mmu.c 33 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * KVM/MIPS MMU handling in the KVM module.
  7. *
  8. * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
  9. * Authors: Sanjay Lal <sanjayl@kymasys.com>
  10. */
  11. #include <linux/highmem.h>
  12. #include <linux/kvm_host.h>
  13. #include <linux/uaccess.h>
  14. #include <asm/mmu_context.h>
  15. #include <asm/pgalloc.h>
  16. /*
  17. * KVM_MMU_CACHE_MIN_PAGES is the number of GPA page table translation levels
  18. * for which pages need to be cached.
  19. */
  20. #if defined(__PAGETABLE_PMD_FOLDED)
  21. #define KVM_MMU_CACHE_MIN_PAGES 1
  22. #else
  23. #define KVM_MMU_CACHE_MIN_PAGES 2
  24. #endif
  25. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  26. int min, int max)
  27. {
  28. void *page;
  29. BUG_ON(max > KVM_NR_MEM_OBJS);
  30. if (cache->nobjs >= min)
  31. return 0;
  32. while (cache->nobjs < max) {
  33. page = (void *)__get_free_page(GFP_KERNEL);
  34. if (!page)
  35. return -ENOMEM;
  36. cache->objects[cache->nobjs++] = page;
  37. }
  38. return 0;
  39. }
  40. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
  41. {
  42. while (mc->nobjs)
  43. free_page((unsigned long)mc->objects[--mc->nobjs]);
  44. }
  45. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
  46. {
  47. void *p;
  48. BUG_ON(!mc || !mc->nobjs);
  49. p = mc->objects[--mc->nobjs];
  50. return p;
  51. }
  52. void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  53. {
  54. mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
  55. }
  56. /**
  57. * kvm_pgd_init() - Initialise KVM GPA page directory.
  58. * @page: Pointer to page directory (PGD) for KVM GPA.
  59. *
  60. * Initialise a KVM GPA page directory with pointers to the invalid table, i.e.
  61. * representing no mappings. This is similar to pgd_init(), however it
  62. * initialises all the page directory pointers, not just the ones corresponding
  63. * to the userland address space (since it is for the guest physical address
  64. * space rather than a virtual address space).
  65. */
  66. static void kvm_pgd_init(void *page)
  67. {
  68. unsigned long *p, *end;
  69. unsigned long entry;
  70. #ifdef __PAGETABLE_PMD_FOLDED
  71. entry = (unsigned long)invalid_pte_table;
  72. #else
  73. entry = (unsigned long)invalid_pmd_table;
  74. #endif
  75. p = (unsigned long *)page;
  76. end = p + PTRS_PER_PGD;
  77. do {
  78. p[0] = entry;
  79. p[1] = entry;
  80. p[2] = entry;
  81. p[3] = entry;
  82. p[4] = entry;
  83. p += 8;
  84. p[-3] = entry;
  85. p[-2] = entry;
  86. p[-1] = entry;
  87. } while (p != end);
  88. }
  89. /**
  90. * kvm_pgd_alloc() - Allocate and initialise a KVM GPA page directory.
  91. *
  92. * Allocate a blank KVM GPA page directory (PGD) for representing guest physical
  93. * to host physical page mappings.
  94. *
  95. * Returns: Pointer to new KVM GPA page directory.
  96. * NULL on allocation failure.
  97. */
  98. pgd_t *kvm_pgd_alloc(void)
  99. {
  100. pgd_t *ret;
  101. ret = (pgd_t *)__get_free_pages(GFP_KERNEL, PGD_ORDER);
  102. if (ret)
  103. kvm_pgd_init(ret);
  104. return ret;
  105. }
  106. /**
  107. * kvm_mips_walk_pgd() - Walk page table with optional allocation.
  108. * @pgd: Page directory pointer.
  109. * @addr: Address to index page table using.
  110. * @cache: MMU page cache to allocate new page tables from, or NULL.
  111. *
  112. * Walk the page tables pointed to by @pgd to find the PTE corresponding to the
  113. * address @addr. If page tables don't exist for @addr, they will be created
  114. * from the MMU cache if @cache is not NULL.
  115. *
  116. * Returns: Pointer to pte_t corresponding to @addr.
  117. * NULL if a page table doesn't exist for @addr and !@cache.
  118. * NULL if a page table allocation failed.
  119. */
  120. static pte_t *kvm_mips_walk_pgd(pgd_t *pgd, struct kvm_mmu_memory_cache *cache,
  121. unsigned long addr)
  122. {
  123. pud_t *pud;
  124. pmd_t *pmd;
  125. pgd += pgd_index(addr);
  126. if (pgd_none(*pgd)) {
  127. /* Not used on MIPS yet */
  128. BUG();
  129. return NULL;
  130. }
  131. pud = pud_offset(pgd, addr);
  132. if (pud_none(*pud)) {
  133. pmd_t *new_pmd;
  134. if (!cache)
  135. return NULL;
  136. new_pmd = mmu_memory_cache_alloc(cache);
  137. pmd_init((unsigned long)new_pmd,
  138. (unsigned long)invalid_pte_table);
  139. pud_populate(NULL, pud, new_pmd);
  140. }
  141. pmd = pmd_offset(pud, addr);
  142. if (pmd_none(*pmd)) {
  143. pte_t *new_pte;
  144. if (!cache)
  145. return NULL;
  146. new_pte = mmu_memory_cache_alloc(cache);
  147. clear_page(new_pte);
  148. pmd_populate_kernel(NULL, pmd, new_pte);
  149. }
  150. return pte_offset(pmd, addr);
  151. }
  152. /* Caller must hold kvm->mm_lock */
  153. static pte_t *kvm_mips_pte_for_gpa(struct kvm *kvm,
  154. struct kvm_mmu_memory_cache *cache,
  155. unsigned long addr)
  156. {
  157. return kvm_mips_walk_pgd(kvm->arch.gpa_mm.pgd, cache, addr);
  158. }
  159. /*
  160. * kvm_mips_flush_gpa_{pte,pmd,pud,pgd,pt}.
  161. * Flush a range of guest physical address space from the VM's GPA page tables.
  162. */
  163. static bool kvm_mips_flush_gpa_pte(pte_t *pte, unsigned long start_gpa,
  164. unsigned long end_gpa)
  165. {
  166. int i_min = __pte_offset(start_gpa);
  167. int i_max = __pte_offset(end_gpa);
  168. bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1);
  169. int i;
  170. for (i = i_min; i <= i_max; ++i) {
  171. if (!pte_present(pte[i]))
  172. continue;
  173. set_pte(pte + i, __pte(0));
  174. }
  175. return safe_to_remove;
  176. }
  177. static bool kvm_mips_flush_gpa_pmd(pmd_t *pmd, unsigned long start_gpa,
  178. unsigned long end_gpa)
  179. {
  180. pte_t *pte;
  181. unsigned long end = ~0ul;
  182. int i_min = __pmd_offset(start_gpa);
  183. int i_max = __pmd_offset(end_gpa);
  184. bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1);
  185. int i;
  186. for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
  187. if (!pmd_present(pmd[i]))
  188. continue;
  189. pte = pte_offset(pmd + i, 0);
  190. if (i == i_max)
  191. end = end_gpa;
  192. if (kvm_mips_flush_gpa_pte(pte, start_gpa, end)) {
  193. pmd_clear(pmd + i);
  194. pte_free_kernel(NULL, pte);
  195. } else {
  196. safe_to_remove = false;
  197. }
  198. }
  199. return safe_to_remove;
  200. }
  201. static bool kvm_mips_flush_gpa_pud(pud_t *pud, unsigned long start_gpa,
  202. unsigned long end_gpa)
  203. {
  204. pmd_t *pmd;
  205. unsigned long end = ~0ul;
  206. int i_min = __pud_offset(start_gpa);
  207. int i_max = __pud_offset(end_gpa);
  208. bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1);
  209. int i;
  210. for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
  211. if (!pud_present(pud[i]))
  212. continue;
  213. pmd = pmd_offset(pud + i, 0);
  214. if (i == i_max)
  215. end = end_gpa;
  216. if (kvm_mips_flush_gpa_pmd(pmd, start_gpa, end)) {
  217. pud_clear(pud + i);
  218. pmd_free(NULL, pmd);
  219. } else {
  220. safe_to_remove = false;
  221. }
  222. }
  223. return safe_to_remove;
  224. }
  225. static bool kvm_mips_flush_gpa_pgd(pgd_t *pgd, unsigned long start_gpa,
  226. unsigned long end_gpa)
  227. {
  228. pud_t *pud;
  229. unsigned long end = ~0ul;
  230. int i_min = pgd_index(start_gpa);
  231. int i_max = pgd_index(end_gpa);
  232. bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1);
  233. int i;
  234. for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
  235. if (!pgd_present(pgd[i]))
  236. continue;
  237. pud = pud_offset(pgd + i, 0);
  238. if (i == i_max)
  239. end = end_gpa;
  240. if (kvm_mips_flush_gpa_pud(pud, start_gpa, end)) {
  241. pgd_clear(pgd + i);
  242. pud_free(NULL, pud);
  243. } else {
  244. safe_to_remove = false;
  245. }
  246. }
  247. return safe_to_remove;
  248. }
  249. /**
  250. * kvm_mips_flush_gpa_pt() - Flush a range of guest physical addresses.
  251. * @kvm: KVM pointer.
  252. * @start_gfn: Guest frame number of first page in GPA range to flush.
  253. * @end_gfn: Guest frame number of last page in GPA range to flush.
  254. *
  255. * Flushes a range of GPA mappings from the GPA page tables.
  256. *
  257. * The caller must hold the @kvm->mmu_lock spinlock.
  258. *
  259. * Returns: Whether its safe to remove the top level page directory because
  260. * all lower levels have been removed.
  261. */
  262. bool kvm_mips_flush_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn)
  263. {
  264. return kvm_mips_flush_gpa_pgd(kvm->arch.gpa_mm.pgd,
  265. start_gfn << PAGE_SHIFT,
  266. end_gfn << PAGE_SHIFT);
  267. }
  268. #define BUILD_PTE_RANGE_OP(name, op) \
  269. static int kvm_mips_##name##_pte(pte_t *pte, unsigned long start, \
  270. unsigned long end) \
  271. { \
  272. int ret = 0; \
  273. int i_min = __pte_offset(start); \
  274. int i_max = __pte_offset(end); \
  275. int i; \
  276. pte_t old, new; \
  277. \
  278. for (i = i_min; i <= i_max; ++i) { \
  279. if (!pte_present(pte[i])) \
  280. continue; \
  281. \
  282. old = pte[i]; \
  283. new = op(old); \
  284. if (pte_val(new) == pte_val(old)) \
  285. continue; \
  286. set_pte(pte + i, new); \
  287. ret = 1; \
  288. } \
  289. return ret; \
  290. } \
  291. \
  292. /* returns true if anything was done */ \
  293. static int kvm_mips_##name##_pmd(pmd_t *pmd, unsigned long start, \
  294. unsigned long end) \
  295. { \
  296. int ret = 0; \
  297. pte_t *pte; \
  298. unsigned long cur_end = ~0ul; \
  299. int i_min = __pmd_offset(start); \
  300. int i_max = __pmd_offset(end); \
  301. int i; \
  302. \
  303. for (i = i_min; i <= i_max; ++i, start = 0) { \
  304. if (!pmd_present(pmd[i])) \
  305. continue; \
  306. \
  307. pte = pte_offset(pmd + i, 0); \
  308. if (i == i_max) \
  309. cur_end = end; \
  310. \
  311. ret |= kvm_mips_##name##_pte(pte, start, cur_end); \
  312. } \
  313. return ret; \
  314. } \
  315. \
  316. static int kvm_mips_##name##_pud(pud_t *pud, unsigned long start, \
  317. unsigned long end) \
  318. { \
  319. int ret = 0; \
  320. pmd_t *pmd; \
  321. unsigned long cur_end = ~0ul; \
  322. int i_min = __pud_offset(start); \
  323. int i_max = __pud_offset(end); \
  324. int i; \
  325. \
  326. for (i = i_min; i <= i_max; ++i, start = 0) { \
  327. if (!pud_present(pud[i])) \
  328. continue; \
  329. \
  330. pmd = pmd_offset(pud + i, 0); \
  331. if (i == i_max) \
  332. cur_end = end; \
  333. \
  334. ret |= kvm_mips_##name##_pmd(pmd, start, cur_end); \
  335. } \
  336. return ret; \
  337. } \
  338. \
  339. static int kvm_mips_##name##_pgd(pgd_t *pgd, unsigned long start, \
  340. unsigned long end) \
  341. { \
  342. int ret = 0; \
  343. pud_t *pud; \
  344. unsigned long cur_end = ~0ul; \
  345. int i_min = pgd_index(start); \
  346. int i_max = pgd_index(end); \
  347. int i; \
  348. \
  349. for (i = i_min; i <= i_max; ++i, start = 0) { \
  350. if (!pgd_present(pgd[i])) \
  351. continue; \
  352. \
  353. pud = pud_offset(pgd + i, 0); \
  354. if (i == i_max) \
  355. cur_end = end; \
  356. \
  357. ret |= kvm_mips_##name##_pud(pud, start, cur_end); \
  358. } \
  359. return ret; \
  360. }
  361. /*
  362. * kvm_mips_mkclean_gpa_pt.
  363. * Mark a range of guest physical address space clean (writes fault) in the VM's
  364. * GPA page table to allow dirty page tracking.
  365. */
  366. BUILD_PTE_RANGE_OP(mkclean, pte_mkclean)
  367. /**
  368. * kvm_mips_mkclean_gpa_pt() - Make a range of guest physical addresses clean.
  369. * @kvm: KVM pointer.
  370. * @start_gfn: Guest frame number of first page in GPA range to flush.
  371. * @end_gfn: Guest frame number of last page in GPA range to flush.
  372. *
  373. * Make a range of GPA mappings clean so that guest writes will fault and
  374. * trigger dirty page logging.
  375. *
  376. * The caller must hold the @kvm->mmu_lock spinlock.
  377. *
  378. * Returns: Whether any GPA mappings were modified, which would require
  379. * derived mappings (GVA page tables & TLB enties) to be
  380. * invalidated.
  381. */
  382. int kvm_mips_mkclean_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn)
  383. {
  384. return kvm_mips_mkclean_pgd(kvm->arch.gpa_mm.pgd,
  385. start_gfn << PAGE_SHIFT,
  386. end_gfn << PAGE_SHIFT);
  387. }
  388. /**
  389. * kvm_arch_mmu_enable_log_dirty_pt_masked() - write protect dirty pages
  390. * @kvm: The KVM pointer
  391. * @slot: The memory slot associated with mask
  392. * @gfn_offset: The gfn offset in memory slot
  393. * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory
  394. * slot to be write protected
  395. *
  396. * Walks bits set in mask write protects the associated pte's. Caller must
  397. * acquire @kvm->mmu_lock.
  398. */
  399. void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
  400. struct kvm_memory_slot *slot,
  401. gfn_t gfn_offset, unsigned long mask)
  402. {
  403. gfn_t base_gfn = slot->base_gfn + gfn_offset;
  404. gfn_t start = base_gfn + __ffs(mask);
  405. gfn_t end = base_gfn + __fls(mask);
  406. kvm_mips_mkclean_gpa_pt(kvm, start, end);
  407. }
  408. /*
  409. * kvm_mips_mkold_gpa_pt.
  410. * Mark a range of guest physical address space old (all accesses fault) in the
  411. * VM's GPA page table to allow detection of commonly used pages.
  412. */
  413. BUILD_PTE_RANGE_OP(mkold, pte_mkold)
  414. static int kvm_mips_mkold_gpa_pt(struct kvm *kvm, gfn_t start_gfn,
  415. gfn_t end_gfn)
  416. {
  417. return kvm_mips_mkold_pgd(kvm->arch.gpa_mm.pgd,
  418. start_gfn << PAGE_SHIFT,
  419. end_gfn << PAGE_SHIFT);
  420. }
  421. static int handle_hva_to_gpa(struct kvm *kvm,
  422. unsigned long start,
  423. unsigned long end,
  424. int (*handler)(struct kvm *kvm, gfn_t gfn,
  425. gpa_t gfn_end,
  426. struct kvm_memory_slot *memslot,
  427. void *data),
  428. void *data)
  429. {
  430. struct kvm_memslots *slots;
  431. struct kvm_memory_slot *memslot;
  432. int ret = 0;
  433. slots = kvm_memslots(kvm);
  434. /* we only care about the pages that the guest sees */
  435. kvm_for_each_memslot(memslot, slots) {
  436. unsigned long hva_start, hva_end;
  437. gfn_t gfn, gfn_end;
  438. hva_start = max(start, memslot->userspace_addr);
  439. hva_end = min(end, memslot->userspace_addr +
  440. (memslot->npages << PAGE_SHIFT));
  441. if (hva_start >= hva_end)
  442. continue;
  443. /*
  444. * {gfn(page) | page intersects with [hva_start, hva_end)} =
  445. * {gfn_start, gfn_start+1, ..., gfn_end-1}.
  446. */
  447. gfn = hva_to_gfn_memslot(hva_start, memslot);
  448. gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
  449. ret |= handler(kvm, gfn, gfn_end, memslot, data);
  450. }
  451. return ret;
  452. }
  453. static int kvm_unmap_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
  454. struct kvm_memory_slot *memslot, void *data)
  455. {
  456. kvm_mips_flush_gpa_pt(kvm, gfn, gfn_end);
  457. return 1;
  458. }
  459. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  460. {
  461. unsigned long end = hva + PAGE_SIZE;
  462. handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
  463. kvm_mips_callbacks->flush_shadow_all(kvm);
  464. return 0;
  465. }
  466. int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
  467. {
  468. handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
  469. kvm_mips_callbacks->flush_shadow_all(kvm);
  470. return 0;
  471. }
  472. static int kvm_set_spte_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
  473. struct kvm_memory_slot *memslot, void *data)
  474. {
  475. gpa_t gpa = gfn << PAGE_SHIFT;
  476. pte_t hva_pte = *(pte_t *)data;
  477. pte_t *gpa_pte = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
  478. pte_t old_pte;
  479. if (!gpa_pte)
  480. return 0;
  481. /* Mapping may need adjusting depending on memslot flags */
  482. old_pte = *gpa_pte;
  483. if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES && !pte_dirty(old_pte))
  484. hva_pte = pte_mkclean(hva_pte);
  485. else if (memslot->flags & KVM_MEM_READONLY)
  486. hva_pte = pte_wrprotect(hva_pte);
  487. set_pte(gpa_pte, hva_pte);
  488. /* Replacing an absent or old page doesn't need flushes */
  489. if (!pte_present(old_pte) || !pte_young(old_pte))
  490. return 0;
  491. /* Pages swapped, aged, moved, or cleaned require flushes */
  492. return !pte_present(hva_pte) ||
  493. !pte_young(hva_pte) ||
  494. pte_pfn(old_pte) != pte_pfn(hva_pte) ||
  495. (pte_dirty(old_pte) && !pte_dirty(hva_pte));
  496. }
  497. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  498. {
  499. unsigned long end = hva + PAGE_SIZE;
  500. int ret;
  501. ret = handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &pte);
  502. if (ret)
  503. kvm_mips_callbacks->flush_shadow_all(kvm);
  504. }
  505. static int kvm_age_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
  506. struct kvm_memory_slot *memslot, void *data)
  507. {
  508. return kvm_mips_mkold_gpa_pt(kvm, gfn, gfn_end);
  509. }
  510. static int kvm_test_age_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
  511. struct kvm_memory_slot *memslot, void *data)
  512. {
  513. gpa_t gpa = gfn << PAGE_SHIFT;
  514. pte_t *gpa_pte = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
  515. if (!gpa_pte)
  516. return 0;
  517. return pte_young(*gpa_pte);
  518. }
  519. int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
  520. {
  521. return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
  522. }
  523. int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
  524. {
  525. return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
  526. }
  527. /**
  528. * _kvm_mips_map_page_fast() - Fast path GPA fault handler.
  529. * @vcpu: VCPU pointer.
  530. * @gpa: Guest physical address of fault.
  531. * @write_fault: Whether the fault was due to a write.
  532. * @out_entry: New PTE for @gpa (written on success unless NULL).
  533. * @out_buddy: New PTE for @gpa's buddy (written on success unless
  534. * NULL).
  535. *
  536. * Perform fast path GPA fault handling, doing all that can be done without
  537. * calling into KVM. This handles marking old pages young (for idle page
  538. * tracking), and dirtying of clean pages (for dirty page logging).
  539. *
  540. * Returns: 0 on success, in which case we can update derived mappings and
  541. * resume guest execution.
  542. * -EFAULT on failure due to absent GPA mapping or write to
  543. * read-only page, in which case KVM must be consulted.
  544. */
  545. static int _kvm_mips_map_page_fast(struct kvm_vcpu *vcpu, unsigned long gpa,
  546. bool write_fault,
  547. pte_t *out_entry, pte_t *out_buddy)
  548. {
  549. struct kvm *kvm = vcpu->kvm;
  550. gfn_t gfn = gpa >> PAGE_SHIFT;
  551. pte_t *ptep;
  552. kvm_pfn_t pfn = 0; /* silence bogus GCC warning */
  553. bool pfn_valid = false;
  554. int ret = 0;
  555. spin_lock(&kvm->mmu_lock);
  556. /* Fast path - just check GPA page table for an existing entry */
  557. ptep = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
  558. if (!ptep || !pte_present(*ptep)) {
  559. ret = -EFAULT;
  560. goto out;
  561. }
  562. /* Track access to pages marked old */
  563. if (!pte_young(*ptep)) {
  564. set_pte(ptep, pte_mkyoung(*ptep));
  565. pfn = pte_pfn(*ptep);
  566. pfn_valid = true;
  567. /* call kvm_set_pfn_accessed() after unlock */
  568. }
  569. if (write_fault && !pte_dirty(*ptep)) {
  570. if (!pte_write(*ptep)) {
  571. ret = -EFAULT;
  572. goto out;
  573. }
  574. /* Track dirtying of writeable pages */
  575. set_pte(ptep, pte_mkdirty(*ptep));
  576. pfn = pte_pfn(*ptep);
  577. mark_page_dirty(kvm, gfn);
  578. kvm_set_pfn_dirty(pfn);
  579. }
  580. if (out_entry)
  581. *out_entry = *ptep;
  582. if (out_buddy)
  583. *out_buddy = *ptep_buddy(ptep);
  584. out:
  585. spin_unlock(&kvm->mmu_lock);
  586. if (pfn_valid)
  587. kvm_set_pfn_accessed(pfn);
  588. return ret;
  589. }
  590. /**
  591. * kvm_mips_map_page() - Map a guest physical page.
  592. * @vcpu: VCPU pointer.
  593. * @gpa: Guest physical address of fault.
  594. * @write_fault: Whether the fault was due to a write.
  595. * @out_entry: New PTE for @gpa (written on success unless NULL).
  596. * @out_buddy: New PTE for @gpa's buddy (written on success unless
  597. * NULL).
  598. *
  599. * Handle GPA faults by creating a new GPA mapping (or updating an existing
  600. * one).
  601. *
  602. * This takes care of marking pages young or dirty (idle/dirty page tracking),
  603. * asking KVM for the corresponding PFN, and creating a mapping in the GPA page
  604. * tables. Derived mappings (GVA page tables and TLBs) must be handled by the
  605. * caller.
  606. *
  607. * Returns: 0 on success, in which case the caller may use the @out_entry
  608. * and @out_buddy PTEs to update derived mappings and resume guest
  609. * execution.
  610. * -EFAULT if there is no memory region at @gpa or a write was
  611. * attempted to a read-only memory region. This is usually handled
  612. * as an MMIO access.
  613. */
  614. static int kvm_mips_map_page(struct kvm_vcpu *vcpu, unsigned long gpa,
  615. bool write_fault,
  616. pte_t *out_entry, pte_t *out_buddy)
  617. {
  618. struct kvm *kvm = vcpu->kvm;
  619. struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
  620. gfn_t gfn = gpa >> PAGE_SHIFT;
  621. int srcu_idx, err;
  622. kvm_pfn_t pfn;
  623. pte_t *ptep, entry, old_pte;
  624. bool writeable;
  625. unsigned long prot_bits;
  626. unsigned long mmu_seq;
  627. /* Try the fast path to handle old / clean pages */
  628. srcu_idx = srcu_read_lock(&kvm->srcu);
  629. err = _kvm_mips_map_page_fast(vcpu, gpa, write_fault, out_entry,
  630. out_buddy);
  631. if (!err)
  632. goto out;
  633. /* We need a minimum of cached pages ready for page table creation */
  634. err = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
  635. KVM_NR_MEM_OBJS);
  636. if (err)
  637. goto out;
  638. retry:
  639. /*
  640. * Used to check for invalidations in progress, of the pfn that is
  641. * returned by pfn_to_pfn_prot below.
  642. */
  643. mmu_seq = kvm->mmu_notifier_seq;
  644. /*
  645. * Ensure the read of mmu_notifier_seq isn't reordered with PTE reads in
  646. * gfn_to_pfn_prot() (which calls get_user_pages()), so that we don't
  647. * risk the page we get a reference to getting unmapped before we have a
  648. * chance to grab the mmu_lock without mmu_notifier_retry() noticing.
  649. *
  650. * This smp_rmb() pairs with the effective smp_wmb() of the combination
  651. * of the pte_unmap_unlock() after the PTE is zapped, and the
  652. * spin_lock() in kvm_mmu_notifier_invalidate_<page|range_end>() before
  653. * mmu_notifier_seq is incremented.
  654. */
  655. smp_rmb();
  656. /* Slow path - ask KVM core whether we can access this GPA */
  657. pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writeable);
  658. if (is_error_noslot_pfn(pfn)) {
  659. err = -EFAULT;
  660. goto out;
  661. }
  662. spin_lock(&kvm->mmu_lock);
  663. /* Check if an invalidation has taken place since we got pfn */
  664. if (mmu_notifier_retry(kvm, mmu_seq)) {
  665. /*
  666. * This can happen when mappings are changed asynchronously, but
  667. * also synchronously if a COW is triggered by
  668. * gfn_to_pfn_prot().
  669. */
  670. spin_unlock(&kvm->mmu_lock);
  671. kvm_release_pfn_clean(pfn);
  672. goto retry;
  673. }
  674. /* Ensure page tables are allocated */
  675. ptep = kvm_mips_pte_for_gpa(kvm, memcache, gpa);
  676. /* Set up the PTE */
  677. prot_bits = _PAGE_PRESENT | __READABLE | _page_cachable_default;
  678. if (writeable) {
  679. prot_bits |= _PAGE_WRITE;
  680. if (write_fault) {
  681. prot_bits |= __WRITEABLE;
  682. mark_page_dirty(kvm, gfn);
  683. kvm_set_pfn_dirty(pfn);
  684. }
  685. }
  686. entry = pfn_pte(pfn, __pgprot(prot_bits));
  687. /* Write the PTE */
  688. old_pte = *ptep;
  689. set_pte(ptep, entry);
  690. err = 0;
  691. if (out_entry)
  692. *out_entry = *ptep;
  693. if (out_buddy)
  694. *out_buddy = *ptep_buddy(ptep);
  695. spin_unlock(&kvm->mmu_lock);
  696. kvm_release_pfn_clean(pfn);
  697. kvm_set_pfn_accessed(pfn);
  698. out:
  699. srcu_read_unlock(&kvm->srcu, srcu_idx);
  700. return err;
  701. }
  702. static pte_t *kvm_trap_emul_pte_for_gva(struct kvm_vcpu *vcpu,
  703. unsigned long addr)
  704. {
  705. struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
  706. pgd_t *pgdp;
  707. int ret;
  708. /* We need a minimum of cached pages ready for page table creation */
  709. ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
  710. KVM_NR_MEM_OBJS);
  711. if (ret)
  712. return NULL;
  713. if (KVM_GUEST_KERNEL_MODE(vcpu))
  714. pgdp = vcpu->arch.guest_kernel_mm.pgd;
  715. else
  716. pgdp = vcpu->arch.guest_user_mm.pgd;
  717. return kvm_mips_walk_pgd(pgdp, memcache, addr);
  718. }
  719. void kvm_trap_emul_invalidate_gva(struct kvm_vcpu *vcpu, unsigned long addr,
  720. bool user)
  721. {
  722. pgd_t *pgdp;
  723. pte_t *ptep;
  724. addr &= PAGE_MASK << 1;
  725. pgdp = vcpu->arch.guest_kernel_mm.pgd;
  726. ptep = kvm_mips_walk_pgd(pgdp, NULL, addr);
  727. if (ptep) {
  728. ptep[0] = pfn_pte(0, __pgprot(0));
  729. ptep[1] = pfn_pte(0, __pgprot(0));
  730. }
  731. if (user) {
  732. pgdp = vcpu->arch.guest_user_mm.pgd;
  733. ptep = kvm_mips_walk_pgd(pgdp, NULL, addr);
  734. if (ptep) {
  735. ptep[0] = pfn_pte(0, __pgprot(0));
  736. ptep[1] = pfn_pte(0, __pgprot(0));
  737. }
  738. }
  739. }
  740. /*
  741. * kvm_mips_flush_gva_{pte,pmd,pud,pgd,pt}.
  742. * Flush a range of guest physical address space from the VM's GPA page tables.
  743. */
  744. static bool kvm_mips_flush_gva_pte(pte_t *pte, unsigned long start_gva,
  745. unsigned long end_gva)
  746. {
  747. int i_min = __pte_offset(start_gva);
  748. int i_max = __pte_offset(end_gva);
  749. bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1);
  750. int i;
  751. /*
  752. * There's no freeing to do, so there's no point clearing individual
  753. * entries unless only part of the last level page table needs flushing.
  754. */
  755. if (safe_to_remove)
  756. return true;
  757. for (i = i_min; i <= i_max; ++i) {
  758. if (!pte_present(pte[i]))
  759. continue;
  760. set_pte(pte + i, __pte(0));
  761. }
  762. return false;
  763. }
  764. static bool kvm_mips_flush_gva_pmd(pmd_t *pmd, unsigned long start_gva,
  765. unsigned long end_gva)
  766. {
  767. pte_t *pte;
  768. unsigned long end = ~0ul;
  769. int i_min = __pmd_offset(start_gva);
  770. int i_max = __pmd_offset(end_gva);
  771. bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1);
  772. int i;
  773. for (i = i_min; i <= i_max; ++i, start_gva = 0) {
  774. if (!pmd_present(pmd[i]))
  775. continue;
  776. pte = pte_offset(pmd + i, 0);
  777. if (i == i_max)
  778. end = end_gva;
  779. if (kvm_mips_flush_gva_pte(pte, start_gva, end)) {
  780. pmd_clear(pmd + i);
  781. pte_free_kernel(NULL, pte);
  782. } else {
  783. safe_to_remove = false;
  784. }
  785. }
  786. return safe_to_remove;
  787. }
  788. static bool kvm_mips_flush_gva_pud(pud_t *pud, unsigned long start_gva,
  789. unsigned long end_gva)
  790. {
  791. pmd_t *pmd;
  792. unsigned long end = ~0ul;
  793. int i_min = __pud_offset(start_gva);
  794. int i_max = __pud_offset(end_gva);
  795. bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1);
  796. int i;
  797. for (i = i_min; i <= i_max; ++i, start_gva = 0) {
  798. if (!pud_present(pud[i]))
  799. continue;
  800. pmd = pmd_offset(pud + i, 0);
  801. if (i == i_max)
  802. end = end_gva;
  803. if (kvm_mips_flush_gva_pmd(pmd, start_gva, end)) {
  804. pud_clear(pud + i);
  805. pmd_free(NULL, pmd);
  806. } else {
  807. safe_to_remove = false;
  808. }
  809. }
  810. return safe_to_remove;
  811. }
  812. static bool kvm_mips_flush_gva_pgd(pgd_t *pgd, unsigned long start_gva,
  813. unsigned long end_gva)
  814. {
  815. pud_t *pud;
  816. unsigned long end = ~0ul;
  817. int i_min = pgd_index(start_gva);
  818. int i_max = pgd_index(end_gva);
  819. bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1);
  820. int i;
  821. for (i = i_min; i <= i_max; ++i, start_gva = 0) {
  822. if (!pgd_present(pgd[i]))
  823. continue;
  824. pud = pud_offset(pgd + i, 0);
  825. if (i == i_max)
  826. end = end_gva;
  827. if (kvm_mips_flush_gva_pud(pud, start_gva, end)) {
  828. pgd_clear(pgd + i);
  829. pud_free(NULL, pud);
  830. } else {
  831. safe_to_remove = false;
  832. }
  833. }
  834. return safe_to_remove;
  835. }
  836. void kvm_mips_flush_gva_pt(pgd_t *pgd, enum kvm_mips_flush flags)
  837. {
  838. if (flags & KMF_GPA) {
  839. /* all of guest virtual address space could be affected */
  840. if (flags & KMF_KERN)
  841. /* useg, kseg0, seg2/3 */
  842. kvm_mips_flush_gva_pgd(pgd, 0, 0x7fffffff);
  843. else
  844. /* useg */
  845. kvm_mips_flush_gva_pgd(pgd, 0, 0x3fffffff);
  846. } else {
  847. /* useg */
  848. kvm_mips_flush_gva_pgd(pgd, 0, 0x3fffffff);
  849. /* kseg2/3 */
  850. if (flags & KMF_KERN)
  851. kvm_mips_flush_gva_pgd(pgd, 0x60000000, 0x7fffffff);
  852. }
  853. }
  854. static pte_t kvm_mips_gpa_pte_to_gva_unmapped(pte_t pte)
  855. {
  856. /*
  857. * Don't leak writeable but clean entries from GPA page tables. We don't
  858. * want the normal Linux tlbmod handler to handle dirtying when KVM
  859. * accesses guest memory.
  860. */
  861. if (!pte_dirty(pte))
  862. pte = pte_wrprotect(pte);
  863. return pte;
  864. }
  865. static pte_t kvm_mips_gpa_pte_to_gva_mapped(pte_t pte, long entrylo)
  866. {
  867. /* Guest EntryLo overrides host EntryLo */
  868. if (!(entrylo & ENTRYLO_D))
  869. pte = pte_mkclean(pte);
  870. return kvm_mips_gpa_pte_to_gva_unmapped(pte);
  871. }
  872. /* XXXKYMA: Must be called with interrupts disabled */
  873. int kvm_mips_handle_kseg0_tlb_fault(unsigned long badvaddr,
  874. struct kvm_vcpu *vcpu,
  875. bool write_fault)
  876. {
  877. unsigned long gpa;
  878. pte_t pte_gpa[2], *ptep_gva;
  879. int idx;
  880. if (KVM_GUEST_KSEGX(badvaddr) != KVM_GUEST_KSEG0) {
  881. kvm_err("%s: Invalid BadVaddr: %#lx\n", __func__, badvaddr);
  882. kvm_mips_dump_host_tlbs();
  883. return -1;
  884. }
  885. /* Get the GPA page table entry */
  886. gpa = KVM_GUEST_CPHYSADDR(badvaddr);
  887. idx = (badvaddr >> PAGE_SHIFT) & 1;
  888. if (kvm_mips_map_page(vcpu, gpa, write_fault, &pte_gpa[idx],
  889. &pte_gpa[!idx]) < 0)
  890. return -1;
  891. /* Get the GVA page table entry */
  892. ptep_gva = kvm_trap_emul_pte_for_gva(vcpu, badvaddr & ~PAGE_SIZE);
  893. if (!ptep_gva) {
  894. kvm_err("No ptep for gva %lx\n", badvaddr);
  895. return -1;
  896. }
  897. /* Copy a pair of entries from GPA page table to GVA page table */
  898. ptep_gva[0] = kvm_mips_gpa_pte_to_gva_unmapped(pte_gpa[0]);
  899. ptep_gva[1] = kvm_mips_gpa_pte_to_gva_unmapped(pte_gpa[1]);
  900. /* Invalidate this entry in the TLB, guest kernel ASID only */
  901. kvm_mips_host_tlb_inv(vcpu, badvaddr, false, true);
  902. return 0;
  903. }
  904. int kvm_mips_handle_mapped_seg_tlb_fault(struct kvm_vcpu *vcpu,
  905. struct kvm_mips_tlb *tlb,
  906. unsigned long gva,
  907. bool write_fault)
  908. {
  909. struct kvm *kvm = vcpu->kvm;
  910. long tlb_lo[2];
  911. pte_t pte_gpa[2], *ptep_buddy, *ptep_gva;
  912. unsigned int idx = TLB_LO_IDX(*tlb, gva);
  913. bool kernel = KVM_GUEST_KERNEL_MODE(vcpu);
  914. tlb_lo[0] = tlb->tlb_lo[0];
  915. tlb_lo[1] = tlb->tlb_lo[1];
  916. /*
  917. * The commpage address must not be mapped to anything else if the guest
  918. * TLB contains entries nearby, or commpage accesses will break.
  919. */
  920. if (!((gva ^ KVM_GUEST_COMMPAGE_ADDR) & VPN2_MASK & (PAGE_MASK << 1)))
  921. tlb_lo[TLB_LO_IDX(*tlb, KVM_GUEST_COMMPAGE_ADDR)] = 0;
  922. /* Get the GPA page table entry */
  923. if (kvm_mips_map_page(vcpu, mips3_tlbpfn_to_paddr(tlb_lo[idx]),
  924. write_fault, &pte_gpa[idx], NULL) < 0)
  925. return -1;
  926. /* And its GVA buddy's GPA page table entry if it also exists */
  927. pte_gpa[!idx] = pfn_pte(0, __pgprot(0));
  928. if (tlb_lo[!idx] & ENTRYLO_V) {
  929. spin_lock(&kvm->mmu_lock);
  930. ptep_buddy = kvm_mips_pte_for_gpa(kvm, NULL,
  931. mips3_tlbpfn_to_paddr(tlb_lo[!idx]));
  932. if (ptep_buddy)
  933. pte_gpa[!idx] = *ptep_buddy;
  934. spin_unlock(&kvm->mmu_lock);
  935. }
  936. /* Get the GVA page table entry pair */
  937. ptep_gva = kvm_trap_emul_pte_for_gva(vcpu, gva & ~PAGE_SIZE);
  938. if (!ptep_gva) {
  939. kvm_err("No ptep for gva %lx\n", gva);
  940. return -1;
  941. }
  942. /* Copy a pair of entries from GPA page table to GVA page table */
  943. ptep_gva[0] = kvm_mips_gpa_pte_to_gva_mapped(pte_gpa[0], tlb_lo[0]);
  944. ptep_gva[1] = kvm_mips_gpa_pte_to_gva_mapped(pte_gpa[1], tlb_lo[1]);
  945. /* Invalidate this entry in the TLB, current guest mode ASID only */
  946. kvm_mips_host_tlb_inv(vcpu, gva, !kernel, kernel);
  947. kvm_debug("@ %#lx tlb_lo0: 0x%08lx tlb_lo1: 0x%08lx\n", vcpu->arch.pc,
  948. tlb->tlb_lo[0], tlb->tlb_lo[1]);
  949. return 0;
  950. }
  951. int kvm_mips_handle_commpage_tlb_fault(unsigned long badvaddr,
  952. struct kvm_vcpu *vcpu)
  953. {
  954. kvm_pfn_t pfn;
  955. pte_t *ptep;
  956. ptep = kvm_trap_emul_pte_for_gva(vcpu, badvaddr);
  957. if (!ptep) {
  958. kvm_err("No ptep for commpage %lx\n", badvaddr);
  959. return -1;
  960. }
  961. pfn = PFN_DOWN(virt_to_phys(vcpu->arch.kseg0_commpage));
  962. /* Also set valid and dirty, so refill handler doesn't have to */
  963. *ptep = pte_mkyoung(pte_mkdirty(pfn_pte(pfn, PAGE_SHARED)));
  964. /* Invalidate this entry in the TLB, guest kernel ASID only */
  965. kvm_mips_host_tlb_inv(vcpu, badvaddr, false, true);
  966. return 0;
  967. }
  968. /**
  969. * kvm_mips_migrate_count() - Migrate timer.
  970. * @vcpu: Virtual CPU.
  971. *
  972. * Migrate CP0_Count hrtimer to the current CPU by cancelling and restarting it
  973. * if it was running prior to being cancelled.
  974. *
  975. * Must be called when the VCPU is migrated to a different CPU to ensure that
  976. * timer expiry during guest execution interrupts the guest and causes the
  977. * interrupt to be delivered in a timely manner.
  978. */
  979. static void kvm_mips_migrate_count(struct kvm_vcpu *vcpu)
  980. {
  981. if (hrtimer_cancel(&vcpu->arch.comparecount_timer))
  982. hrtimer_restart(&vcpu->arch.comparecount_timer);
  983. }
  984. /* Restore ASID once we are scheduled back after preemption */
  985. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  986. {
  987. unsigned long flags;
  988. kvm_debug("%s: vcpu %p, cpu: %d\n", __func__, vcpu, cpu);
  989. local_irq_save(flags);
  990. vcpu->cpu = cpu;
  991. if (vcpu->arch.last_sched_cpu != cpu) {
  992. kvm_debug("[%d->%d]KVM VCPU[%d] switch\n",
  993. vcpu->arch.last_sched_cpu, cpu, vcpu->vcpu_id);
  994. /*
  995. * Migrate the timer interrupt to the current CPU so that it
  996. * always interrupts the guest and synchronously triggers a
  997. * guest timer interrupt.
  998. */
  999. kvm_mips_migrate_count(vcpu);
  1000. }
  1001. /* restore guest state to registers */
  1002. kvm_mips_callbacks->vcpu_load(vcpu, cpu);
  1003. local_irq_restore(flags);
  1004. }
  1005. /* ASID can change if another task is scheduled during preemption */
  1006. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1007. {
  1008. unsigned long flags;
  1009. int cpu;
  1010. local_irq_save(flags);
  1011. cpu = smp_processor_id();
  1012. vcpu->arch.last_sched_cpu = cpu;
  1013. vcpu->cpu = -1;
  1014. /* save guest state in registers */
  1015. kvm_mips_callbacks->vcpu_put(vcpu, cpu);
  1016. local_irq_restore(flags);
  1017. }
  1018. /**
  1019. * kvm_trap_emul_gva_fault() - Safely attempt to handle a GVA access fault.
  1020. * @vcpu: Virtual CPU.
  1021. * @gva: Guest virtual address to be accessed.
  1022. * @write: True if write attempted (must be dirtied and made writable).
  1023. *
  1024. * Safely attempt to handle a GVA fault, mapping GVA pages if necessary, and
  1025. * dirtying the page if @write so that guest instructions can be modified.
  1026. *
  1027. * Returns: KVM_MIPS_MAPPED on success.
  1028. * KVM_MIPS_GVA if bad guest virtual address.
  1029. * KVM_MIPS_GPA if bad guest physical address.
  1030. * KVM_MIPS_TLB if guest TLB not present.
  1031. * KVM_MIPS_TLBINV if guest TLB present but not valid.
  1032. * KVM_MIPS_TLBMOD if guest TLB read only.
  1033. */
  1034. enum kvm_mips_fault_result kvm_trap_emul_gva_fault(struct kvm_vcpu *vcpu,
  1035. unsigned long gva,
  1036. bool write)
  1037. {
  1038. struct mips_coproc *cop0 = vcpu->arch.cop0;
  1039. struct kvm_mips_tlb *tlb;
  1040. int index;
  1041. if (KVM_GUEST_KSEGX(gva) == KVM_GUEST_KSEG0) {
  1042. if (kvm_mips_handle_kseg0_tlb_fault(gva, vcpu, write) < 0)
  1043. return KVM_MIPS_GPA;
  1044. } else if ((KVM_GUEST_KSEGX(gva) < KVM_GUEST_KSEG0) ||
  1045. KVM_GUEST_KSEGX(gva) == KVM_GUEST_KSEG23) {
  1046. /* Address should be in the guest TLB */
  1047. index = kvm_mips_guest_tlb_lookup(vcpu, (gva & VPN2_MASK) |
  1048. (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID));
  1049. if (index < 0)
  1050. return KVM_MIPS_TLB;
  1051. tlb = &vcpu->arch.guest_tlb[index];
  1052. /* Entry should be valid, and dirty for writes */
  1053. if (!TLB_IS_VALID(*tlb, gva))
  1054. return KVM_MIPS_TLBINV;
  1055. if (write && !TLB_IS_DIRTY(*tlb, gva))
  1056. return KVM_MIPS_TLBMOD;
  1057. if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, gva, write))
  1058. return KVM_MIPS_GPA;
  1059. } else {
  1060. return KVM_MIPS_GVA;
  1061. }
  1062. return KVM_MIPS_MAPPED;
  1063. }
  1064. int kvm_get_inst(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
  1065. {
  1066. int err;
  1067. retry:
  1068. kvm_trap_emul_gva_lockless_begin(vcpu);
  1069. err = get_user(*out, opc);
  1070. kvm_trap_emul_gva_lockless_end(vcpu);
  1071. if (unlikely(err)) {
  1072. /*
  1073. * Try to handle the fault, maybe we just raced with a GVA
  1074. * invalidation.
  1075. */
  1076. err = kvm_trap_emul_gva_fault(vcpu, (unsigned long)opc,
  1077. false);
  1078. if (unlikely(err)) {
  1079. kvm_err("%s: illegal address: %p\n",
  1080. __func__, opc);
  1081. return -EFAULT;
  1082. }
  1083. /* Hopefully it'll work now */
  1084. goto retry;
  1085. }
  1086. return 0;
  1087. }