,4 = memory types)...
  189. *
  190. * Sample memory map (w/overlaps):
  191. * ____22__________________
  192. * ______________________4_
  193. * ____1111________________
  194. * _44_____________________
  195. * 11111111________________
  196. * ____________________33__
  197. * ___________44___________
  198. * __________33333_________
  199. * ______________22________
  200. * ___________________2222_
  201. * _________111111111______
  202. * _____________________11_
  203. * _________________4______
  204. *
  205. * Sanitized equivalent (no overlap):
  206. * 1_______________________
  207. * _44_____________________
  208. * ___1____________________
  209. * ____22__________________
  210. * ______11________________
  211. * _________1______________
  212. * __________3_____________
  213. * ___________44___________
  214. * _____________33_________
  215. * _______________2________
  216. * ________________1_______
  217. * _________________4______
  218. * ___________________2____
  219. * ____________________33__
  220. * ______________________4_
  221. */
  222. struct change_member {
  223. struct e820entry *pbios; /* pointer to original bios entry */
  224. unsigned long long addr; /* address for this change point */
  225. };
  226. static int __init cpcompare(const void *a, const void *b)
  227. {
  228. struct change_member * const *app = a, * const *bpp = b;
  229. const struct change_member *ap = *app, *bp = *bpp;
  230. /*
  231. * Inputs are pointers to two elements of change_point[]. If their
  232. * addresses are unequal, their difference dominates. If the addresses
  233. * are equal, then consider one that represents the end of its region
  234. * to be greater than one that does not.
  235. */
  236. if (ap->addr != bp->addr)
  237. return ap->addr > bp->addr ? 1 : -1;
  238. return (ap->addr != ap->pbios->addr) - (bp->addr != bp->pbios->addr);
  239. }
  240. int __init sanitize_e820_map(struct e820entry *biosmap, int max_nr_map,
  241. u32 *pnr_map)
  242. {
  243. static struct change_member change_point_list[2*E820_X_MAX] __initdata;
  244. static struct change_member *change_point[2*E820_X_MAX] __initdata;
  245. static struct e820entry *overlap_list[E820_X_MAX] __initdata;
  246. static struct e820entry new_bios[E820_X_MAX] __initdata;
  247. unsigned long current_type, last_type;
  248. unsigned long long last_addr;
  249. int chgidx;
  250. int overlap_entries;
  251. int new_bios_entry;
  252. int old_nr, new_nr, chg_nr;
  253. int i;
  254. /* if there's only one memory region, don't bother */
  255. if (*pnr_map < 2)
  256. return -1;
  257. old_nr = *pnr_map;
  258. BUG_ON(old_nr > max_nr_map);
  259. /* bail out if we find any unreasonable addresses in bios map */
  260. for (i = 0; i < old_nr; i++)
  261. if (biosmap[i].addr + biosmap[i].size < biosmap[i].addr)
  262. return -1;
  263. /* create pointers for initial change-point information (for sorting) */
  264. for (i = 0; i < 2 * old_nr; i++)
  265. change_point[i] = &change_point_list[i];
  266. /* record all known change-points (starting and ending addresses),
  267. omitting those that are for empty memory regions */
  268. chgidx = 0;
  269. for (i = 0; i < old_nr; i++) {
  270. if (biosmap[i].size != 0) {
  271. change_point[chgidx]->addr = biosmap[i].addr;
  272. change_point[chgidx++]->pbios = &biosmap[i];
  273. change_point[chgidx]->addr = biosmap[i].addr +
  274. biosmap[i].size;
  275. change_point[chgidx++]->pbios = &biosmap[i];
  276. }
  277. }
  278. chg_nr = chgidx;
  279. /* sort change-point list by memory addresses (low -> high) */
  280. sort(change_point, chg_nr, sizeof *change_point, cpcompare, NULL);
  281. /* create a new bios memory map, removing overlaps */
  282. overlap_entries = 0; /* number of entries in the overlap table */
  283. new_bios_entry = 0; /* index for creating new bios map entries */
  284. last_type = 0; /* start with undefined memory type */
  285. last_addr = 0; /* start with 0 as last starting address */
  286. /* loop through change-points, determining affect on the new bios map */
  287. for (chgidx = 0; chgidx < chg_nr; chgidx++) {
  288. /* keep track of all overlapping bios entries */
  289. if (change_point[chgidx]->addr ==
  290. change_point[chgidx]->pbios->addr) {
  291. /*
  292. * add map entry to overlap list (> 1 entry
  293. * implies an overlap)
  294. */
  295. overlap_list[overlap_entries++] =
  296. change_point[chgidx]->pbios;
  297. } else {
  298. /*
  299. * remove entry from list (order independent,
  300. * so swap with last)
  301. */
  302. for (i = 0; i < overlap_entries; i++) {
  303. if (overlap_list[i] ==
  304. change_point[chgidx]->pbios)
  305. overlap_list[i] =
  306. overlap_list[overlap_entries-1];
  307. }
  308. overlap_entries--;
  309. }
  310. /*
  311. * if there are overlapping entries, decide which
  312. * "type" to use (larger value takes precedence --
  313. * 1=usable, 2,3,4,4+=unusable)
  314. */
  315. current_type = 0;
  316. for (i = 0; i < overlap_entries; i++)
  317. if (overlap_list[i]->type > current_type)
  318. current_type = overlap_list[i]->type;
  319. /*
  320. * continue building up new bios map based on this
  321. * information
  322. */
  323. if (current_type != last_type || current_type == E820_PRAM) {
  324. if (last_type != 0) {
  325. new_bios[new_bios_entry].size =
  326. change_point[chgidx]->addr - last_addr;
  327. /*
  328. * move forward only if the new size
  329. * was non-zero
  330. */
  331. if (new_bios[new_bios_entry].size != 0)
  332. /*
  333. * no more space left for new
  334. * bios entries ?
  335. */
  336. if (++new_bios_entry >= max_nr_map)
  337. break;
  338. }
  339. if (current_type != 0) {
  340. new_bios[new_bios_entry].addr =
  341. change_point[chgidx]->addr;
  342. new_bios[new_bios_entry].type = current_type;
  343. last_addr = change_point[chgidx]->addr;
  344. }
  345. last_type = current_type;
  346. }
  347. }
  348. /* retain count for new bios entries */
  349. new_nr = new_bios_entry;
  350. /* copy new bios mapping into original location */
  351. memcpy(biosmap, new_bios, new_nr * sizeof(struct e820entry));
  352. *pnr_map = new_nr;
  353. return 0;
  354. }
  355. static int __init __append_e820_map(struct e820entry *biosmap, int nr_map)
  356. {
  357. while (nr_map) {
  358. u64 start = biosmap->addr;
  359. u64 size = biosmap->size;
  360. u64 end = start + size - 1;
  361. u32 type = biosmap->type;
  362. /* Overflow in 64 bits? Ignore the memory map. */
  363. if (start > end && likely(size))
  364. return -1;
  365. e820_add_region(start, size, type);
  366. biosmap++;
  367. nr_map--;
  368. }
  369. return 0;
  370. }
  371. /*
  372. * Copy the BIOS e820 map into a safe place.
  373. *
  374. * Sanity-check it while we're at it..
  375. *
  376. * If we're lucky and live on a modern system, the setup code
  377. * will have given us a memory map that we can use to properly
  378. * set up memory. If we aren't, we'll fake a memory map.
  379. */
  380. static int __init append_e820_map(struct e820entry *biosmap, int nr_map)
  381. {
  382. /* Only one memory region (or negative)? Ignore it */
  383. if (nr_map < 2)
  384. return -1;
  385. return __append_e820_map(biosmap, nr_map);
  386. }
  387. static u64 __init __e820_update_range(struct e820map *e820x, u64 start,
  388. u64 size, unsigned old_type,
  389. unsigned new_type)
  390. {
  391. u64 end;
  392. unsigned int i;
  393. u64 real_updated_size = 0;
  394. BUG_ON(old_type == new_type);
  395. if (size > (ULLONG_MAX - start))
  396. size = ULLONG_MAX - start;
  397. end = start + size;
  398. printk(KERN_DEBUG "e820: update [mem %#010Lx-%#010Lx] ",
  399. (unsigned long long) start, (unsigned long long) (end - 1));
  400. e820_print_type(old_type);
  401. printk(KERN_CONT " ==> ");
  402. e820_print_type(new_type);
  403. printk(KERN_CONT "\n");
  404. for (i = 0; i < e820x->nr_map; i++) {
  405. struct e820entry *ei = &e820x->map[i];
  406. u64 final_start, final_end;
  407. u64 ei_end;
  408. if (ei->type != old_type)
  409. continue;
  410. ei_end = ei->addr + ei->size;
  411. /* totally covered by new range? */
  412. if (ei->addr >= start && ei_end <= end) {
  413. ei->type = new_type;
  414. real_updated_size += ei->size;
  415. continue;
  416. }
  417. /* new range is totally covered? */
  418. if (ei->addr < start && ei_end > end) {
  419. __e820_add_region(e820x, start, size, new_type);
  420. __e820_add_region(e820x, end, ei_end - end, ei->type);
  421. ei->size = start - ei->addr;
  422. real_updated_size += size;
  423. continue;
  424. }
  425. /* partially covered */
  426. final_start = max(start, ei->addr);
  427. final_end = min(end, ei_end);
  428. if (final_start >= final_end)
  429. continue;
  430. __e820_add_region(e820x, final_start, final_end - final_start,
  431. new_type);
  432. real_updated_size += final_end - final_start;
  433. /*
  434. * left range could be head or tail, so need to update
  435. * size at first.
  436. */
  437. ei->size -= final_end - final_start;
  438. if (ei->addr < final_start)
  439. continue;
  440. ei->addr = final_end;
  441. }
  442. return real_updated_size;
  443. }
  444. u64 __init e820_update_range(u64 start, u64 size, unsigned old_type,
  445. unsigned new_type)
  446. {
  447. return __e820_update_range(e820, start, size, old_type, new_type);
  448. }
  449. static u64 __init e820_update_range_saved(u64 start, u64 size,
  450. unsigned old_type, unsigned new_type)
  451. {
  452. return __e820_update_range(e820_saved, start, size, old_type,
  453. new_type);
  454. }
  455. /* make e820 not cover the range */
  456. u64 __init e820_remove_range(u64 start, u64 size, unsigned old_type,
  457. int checktype)
  458. {
  459. int i;
  460. u64 end;
  461. u64 real_removed_size = 0;
  462. if (size > (ULLONG_MAX - start))
  463. size = ULLONG_MAX - start;
  464. end = start + size;
  465. printk(KERN_DEBUG "e820: remove [mem %#010Lx-%#010Lx] ",
  466. (unsigned long long) start, (unsigned long long) (end - 1));
  467. if (checktype)
  468. e820_print_type(old_type);
  469. printk(KERN_CONT "\n");
  470. for (i = 0; i < e820->nr_map; i++) {
  471. struct e820entry *ei = &e820->map[i];
  472. u64 final_start, final_end;
  473. u64 ei_end;
  474. if (checktype && ei->type != old_type)
  475. continue;
  476. ei_end = ei->addr + ei->size;
  477. /* totally covered? */
  478. if (ei->addr >= start && ei_end <= end) {
  479. real_removed_size += ei->size;
  480. memset(ei, 0, sizeof(struct e820entry));
  481. continue;
  482. }
  483. /* new range is totally covered? */
  484. if (ei->addr < start && ei_end > end) {
  485. e820_add_region(end, ei_end - end, ei->type);
  486. ei->size = start - ei->addr;
  487. real_removed_size += size;
  488. continue;
  489. }
  490. /* partially covered */
  491. final_start = max(start, ei->addr);
  492. final_end = min(end, ei_end);
  493. if (final_start >= final_end)
  494. continue;
  495. real_removed_size += final_end - final_start;
  496. /*
  497. * left range could be head or tail, so need to update
  498. * size at first.
  499. */
  500. ei->size -= final_end - final_start;
  501. if (ei->addr < final_start)
  502. continue;
  503. ei->addr = final_end;
  504. }
  505. return real_removed_size;
  506. }
  507. void __init update_e820(void)
  508. {
  509. if (sanitize_e820_map(e820->map, ARRAY_SIZE(e820->map), &e820->nr_map))
  510. return;
  511. printk(KERN_INFO "e820: modified physical RAM map:\n");
  512. e820_print_map("modified");
  513. }
  514. static void __init update_e820_saved(void)
  515. {
  516. sanitize_e820_map(e820_saved->map, ARRAY_SIZE(e820_saved->map),
  517. &e820_saved->nr_map);
  518. }
  519. #define MAX_GAP_END 0x100000000ull
  520. /*
  521. * Search for a gap in the e820 memory space from 0 to MAX_GAP_END.
  522. */
  523. static int __init e820_search_gap(unsigned long *gapstart,
  524. unsigned long *gapsize)
  525. {
  526. unsigned long long last = MAX_GAP_END;
  527. int i = e820->nr_map;
  528. int found = 0;
  529. while (--i >= 0) {
  530. unsigned long long start = e820->map[i].addr;
  531. unsigned long long end = start + e820->map[i].size;
  532. /*
  533. * Since "last" is at most 4GB, we know we'll
  534. * fit in 32 bits if this condition is true
  535. */
  536. if (last > end) {
  537. unsigned long gap = last - end;
  538. if (gap >= *gapsize) {
  539. *gapsize = gap;
  540. *gapstart = end;
  541. found = 1;
  542. }
  543. }
  544. if (start < last)
  545. last = start;
  546. }
  547. return found;
  548. }
  549. /*
  550. * Search for the biggest gap in the low 32 bits of the e820
  551. * memory space. We pass this space to PCI to assign MMIO resources
  552. * for hotplug or unconfigured devices in.
  553. * Hopefully the BIOS let enough space left.
  554. */
  555. __init void e820_setup_gap(void)
  556. {
  557. unsigned long gapstart, gapsize;
  558. int found;
  559. gapsize = 0x400000;
  560. found = e820_search_gap(&gapstart, &gapsize);
  561. if (!found) {
  562. #ifdef CONFIG_X86_64
  563. gapstart = (max_pfn << PAGE_SHIFT) + 1024*1024;
  564. printk(KERN_ERR
  565. "e820: cannot find a gap in the 32bit address range\n"
  566. "e820: PCI devices with unassigned 32bit BARs may break!\n");
  567. #else
  568. gapstart = 0x10000000;
  569. #endif
  570. }
  571. /*
  572. * e820_reserve_resources_late protect stolen RAM already
  573. */
  574. pci_mem_start = gapstart;
  575. printk(KERN_INFO
  576. "e820: [mem %#010lx-%#010lx] available for PCI devices\n",
  577. gapstart, gapstart + gapsize - 1);
  578. }
  579. /*
  580. * Called late during init, in free_initmem().
  581. *
  582. * Initial e820 and e820_saved are largish __initdata arrays.
  583. * Copy them to (usually much smaller) dynamically allocated area.
  584. * This is done after all tweaks we ever do to them:
  585. * all functions which modify them are __init functions,
  586. * they won't exist after this point.
  587. */
  588. __init void e820_reallocate_tables(void)
  589. {
  590. struct e820map *n;
  591. int size;
  592. size = offsetof(struct e820map, map) + sizeof(struct e820entry) * e820->nr_map;
  593. n = kmalloc(size, GFP_KERNEL);
  594. BUG_ON(!n);
  595. memcpy(n, e820, size);
  596. e820 = n;
  597. size = offsetof(struct e820map, map) + sizeof(struct e820entry) * e820_saved->nr_map;
  598. n = kmalloc(size, GFP_KERNEL);
  599. BUG_ON(!n);
  600. memcpy(n, e820_saved, size);
  601. e820_saved = n;
  602. }
  603. /**
  604. * Because of the size limitation of struct boot_params, only first
  605. * 128 E820 memory entries are passed to kernel via
  606. * boot_params.e820_map, others are passed via SETUP_E820_EXT node of
  607. * linked list of struct setup_data, which is parsed here.
  608. */
  609. void __init parse_e820_ext(u64 phys_addr, u32 data_len)
  610. {
  611. int entries;
  612. struct e820entry *extmap;
  613. struct setup_data *sdata;
  614. sdata = early_memremap(phys_addr, data_len);
  615. entries = sdata->len / sizeof(struct e820entry);
  616. extmap = (struct e820entry *)(sdata->data);
  617. __append_e820_map(extmap, entries);
  618. sanitize_e820_map(e820->map, ARRAY_SIZE(e820->map), &e820->nr_map);
  619. early_memunmap(sdata, data_len);
  620. printk(KERN_INFO "e820: extended physical RAM map:\n");
  621. e820_print_map("extended");
  622. }
  623. #if defined(CONFIG_X86_64) || \
  624. (defined(CONFIG_X86_32) && defined(CONFIG_HIBERNATION))
  625. /**
  626. * Find the ranges of physical addresses that do not correspond to
  627. * e820 RAM areas and mark the corresponding pages as nosave for
  628. * hibernation (32 bit) or software suspend and suspend to RAM (64 bit).
  629. *
  630. * This function requires the e820 map to be sorted and without any
  631. * overlapping entries.
  632. */
  633. void __init e820_mark_nosave_regions(unsigned long limit_pfn)
  634. {
  635. int i;
  636. unsigned long pfn = 0;
  637. for (i = 0; i < e820->nr_map; i++) {
  638. struct e820entry *ei = &e820->map[i];
  639. if (pfn < PFN_UP(ei->addr))
  640. register_nosave_region(pfn, PFN_UP(ei->addr));
  641. pfn = PFN_DOWN(ei->addr + ei->size);
  642. if (ei->type != E820_RAM && ei->type != E820_RESERVED_KERN)
  643. register_nosave_region(PFN_UP(ei->addr), pfn);
  644. if (pfn >= limit_pfn)
  645. break;
  646. }
  647. }
  648. #endif
  649. #ifdef CONFIG_ACPI
  650. /**
  651. * Mark ACPI NVS memory region, so that we can save/restore it during
  652. * hibernation and the subsequent resume.
  653. */
  654. static int __init e820_mark_nvs_memory(void)
  655. {
  656. int i;
  657. for (i = 0; i < e820->nr_map; i++) {
  658. struct e820entry *ei = &e820->map[i];
  659. if (ei->type == E820_NVS)
  660. acpi_nvs_register(ei->addr, ei->size);
  661. }
  662. return 0;
  663. }
  664. core_initcall(e820_mark_nvs_memory);
  665. #endif
  666. /*
  667. * pre allocated 4k and reserved it in memblock and e820_saved
  668. */
  669. u64 __init early_reserve_e820(u64 size, u64 align)
  670. {
  671. u64 addr;
  672. addr = __memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
  673. if (addr) {
  674. e820_update_range_saved(addr, size, E820_RAM, E820_RESERVED);
  675. printk(KERN_INFO "e820: update e820_saved for early_reserve_e820\n");
  676. update_e820_saved();
  677. }
  678. return addr;
  679. }
  680. #ifdef CONFIG_X86_32
  681. # ifdef CONFIG_X86_PAE
  682. # define MAX_ARCH_PFN (1ULL<<(36-PAGE_SHIFT))
  683. # else
  684. # define MAX_ARCH_PFN (1ULL<<(32-PAGE_SHIFT))
  685. # endif
  686. #else /* CONFIG_X86_32 */
  687. # define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT
  688. #endif
  689. /*
  690. * Find the highest page frame number we have available
  691. */
  692. static unsigned long __init e820_end_pfn(unsigned long limit_pfn, unsigned type)
  693. {
  694. int i;
  695. unsigned long last_pfn = 0;
  696. unsigned long max_arch_pfn = MAX_ARCH_PFN;
  697. for (i = 0; i < e820->nr_map; i++) {
  698. struct e820entry *ei = &e820->map[i];
  699. unsigned long start_pfn;
  700. unsigned long end_pfn;
  701. if (ei->type != type)
  702. continue;
  703. start_pfn = ei->addr >> PAGE_SHIFT;
  704. end_pfn = (ei->addr + ei->size) >> PAGE_SHIFT;
  705. if (start_pfn >= limit_pfn)
  706. continue;
  707. if (end_pfn > limit_pfn) {
  708. last_pfn = limit_pfn;
  709. break;
  710. }
  711. if (end_pfn > last_pfn)
  712. last_pfn = end_pfn;
  713. }
  714. if (last_pfn > max_arch_pfn)
  715. last_pfn = max_arch_pfn;
  716. printk(KERN_INFO "e820: last_pfn = %#lx max_arch_pfn = %#lx\n",
  717. last_pfn, max_arch_pfn);
  718. return last_pfn;
  719. }
  720. unsigned long __init e820_end_of_ram_pfn(void)
  721. {
  722. return e820_end_pfn(MAX_ARCH_PFN, E820_RAM);
  723. }
  724. unsigned long __init e820_end_of_low_ram_pfn(void)
  725. {
  726. return e820_end_pfn(1UL << (32 - PAGE_SHIFT), E820_RAM);
  727. }
  728. static void __init early_panic(char *msg)
  729. {
  730. early_printk(msg);
  731. panic(msg);
  732. }
  733. static int userdef __initdata;
  734. /* "mem=nopentium" disables the 4MB page tables. */
  735. static int __init parse_memopt(char *p)
  736. {
  737. u64 mem_size;
  738. if (!p)
  739. return -EINVAL;
  740. if (!strcmp(p, "nopentium")) {
  741. #ifdef CONFIG_X86_32
  742. setup_clear_cpu_cap(X86_FEATURE_PSE);
  743. return 0;
  744. #else
  745. printk(KERN_WARNING "mem=nopentium ignored! (only supported on x86_32)\n");
  746. return -EINVAL;
  747. #endif
  748. }
  749. userdef = 1;
  750. mem_size = memparse(p, &p);
  751. /* don't remove all of memory when handling "mem={invalid}" param */
  752. if (mem_size == 0)
  753. return -EINVAL;
  754. e820_remove_range(mem_size, ULLONG_MAX - mem_size, E820_RAM, 1);
  755. return 0;
  756. }
  757. early_param("mem", parse_memopt);
  758. static int __init parse_memmap_one(char *p)
  759. {
  760. char *oldp;
  761. u64 start_at, mem_size;
  762. if (!p)
  763. return -EINVAL;
  764. if (!strncmp(p, "exactmap", 8)) {
  765. #ifdef CONFIG_CRASH_DUMP
  766. /*
  767. * If we are doing a crash dump, we still need to know
  768. * the real mem size before original memory map is
  769. * reset.
  770. */
  771. saved_max_pfn = e820_end_of_ram_pfn();
  772. #endif
  773. e820->nr_map = 0;
  774. userdef = 1;
  775. return 0;
  776. }
  777. oldp = p;
  778. mem_size = memparse(p, &p);
  779. if (p == oldp)
  780. return -EINVAL;
  781. userdef = 1;
  782. if (*p == '@') {
  783. start_at = memparse(p+1, &p);
  784. e820_add_region(start_at, mem_size, E820_RAM);
  785. } else if (*p == '#') {
  786. start_at = memparse(p+1, &p);
  787. e820_add_region(start_at, mem_size, E820_ACPI);
  788. } else if (*p == '$') {
  789. start_at = memparse(p+1, &p);
  790. e820_add_region(start_at, mem_size, E820_RESERVED);
  791. } else if (*p == '!') {
  792. start_at = memparse(p+1, &p);
  793. e820_add_region(start_at, mem_size, E820_PRAM);
  794. } else
  795. e820_remove_range(mem_size, ULLONG_MAX - mem_size, E820_RAM, 1);
  796. return *p == '\0' ? 0 : -EINVAL;
  797. }
  798. static int __init parse_memmap_opt(char *str)
  799. {
  800. while (str) {
  801. char *k = strchr(str, ',');
  802. if (k)
  803. *k++ = 0;
  804. parse_memmap_one(str);
  805. str = k;
  806. }
  807. return 0;
  808. }
  809. early_param("memmap", parse_memmap_opt);
  810. void __init finish_e820_parsing(void)
  811. {
  812. if (userdef) {
  813. if (sanitize_e820_map(e820->map, ARRAY_SIZE(e820->map),
  814. &e820->nr_map) < 0)
  815. early_panic("Invalid user supplied memory map");
  816. printk(KERN_INFO "e820: user-defined physical RAM map:\n");
  817. e820_print_map("user");
  818. }
  819. }
  820. static const char *__init e820_type_to_string(int e820_type)
  821. {
  822. switch (e820_type) {
  823. case E820_RESERVED_KERN:
  824. case E820_RAM: return "System RAM";
  825. case E820_ACPI: return "ACPI Tables";
  826. case E820_NVS: return "ACPI Non-volatile Storage";
  827. case E820_UNUSABLE: return "Unusable memory";
  828. case E820_PRAM: return "Persistent Memory (legacy)";
  829. case E820_PMEM: return "Persistent Memory";
  830. default: return "reserved";
  831. }
  832. }
  833. static unsigned long __init e820_type_to_iomem_type(int e820_type)
  834. {
  835. switch (e820_type) {
  836. case E820_RESERVED_KERN:
  837. case E820_RAM:
  838. return IORESOURCE_SYSTEM_RAM;
  839. case E820_ACPI:
  840. case E820_NVS:
  841. case E820_UNUSABLE:
  842. case E820_PRAM:
  843. case E820_PMEM:
  844. default:
  845. return IORESOURCE_MEM;
  846. }
  847. }
  848. static unsigned long __init e820_type_to_iores_desc(int e820_type)
  849. {
  850. switch (e820_type) {
  851. case E820_ACPI:
  852. return IORES_DESC_ACPI_TABLES;
  853. case E820_NVS:
  854. return IORES_DESC_ACPI_NV_STORAGE;
  855. case E820_PMEM:
  856. return IORES_DESC_PERSISTENT_MEMORY;
  857. case E820_PRAM:
  858. return IORES_DESC_PERSISTENT_MEMORY_LEGACY;
  859. case E820_RESERVED_KERN:
  860. case E820_RAM:
  861. case E820_UNUSABLE:
  862. default:
  863. return IORES_DESC_NONE;
  864. }
  865. }
  866. static bool __init do_mark_busy(u32 type, struct resource *res)
  867. {
  868. /* this is the legacy bios/dos rom-shadow + mmio region */
  869. if (res->start < (1ULL<<20))
  870. return true;
  871. /*
  872. * Treat persistent memory like device memory, i.e. reserve it
  873. * for exclusive use of a driver
  874. */
  875. switch (type) {
  876. case E820_RESERVED:
  877. case E820_PRAM:
  878. case E820_PMEM:
  879. return false;
  880. default:
  881. return true;
  882. }
  883. }
  884. /*
  885. * Mark e820 reserved areas as busy for the resource manager.
  886. */
  887. static struct resource __initdata *e820_res;
  888. void __init e820_reserve_resources(void)
  889. {
  890. int i;
  891. struct resource *res;
  892. u64 end;
  893. res = alloc_bootmem(sizeof(struct resource) * e820->nr_map);
  894. e820_res = res;
  895. for (i = 0; i < e820->nr_map; i++) {
  896. end = e820->map[i].addr + e820->map[i].size - 1;
  897. if (end != (resource_size_t)end) {
  898. res++;
  899. continue;
  900. }
  901. res->name = e820_type_to_string(e820->map[i].type);
  902. res->start = e820->map[i].addr;
  903. res->end = end;
  904. res->flags = e820_type_to_iomem_type(e820->map[i].type);
  905. res->desc = e820_type_to_iores_desc(e820->map[i].type);
  906. /*
  907. * don't register the region that could be conflicted with
  908. * pci device BAR resource and insert them later in
  909. * pcibios_resource_survey()
  910. */
  911. if (do_mark_busy(e820->map[i].type, res)) {
  912. res->flags |= IORESOURCE_BUSY;
  913. insert_resource(&iomem_resource, res);
  914. }
  915. res++;
  916. }
  917. for (i = 0; i < e820_saved->nr_map; i++) {
  918. struct e820entry *entry = &e820_saved->map[i];
  919. firmware_map_add_early(entry->addr,
  920. entry->addr + entry->size,
  921. e820_type_to_string(entry->type));
  922. }
  923. }
  924. /* How much should we pad RAM ending depending on where it is? */
  925. static unsigned long __init ram_alignment(resource_size_t pos)
  926. {
  927. unsigned long mb = pos >> 20;
  928. /* To 64kB in the first megabyte */
  929. if (!mb)
  930. return 64*1024;
  931. /* To 1MB in the first 16MB */
  932. if (mb < 16)
  933. return 1024*1024;
  934. /* To 64MB for anything above that */
  935. return 64*1024*1024;
  936. }
  937. #define MAX_RESOURCE_SIZE ((resource_size_t)-1)
  938. void __init e820_reserve_resources_late(void)
  939. {
  940. int i;
  941. struct resource *res;
  942. res = e820_res;
  943. for (i = 0; i < e820->nr_map; i++) {
  944. if (!res->parent && res->end)
  945. insert_resource_expand_to_fit(&iomem_resource, res);
  946. res++;
  947. }
  948. /*
  949. * Try to bump up RAM regions to reasonable boundaries to
  950. * avoid stolen RAM:
  951. */
  952. for (i = 0; i < e820->nr_map; i++) {
  953. struct e820entry *entry = &e820->map[i];
  954. u64 start, end;
  955. if (entry->type != E820_RAM)
  956. continue;
  957. start = entry->addr + entry->size;
  958. end = round_up(start, ram_alignment(start)) - 1;
  959. if (end > MAX_RESOURCE_SIZE)
  960. end = MAX_RESOURCE_SIZE;
  961. if (start >= end)
  962. continue;
  963. printk(KERN_DEBUG
  964. "e820: reserve RAM buffer [mem %#010llx-%#010llx]\n",
  965. start, end);
  966. reserve_region_with_split(&iomem_resource, start, end,
  967. "RAM buffer");
  968. }
  969. }
  970. char *__init default_machine_specific_memory_setup(void)
  971. {
  972. char *who = "BIOS-e820";
  973. u32 new_nr;
  974. /*
  975. * Try to copy the BIOS-supplied E820-map.
  976. *
  977. * Otherwise fake a memory map; one section from 0k->640k,
  978. * the next section from 1mb->appropriate_mem_k
  979. */
  980. new_nr = boot_params.e820_entries;
  981. sanitize_e820_map(boot_params.e820_map,
  982. ARRAY_SIZE(boot_params.e820_map),
  983. &new_nr);
  984. boot_params.e820_entries = new_nr;
  985. if (append_e820_map(boot_params.e820_map, boot_params.e820_entries)
  986. < 0) {
  987. u64 mem_size;
  988. /* compare results from other methods and take the greater */
  989. if (boot_params.alt_mem_k
  990. < boot_params.screen_info.ext_mem_k) {
  991. mem_size = boot_params.screen_info.ext_mem_k;
  992. who = "BIOS-88";
  993. } else {
  994. mem_size = boot_params.alt_mem_k;
  995. who = "BIOS-e801";
  996. }
  997. e820->nr_map = 0;
  998. e820_add_region(0, LOWMEMSIZE(), E820_RAM);
  999. e820_add_region(HIGH_MEMORY, mem_size << 10, E820_RAM);
  1000. }
  1001. /* In case someone cares... */
  1002. return who;
  1003. }
  1004. void __init setup_memory_map(void)
  1005. {
  1006. char *who;
  1007. who = x86_init.resources.memory_setup();
  1008. memcpy(e820_saved, e820, sizeof(struct e820map));
  1009. printk(KERN_INFO "e820: BIOS-provided physical RAM map:\n");
  1010. e820_print_map(who);
  1011. }
  1012. void __init memblock_x86_fill(void)
  1013. {
  1014. int i;
  1015. u64 end;
  1016. /*
  1017. * EFI may have more than 128 entries
  1018. * We are safe to enable resizing, beause memblock_x86_fill()
  1019. * is rather later for x86
  1020. */
  1021. memblock_allow_resize();
  1022. for (i = 0; i < e820->nr_map; i++) {
  1023. struct e820entry *ei = &e820->map[i];
  1024. end = ei->addr + ei->size;
  1025. if (end != (resource_size_t)end)
  1026. continue;
  1027. if (ei->type != E820_RAM && ei->type != E820_RESERVED_KERN)
  1028. continue;
  1029. memblock_add(ei->addr, ei->size);
  1030. }
  1031. /* throw away partial pages */
  1032. memblock_trim_memory(PAGE_SIZE);
  1033. memblock_dump_all();
  1034. }
  1035. void __init memblock_find_dma_reserve(void)
  1036. {
  1037. #ifdef CONFIG_X86_64
  1038. u64 nr_pages = 0, nr_free_pages = 0;
  1039. unsigned long start_pfn, end_pfn;
  1040. phys_addr_t start, end;
  1041. int i;
  1042. u64 u;
  1043. /*
  1044. * need to find out used area below MAX_DMA_PFN
  1045. * need to use memblock to get free size in [0, MAX_DMA_PFN]
  1046. * at first, and assume boot_mem will not take below MAX_DMA_PFN
  1047. */
  1048. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
  1049. start_pfn = min(start_pfn, MAX_DMA_PFN);
  1050. end_pfn = min(end_pfn, MAX_DMA_PFN);
  1051. nr_pages += end_pfn - start_pfn;
  1052. }
  1053. for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
  1054. NULL) {
  1055. start_pfn = min_t(unsigned long, PFN_UP(start), MAX_DMA_PFN);
  1056. end_pfn = min_t(unsigned long, PFN_DOWN(end), MAX_DMA_PFN);
  1057. if (start_pfn < end_pfn)
  1058. nr_free_pages += end_pfn - start_pfn;
  1059. }
  1060. set_dma_reserve(nr_pages - nr_free_pages);
  1061. #endif
  1062. }