tsb.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610
  1. /* arch/sparc64/mm/tsb.c
  2. *
  3. * Copyright (C) 2006, 2008 David S. Miller <davem@davemloft.net>
  4. */
  5. #include <linux/kernel.h>
  6. #include <linux/preempt.h>
  7. #include <linux/slab.h>
  8. #include <linux/mm_types.h>
  9. #include <asm/page.h>
  10. #include <asm/pgtable.h>
  11. #include <asm/mmu_context.h>
  12. #include <asm/setup.h>
  13. #include <asm/tsb.h>
  14. #include <asm/tlb.h>
  15. #include <asm/oplib.h>
  16. extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
  17. static inline unsigned long tsb_hash(unsigned long vaddr, unsigned long hash_shift, unsigned long nentries)
  18. {
  19. vaddr >>= hash_shift;
  20. return vaddr & (nentries - 1);
  21. }
  22. static inline int tag_compare(unsigned long tag, unsigned long vaddr)
  23. {
  24. return (tag == (vaddr >> 22));
  25. }
  26. static void flush_tsb_kernel_range_scan(unsigned long start, unsigned long end)
  27. {
  28. unsigned long idx;
  29. for (idx = 0; idx < KERNEL_TSB_NENTRIES; idx++) {
  30. struct tsb *ent = &swapper_tsb[idx];
  31. unsigned long match = idx << 13;
  32. match |= (ent->tag << 22);
  33. if (match >= start && match < end)
  34. ent->tag = (1UL << TSB_TAG_INVALID_BIT);
  35. }
  36. }
  37. /* TSB flushes need only occur on the processor initiating the address
  38. * space modification, not on each cpu the address space has run on.
  39. * Only the TLB flush needs that treatment.
  40. */
  41. void flush_tsb_kernel_range(unsigned long start, unsigned long end)
  42. {
  43. unsigned long v;
  44. if ((end - start) >> PAGE_SHIFT >= 2 * KERNEL_TSB_NENTRIES)
  45. return flush_tsb_kernel_range_scan(start, end);
  46. for (v = start; v < end; v += PAGE_SIZE) {
  47. unsigned long hash = tsb_hash(v, PAGE_SHIFT,
  48. KERNEL_TSB_NENTRIES);
  49. struct tsb *ent = &swapper_tsb[hash];
  50. if (tag_compare(ent->tag, v))
  51. ent->tag = (1UL << TSB_TAG_INVALID_BIT);
  52. }
  53. }
  54. static void __flush_tsb_one_entry(unsigned long tsb, unsigned long v,
  55. unsigned long hash_shift,
  56. unsigned long nentries)
  57. {
  58. unsigned long tag, ent, hash;
  59. v &= ~0x1UL;
  60. hash = tsb_hash(v, hash_shift, nentries);
  61. ent = tsb + (hash * sizeof(struct tsb));
  62. tag = (v >> 22UL);
  63. tsb_flush(ent, tag);
  64. }
  65. static void __flush_tsb_one(struct tlb_batch *tb, unsigned long hash_shift,
  66. unsigned long tsb, unsigned long nentries)
  67. {
  68. unsigned long i;
  69. for (i = 0; i < tb->tlb_nr; i++)
  70. __flush_tsb_one_entry(tsb, tb->vaddrs[i], hash_shift, nentries);
  71. }
  72. #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
  73. static void __flush_huge_tsb_one_entry(unsigned long tsb, unsigned long v,
  74. unsigned long hash_shift,
  75. unsigned long nentries,
  76. unsigned int hugepage_shift)
  77. {
  78. unsigned int hpage_entries;
  79. unsigned int i;
  80. hpage_entries = 1 << (hugepage_shift - hash_shift);
  81. for (i = 0; i < hpage_entries; i++)
  82. __flush_tsb_one_entry(tsb, v + (i << hash_shift), hash_shift,
  83. nentries);
  84. }
  85. static void __flush_huge_tsb_one(struct tlb_batch *tb, unsigned long hash_shift,
  86. unsigned long tsb, unsigned long nentries,
  87. unsigned int hugepage_shift)
  88. {
  89. unsigned long i;
  90. for (i = 0; i < tb->tlb_nr; i++)
  91. __flush_huge_tsb_one_entry(tsb, tb->vaddrs[i], hash_shift,
  92. nentries, hugepage_shift);
  93. }
  94. #endif
  95. void flush_tsb_user(struct tlb_batch *tb)
  96. {
  97. struct mm_struct *mm = tb->mm;
  98. unsigned long nentries, base, flags;
  99. spin_lock_irqsave(&mm->context.lock, flags);
  100. if (tb->hugepage_shift < HPAGE_SHIFT) {
  101. base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
  102. nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
  103. if (tlb_type == cheetah_plus || tlb_type == hypervisor)
  104. base = __pa(base);
  105. if (tb->hugepage_shift == PAGE_SHIFT)
  106. __flush_tsb_one(tb, PAGE_SHIFT, base, nentries);
  107. #if defined(CONFIG_HUGETLB_PAGE)
  108. else
  109. __flush_huge_tsb_one(tb, PAGE_SHIFT, base, nentries,
  110. tb->hugepage_shift);
  111. #endif
  112. }
  113. #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
  114. else if (mm->context.tsb_block[MM_TSB_HUGE].tsb) {
  115. base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
  116. nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
  117. if (tlb_type == cheetah_plus || tlb_type == hypervisor)
  118. base = __pa(base);
  119. __flush_huge_tsb_one(tb, REAL_HPAGE_SHIFT, base, nentries,
  120. tb->hugepage_shift);
  121. }
  122. #endif
  123. spin_unlock_irqrestore(&mm->context.lock, flags);
  124. }
  125. void flush_tsb_user_page(struct mm_struct *mm, unsigned long vaddr,
  126. unsigned int hugepage_shift)
  127. {
  128. unsigned long nentries, base, flags;
  129. spin_lock_irqsave(&mm->context.lock, flags);
  130. if (hugepage_shift < HPAGE_SHIFT) {
  131. base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
  132. nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
  133. if (tlb_type == cheetah_plus || tlb_type == hypervisor)
  134. base = __pa(base);
  135. if (hugepage_shift == PAGE_SHIFT)
  136. __flush_tsb_one_entry(base, vaddr, PAGE_SHIFT,
  137. nentries);
  138. #if defined(CONFIG_HUGETLB_PAGE)
  139. else
  140. __flush_huge_tsb_one_entry(base, vaddr, PAGE_SHIFT,
  141. nentries, hugepage_shift);
  142. #endif
  143. }
  144. #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
  145. else if (mm->context.tsb_block[MM_TSB_HUGE].tsb) {
  146. base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
  147. nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
  148. if (tlb_type == cheetah_plus || tlb_type == hypervisor)
  149. base = __pa(base);
  150. __flush_huge_tsb_one_entry(base, vaddr, REAL_HPAGE_SHIFT,
  151. nentries, hugepage_shift);
  152. }
  153. #endif
  154. spin_unlock_irqrestore(&mm->context.lock, flags);
  155. }
  156. #define HV_PGSZ_IDX_BASE HV_PGSZ_IDX_8K
  157. #define HV_PGSZ_MASK_BASE HV_PGSZ_MASK_8K
  158. #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
  159. #define HV_PGSZ_IDX_HUGE HV_PGSZ_IDX_4MB
  160. #define HV_PGSZ_MASK_HUGE HV_PGSZ_MASK_4MB
  161. #endif
  162. static void setup_tsb_params(struct mm_struct *mm, unsigned long tsb_idx, unsigned long tsb_bytes)
  163. {
  164. unsigned long tsb_reg, base, tsb_paddr;
  165. unsigned long page_sz, tte;
  166. mm->context.tsb_block[tsb_idx].tsb_nentries =
  167. tsb_bytes / sizeof(struct tsb);
  168. switch (tsb_idx) {
  169. case MM_TSB_BASE:
  170. base = TSBMAP_8K_BASE;
  171. break;
  172. #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
  173. case MM_TSB_HUGE:
  174. base = TSBMAP_4M_BASE;
  175. break;
  176. #endif
  177. default:
  178. BUG();
  179. }
  180. tte = pgprot_val(PAGE_KERNEL_LOCKED);
  181. tsb_paddr = __pa(mm->context.tsb_block[tsb_idx].tsb);
  182. BUG_ON(tsb_paddr & (tsb_bytes - 1UL));
  183. /* Use the smallest page size that can map the whole TSB
  184. * in one TLB entry.
  185. */
  186. switch (tsb_bytes) {
  187. case 8192 << 0:
  188. tsb_reg = 0x0UL;
  189. #ifdef DCACHE_ALIASING_POSSIBLE
  190. base += (tsb_paddr & 8192);
  191. #endif
  192. page_sz = 8192;
  193. break;
  194. case 8192 << 1:
  195. tsb_reg = 0x1UL;
  196. page_sz = 64 * 1024;
  197. break;
  198. case 8192 << 2:
  199. tsb_reg = 0x2UL;
  200. page_sz = 64 * 1024;
  201. break;
  202. case 8192 << 3:
  203. tsb_reg = 0x3UL;
  204. page_sz = 64 * 1024;
  205. break;
  206. case 8192 << 4:
  207. tsb_reg = 0x4UL;
  208. page_sz = 512 * 1024;
  209. break;
  210. case 8192 << 5:
  211. tsb_reg = 0x5UL;
  212. page_sz = 512 * 1024;
  213. break;
  214. case 8192 << 6:
  215. tsb_reg = 0x6UL;
  216. page_sz = 512 * 1024;
  217. break;
  218. case 8192 << 7:
  219. tsb_reg = 0x7UL;
  220. page_sz = 4 * 1024 * 1024;
  221. break;
  222. default:
  223. printk(KERN_ERR "TSB[%s:%d]: Impossible TSB size %lu, killing process.\n",
  224. current->comm, current->pid, tsb_bytes);
  225. do_exit(SIGSEGV);
  226. }
  227. tte |= pte_sz_bits(page_sz);
  228. if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
  229. /* Physical mapping, no locked TLB entry for TSB. */
  230. tsb_reg |= tsb_paddr;
  231. mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
  232. mm->context.tsb_block[tsb_idx].tsb_map_vaddr = 0;
  233. mm->context.tsb_block[tsb_idx].tsb_map_pte = 0;
  234. } else {
  235. tsb_reg |= base;
  236. tsb_reg |= (tsb_paddr & (page_sz - 1UL));
  237. tte |= (tsb_paddr & ~(page_sz - 1UL));
  238. mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
  239. mm->context.tsb_block[tsb_idx].tsb_map_vaddr = base;
  240. mm->context.tsb_block[tsb_idx].tsb_map_pte = tte;
  241. }
  242. /* Setup the Hypervisor TSB descriptor. */
  243. if (tlb_type == hypervisor) {
  244. struct hv_tsb_descr *hp = &mm->context.tsb_descr[tsb_idx];
  245. switch (tsb_idx) {
  246. case MM_TSB_BASE:
  247. hp->pgsz_idx = HV_PGSZ_IDX_BASE;
  248. break;
  249. #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
  250. case MM_TSB_HUGE:
  251. hp->pgsz_idx = HV_PGSZ_IDX_HUGE;
  252. break;
  253. #endif
  254. default:
  255. BUG();
  256. }
  257. hp->assoc = 1;
  258. hp->num_ttes = tsb_bytes / 16;
  259. hp->ctx_idx = 0;
  260. switch (tsb_idx) {
  261. case MM_TSB_BASE:
  262. hp->pgsz_mask = HV_PGSZ_MASK_BASE;
  263. break;
  264. #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
  265. case MM_TSB_HUGE:
  266. hp->pgsz_mask = HV_PGSZ_MASK_HUGE;
  267. break;
  268. #endif
  269. default:
  270. BUG();
  271. }
  272. hp->tsb_base = tsb_paddr;
  273. hp->resv = 0;
  274. }
  275. }
  276. struct kmem_cache *pgtable_cache __read_mostly;
  277. static struct kmem_cache *tsb_caches[8] __read_mostly;
  278. static const char *tsb_cache_names[8] = {
  279. "tsb_8KB",
  280. "tsb_16KB",
  281. "tsb_32KB",
  282. "tsb_64KB",
  283. "tsb_128KB",
  284. "tsb_256KB",
  285. "tsb_512KB",
  286. "tsb_1MB",
  287. };
  288. void __init pgtable_cache_init(void)
  289. {
  290. unsigned long i;
  291. pgtable_cache = kmem_cache_create("pgtable_cache",
  292. PAGE_SIZE, PAGE_SIZE,
  293. 0,
  294. _clear_page);
  295. if (!pgtable_cache) {
  296. prom_printf("pgtable_cache_init(): Could not create!\n");
  297. prom_halt();
  298. }
  299. for (i = 0; i < ARRAY_SIZE(tsb_cache_names); i++) {
  300. unsigned long size = 8192 << i;
  301. const char *name = tsb_cache_names[i];
  302. tsb_caches[i] = kmem_cache_create(name,
  303. size, size,
  304. 0, NULL);
  305. if (!tsb_caches[i]) {
  306. prom_printf("Could not create %s cache\n", name);
  307. prom_halt();
  308. }
  309. }
  310. }
  311. int sysctl_tsb_ratio = -2;
  312. static unsigned long tsb_size_to_rss_limit(unsigned long new_size)
  313. {
  314. unsigned long num_ents = (new_size / sizeof(struct tsb));
  315. if (sysctl_tsb_ratio < 0)
  316. return num_ents - (num_ents >> -sysctl_tsb_ratio);
  317. else
  318. return num_ents + (num_ents >> sysctl_tsb_ratio);
  319. }
  320. /* When the RSS of an address space exceeds tsb_rss_limit for a TSB,
  321. * do_sparc64_fault() invokes this routine to try and grow it.
  322. *
  323. * When we reach the maximum TSB size supported, we stick ~0UL into
  324. * tsb_rss_limit for that TSB so the grow checks in do_sparc64_fault()
  325. * will not trigger any longer.
  326. *
  327. * The TSB can be anywhere from 8K to 1MB in size, in increasing powers
  328. * of two. The TSB must be aligned to it's size, so f.e. a 512K TSB
  329. * must be 512K aligned. It also must be physically contiguous, so we
  330. * cannot use vmalloc().
  331. *
  332. * The idea here is to grow the TSB when the RSS of the process approaches
  333. * the number of entries that the current TSB can hold at once. Currently,
  334. * we trigger when the RSS hits 3/4 of the TSB capacity.
  335. */
  336. void tsb_grow(struct mm_struct *mm, unsigned long tsb_index, unsigned long rss)
  337. {
  338. unsigned long max_tsb_size = 1 * 1024 * 1024;
  339. unsigned long new_size, old_size, flags;
  340. struct tsb *old_tsb, *new_tsb;
  341. unsigned long new_cache_index, old_cache_index;
  342. unsigned long new_rss_limit;
  343. gfp_t gfp_flags;
  344. if (max_tsb_size > (PAGE_SIZE << MAX_ORDER))
  345. max_tsb_size = (PAGE_SIZE << MAX_ORDER);
  346. new_cache_index = 0;
  347. for (new_size = 8192; new_size < max_tsb_size; new_size <<= 1UL) {
  348. new_rss_limit = tsb_size_to_rss_limit(new_size);
  349. if (new_rss_limit > rss)
  350. break;
  351. new_cache_index++;
  352. }
  353. if (new_size == max_tsb_size)
  354. new_rss_limit = ~0UL;
  355. retry_tsb_alloc:
  356. gfp_flags = GFP_KERNEL;
  357. if (new_size > (PAGE_SIZE * 2))
  358. gfp_flags |= __GFP_NOWARN | __GFP_NORETRY;
  359. new_tsb = kmem_cache_alloc_node(tsb_caches[new_cache_index],
  360. gfp_flags, numa_node_id());
  361. if (unlikely(!new_tsb)) {
  362. /* Not being able to fork due to a high-order TSB
  363. * allocation failure is very bad behavior. Just back
  364. * down to a 0-order allocation and force no TSB
  365. * growing for this address space.
  366. */
  367. if (mm->context.tsb_block[tsb_index].tsb == NULL &&
  368. new_cache_index > 0) {
  369. new_cache_index = 0;
  370. new_size = 8192;
  371. new_rss_limit = ~0UL;
  372. goto retry_tsb_alloc;
  373. }
  374. /* If we failed on a TSB grow, we are under serious
  375. * memory pressure so don't try to grow any more.
  376. */
  377. if (mm->context.tsb_block[tsb_index].tsb != NULL)
  378. mm->context.tsb_block[tsb_index].tsb_rss_limit = ~0UL;
  379. return;
  380. }
  381. /* Mark all tags as invalid. */
  382. tsb_init(new_tsb, new_size);
  383. /* Ok, we are about to commit the changes. If we are
  384. * growing an existing TSB the locking is very tricky,
  385. * so WATCH OUT!
  386. *
  387. * We have to hold mm->context.lock while committing to the
  388. * new TSB, this synchronizes us with processors in
  389. * flush_tsb_user() and switch_mm() for this address space.
  390. *
  391. * But even with that lock held, processors run asynchronously
  392. * accessing the old TSB via TLB miss handling. This is OK
  393. * because those actions are just propagating state from the
  394. * Linux page tables into the TSB, page table mappings are not
  395. * being changed. If a real fault occurs, the processor will
  396. * synchronize with us when it hits flush_tsb_user(), this is
  397. * also true for the case where vmscan is modifying the page
  398. * tables. The only thing we need to be careful with is to
  399. * skip any locked TSB entries during copy_tsb().
  400. *
  401. * When we finish committing to the new TSB, we have to drop
  402. * the lock and ask all other cpus running this address space
  403. * to run tsb_context_switch() to see the new TSB table.
  404. */
  405. spin_lock_irqsave(&mm->context.lock, flags);
  406. old_tsb = mm->context.tsb_block[tsb_index].tsb;
  407. old_cache_index =
  408. (mm->context.tsb_block[tsb_index].tsb_reg_val & 0x7UL);
  409. old_size = (mm->context.tsb_block[tsb_index].tsb_nentries *
  410. sizeof(struct tsb));
  411. /* Handle multiple threads trying to grow the TSB at the same time.
  412. * One will get in here first, and bump the size and the RSS limit.
  413. * The others will get in here next and hit this check.
  414. */
  415. if (unlikely(old_tsb &&
  416. (rss < mm->context.tsb_block[tsb_index].tsb_rss_limit))) {
  417. spin_unlock_irqrestore(&mm->context.lock, flags);
  418. kmem_cache_free(tsb_caches[new_cache_index], new_tsb);
  419. return;
  420. }
  421. mm->context.tsb_block[tsb_index].tsb_rss_limit = new_rss_limit;
  422. if (old_tsb) {
  423. extern void copy_tsb(unsigned long old_tsb_base,
  424. unsigned long old_tsb_size,
  425. unsigned long new_tsb_base,
  426. unsigned long new_tsb_size);
  427. unsigned long old_tsb_base = (unsigned long) old_tsb;
  428. unsigned long new_tsb_base = (unsigned long) new_tsb;
  429. if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
  430. old_tsb_base = __pa(old_tsb_base);
  431. new_tsb_base = __pa(new_tsb_base);
  432. }
  433. copy_tsb(old_tsb_base, old_size, new_tsb_base, new_size);
  434. }
  435. mm->context.tsb_block[tsb_index].tsb = new_tsb;
  436. setup_tsb_params(mm, tsb_index, new_size);
  437. spin_unlock_irqrestore(&mm->context.lock, flags);
  438. /* If old_tsb is NULL, we're being invoked for the first time
  439. * from init_new_context().
  440. */
  441. if (old_tsb) {
  442. /* Reload it on the local cpu. */
  443. tsb_context_switch(mm);
  444. /* Now force other processors to do the same. */
  445. preempt_disable();
  446. smp_tsb_sync(mm);
  447. preempt_enable();
  448. /* Now it is safe to free the old tsb. */
  449. kmem_cache_free(tsb_caches[old_cache_index], old_tsb);
  450. }
  451. }
  452. int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
  453. {
  454. unsigned long mm_rss = get_mm_rss(mm);
  455. #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
  456. unsigned long saved_hugetlb_pte_count;
  457. unsigned long saved_thp_pte_count;
  458. #endif
  459. unsigned int i;
  460. spin_lock_init(&mm->context.lock);
  461. mm->context.sparc64_ctx_val = 0UL;
  462. #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
  463. /* We reset them to zero because the fork() page copying
  464. * will re-increment the counters as the parent PTEs are
  465. * copied into the child address space.
  466. */
  467. saved_hugetlb_pte_count = mm->context.hugetlb_pte_count;
  468. saved_thp_pte_count = mm->context.thp_pte_count;
  469. mm->context.hugetlb_pte_count = 0;
  470. mm->context.thp_pte_count = 0;
  471. mm_rss -= saved_thp_pte_count * (HPAGE_SIZE / PAGE_SIZE);
  472. #endif
  473. /* copy_mm() copies over the parent's mm_struct before calling
  474. * us, so we need to zero out the TSB pointer or else tsb_grow()
  475. * will be confused and think there is an older TSB to free up.
  476. */
  477. for (i = 0; i < MM_NUM_TSBS; i++)
  478. mm->context.tsb_block[i].tsb = NULL;
  479. /* If this is fork, inherit the parent's TSB size. We would
  480. * grow it to that size on the first page fault anyways.
  481. */
  482. tsb_grow(mm, MM_TSB_BASE, mm_rss);
  483. #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
  484. if (unlikely(saved_hugetlb_pte_count + saved_thp_pte_count))
  485. tsb_grow(mm, MM_TSB_HUGE,
  486. (saved_hugetlb_pte_count + saved_thp_pte_count) *
  487. REAL_HPAGE_PER_HPAGE);
  488. #endif
  489. if (unlikely(!mm->context.tsb_block[MM_TSB_BASE].tsb))
  490. return -ENOMEM;
  491. return 0;
  492. }
  493. static void tsb_destroy_one(struct tsb_config *tp)
  494. {
  495. unsigned long cache_index;
  496. if (!tp->tsb)
  497. return;
  498. cache_index = tp->tsb_reg_val & 0x7UL;
  499. kmem_cache_free(tsb_caches[cache_index], tp->tsb);
  500. tp->tsb = NULL;
  501. tp->tsb_reg_val = 0UL;
  502. }
  503. void destroy_context(struct mm_struct *mm)
  504. {
  505. unsigned long flags, i;
  506. for (i = 0; i < MM_NUM_TSBS; i++)
  507. tsb_destroy_one(&mm->context.tsb_block[i]);
  508. spin_lock_irqsave(&ctx_alloc_lock, flags);
  509. if (CTX_VALID(mm->context)) {
  510. unsigned long nr = CTX_NRBITS(mm->context);
  511. mmu_context_bmap[nr>>6] &= ~(1UL << (nr & 63));
  512. }
  513. spin_unlock_irqrestore(&ctx_alloc_lock, flags);
  514. }