hugetlbpage.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464
  1. /*
  2. * SPARC64 Huge TLB page support.
  3. *
  4. * Copyright (C) 2002, 2003, 2006 David S. Miller (davem@davemloft.net)
  5. */
  6. #include <linux/fs.h>
  7. #include <linux/mm.h>
  8. #include <linux/sched/mm.h>
  9. #include <linux/hugetlb.h>
  10. #include <linux/pagemap.h>
  11. #include <linux/sysctl.h>
  12. #include <asm/mman.h>
  13. #include <asm/pgalloc.h>
  14. #include <asm/pgtable.h>
  15. #include <asm/tlb.h>
  16. #include <asm/tlbflush.h>
  17. #include <asm/cacheflush.h>
  18. #include <asm/mmu_context.h>
  19. /* Slightly simplified from the non-hugepage variant because by
  20. * definition we don't have to worry about any page coloring stuff
  21. */
  22. static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *filp,
  23. unsigned long addr,
  24. unsigned long len,
  25. unsigned long pgoff,
  26. unsigned long flags)
  27. {
  28. struct hstate *h = hstate_file(filp);
  29. unsigned long task_size = TASK_SIZE;
  30. struct vm_unmapped_area_info info;
  31. if (test_thread_flag(TIF_32BIT))
  32. task_size = STACK_TOP32;
  33. info.flags = 0;
  34. info.length = len;
  35. info.low_limit = TASK_UNMAPPED_BASE;
  36. info.high_limit = min(task_size, VA_EXCLUDE_START);
  37. info.align_mask = PAGE_MASK & ~huge_page_mask(h);
  38. info.align_offset = 0;
  39. addr = vm_unmapped_area(&info);
  40. if ((addr & ~PAGE_MASK) && task_size > VA_EXCLUDE_END) {
  41. VM_BUG_ON(addr != -ENOMEM);
  42. info.low_limit = VA_EXCLUDE_END;
  43. info.high_limit = task_size;
  44. addr = vm_unmapped_area(&info);
  45. }
  46. return addr;
  47. }
  48. static unsigned long
  49. hugetlb_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
  50. const unsigned long len,
  51. const unsigned long pgoff,
  52. const unsigned long flags)
  53. {
  54. struct hstate *h = hstate_file(filp);
  55. struct mm_struct *mm = current->mm;
  56. unsigned long addr = addr0;
  57. struct vm_unmapped_area_info info;
  58. /* This should only ever run for 32-bit processes. */
  59. BUG_ON(!test_thread_flag(TIF_32BIT));
  60. info.flags = VM_UNMAPPED_AREA_TOPDOWN;
  61. info.length = len;
  62. info.low_limit = PAGE_SIZE;
  63. info.high_limit = mm->mmap_base;
  64. info.align_mask = PAGE_MASK & ~huge_page_mask(h);
  65. info.align_offset = 0;
  66. addr = vm_unmapped_area(&info);
  67. /*
  68. * A failed mmap() very likely causes application failure,
  69. * so fall back to the bottom-up function here. This scenario
  70. * can happen with large stack limits and large mmap()
  71. * allocations.
  72. */
  73. if (addr & ~PAGE_MASK) {
  74. VM_BUG_ON(addr != -ENOMEM);
  75. info.flags = 0;
  76. info.low_limit = TASK_UNMAPPED_BASE;
  77. info.high_limit = STACK_TOP32;
  78. addr = vm_unmapped_area(&info);
  79. }
  80. return addr;
  81. }
  82. unsigned long
  83. hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
  84. unsigned long len, unsigned long pgoff, unsigned long flags)
  85. {
  86. struct hstate *h = hstate_file(file);
  87. struct mm_struct *mm = current->mm;
  88. struct vm_area_struct *vma;
  89. unsigned long task_size = TASK_SIZE;
  90. if (test_thread_flag(TIF_32BIT))
  91. task_size = STACK_TOP32;
  92. if (len & ~huge_page_mask(h))
  93. return -EINVAL;
  94. if (len > task_size)
  95. return -ENOMEM;
  96. if (flags & MAP_FIXED) {
  97. if (prepare_hugepage_range(file, addr, len))
  98. return -EINVAL;
  99. return addr;
  100. }
  101. if (addr) {
  102. addr = ALIGN(addr, huge_page_size(h));
  103. vma = find_vma(mm, addr);
  104. if (task_size - len >= addr &&
  105. (!vma || addr + len <= vma->vm_start))
  106. return addr;
  107. }
  108. if (mm->get_unmapped_area == arch_get_unmapped_area)
  109. return hugetlb_get_unmapped_area_bottomup(file, addr, len,
  110. pgoff, flags);
  111. else
  112. return hugetlb_get_unmapped_area_topdown(file, addr, len,
  113. pgoff, flags);
  114. }
  115. static pte_t sun4u_hugepage_shift_to_tte(pte_t entry, unsigned int shift)
  116. {
  117. return entry;
  118. }
  119. static pte_t sun4v_hugepage_shift_to_tte(pte_t entry, unsigned int shift)
  120. {
  121. unsigned long hugepage_size = _PAGE_SZ4MB_4V;
  122. pte_val(entry) = pte_val(entry) & ~_PAGE_SZALL_4V;
  123. switch (shift) {
  124. case HPAGE_256MB_SHIFT:
  125. hugepage_size = _PAGE_SZ256MB_4V;
  126. pte_val(entry) |= _PAGE_PMD_HUGE;
  127. break;
  128. case HPAGE_SHIFT:
  129. pte_val(entry) |= _PAGE_PMD_HUGE;
  130. break;
  131. case HPAGE_64K_SHIFT:
  132. hugepage_size = _PAGE_SZ64K_4V;
  133. break;
  134. default:
  135. WARN_ONCE(1, "unsupported hugepage shift=%u\n", shift);
  136. }
  137. pte_val(entry) = pte_val(entry) | hugepage_size;
  138. return entry;
  139. }
  140. static pte_t hugepage_shift_to_tte(pte_t entry, unsigned int shift)
  141. {
  142. if (tlb_type == hypervisor)
  143. return sun4v_hugepage_shift_to_tte(entry, shift);
  144. else
  145. return sun4u_hugepage_shift_to_tte(entry, shift);
  146. }
  147. pte_t arch_make_huge_pte(pte_t entry, struct vm_area_struct *vma,
  148. struct page *page, int writeable)
  149. {
  150. unsigned int shift = huge_page_shift(hstate_vma(vma));
  151. return hugepage_shift_to_tte(entry, shift);
  152. }
  153. static unsigned int sun4v_huge_tte_to_shift(pte_t entry)
  154. {
  155. unsigned long tte_szbits = pte_val(entry) & _PAGE_SZALL_4V;
  156. unsigned int shift;
  157. switch (tte_szbits) {
  158. case _PAGE_SZ256MB_4V:
  159. shift = HPAGE_256MB_SHIFT;
  160. break;
  161. case _PAGE_SZ4MB_4V:
  162. shift = REAL_HPAGE_SHIFT;
  163. break;
  164. case _PAGE_SZ64K_4V:
  165. shift = HPAGE_64K_SHIFT;
  166. break;
  167. default:
  168. shift = PAGE_SHIFT;
  169. break;
  170. }
  171. return shift;
  172. }
  173. static unsigned int sun4u_huge_tte_to_shift(pte_t entry)
  174. {
  175. unsigned long tte_szbits = pte_val(entry) & _PAGE_SZALL_4U;
  176. unsigned int shift;
  177. switch (tte_szbits) {
  178. case _PAGE_SZ256MB_4U:
  179. shift = HPAGE_256MB_SHIFT;
  180. break;
  181. case _PAGE_SZ4MB_4U:
  182. shift = REAL_HPAGE_SHIFT;
  183. break;
  184. case _PAGE_SZ64K_4U:
  185. shift = HPAGE_64K_SHIFT;
  186. break;
  187. default:
  188. shift = PAGE_SHIFT;
  189. break;
  190. }
  191. return shift;
  192. }
  193. static unsigned int huge_tte_to_shift(pte_t entry)
  194. {
  195. unsigned long shift;
  196. if (tlb_type == hypervisor)
  197. shift = sun4v_huge_tte_to_shift(entry);
  198. else
  199. shift = sun4u_huge_tte_to_shift(entry);
  200. if (shift == PAGE_SHIFT)
  201. WARN_ONCE(1, "tto_to_shift: invalid hugepage tte=0x%lx\n",
  202. pte_val(entry));
  203. return shift;
  204. }
  205. static unsigned long huge_tte_to_size(pte_t pte)
  206. {
  207. unsigned long size = 1UL << huge_tte_to_shift(pte);
  208. if (size == REAL_HPAGE_SIZE)
  209. size = HPAGE_SIZE;
  210. return size;
  211. }
  212. pte_t *huge_pte_alloc(struct mm_struct *mm,
  213. unsigned long addr, unsigned long sz)
  214. {
  215. pgd_t *pgd;
  216. pud_t *pud;
  217. pmd_t *pmd;
  218. pte_t *pte = NULL;
  219. pgd = pgd_offset(mm, addr);
  220. pud = pud_alloc(mm, pgd, addr);
  221. if (pud) {
  222. pmd = pmd_alloc(mm, pud, addr);
  223. if (!pmd)
  224. return NULL;
  225. if (sz == PMD_SHIFT)
  226. pte = (pte_t *)pmd;
  227. else
  228. pte = pte_alloc_map(mm, pmd, addr);
  229. }
  230. return pte;
  231. }
  232. pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
  233. {
  234. pgd_t *pgd;
  235. pud_t *pud;
  236. pmd_t *pmd;
  237. pte_t *pte = NULL;
  238. pgd = pgd_offset(mm, addr);
  239. if (!pgd_none(*pgd)) {
  240. pud = pud_offset(pgd, addr);
  241. if (!pud_none(*pud)) {
  242. pmd = pmd_offset(pud, addr);
  243. if (!pmd_none(*pmd)) {
  244. if (is_hugetlb_pmd(*pmd))
  245. pte = (pte_t *)pmd;
  246. else
  247. pte = pte_offset_map(pmd, addr);
  248. }
  249. }
  250. }
  251. return pte;
  252. }
  253. void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
  254. pte_t *ptep, pte_t entry)
  255. {
  256. unsigned int i, nptes, orig_shift, shift;
  257. unsigned long size;
  258. pte_t orig;
  259. size = huge_tte_to_size(entry);
  260. shift = size >= HPAGE_SIZE ? PMD_SHIFT : PAGE_SHIFT;
  261. nptes = size >> shift;
  262. if (!pte_present(*ptep) && pte_present(entry))
  263. mm->context.hugetlb_pte_count += nptes;
  264. addr &= ~(size - 1);
  265. orig = *ptep;
  266. orig_shift = pte_none(orig) ? PAGE_SHIFT : huge_tte_to_shift(orig);
  267. for (i = 0; i < nptes; i++)
  268. ptep[i] = __pte(pte_val(entry) + (i << shift));
  269. maybe_tlb_batch_add(mm, addr, ptep, orig, 0, orig_shift);
  270. /* An HPAGE_SIZE'ed page is composed of two REAL_HPAGE_SIZE'ed pages */
  271. if (size == HPAGE_SIZE)
  272. maybe_tlb_batch_add(mm, addr + REAL_HPAGE_SIZE, ptep, orig, 0,
  273. orig_shift);
  274. }
  275. pte_t huge_ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
  276. pte_t *ptep)
  277. {
  278. unsigned int i, nptes, hugepage_shift;
  279. unsigned long size;
  280. pte_t entry;
  281. entry = *ptep;
  282. size = huge_tte_to_size(entry);
  283. if (size >= HPAGE_SIZE)
  284. nptes = size >> PMD_SHIFT;
  285. else
  286. nptes = size >> PAGE_SHIFT;
  287. hugepage_shift = pte_none(entry) ? PAGE_SHIFT :
  288. huge_tte_to_shift(entry);
  289. if (pte_present(entry))
  290. mm->context.hugetlb_pte_count -= nptes;
  291. addr &= ~(size - 1);
  292. for (i = 0; i < nptes; i++)
  293. ptep[i] = __pte(0UL);
  294. maybe_tlb_batch_add(mm, addr, ptep, entry, 0, hugepage_shift);
  295. /* An HPAGE_SIZE'ed page is composed of two REAL_HPAGE_SIZE'ed pages */
  296. if (size == HPAGE_SIZE)
  297. maybe_tlb_batch_add(mm, addr + REAL_HPAGE_SIZE, ptep, entry, 0,
  298. hugepage_shift);
  299. return entry;
  300. }
  301. int pmd_huge(pmd_t pmd)
  302. {
  303. return !pmd_none(pmd) &&
  304. (pmd_val(pmd) & (_PAGE_VALID|_PAGE_PMD_HUGE)) != _PAGE_VALID;
  305. }
  306. int pud_huge(pud_t pud)
  307. {
  308. return 0;
  309. }
  310. static void hugetlb_free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
  311. unsigned long addr)
  312. {
  313. pgtable_t token = pmd_pgtable(*pmd);
  314. pmd_clear(pmd);
  315. pte_free_tlb(tlb, token, addr);
  316. atomic_long_dec(&tlb->mm->nr_ptes);
  317. }
  318. static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  319. unsigned long addr, unsigned long end,
  320. unsigned long floor, unsigned long ceiling)
  321. {
  322. pmd_t *pmd;
  323. unsigned long next;
  324. unsigned long start;
  325. start = addr;
  326. pmd = pmd_offset(pud, addr);
  327. do {
  328. next = pmd_addr_end(addr, end);
  329. if (pmd_none(*pmd))
  330. continue;
  331. if (is_hugetlb_pmd(*pmd))
  332. pmd_clear(pmd);
  333. else
  334. hugetlb_free_pte_range(tlb, pmd, addr);
  335. } while (pmd++, addr = next, addr != end);
  336. start &= PUD_MASK;
  337. if (start < floor)
  338. return;
  339. if (ceiling) {
  340. ceiling &= PUD_MASK;
  341. if (!ceiling)
  342. return;
  343. }
  344. if (end - 1 > ceiling - 1)
  345. return;
  346. pmd = pmd_offset(pud, start);
  347. pud_clear(pud);
  348. pmd_free_tlb(tlb, pmd, start);
  349. mm_dec_nr_pmds(tlb->mm);
  350. }
  351. static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  352. unsigned long addr, unsigned long end,
  353. unsigned long floor, unsigned long ceiling)
  354. {
  355. pud_t *pud;
  356. unsigned long next;
  357. unsigned long start;
  358. start = addr;
  359. pud = pud_offset(pgd, addr);
  360. do {
  361. next = pud_addr_end(addr, end);
  362. if (pud_none_or_clear_bad(pud))
  363. continue;
  364. hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
  365. ceiling);
  366. } while (pud++, addr = next, addr != end);
  367. start &= PGDIR_MASK;
  368. if (start < floor)
  369. return;
  370. if (ceiling) {
  371. ceiling &= PGDIR_MASK;
  372. if (!ceiling)
  373. return;
  374. }
  375. if (end - 1 > ceiling - 1)
  376. return;
  377. pud = pud_offset(pgd, start);
  378. pgd_clear(pgd);
  379. pud_free_tlb(tlb, pud, start);
  380. }
  381. void hugetlb_free_pgd_range(struct mmu_gather *tlb,
  382. unsigned long addr, unsigned long end,
  383. unsigned long floor, unsigned long ceiling)
  384. {
  385. pgd_t *pgd;
  386. unsigned long next;
  387. pgd = pgd_offset(tlb->mm, addr);
  388. do {
  389. next = pgd_addr_end(addr, end);
  390. if (pgd_none_or_clear_bad(pgd))
  391. continue;
  392. hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
  393. } while (pgd++, addr = next, addr != end);
  394. }