nand-controller.c 53 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196
  1. /*
  2. * Copyright 2017 ATMEL
  3. * Copyright 2017 Free Electrons
  4. *
  5. * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
  6. *
  7. * Derived from the atmel_nand.c driver which contained the following
  8. * copyrights:
  9. *
  10. * Copyright 2003 Rick Bronson
  11. *
  12. * Derived from drivers/mtd/nand/autcpu12.c
  13. * Copyright 2001 Thomas Gleixner (gleixner@autronix.de)
  14. *
  15. * Derived from drivers/mtd/spia.c
  16. * Copyright 2000 Steven J. Hill (sjhill@cotw.com)
  17. *
  18. *
  19. * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
  20. * Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright 2007
  21. *
  22. * Derived from Das U-Boot source code
  23. * (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
  24. * Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
  25. *
  26. * Add Programmable Multibit ECC support for various AT91 SoC
  27. * Copyright 2012 ATMEL, Hong Xu
  28. *
  29. * Add Nand Flash Controller support for SAMA5 SoC
  30. * Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
  31. *
  32. * This program is free software; you can redistribute it and/or modify
  33. * it under the terms of the GNU General Public License version 2 as
  34. * published by the Free Software Foundation.
  35. *
  36. * A few words about the naming convention in this file. This convention
  37. * applies to structure and function names.
  38. *
  39. * Prefixes:
  40. *
  41. * - atmel_nand_: all generic structures/functions
  42. * - atmel_smc_nand_: all structures/functions specific to the SMC interface
  43. * (at91sam9 and avr32 SoCs)
  44. * - atmel_hsmc_nand_: all structures/functions specific to the HSMC interface
  45. * (sama5 SoCs and later)
  46. * - atmel_nfc_: all structures/functions used to manipulate the NFC sub-block
  47. * that is available in the HSMC block
  48. * - <soc>_nand_: all SoC specific structures/functions
  49. */
  50. #include <linux/clk.h>
  51. #include <linux/dma-mapping.h>
  52. #include <linux/dmaengine.h>
  53. #include <linux/genalloc.h>
  54. #include <linux/gpio.h>
  55. #include <linux/gpio/consumer.h>
  56. #include <linux/interrupt.h>
  57. #include <linux/mfd/syscon.h>
  58. #include <linux/mfd/syscon/atmel-matrix.h>
  59. #include <linux/module.h>
  60. #include <linux/mtd/nand.h>
  61. #include <linux/of_address.h>
  62. #include <linux/of_irq.h>
  63. #include <linux/of_platform.h>
  64. #include <linux/iopoll.h>
  65. #include <linux/platform_device.h>
  66. #include <linux/platform_data/atmel.h>
  67. #include <linux/regmap.h>
  68. #include "pmecc.h"
  69. #define ATMEL_HSMC_NFC_CFG 0x0
  70. #define ATMEL_HSMC_NFC_CFG_SPARESIZE(x) (((x) / 4) << 24)
  71. #define ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK GENMASK(30, 24)
  72. #define ATMEL_HSMC_NFC_CFG_DTO(cyc, mul) (((cyc) << 16) | ((mul) << 20))
  73. #define ATMEL_HSMC_NFC_CFG_DTO_MAX GENMASK(22, 16)
  74. #define ATMEL_HSMC_NFC_CFG_RBEDGE BIT(13)
  75. #define ATMEL_HSMC_NFC_CFG_FALLING_EDGE BIT(12)
  76. #define ATMEL_HSMC_NFC_CFG_RSPARE BIT(9)
  77. #define ATMEL_HSMC_NFC_CFG_WSPARE BIT(8)
  78. #define ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK GENMASK(2, 0)
  79. #define ATMEL_HSMC_NFC_CFG_PAGESIZE(x) (fls((x) / 512) - 1)
  80. #define ATMEL_HSMC_NFC_CTRL 0x4
  81. #define ATMEL_HSMC_NFC_CTRL_EN BIT(0)
  82. #define ATMEL_HSMC_NFC_CTRL_DIS BIT(1)
  83. #define ATMEL_HSMC_NFC_SR 0x8
  84. #define ATMEL_HSMC_NFC_IER 0xc
  85. #define ATMEL_HSMC_NFC_IDR 0x10
  86. #define ATMEL_HSMC_NFC_IMR 0x14
  87. #define ATMEL_HSMC_NFC_SR_ENABLED BIT(1)
  88. #define ATMEL_HSMC_NFC_SR_RB_RISE BIT(4)
  89. #define ATMEL_HSMC_NFC_SR_RB_FALL BIT(5)
  90. #define ATMEL_HSMC_NFC_SR_BUSY BIT(8)
  91. #define ATMEL_HSMC_NFC_SR_WR BIT(11)
  92. #define ATMEL_HSMC_NFC_SR_CSID GENMASK(14, 12)
  93. #define ATMEL_HSMC_NFC_SR_XFRDONE BIT(16)
  94. #define ATMEL_HSMC_NFC_SR_CMDDONE BIT(17)
  95. #define ATMEL_HSMC_NFC_SR_DTOE BIT(20)
  96. #define ATMEL_HSMC_NFC_SR_UNDEF BIT(21)
  97. #define ATMEL_HSMC_NFC_SR_AWB BIT(22)
  98. #define ATMEL_HSMC_NFC_SR_NFCASE BIT(23)
  99. #define ATMEL_HSMC_NFC_SR_ERRORS (ATMEL_HSMC_NFC_SR_DTOE | \
  100. ATMEL_HSMC_NFC_SR_UNDEF | \
  101. ATMEL_HSMC_NFC_SR_AWB | \
  102. ATMEL_HSMC_NFC_SR_NFCASE)
  103. #define ATMEL_HSMC_NFC_SR_RBEDGE(x) BIT((x) + 24)
  104. #define ATMEL_HSMC_NFC_ADDR 0x18
  105. #define ATMEL_HSMC_NFC_BANK 0x1c
  106. #define ATMEL_NFC_MAX_RB_ID 7
  107. #define ATMEL_NFC_SRAM_SIZE 0x2400
  108. #define ATMEL_NFC_CMD(pos, cmd) ((cmd) << (((pos) * 8) + 2))
  109. #define ATMEL_NFC_VCMD2 BIT(18)
  110. #define ATMEL_NFC_ACYCLE(naddrs) ((naddrs) << 19)
  111. #define ATMEL_NFC_CSID(cs) ((cs) << 22)
  112. #define ATMEL_NFC_DATAEN BIT(25)
  113. #define ATMEL_NFC_NFCWR BIT(26)
  114. #define ATMEL_NFC_MAX_ADDR_CYCLES 5
  115. #define ATMEL_NAND_ALE_OFFSET BIT(21)
  116. #define ATMEL_NAND_CLE_OFFSET BIT(22)
  117. #define DEFAULT_TIMEOUT_MS 1000
  118. #define MIN_DMA_LEN 128
  119. enum atmel_nand_rb_type {
  120. ATMEL_NAND_NO_RB,
  121. ATMEL_NAND_NATIVE_RB,
  122. ATMEL_NAND_GPIO_RB,
  123. };
  124. struct atmel_nand_rb {
  125. enum atmel_nand_rb_type type;
  126. union {
  127. struct gpio_desc *gpio;
  128. int id;
  129. };
  130. };
  131. struct atmel_nand_cs {
  132. int id;
  133. struct atmel_nand_rb rb;
  134. struct gpio_desc *csgpio;
  135. struct {
  136. void __iomem *virt;
  137. dma_addr_t dma;
  138. } io;
  139. };
  140. struct atmel_nand {
  141. struct list_head node;
  142. struct device *dev;
  143. struct nand_chip base;
  144. struct atmel_nand_cs *activecs;
  145. struct atmel_pmecc_user *pmecc;
  146. struct gpio_desc *cdgpio;
  147. int numcs;
  148. struct atmel_nand_cs cs[];
  149. };
  150. static inline struct atmel_nand *to_atmel_nand(struct nand_chip *chip)
  151. {
  152. return container_of(chip, struct atmel_nand, base);
  153. }
  154. enum atmel_nfc_data_xfer {
  155. ATMEL_NFC_NO_DATA,
  156. ATMEL_NFC_READ_DATA,
  157. ATMEL_NFC_WRITE_DATA,
  158. };
  159. struct atmel_nfc_op {
  160. u8 cs;
  161. u8 ncmds;
  162. u8 cmds[2];
  163. u8 naddrs;
  164. u8 addrs[5];
  165. enum atmel_nfc_data_xfer data;
  166. u32 wait;
  167. u32 errors;
  168. };
  169. struct atmel_nand_controller;
  170. struct atmel_nand_controller_caps;
  171. struct atmel_nand_controller_ops {
  172. int (*probe)(struct platform_device *pdev,
  173. const struct atmel_nand_controller_caps *caps);
  174. int (*remove)(struct atmel_nand_controller *nc);
  175. void (*nand_init)(struct atmel_nand_controller *nc,
  176. struct atmel_nand *nand);
  177. int (*ecc_init)(struct atmel_nand *nand);
  178. };
  179. struct atmel_nand_controller_caps {
  180. bool has_dma;
  181. bool legacy_of_bindings;
  182. u32 ale_offs;
  183. u32 cle_offs;
  184. const struct atmel_nand_controller_ops *ops;
  185. };
  186. struct atmel_nand_controller {
  187. struct nand_hw_control base;
  188. const struct atmel_nand_controller_caps *caps;
  189. struct device *dev;
  190. struct regmap *smc;
  191. struct dma_chan *dmac;
  192. struct atmel_pmecc *pmecc;
  193. struct list_head chips;
  194. struct clk *mck;
  195. };
  196. static inline struct atmel_nand_controller *
  197. to_nand_controller(struct nand_hw_control *ctl)
  198. {
  199. return container_of(ctl, struct atmel_nand_controller, base);
  200. }
  201. struct atmel_smc_nand_controller {
  202. struct atmel_nand_controller base;
  203. struct regmap *matrix;
  204. unsigned int ebi_csa_offs;
  205. };
  206. static inline struct atmel_smc_nand_controller *
  207. to_smc_nand_controller(struct nand_hw_control *ctl)
  208. {
  209. return container_of(to_nand_controller(ctl),
  210. struct atmel_smc_nand_controller, base);
  211. }
  212. struct atmel_hsmc_nand_controller {
  213. struct atmel_nand_controller base;
  214. struct {
  215. struct gen_pool *pool;
  216. void __iomem *virt;
  217. dma_addr_t dma;
  218. } sram;
  219. struct regmap *io;
  220. struct atmel_nfc_op op;
  221. struct completion complete;
  222. int irq;
  223. /* Only used when instantiating from legacy DT bindings. */
  224. struct clk *clk;
  225. };
  226. static inline struct atmel_hsmc_nand_controller *
  227. to_hsmc_nand_controller(struct nand_hw_control *ctl)
  228. {
  229. return container_of(to_nand_controller(ctl),
  230. struct atmel_hsmc_nand_controller, base);
  231. }
  232. static bool atmel_nfc_op_done(struct atmel_nfc_op *op, u32 status)
  233. {
  234. op->errors |= status & ATMEL_HSMC_NFC_SR_ERRORS;
  235. op->wait ^= status & op->wait;
  236. return !op->wait || op->errors;
  237. }
  238. static irqreturn_t atmel_nfc_interrupt(int irq, void *data)
  239. {
  240. struct atmel_hsmc_nand_controller *nc = data;
  241. u32 sr, rcvd;
  242. bool done;
  243. regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &sr);
  244. rcvd = sr & (nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS);
  245. done = atmel_nfc_op_done(&nc->op, sr);
  246. if (rcvd)
  247. regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, rcvd);
  248. if (done)
  249. complete(&nc->complete);
  250. return rcvd ? IRQ_HANDLED : IRQ_NONE;
  251. }
  252. static int atmel_nfc_wait(struct atmel_hsmc_nand_controller *nc, bool poll,
  253. unsigned int timeout_ms)
  254. {
  255. int ret;
  256. if (!timeout_ms)
  257. timeout_ms = DEFAULT_TIMEOUT_MS;
  258. if (poll) {
  259. u32 status;
  260. ret = regmap_read_poll_timeout(nc->base.smc,
  261. ATMEL_HSMC_NFC_SR, status,
  262. atmel_nfc_op_done(&nc->op,
  263. status),
  264. 0, timeout_ms * 1000);
  265. } else {
  266. init_completion(&nc->complete);
  267. regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IER,
  268. nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS);
  269. ret = wait_for_completion_timeout(&nc->complete,
  270. msecs_to_jiffies(timeout_ms));
  271. if (!ret)
  272. ret = -ETIMEDOUT;
  273. else
  274. ret = 0;
  275. regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
  276. }
  277. if (nc->op.errors & ATMEL_HSMC_NFC_SR_DTOE) {
  278. dev_err(nc->base.dev, "Waiting NAND R/B Timeout\n");
  279. ret = -ETIMEDOUT;
  280. }
  281. if (nc->op.errors & ATMEL_HSMC_NFC_SR_UNDEF) {
  282. dev_err(nc->base.dev, "Access to an undefined area\n");
  283. ret = -EIO;
  284. }
  285. if (nc->op.errors & ATMEL_HSMC_NFC_SR_AWB) {
  286. dev_err(nc->base.dev, "Access while busy\n");
  287. ret = -EIO;
  288. }
  289. if (nc->op.errors & ATMEL_HSMC_NFC_SR_NFCASE) {
  290. dev_err(nc->base.dev, "Wrong access size\n");
  291. ret = -EIO;
  292. }
  293. return ret;
  294. }
  295. static void atmel_nand_dma_transfer_finished(void *data)
  296. {
  297. struct completion *finished = data;
  298. complete(finished);
  299. }
  300. static int atmel_nand_dma_transfer(struct atmel_nand_controller *nc,
  301. void *buf, dma_addr_t dev_dma, size_t len,
  302. enum dma_data_direction dir)
  303. {
  304. DECLARE_COMPLETION_ONSTACK(finished);
  305. dma_addr_t src_dma, dst_dma, buf_dma;
  306. struct dma_async_tx_descriptor *tx;
  307. dma_cookie_t cookie;
  308. buf_dma = dma_map_single(nc->dev, buf, len, dir);
  309. if (dma_mapping_error(nc->dev, dev_dma)) {
  310. dev_err(nc->dev,
  311. "Failed to prepare a buffer for DMA access\n");
  312. goto err;
  313. }
  314. if (dir == DMA_FROM_DEVICE) {
  315. src_dma = dev_dma;
  316. dst_dma = buf_dma;
  317. } else {
  318. src_dma = buf_dma;
  319. dst_dma = dev_dma;
  320. }
  321. tx = dmaengine_prep_dma_memcpy(nc->dmac, dst_dma, src_dma, len,
  322. DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
  323. if (!tx) {
  324. dev_err(nc->dev, "Failed to prepare DMA memcpy\n");
  325. goto err_unmap;
  326. }
  327. tx->callback = atmel_nand_dma_transfer_finished;
  328. tx->callback_param = &finished;
  329. cookie = dmaengine_submit(tx);
  330. if (dma_submit_error(cookie)) {
  331. dev_err(nc->dev, "Failed to do DMA tx_submit\n");
  332. goto err_unmap;
  333. }
  334. dma_async_issue_pending(nc->dmac);
  335. wait_for_completion(&finished);
  336. return 0;
  337. err_unmap:
  338. dma_unmap_single(nc->dev, buf_dma, len, dir);
  339. err:
  340. dev_dbg(nc->dev, "Fall back to CPU I/O\n");
  341. return -EIO;
  342. }
  343. static u8 atmel_nand_read_byte(struct mtd_info *mtd)
  344. {
  345. struct nand_chip *chip = mtd_to_nand(mtd);
  346. struct atmel_nand *nand = to_atmel_nand(chip);
  347. return ioread8(nand->activecs->io.virt);
  348. }
  349. static u16 atmel_nand_read_word(struct mtd_info *mtd)
  350. {
  351. struct nand_chip *chip = mtd_to_nand(mtd);
  352. struct atmel_nand *nand = to_atmel_nand(chip);
  353. return ioread16(nand->activecs->io.virt);
  354. }
  355. static void atmel_nand_write_byte(struct mtd_info *mtd, u8 byte)
  356. {
  357. struct nand_chip *chip = mtd_to_nand(mtd);
  358. struct atmel_nand *nand = to_atmel_nand(chip);
  359. if (chip->options & NAND_BUSWIDTH_16)
  360. iowrite16(byte | (byte << 8), nand->activecs->io.virt);
  361. else
  362. iowrite8(byte, nand->activecs->io.virt);
  363. }
  364. static void atmel_nand_read_buf(struct mtd_info *mtd, u8 *buf, int len)
  365. {
  366. struct nand_chip *chip = mtd_to_nand(mtd);
  367. struct atmel_nand *nand = to_atmel_nand(chip);
  368. struct atmel_nand_controller *nc;
  369. nc = to_nand_controller(chip->controller);
  370. /*
  371. * If the controller supports DMA, the buffer address is DMA-able and
  372. * len is long enough to make DMA transfers profitable, let's trigger
  373. * a DMA transfer. If it fails, fallback to PIO mode.
  374. */
  375. if (nc->dmac && virt_addr_valid(buf) &&
  376. len >= MIN_DMA_LEN &&
  377. !atmel_nand_dma_transfer(nc, buf, nand->activecs->io.dma, len,
  378. DMA_FROM_DEVICE))
  379. return;
  380. if (chip->options & NAND_BUSWIDTH_16)
  381. ioread16_rep(nand->activecs->io.virt, buf, len / 2);
  382. else
  383. ioread8_rep(nand->activecs->io.virt, buf, len);
  384. }
  385. static void atmel_nand_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
  386. {
  387. struct nand_chip *chip = mtd_to_nand(mtd);
  388. struct atmel_nand *nand = to_atmel_nand(chip);
  389. struct atmel_nand_controller *nc;
  390. nc = to_nand_controller(chip->controller);
  391. /*
  392. * If the controller supports DMA, the buffer address is DMA-able and
  393. * len is long enough to make DMA transfers profitable, let's trigger
  394. * a DMA transfer. If it fails, fallback to PIO mode.
  395. */
  396. if (nc->dmac && virt_addr_valid(buf) &&
  397. len >= MIN_DMA_LEN &&
  398. !atmel_nand_dma_transfer(nc, (void *)buf, nand->activecs->io.dma,
  399. len, DMA_TO_DEVICE))
  400. return;
  401. if (chip->options & NAND_BUSWIDTH_16)
  402. iowrite16_rep(nand->activecs->io.virt, buf, len / 2);
  403. else
  404. iowrite8_rep(nand->activecs->io.virt, buf, len);
  405. }
  406. static int atmel_nand_dev_ready(struct mtd_info *mtd)
  407. {
  408. struct nand_chip *chip = mtd_to_nand(mtd);
  409. struct atmel_nand *nand = to_atmel_nand(chip);
  410. return gpiod_get_value(nand->activecs->rb.gpio);
  411. }
  412. static void atmel_nand_select_chip(struct mtd_info *mtd, int cs)
  413. {
  414. struct nand_chip *chip = mtd_to_nand(mtd);
  415. struct atmel_nand *nand = to_atmel_nand(chip);
  416. if (cs < 0 || cs >= nand->numcs) {
  417. nand->activecs = NULL;
  418. chip->dev_ready = NULL;
  419. return;
  420. }
  421. nand->activecs = &nand->cs[cs];
  422. if (nand->activecs->rb.type == ATMEL_NAND_GPIO_RB)
  423. chip->dev_ready = atmel_nand_dev_ready;
  424. }
  425. static int atmel_hsmc_nand_dev_ready(struct mtd_info *mtd)
  426. {
  427. struct nand_chip *chip = mtd_to_nand(mtd);
  428. struct atmel_nand *nand = to_atmel_nand(chip);
  429. struct atmel_hsmc_nand_controller *nc;
  430. u32 status;
  431. nc = to_hsmc_nand_controller(chip->controller);
  432. regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &status);
  433. return status & ATMEL_HSMC_NFC_SR_RBEDGE(nand->activecs->rb.id);
  434. }
  435. static void atmel_hsmc_nand_select_chip(struct mtd_info *mtd, int cs)
  436. {
  437. struct nand_chip *chip = mtd_to_nand(mtd);
  438. struct atmel_nand *nand = to_atmel_nand(chip);
  439. struct atmel_hsmc_nand_controller *nc;
  440. nc = to_hsmc_nand_controller(chip->controller);
  441. atmel_nand_select_chip(mtd, cs);
  442. if (!nand->activecs) {
  443. regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL,
  444. ATMEL_HSMC_NFC_CTRL_DIS);
  445. return;
  446. }
  447. if (nand->activecs->rb.type == ATMEL_NAND_NATIVE_RB)
  448. chip->dev_ready = atmel_hsmc_nand_dev_ready;
  449. regmap_update_bits(nc->base.smc, ATMEL_HSMC_NFC_CFG,
  450. ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK |
  451. ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK |
  452. ATMEL_HSMC_NFC_CFG_RSPARE |
  453. ATMEL_HSMC_NFC_CFG_WSPARE,
  454. ATMEL_HSMC_NFC_CFG_PAGESIZE(mtd->writesize) |
  455. ATMEL_HSMC_NFC_CFG_SPARESIZE(mtd->oobsize) |
  456. ATMEL_HSMC_NFC_CFG_RSPARE);
  457. regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL,
  458. ATMEL_HSMC_NFC_CTRL_EN);
  459. }
  460. static int atmel_nfc_exec_op(struct atmel_hsmc_nand_controller *nc, bool poll)
  461. {
  462. u8 *addrs = nc->op.addrs;
  463. unsigned int op = 0;
  464. u32 addr, val;
  465. int i, ret;
  466. nc->op.wait = ATMEL_HSMC_NFC_SR_CMDDONE;
  467. for (i = 0; i < nc->op.ncmds; i++)
  468. op |= ATMEL_NFC_CMD(i, nc->op.cmds[i]);
  469. if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES)
  470. regmap_write(nc->base.smc, ATMEL_HSMC_NFC_ADDR, *addrs++);
  471. op |= ATMEL_NFC_CSID(nc->op.cs) |
  472. ATMEL_NFC_ACYCLE(nc->op.naddrs);
  473. if (nc->op.ncmds > 1)
  474. op |= ATMEL_NFC_VCMD2;
  475. addr = addrs[0] | (addrs[1] << 8) | (addrs[2] << 16) |
  476. (addrs[3] << 24);
  477. if (nc->op.data != ATMEL_NFC_NO_DATA) {
  478. op |= ATMEL_NFC_DATAEN;
  479. nc->op.wait |= ATMEL_HSMC_NFC_SR_XFRDONE;
  480. if (nc->op.data == ATMEL_NFC_WRITE_DATA)
  481. op |= ATMEL_NFC_NFCWR;
  482. }
  483. /* Clear all flags. */
  484. regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &val);
  485. /* Send the command. */
  486. regmap_write(nc->io, op, addr);
  487. ret = atmel_nfc_wait(nc, poll, 0);
  488. if (ret)
  489. dev_err(nc->base.dev,
  490. "Failed to send NAND command (err = %d)!",
  491. ret);
  492. /* Reset the op state. */
  493. memset(&nc->op, 0, sizeof(nc->op));
  494. return ret;
  495. }
  496. static void atmel_hsmc_nand_cmd_ctrl(struct mtd_info *mtd, int dat,
  497. unsigned int ctrl)
  498. {
  499. struct nand_chip *chip = mtd_to_nand(mtd);
  500. struct atmel_nand *nand = to_atmel_nand(chip);
  501. struct atmel_hsmc_nand_controller *nc;
  502. nc = to_hsmc_nand_controller(chip->controller);
  503. if (ctrl & NAND_ALE) {
  504. if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES)
  505. return;
  506. nc->op.addrs[nc->op.naddrs++] = dat;
  507. } else if (ctrl & NAND_CLE) {
  508. if (nc->op.ncmds > 1)
  509. return;
  510. nc->op.cmds[nc->op.ncmds++] = dat;
  511. }
  512. if (dat == NAND_CMD_NONE) {
  513. nc->op.cs = nand->activecs->id;
  514. atmel_nfc_exec_op(nc, true);
  515. }
  516. }
  517. static void atmel_nand_cmd_ctrl(struct mtd_info *mtd, int cmd,
  518. unsigned int ctrl)
  519. {
  520. struct nand_chip *chip = mtd_to_nand(mtd);
  521. struct atmel_nand *nand = to_atmel_nand(chip);
  522. struct atmel_nand_controller *nc;
  523. nc = to_nand_controller(chip->controller);
  524. if ((ctrl & NAND_CTRL_CHANGE) && nand->activecs->csgpio) {
  525. if (ctrl & NAND_NCE)
  526. gpiod_set_value(nand->activecs->csgpio, 0);
  527. else
  528. gpiod_set_value(nand->activecs->csgpio, 1);
  529. }
  530. if (ctrl & NAND_ALE)
  531. writeb(cmd, nand->activecs->io.virt + nc->caps->ale_offs);
  532. else if (ctrl & NAND_CLE)
  533. writeb(cmd, nand->activecs->io.virt + nc->caps->cle_offs);
  534. }
  535. static void atmel_nfc_copy_to_sram(struct nand_chip *chip, const u8 *buf,
  536. bool oob_required)
  537. {
  538. struct mtd_info *mtd = nand_to_mtd(chip);
  539. struct atmel_hsmc_nand_controller *nc;
  540. int ret = -EIO;
  541. nc = to_hsmc_nand_controller(chip->controller);
  542. if (nc->base.dmac)
  543. ret = atmel_nand_dma_transfer(&nc->base, (void *)buf,
  544. nc->sram.dma, mtd->writesize,
  545. DMA_TO_DEVICE);
  546. /* Falling back to CPU copy. */
  547. if (ret)
  548. memcpy_toio(nc->sram.virt, buf, mtd->writesize);
  549. if (oob_required)
  550. memcpy_toio(nc->sram.virt + mtd->writesize, chip->oob_poi,
  551. mtd->oobsize);
  552. }
  553. static void atmel_nfc_copy_from_sram(struct nand_chip *chip, u8 *buf,
  554. bool oob_required)
  555. {
  556. struct mtd_info *mtd = nand_to_mtd(chip);
  557. struct atmel_hsmc_nand_controller *nc;
  558. int ret = -EIO;
  559. nc = to_hsmc_nand_controller(chip->controller);
  560. if (nc->base.dmac)
  561. ret = atmel_nand_dma_transfer(&nc->base, buf, nc->sram.dma,
  562. mtd->writesize, DMA_FROM_DEVICE);
  563. /* Falling back to CPU copy. */
  564. if (ret)
  565. memcpy_fromio(buf, nc->sram.virt, mtd->writesize);
  566. if (oob_required)
  567. memcpy_fromio(chip->oob_poi, nc->sram.virt + mtd->writesize,
  568. mtd->oobsize);
  569. }
  570. static void atmel_nfc_set_op_addr(struct nand_chip *chip, int page, int column)
  571. {
  572. struct mtd_info *mtd = nand_to_mtd(chip);
  573. struct atmel_hsmc_nand_controller *nc;
  574. nc = to_hsmc_nand_controller(chip->controller);
  575. if (column >= 0) {
  576. nc->op.addrs[nc->op.naddrs++] = column;
  577. /*
  578. * 2 address cycles for the column offset on large page NANDs.
  579. */
  580. if (mtd->writesize > 512)
  581. nc->op.addrs[nc->op.naddrs++] = column >> 8;
  582. }
  583. if (page >= 0) {
  584. nc->op.addrs[nc->op.naddrs++] = page;
  585. nc->op.addrs[nc->op.naddrs++] = page >> 8;
  586. if ((mtd->writesize > 512 && chip->chipsize > SZ_128M) ||
  587. (mtd->writesize <= 512 && chip->chipsize > SZ_32M))
  588. nc->op.addrs[nc->op.naddrs++] = page >> 16;
  589. }
  590. }
  591. static int atmel_nand_pmecc_enable(struct nand_chip *chip, int op, bool raw)
  592. {
  593. struct atmel_nand *nand = to_atmel_nand(chip);
  594. struct atmel_nand_controller *nc;
  595. int ret;
  596. nc = to_nand_controller(chip->controller);
  597. if (raw)
  598. return 0;
  599. ret = atmel_pmecc_enable(nand->pmecc, op);
  600. if (ret)
  601. dev_err(nc->dev,
  602. "Failed to enable ECC engine (err = %d)\n", ret);
  603. return ret;
  604. }
  605. static void atmel_nand_pmecc_disable(struct nand_chip *chip, bool raw)
  606. {
  607. struct atmel_nand *nand = to_atmel_nand(chip);
  608. if (!raw)
  609. atmel_pmecc_disable(nand->pmecc);
  610. }
  611. static int atmel_nand_pmecc_generate_eccbytes(struct nand_chip *chip, bool raw)
  612. {
  613. struct atmel_nand *nand = to_atmel_nand(chip);
  614. struct mtd_info *mtd = nand_to_mtd(chip);
  615. struct atmel_nand_controller *nc;
  616. struct mtd_oob_region oobregion;
  617. void *eccbuf;
  618. int ret, i;
  619. nc = to_nand_controller(chip->controller);
  620. if (raw)
  621. return 0;
  622. ret = atmel_pmecc_wait_rdy(nand->pmecc);
  623. if (ret) {
  624. dev_err(nc->dev,
  625. "Failed to transfer NAND page data (err = %d)\n",
  626. ret);
  627. return ret;
  628. }
  629. mtd_ooblayout_ecc(mtd, 0, &oobregion);
  630. eccbuf = chip->oob_poi + oobregion.offset;
  631. for (i = 0; i < chip->ecc.steps; i++) {
  632. atmel_pmecc_get_generated_eccbytes(nand->pmecc, i,
  633. eccbuf);
  634. eccbuf += chip->ecc.bytes;
  635. }
  636. return 0;
  637. }
  638. static int atmel_nand_pmecc_correct_data(struct nand_chip *chip, void *buf,
  639. bool raw)
  640. {
  641. struct atmel_nand *nand = to_atmel_nand(chip);
  642. struct mtd_info *mtd = nand_to_mtd(chip);
  643. struct atmel_nand_controller *nc;
  644. struct mtd_oob_region oobregion;
  645. int ret, i, max_bitflips = 0;
  646. void *databuf, *eccbuf;
  647. nc = to_nand_controller(chip->controller);
  648. if (raw)
  649. return 0;
  650. ret = atmel_pmecc_wait_rdy(nand->pmecc);
  651. if (ret) {
  652. dev_err(nc->dev,
  653. "Failed to read NAND page data (err = %d)\n",
  654. ret);
  655. return ret;
  656. }
  657. mtd_ooblayout_ecc(mtd, 0, &oobregion);
  658. eccbuf = chip->oob_poi + oobregion.offset;
  659. databuf = buf;
  660. for (i = 0; i < chip->ecc.steps; i++) {
  661. ret = atmel_pmecc_correct_sector(nand->pmecc, i, databuf,
  662. eccbuf);
  663. if (ret < 0 && !atmel_pmecc_correct_erased_chunks(nand->pmecc))
  664. ret = nand_check_erased_ecc_chunk(databuf,
  665. chip->ecc.size,
  666. eccbuf,
  667. chip->ecc.bytes,
  668. NULL, 0,
  669. chip->ecc.strength);
  670. if (ret >= 0)
  671. max_bitflips = max(ret, max_bitflips);
  672. else
  673. mtd->ecc_stats.failed++;
  674. databuf += chip->ecc.size;
  675. eccbuf += chip->ecc.bytes;
  676. }
  677. return max_bitflips;
  678. }
  679. static int atmel_nand_pmecc_write_pg(struct nand_chip *chip, const u8 *buf,
  680. bool oob_required, int page, bool raw)
  681. {
  682. struct mtd_info *mtd = nand_to_mtd(chip);
  683. struct atmel_nand *nand = to_atmel_nand(chip);
  684. int ret;
  685. ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
  686. if (ret)
  687. return ret;
  688. atmel_nand_write_buf(mtd, buf, mtd->writesize);
  689. ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
  690. if (ret) {
  691. atmel_pmecc_disable(nand->pmecc);
  692. return ret;
  693. }
  694. atmel_nand_pmecc_disable(chip, raw);
  695. atmel_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize);
  696. return 0;
  697. }
  698. static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
  699. struct nand_chip *chip, const u8 *buf,
  700. int oob_required, int page)
  701. {
  702. return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, false);
  703. }
  704. static int atmel_nand_pmecc_write_page_raw(struct mtd_info *mtd,
  705. struct nand_chip *chip,
  706. const u8 *buf, int oob_required,
  707. int page)
  708. {
  709. return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, true);
  710. }
  711. static int atmel_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
  712. bool oob_required, int page, bool raw)
  713. {
  714. struct mtd_info *mtd = nand_to_mtd(chip);
  715. int ret;
  716. ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
  717. if (ret)
  718. return ret;
  719. atmel_nand_read_buf(mtd, buf, mtd->writesize);
  720. atmel_nand_read_buf(mtd, chip->oob_poi, mtd->oobsize);
  721. ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
  722. atmel_nand_pmecc_disable(chip, raw);
  723. return ret;
  724. }
  725. static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
  726. struct nand_chip *chip, u8 *buf,
  727. int oob_required, int page)
  728. {
  729. return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, false);
  730. }
  731. static int atmel_nand_pmecc_read_page_raw(struct mtd_info *mtd,
  732. struct nand_chip *chip, u8 *buf,
  733. int oob_required, int page)
  734. {
  735. return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, true);
  736. }
  737. static int atmel_hsmc_nand_pmecc_write_pg(struct nand_chip *chip,
  738. const u8 *buf, bool oob_required,
  739. int page, bool raw)
  740. {
  741. struct mtd_info *mtd = nand_to_mtd(chip);
  742. struct atmel_nand *nand = to_atmel_nand(chip);
  743. struct atmel_hsmc_nand_controller *nc;
  744. int ret;
  745. nc = to_hsmc_nand_controller(chip->controller);
  746. atmel_nfc_copy_to_sram(chip, buf, false);
  747. nc->op.cmds[0] = NAND_CMD_SEQIN;
  748. nc->op.ncmds = 1;
  749. atmel_nfc_set_op_addr(chip, page, 0x0);
  750. nc->op.cs = nand->activecs->id;
  751. nc->op.data = ATMEL_NFC_WRITE_DATA;
  752. ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
  753. if (ret)
  754. return ret;
  755. ret = atmel_nfc_exec_op(nc, false);
  756. if (ret) {
  757. atmel_nand_pmecc_disable(chip, raw);
  758. dev_err(nc->base.dev,
  759. "Failed to transfer NAND page data (err = %d)\n",
  760. ret);
  761. return ret;
  762. }
  763. ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
  764. atmel_nand_pmecc_disable(chip, raw);
  765. if (ret)
  766. return ret;
  767. atmel_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize);
  768. nc->op.cmds[0] = NAND_CMD_PAGEPROG;
  769. nc->op.ncmds = 1;
  770. nc->op.cs = nand->activecs->id;
  771. ret = atmel_nfc_exec_op(nc, false);
  772. if (ret)
  773. dev_err(nc->base.dev, "Failed to program NAND page (err = %d)\n",
  774. ret);
  775. return ret;
  776. }
  777. static int atmel_hsmc_nand_pmecc_write_page(struct mtd_info *mtd,
  778. struct nand_chip *chip,
  779. const u8 *buf, int oob_required,
  780. int page)
  781. {
  782. return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
  783. false);
  784. }
  785. static int atmel_hsmc_nand_pmecc_write_page_raw(struct mtd_info *mtd,
  786. struct nand_chip *chip,
  787. const u8 *buf,
  788. int oob_required, int page)
  789. {
  790. return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
  791. true);
  792. }
  793. static int atmel_hsmc_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
  794. bool oob_required, int page,
  795. bool raw)
  796. {
  797. struct mtd_info *mtd = nand_to_mtd(chip);
  798. struct atmel_nand *nand = to_atmel_nand(chip);
  799. struct atmel_hsmc_nand_controller *nc;
  800. int ret;
  801. nc = to_hsmc_nand_controller(chip->controller);
  802. /*
  803. * Optimized read page accessors only work when the NAND R/B pin is
  804. * connected to a native SoC R/B pin. If that's not the case, fallback
  805. * to the non-optimized one.
  806. */
  807. if (nand->activecs->rb.type != ATMEL_NAND_NATIVE_RB) {
  808. chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
  809. return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page,
  810. raw);
  811. }
  812. nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READ0;
  813. if (mtd->writesize > 512)
  814. nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READSTART;
  815. atmel_nfc_set_op_addr(chip, page, 0x0);
  816. nc->op.cs = nand->activecs->id;
  817. nc->op.data = ATMEL_NFC_READ_DATA;
  818. ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
  819. if (ret)
  820. return ret;
  821. ret = atmel_nfc_exec_op(nc, false);
  822. if (ret) {
  823. atmel_nand_pmecc_disable(chip, raw);
  824. dev_err(nc->base.dev,
  825. "Failed to load NAND page data (err = %d)\n",
  826. ret);
  827. return ret;
  828. }
  829. atmel_nfc_copy_from_sram(chip, buf, true);
  830. ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
  831. atmel_nand_pmecc_disable(chip, raw);
  832. return ret;
  833. }
  834. static int atmel_hsmc_nand_pmecc_read_page(struct mtd_info *mtd,
  835. struct nand_chip *chip, u8 *buf,
  836. int oob_required, int page)
  837. {
  838. return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
  839. false);
  840. }
  841. static int atmel_hsmc_nand_pmecc_read_page_raw(struct mtd_info *mtd,
  842. struct nand_chip *chip,
  843. u8 *buf, int oob_required,
  844. int page)
  845. {
  846. return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
  847. true);
  848. }
  849. static int atmel_nand_pmecc_init(struct nand_chip *chip)
  850. {
  851. struct mtd_info *mtd = nand_to_mtd(chip);
  852. struct atmel_nand *nand = to_atmel_nand(chip);
  853. struct atmel_nand_controller *nc;
  854. struct atmel_pmecc_user_req req;
  855. nc = to_nand_controller(chip->controller);
  856. if (!nc->pmecc) {
  857. dev_err(nc->dev, "HW ECC not supported\n");
  858. return -ENOTSUPP;
  859. }
  860. if (nc->caps->legacy_of_bindings) {
  861. u32 val;
  862. if (!of_property_read_u32(nc->dev->of_node, "atmel,pmecc-cap",
  863. &val))
  864. chip->ecc.strength = val;
  865. if (!of_property_read_u32(nc->dev->of_node,
  866. "atmel,pmecc-sector-size",
  867. &val))
  868. chip->ecc.size = val;
  869. }
  870. if (chip->ecc.options & NAND_ECC_MAXIMIZE)
  871. req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
  872. else if (chip->ecc.strength)
  873. req.ecc.strength = chip->ecc.strength;
  874. else if (chip->ecc_strength_ds)
  875. req.ecc.strength = chip->ecc_strength_ds;
  876. else
  877. req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
  878. if (chip->ecc.size)
  879. req.ecc.sectorsize = chip->ecc.size;
  880. else if (chip->ecc_step_ds)
  881. req.ecc.sectorsize = chip->ecc_step_ds;
  882. else
  883. req.ecc.sectorsize = ATMEL_PMECC_SECTOR_SIZE_AUTO;
  884. req.pagesize = mtd->writesize;
  885. req.oobsize = mtd->oobsize;
  886. if (mtd->writesize <= 512) {
  887. req.ecc.bytes = 4;
  888. req.ecc.ooboffset = 0;
  889. } else {
  890. req.ecc.bytes = mtd->oobsize - 2;
  891. req.ecc.ooboffset = ATMEL_PMECC_OOBOFFSET_AUTO;
  892. }
  893. nand->pmecc = atmel_pmecc_create_user(nc->pmecc, &req);
  894. if (IS_ERR(nand->pmecc))
  895. return PTR_ERR(nand->pmecc);
  896. chip->ecc.algo = NAND_ECC_BCH;
  897. chip->ecc.size = req.ecc.sectorsize;
  898. chip->ecc.bytes = req.ecc.bytes / req.ecc.nsectors;
  899. chip->ecc.strength = req.ecc.strength;
  900. chip->options |= NAND_NO_SUBPAGE_WRITE;
  901. mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
  902. return 0;
  903. }
  904. static int atmel_nand_ecc_init(struct atmel_nand *nand)
  905. {
  906. struct nand_chip *chip = &nand->base;
  907. struct atmel_nand_controller *nc;
  908. int ret;
  909. nc = to_nand_controller(chip->controller);
  910. switch (chip->ecc.mode) {
  911. case NAND_ECC_NONE:
  912. case NAND_ECC_SOFT:
  913. /*
  914. * Nothing to do, the core will initialize everything for us.
  915. */
  916. break;
  917. case NAND_ECC_HW:
  918. ret = atmel_nand_pmecc_init(chip);
  919. if (ret)
  920. return ret;
  921. chip->ecc.read_page = atmel_nand_pmecc_read_page;
  922. chip->ecc.write_page = atmel_nand_pmecc_write_page;
  923. chip->ecc.read_page_raw = atmel_nand_pmecc_read_page_raw;
  924. chip->ecc.write_page_raw = atmel_nand_pmecc_write_page_raw;
  925. break;
  926. default:
  927. /* Other modes are not supported. */
  928. dev_err(nc->dev, "Unsupported ECC mode: %d\n",
  929. chip->ecc.mode);
  930. return -ENOTSUPP;
  931. }
  932. return 0;
  933. }
  934. static int atmel_hsmc_nand_ecc_init(struct atmel_nand *nand)
  935. {
  936. struct nand_chip *chip = &nand->base;
  937. int ret;
  938. ret = atmel_nand_ecc_init(nand);
  939. if (ret)
  940. return ret;
  941. if (chip->ecc.mode != NAND_ECC_HW)
  942. return 0;
  943. /* Adjust the ECC operations for the HSMC IP. */
  944. chip->ecc.read_page = atmel_hsmc_nand_pmecc_read_page;
  945. chip->ecc.write_page = atmel_hsmc_nand_pmecc_write_page;
  946. chip->ecc.read_page_raw = atmel_hsmc_nand_pmecc_read_page_raw;
  947. chip->ecc.write_page_raw = atmel_hsmc_nand_pmecc_write_page_raw;
  948. chip->ecc.options |= NAND_ECC_CUSTOM_PAGE_ACCESS;
  949. return 0;
  950. }
  951. static void atmel_nand_init(struct atmel_nand_controller *nc,
  952. struct atmel_nand *nand)
  953. {
  954. struct nand_chip *chip = &nand->base;
  955. struct mtd_info *mtd = nand_to_mtd(chip);
  956. mtd->dev.parent = nc->dev;
  957. nand->base.controller = &nc->base;
  958. chip->cmd_ctrl = atmel_nand_cmd_ctrl;
  959. chip->read_byte = atmel_nand_read_byte;
  960. chip->read_word = atmel_nand_read_word;
  961. chip->write_byte = atmel_nand_write_byte;
  962. chip->read_buf = atmel_nand_read_buf;
  963. chip->write_buf = atmel_nand_write_buf;
  964. chip->select_chip = atmel_nand_select_chip;
  965. /* Some NANDs require a longer delay than the default one (20us). */
  966. chip->chip_delay = 40;
  967. /*
  968. * Use a bounce buffer when the buffer passed by the MTD user is not
  969. * suitable for DMA.
  970. */
  971. if (nc->dmac)
  972. chip->options |= NAND_USE_BOUNCE_BUFFER;
  973. /* Default to HW ECC if pmecc is available. */
  974. if (nc->pmecc)
  975. chip->ecc.mode = NAND_ECC_HW;
  976. }
  977. static void atmel_smc_nand_init(struct atmel_nand_controller *nc,
  978. struct atmel_nand *nand)
  979. {
  980. struct nand_chip *chip = &nand->base;
  981. struct atmel_smc_nand_controller *smc_nc;
  982. int i;
  983. atmel_nand_init(nc, nand);
  984. smc_nc = to_smc_nand_controller(chip->controller);
  985. if (!smc_nc->matrix)
  986. return;
  987. /* Attach the CS to the NAND Flash logic. */
  988. for (i = 0; i < nand->numcs; i++)
  989. regmap_update_bits(smc_nc->matrix, smc_nc->ebi_csa_offs,
  990. BIT(nand->cs[i].id), BIT(nand->cs[i].id));
  991. }
  992. static void atmel_hsmc_nand_init(struct atmel_nand_controller *nc,
  993. struct atmel_nand *nand)
  994. {
  995. struct nand_chip *chip = &nand->base;
  996. atmel_nand_init(nc, nand);
  997. /* Overload some methods for the HSMC controller. */
  998. chip->cmd_ctrl = atmel_hsmc_nand_cmd_ctrl;
  999. chip->select_chip = atmel_hsmc_nand_select_chip;
  1000. }
  1001. static int atmel_nand_detect(struct atmel_nand *nand)
  1002. {
  1003. struct nand_chip *chip = &nand->base;
  1004. struct mtd_info *mtd = nand_to_mtd(chip);
  1005. struct atmel_nand_controller *nc;
  1006. int ret;
  1007. nc = to_nand_controller(chip->controller);
  1008. ret = nand_scan_ident(mtd, nand->numcs, NULL);
  1009. if (ret)
  1010. dev_err(nc->dev, "nand_scan_ident() failed: %d\n", ret);
  1011. return ret;
  1012. }
  1013. static int atmel_nand_unregister(struct atmel_nand *nand)
  1014. {
  1015. struct nand_chip *chip = &nand->base;
  1016. struct mtd_info *mtd = nand_to_mtd(chip);
  1017. int ret;
  1018. ret = mtd_device_unregister(mtd);
  1019. if (ret)
  1020. return ret;
  1021. nand_cleanup(chip);
  1022. list_del(&nand->node);
  1023. return 0;
  1024. }
  1025. static int atmel_nand_register(struct atmel_nand *nand)
  1026. {
  1027. struct nand_chip *chip = &nand->base;
  1028. struct mtd_info *mtd = nand_to_mtd(chip);
  1029. struct atmel_nand_controller *nc;
  1030. int ret;
  1031. nc = to_nand_controller(chip->controller);
  1032. if (nc->caps->legacy_of_bindings || !nc->dev->of_node) {
  1033. /*
  1034. * We keep the MTD name unchanged to avoid breaking platforms
  1035. * where the MTD cmdline parser is used and the bootloader
  1036. * has not been updated to use the new naming scheme.
  1037. */
  1038. mtd->name = "atmel_nand";
  1039. } else if (!mtd->name) {
  1040. /*
  1041. * If the new bindings are used and the bootloader has not been
  1042. * updated to pass a new mtdparts parameter on the cmdline, you
  1043. * should define the following property in your nand node:
  1044. *
  1045. * label = "atmel_nand";
  1046. *
  1047. * This way, mtd->name will be set by the core when
  1048. * nand_set_flash_node() is called.
  1049. */
  1050. mtd->name = devm_kasprintf(nc->dev, GFP_KERNEL,
  1051. "%s:nand.%d", dev_name(nc->dev),
  1052. nand->cs[0].id);
  1053. if (!mtd->name) {
  1054. dev_err(nc->dev, "Failed to allocate mtd->name\n");
  1055. return -ENOMEM;
  1056. }
  1057. }
  1058. ret = nand_scan_tail(mtd);
  1059. if (ret) {
  1060. dev_err(nc->dev, "nand_scan_tail() failed: %d\n", ret);
  1061. return ret;
  1062. }
  1063. ret = mtd_device_register(mtd, NULL, 0);
  1064. if (ret) {
  1065. dev_err(nc->dev, "Failed to register mtd device: %d\n", ret);
  1066. nand_cleanup(chip);
  1067. return ret;
  1068. }
  1069. list_add_tail(&nand->node, &nc->chips);
  1070. return 0;
  1071. }
  1072. static struct atmel_nand *atmel_nand_create(struct atmel_nand_controller *nc,
  1073. struct device_node *np,
  1074. int reg_cells)
  1075. {
  1076. struct atmel_nand *nand;
  1077. struct gpio_desc *gpio;
  1078. int numcs, ret, i;
  1079. numcs = of_property_count_elems_of_size(np, "reg",
  1080. reg_cells * sizeof(u32));
  1081. if (numcs < 1) {
  1082. dev_err(nc->dev, "Missing or invalid reg property\n");
  1083. return ERR_PTR(-EINVAL);
  1084. }
  1085. nand = devm_kzalloc(nc->dev,
  1086. sizeof(*nand) + (numcs * sizeof(*nand->cs)),
  1087. GFP_KERNEL);
  1088. if (!nand) {
  1089. dev_err(nc->dev, "Failed to allocate NAND object\n");
  1090. return ERR_PTR(-ENOMEM);
  1091. }
  1092. nand->numcs = numcs;
  1093. gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev, "det", 0,
  1094. &np->fwnode, GPIOD_IN,
  1095. "nand-det");
  1096. if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
  1097. dev_err(nc->dev,
  1098. "Failed to get detect gpio (err = %ld)\n",
  1099. PTR_ERR(gpio));
  1100. return ERR_CAST(gpio);
  1101. }
  1102. if (!IS_ERR(gpio))
  1103. nand->cdgpio = gpio;
  1104. for (i = 0; i < numcs; i++) {
  1105. struct resource res;
  1106. u32 val;
  1107. ret = of_address_to_resource(np, 0, &res);
  1108. if (ret) {
  1109. dev_err(nc->dev, "Invalid reg property (err = %d)\n",
  1110. ret);
  1111. return ERR_PTR(ret);
  1112. }
  1113. ret = of_property_read_u32_index(np, "reg", i * reg_cells,
  1114. &val);
  1115. if (ret) {
  1116. dev_err(nc->dev, "Invalid reg property (err = %d)\n",
  1117. ret);
  1118. return ERR_PTR(ret);
  1119. }
  1120. nand->cs[i].id = val;
  1121. nand->cs[i].io.dma = res.start;
  1122. nand->cs[i].io.virt = devm_ioremap_resource(nc->dev, &res);
  1123. if (IS_ERR(nand->cs[i].io.virt))
  1124. return ERR_CAST(nand->cs[i].io.virt);
  1125. if (!of_property_read_u32(np, "atmel,rb", &val)) {
  1126. if (val > ATMEL_NFC_MAX_RB_ID)
  1127. return ERR_PTR(-EINVAL);
  1128. nand->cs[i].rb.type = ATMEL_NAND_NATIVE_RB;
  1129. nand->cs[i].rb.id = val;
  1130. } else {
  1131. gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev,
  1132. "rb", i, &np->fwnode,
  1133. GPIOD_IN, "nand-rb");
  1134. if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
  1135. dev_err(nc->dev,
  1136. "Failed to get R/B gpio (err = %ld)\n",
  1137. PTR_ERR(gpio));
  1138. return ERR_CAST(gpio);
  1139. }
  1140. if (!IS_ERR(gpio)) {
  1141. nand->cs[i].rb.type = ATMEL_NAND_GPIO_RB;
  1142. nand->cs[i].rb.gpio = gpio;
  1143. }
  1144. }
  1145. gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev, "cs",
  1146. i, &np->fwnode,
  1147. GPIOD_OUT_HIGH,
  1148. "nand-cs");
  1149. if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
  1150. dev_err(nc->dev,
  1151. "Failed to get CS gpio (err = %ld)\n",
  1152. PTR_ERR(gpio));
  1153. return ERR_CAST(gpio);
  1154. }
  1155. if (!IS_ERR(gpio))
  1156. nand->cs[i].csgpio = gpio;
  1157. }
  1158. nand_set_flash_node(&nand->base, np);
  1159. return nand;
  1160. }
  1161. static int
  1162. atmel_nand_controller_add_nand(struct atmel_nand_controller *nc,
  1163. struct atmel_nand *nand)
  1164. {
  1165. int ret;
  1166. /* No card inserted, skip this NAND. */
  1167. if (nand->cdgpio && gpiod_get_value(nand->cdgpio)) {
  1168. dev_info(nc->dev, "No SmartMedia card inserted.\n");
  1169. return 0;
  1170. }
  1171. nc->caps->ops->nand_init(nc, nand);
  1172. ret = atmel_nand_detect(nand);
  1173. if (ret)
  1174. return ret;
  1175. ret = nc->caps->ops->ecc_init(nand);
  1176. if (ret)
  1177. return ret;
  1178. return atmel_nand_register(nand);
  1179. }
  1180. static int
  1181. atmel_nand_controller_remove_nands(struct atmel_nand_controller *nc)
  1182. {
  1183. struct atmel_nand *nand, *tmp;
  1184. int ret;
  1185. list_for_each_entry_safe(nand, tmp, &nc->chips, node) {
  1186. ret = atmel_nand_unregister(nand);
  1187. if (ret)
  1188. return ret;
  1189. }
  1190. return 0;
  1191. }
  1192. static int
  1193. atmel_nand_controller_legacy_add_nands(struct atmel_nand_controller *nc)
  1194. {
  1195. struct device *dev = nc->dev;
  1196. struct platform_device *pdev = to_platform_device(dev);
  1197. struct atmel_nand *nand;
  1198. struct gpio_desc *gpio;
  1199. struct resource *res;
  1200. /*
  1201. * Legacy bindings only allow connecting a single NAND with a unique CS
  1202. * line to the controller.
  1203. */
  1204. nand = devm_kzalloc(nc->dev, sizeof(*nand) + sizeof(*nand->cs),
  1205. GFP_KERNEL);
  1206. if (!nand)
  1207. return -ENOMEM;
  1208. nand->numcs = 1;
  1209. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1210. nand->cs[0].io.virt = devm_ioremap_resource(dev, res);
  1211. if (IS_ERR(nand->cs[0].io.virt))
  1212. return PTR_ERR(nand->cs[0].io.virt);
  1213. nand->cs[0].io.dma = res->start;
  1214. /*
  1215. * The old driver was hardcoding the CS id to 3 for all sama5
  1216. * controllers. Since this id is only meaningful for the sama5
  1217. * controller we can safely assign this id to 3 no matter the
  1218. * controller.
  1219. * If one wants to connect a NAND to a different CS line, he will
  1220. * have to use the new bindings.
  1221. */
  1222. nand->cs[0].id = 3;
  1223. /* R/B GPIO. */
  1224. gpio = devm_gpiod_get_index_optional(dev, NULL, 0, GPIOD_IN);
  1225. if (IS_ERR(gpio)) {
  1226. dev_err(dev, "Failed to get R/B gpio (err = %ld)\n",
  1227. PTR_ERR(gpio));
  1228. return PTR_ERR(gpio);
  1229. }
  1230. if (gpio) {
  1231. nand->cs[0].rb.type = ATMEL_NAND_GPIO_RB;
  1232. nand->cs[0].rb.gpio = gpio;
  1233. }
  1234. /* CS GPIO. */
  1235. gpio = devm_gpiod_get_index_optional(dev, NULL, 1, GPIOD_OUT_HIGH);
  1236. if (IS_ERR(gpio)) {
  1237. dev_err(dev, "Failed to get CS gpio (err = %ld)\n",
  1238. PTR_ERR(gpio));
  1239. return PTR_ERR(gpio);
  1240. }
  1241. nand->cs[0].csgpio = gpio;
  1242. /* Card detect GPIO. */
  1243. gpio = devm_gpiod_get_index_optional(nc->dev, NULL, 2, GPIOD_IN);
  1244. if (IS_ERR(gpio)) {
  1245. dev_err(dev,
  1246. "Failed to get detect gpio (err = %ld)\n",
  1247. PTR_ERR(gpio));
  1248. return PTR_ERR(gpio);
  1249. }
  1250. nand->cdgpio = gpio;
  1251. nand_set_flash_node(&nand->base, nc->dev->of_node);
  1252. return atmel_nand_controller_add_nand(nc, nand);
  1253. }
  1254. static int atmel_nand_controller_add_nands(struct atmel_nand_controller *nc)
  1255. {
  1256. struct device_node *np, *nand_np;
  1257. struct device *dev = nc->dev;
  1258. int ret, reg_cells;
  1259. u32 val;
  1260. /* We do not retrieve the SMC syscon when parsing old DTs. */
  1261. if (nc->caps->legacy_of_bindings)
  1262. return atmel_nand_controller_legacy_add_nands(nc);
  1263. np = dev->of_node;
  1264. ret = of_property_read_u32(np, "#address-cells", &val);
  1265. if (ret) {
  1266. dev_err(dev, "missing #address-cells property\n");
  1267. return ret;
  1268. }
  1269. reg_cells = val;
  1270. ret = of_property_read_u32(np, "#size-cells", &val);
  1271. if (ret) {
  1272. dev_err(dev, "missing #address-cells property\n");
  1273. return ret;
  1274. }
  1275. reg_cells += val;
  1276. for_each_child_of_node(np, nand_np) {
  1277. struct atmel_nand *nand;
  1278. nand = atmel_nand_create(nc, nand_np, reg_cells);
  1279. if (IS_ERR(nand)) {
  1280. ret = PTR_ERR(nand);
  1281. goto err;
  1282. }
  1283. ret = atmel_nand_controller_add_nand(nc, nand);
  1284. if (ret)
  1285. goto err;
  1286. }
  1287. return 0;
  1288. err:
  1289. atmel_nand_controller_remove_nands(nc);
  1290. return ret;
  1291. }
  1292. static void atmel_nand_controller_cleanup(struct atmel_nand_controller *nc)
  1293. {
  1294. if (nc->dmac)
  1295. dma_release_channel(nc->dmac);
  1296. clk_put(nc->mck);
  1297. }
  1298. static const struct of_device_id atmel_matrix_of_ids[] = {
  1299. {
  1300. .compatible = "atmel,at91sam9260-matrix",
  1301. .data = (void *)AT91SAM9260_MATRIX_EBICSA,
  1302. },
  1303. {
  1304. .compatible = "atmel,at91sam9261-matrix",
  1305. .data = (void *)AT91SAM9261_MATRIX_EBICSA,
  1306. },
  1307. {
  1308. .compatible = "atmel,at91sam9263-matrix",
  1309. .data = (void *)AT91SAM9263_MATRIX_EBI0CSA,
  1310. },
  1311. {
  1312. .compatible = "atmel,at91sam9rl-matrix",
  1313. .data = (void *)AT91SAM9RL_MATRIX_EBICSA,
  1314. },
  1315. {
  1316. .compatible = "atmel,at91sam9g45-matrix",
  1317. .data = (void *)AT91SAM9G45_MATRIX_EBICSA,
  1318. },
  1319. {
  1320. .compatible = "atmel,at91sam9n12-matrix",
  1321. .data = (void *)AT91SAM9N12_MATRIX_EBICSA,
  1322. },
  1323. {
  1324. .compatible = "atmel,at91sam9x5-matrix",
  1325. .data = (void *)AT91SAM9X5_MATRIX_EBICSA,
  1326. },
  1327. };
  1328. static int atmel_nand_controller_init(struct atmel_nand_controller *nc,
  1329. struct platform_device *pdev,
  1330. const struct atmel_nand_controller_caps *caps)
  1331. {
  1332. struct device *dev = &pdev->dev;
  1333. struct device_node *np = dev->of_node;
  1334. int ret;
  1335. nand_hw_control_init(&nc->base);
  1336. INIT_LIST_HEAD(&nc->chips);
  1337. nc->dev = dev;
  1338. nc->caps = caps;
  1339. platform_set_drvdata(pdev, nc);
  1340. nc->pmecc = devm_atmel_pmecc_get(dev);
  1341. if (IS_ERR(nc->pmecc)) {
  1342. ret = PTR_ERR(nc->pmecc);
  1343. if (ret != -EPROBE_DEFER)
  1344. dev_err(dev, "Could not get PMECC object (err = %d)\n",
  1345. ret);
  1346. return ret;
  1347. }
  1348. if (nc->caps->has_dma) {
  1349. dma_cap_mask_t mask;
  1350. dma_cap_zero(mask);
  1351. dma_cap_set(DMA_MEMCPY, mask);
  1352. nc->dmac = dma_request_channel(mask, NULL, NULL);
  1353. if (!nc->dmac)
  1354. dev_err(nc->dev, "Failed to request DMA channel\n");
  1355. }
  1356. /* We do not retrieve the SMC syscon when parsing old DTs. */
  1357. if (nc->caps->legacy_of_bindings)
  1358. return 0;
  1359. np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0);
  1360. if (!np) {
  1361. dev_err(dev, "Missing or invalid atmel,smc property\n");
  1362. return -EINVAL;
  1363. }
  1364. nc->smc = syscon_node_to_regmap(np);
  1365. of_node_put(np);
  1366. if (IS_ERR(nc->smc)) {
  1367. ret = IS_ERR(nc->smc);
  1368. dev_err(dev, "Could not get SMC regmap (err = %d)\n", ret);
  1369. return ret;
  1370. }
  1371. return 0;
  1372. }
  1373. static int
  1374. atmel_smc_nand_controller_init(struct atmel_smc_nand_controller *nc)
  1375. {
  1376. struct device *dev = nc->base.dev;
  1377. const struct of_device_id *match;
  1378. struct device_node *np;
  1379. int ret;
  1380. /* We do not retrieve the matrix syscon when parsing old DTs. */
  1381. if (nc->base.caps->legacy_of_bindings)
  1382. return 0;
  1383. np = of_parse_phandle(dev->parent->of_node, "atmel,matrix", 0);
  1384. if (!np)
  1385. return 0;
  1386. match = of_match_node(atmel_matrix_of_ids, np);
  1387. if (!match) {
  1388. of_node_put(np);
  1389. return 0;
  1390. }
  1391. nc->matrix = syscon_node_to_regmap(np);
  1392. of_node_put(np);
  1393. if (IS_ERR(nc->matrix)) {
  1394. ret = IS_ERR(nc->matrix);
  1395. dev_err(dev, "Could not get Matrix regmap (err = %d)\n", ret);
  1396. return ret;
  1397. }
  1398. nc->ebi_csa_offs = (unsigned int)match->data;
  1399. /*
  1400. * The at91sam9263 has 2 EBIs, if the NAND controller is under EBI1
  1401. * add 4 to ->ebi_csa_offs.
  1402. */
  1403. if (of_device_is_compatible(dev->parent->of_node,
  1404. "atmel,at91sam9263-ebi1"))
  1405. nc->ebi_csa_offs += 4;
  1406. return 0;
  1407. }
  1408. static int
  1409. atmel_hsmc_nand_controller_legacy_init(struct atmel_hsmc_nand_controller *nc)
  1410. {
  1411. struct regmap_config regmap_conf = {
  1412. .reg_bits = 32,
  1413. .val_bits = 32,
  1414. .reg_stride = 4,
  1415. };
  1416. struct device *dev = nc->base.dev;
  1417. struct device_node *nand_np, *nfc_np;
  1418. void __iomem *iomem;
  1419. struct resource res;
  1420. int ret;
  1421. nand_np = dev->of_node;
  1422. nfc_np = of_find_compatible_node(dev->of_node, NULL,
  1423. "atmel,sama5d3-nfc");
  1424. nc->clk = of_clk_get(nfc_np, 0);
  1425. if (IS_ERR(nc->clk)) {
  1426. ret = PTR_ERR(nc->clk);
  1427. dev_err(dev, "Failed to retrieve HSMC clock (err = %d)\n",
  1428. ret);
  1429. goto out;
  1430. }
  1431. ret = clk_prepare_enable(nc->clk);
  1432. if (ret) {
  1433. dev_err(dev, "Failed to enable the HSMC clock (err = %d)\n",
  1434. ret);
  1435. goto out;
  1436. }
  1437. nc->irq = of_irq_get(nand_np, 0);
  1438. if (nc->irq < 0) {
  1439. ret = nc->irq;
  1440. if (ret != -EPROBE_DEFER)
  1441. dev_err(dev, "Failed to get IRQ number (err = %d)\n",
  1442. ret);
  1443. goto out;
  1444. }
  1445. ret = of_address_to_resource(nfc_np, 0, &res);
  1446. if (ret) {
  1447. dev_err(dev, "Invalid or missing NFC IO resource (err = %d)\n",
  1448. ret);
  1449. goto out;
  1450. }
  1451. iomem = devm_ioremap_resource(dev, &res);
  1452. if (IS_ERR(iomem)) {
  1453. ret = PTR_ERR(iomem);
  1454. goto out;
  1455. }
  1456. regmap_conf.name = "nfc-io";
  1457. regmap_conf.max_register = resource_size(&res) - 4;
  1458. nc->io = devm_regmap_init_mmio(dev, iomem, &regmap_conf);
  1459. if (IS_ERR(nc->io)) {
  1460. ret = PTR_ERR(nc->io);
  1461. dev_err(dev, "Could not create NFC IO regmap (err = %d)\n",
  1462. ret);
  1463. goto out;
  1464. }
  1465. ret = of_address_to_resource(nfc_np, 1, &res);
  1466. if (ret) {
  1467. dev_err(dev, "Invalid or missing HSMC resource (err = %d)\n",
  1468. ret);
  1469. goto out;
  1470. }
  1471. iomem = devm_ioremap_resource(dev, &res);
  1472. if (IS_ERR(iomem)) {
  1473. ret = PTR_ERR(iomem);
  1474. goto out;
  1475. }
  1476. regmap_conf.name = "smc";
  1477. regmap_conf.max_register = resource_size(&res) - 4;
  1478. nc->base.smc = devm_regmap_init_mmio(dev, iomem, &regmap_conf);
  1479. if (IS_ERR(nc->base.smc)) {
  1480. ret = PTR_ERR(nc->base.smc);
  1481. dev_err(dev, "Could not create NFC IO regmap (err = %d)\n",
  1482. ret);
  1483. goto out;
  1484. }
  1485. ret = of_address_to_resource(nfc_np, 2, &res);
  1486. if (ret) {
  1487. dev_err(dev, "Invalid or missing SRAM resource (err = %d)\n",
  1488. ret);
  1489. goto out;
  1490. }
  1491. nc->sram.virt = devm_ioremap_resource(dev, &res);
  1492. if (IS_ERR(nc->sram.virt)) {
  1493. ret = PTR_ERR(nc->sram.virt);
  1494. goto out;
  1495. }
  1496. nc->sram.dma = res.start;
  1497. out:
  1498. of_node_put(nfc_np);
  1499. return ret;
  1500. }
  1501. static int
  1502. atmel_hsmc_nand_controller_init(struct atmel_hsmc_nand_controller *nc)
  1503. {
  1504. struct device *dev = nc->base.dev;
  1505. struct device_node *np;
  1506. int ret;
  1507. np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0);
  1508. if (!np) {
  1509. dev_err(dev, "Missing or invalid atmel,smc property\n");
  1510. return -EINVAL;
  1511. }
  1512. nc->irq = of_irq_get(np, 0);
  1513. of_node_put(np);
  1514. if (nc->irq < 0) {
  1515. if (nc->irq != -EPROBE_DEFER)
  1516. dev_err(dev, "Failed to get IRQ number (err = %d)\n",
  1517. nc->irq);
  1518. return nc->irq;
  1519. }
  1520. np = of_parse_phandle(dev->of_node, "atmel,nfc-io", 0);
  1521. if (!np) {
  1522. dev_err(dev, "Missing or invalid atmel,nfc-io property\n");
  1523. return -EINVAL;
  1524. }
  1525. nc->io = syscon_node_to_regmap(np);
  1526. of_node_put(np);
  1527. if (IS_ERR(nc->io)) {
  1528. ret = PTR_ERR(nc->io);
  1529. dev_err(dev, "Could not get NFC IO regmap (err = %d)\n", ret);
  1530. return ret;
  1531. }
  1532. nc->sram.pool = of_gen_pool_get(nc->base.dev->of_node,
  1533. "atmel,nfc-sram", 0);
  1534. if (!nc->sram.pool) {
  1535. dev_err(nc->base.dev, "Missing SRAM\n");
  1536. return -ENOMEM;
  1537. }
  1538. nc->sram.virt = gen_pool_dma_alloc(nc->sram.pool,
  1539. ATMEL_NFC_SRAM_SIZE,
  1540. &nc->sram.dma);
  1541. if (!nc->sram.virt) {
  1542. dev_err(nc->base.dev,
  1543. "Could not allocate memory from the NFC SRAM pool\n");
  1544. return -ENOMEM;
  1545. }
  1546. return 0;
  1547. }
  1548. static int
  1549. atmel_hsmc_nand_controller_remove(struct atmel_nand_controller *nc)
  1550. {
  1551. struct atmel_hsmc_nand_controller *hsmc_nc;
  1552. int ret;
  1553. ret = atmel_nand_controller_remove_nands(nc);
  1554. if (ret)
  1555. return ret;
  1556. hsmc_nc = container_of(nc, struct atmel_hsmc_nand_controller, base);
  1557. if (hsmc_nc->sram.pool)
  1558. gen_pool_free(hsmc_nc->sram.pool,
  1559. (unsigned long)hsmc_nc->sram.virt,
  1560. ATMEL_NFC_SRAM_SIZE);
  1561. if (hsmc_nc->clk) {
  1562. clk_disable_unprepare(hsmc_nc->clk);
  1563. clk_put(hsmc_nc->clk);
  1564. }
  1565. atmel_nand_controller_cleanup(nc);
  1566. return 0;
  1567. }
  1568. static int atmel_hsmc_nand_controller_probe(struct platform_device *pdev,
  1569. const struct atmel_nand_controller_caps *caps)
  1570. {
  1571. struct device *dev = &pdev->dev;
  1572. struct atmel_hsmc_nand_controller *nc;
  1573. int ret;
  1574. nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
  1575. if (!nc)
  1576. return -ENOMEM;
  1577. ret = atmel_nand_controller_init(&nc->base, pdev, caps);
  1578. if (ret)
  1579. return ret;
  1580. if (caps->legacy_of_bindings)
  1581. ret = atmel_hsmc_nand_controller_legacy_init(nc);
  1582. else
  1583. ret = atmel_hsmc_nand_controller_init(nc);
  1584. if (ret)
  1585. return ret;
  1586. /* Make sure all irqs are masked before registering our IRQ handler. */
  1587. regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
  1588. ret = devm_request_irq(dev, nc->irq, atmel_nfc_interrupt,
  1589. IRQF_SHARED, "nfc", nc);
  1590. if (ret) {
  1591. dev_err(dev,
  1592. "Could not get register NFC interrupt handler (err = %d)\n",
  1593. ret);
  1594. goto err;
  1595. }
  1596. /* Initial NFC configuration. */
  1597. regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CFG,
  1598. ATMEL_HSMC_NFC_CFG_DTO_MAX);
  1599. ret = atmel_nand_controller_add_nands(&nc->base);
  1600. if (ret)
  1601. goto err;
  1602. return 0;
  1603. err:
  1604. atmel_hsmc_nand_controller_remove(&nc->base);
  1605. return ret;
  1606. }
  1607. static const struct atmel_nand_controller_ops atmel_hsmc_nc_ops = {
  1608. .probe = atmel_hsmc_nand_controller_probe,
  1609. .remove = atmel_hsmc_nand_controller_remove,
  1610. .ecc_init = atmel_hsmc_nand_ecc_init,
  1611. .nand_init = atmel_hsmc_nand_init,
  1612. };
  1613. static const struct atmel_nand_controller_caps atmel_sama5_nc_caps = {
  1614. .has_dma = true,
  1615. .ale_offs = BIT(21),
  1616. .cle_offs = BIT(22),
  1617. .ops = &atmel_hsmc_nc_ops,
  1618. };
  1619. /* Only used to parse old bindings. */
  1620. static const struct atmel_nand_controller_caps atmel_sama5_nand_caps = {
  1621. .has_dma = true,
  1622. .ale_offs = BIT(21),
  1623. .cle_offs = BIT(22),
  1624. .ops = &atmel_hsmc_nc_ops,
  1625. .legacy_of_bindings = true,
  1626. };
  1627. static int atmel_smc_nand_controller_probe(struct platform_device *pdev,
  1628. const struct atmel_nand_controller_caps *caps)
  1629. {
  1630. struct device *dev = &pdev->dev;
  1631. struct atmel_smc_nand_controller *nc;
  1632. int ret;
  1633. nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
  1634. if (!nc)
  1635. return -ENOMEM;
  1636. ret = atmel_nand_controller_init(&nc->base, pdev, caps);
  1637. if (ret)
  1638. return ret;
  1639. ret = atmel_smc_nand_controller_init(nc);
  1640. if (ret)
  1641. return ret;
  1642. return atmel_nand_controller_add_nands(&nc->base);
  1643. }
  1644. static int
  1645. atmel_smc_nand_controller_remove(struct atmel_nand_controller *nc)
  1646. {
  1647. int ret;
  1648. ret = atmel_nand_controller_remove_nands(nc);
  1649. if (ret)
  1650. return ret;
  1651. atmel_nand_controller_cleanup(nc);
  1652. return 0;
  1653. }
  1654. static const struct atmel_nand_controller_ops atmel_smc_nc_ops = {
  1655. .probe = atmel_smc_nand_controller_probe,
  1656. .remove = atmel_smc_nand_controller_remove,
  1657. .ecc_init = atmel_nand_ecc_init,
  1658. .nand_init = atmel_smc_nand_init,
  1659. };
  1660. static const struct atmel_nand_controller_caps atmel_rm9200_nc_caps = {
  1661. .ale_offs = BIT(21),
  1662. .cle_offs = BIT(22),
  1663. .ops = &atmel_smc_nc_ops,
  1664. };
  1665. static const struct atmel_nand_controller_caps atmel_sam9261_nc_caps = {
  1666. .ale_offs = BIT(22),
  1667. .cle_offs = BIT(21),
  1668. .ops = &atmel_smc_nc_ops,
  1669. };
  1670. static const struct atmel_nand_controller_caps atmel_sam9g45_nc_caps = {
  1671. .has_dma = true,
  1672. .ale_offs = BIT(21),
  1673. .cle_offs = BIT(22),
  1674. .ops = &atmel_smc_nc_ops,
  1675. };
  1676. /* Only used to parse old bindings. */
  1677. static const struct atmel_nand_controller_caps atmel_rm9200_nand_caps = {
  1678. .ale_offs = BIT(21),
  1679. .cle_offs = BIT(22),
  1680. .ops = &atmel_smc_nc_ops,
  1681. .legacy_of_bindings = true,
  1682. };
  1683. static const struct atmel_nand_controller_caps atmel_sam9261_nand_caps = {
  1684. .ale_offs = BIT(22),
  1685. .cle_offs = BIT(21),
  1686. .ops = &atmel_smc_nc_ops,
  1687. .legacy_of_bindings = true,
  1688. };
  1689. static const struct atmel_nand_controller_caps atmel_sam9g45_nand_caps = {
  1690. .has_dma = true,
  1691. .ale_offs = BIT(21),
  1692. .cle_offs = BIT(22),
  1693. .ops = &atmel_smc_nc_ops,
  1694. .legacy_of_bindings = true,
  1695. };
  1696. static const struct of_device_id atmel_nand_controller_of_ids[] = {
  1697. {
  1698. .compatible = "atmel,at91rm9200-nand-controller",
  1699. .data = &atmel_rm9200_nc_caps,
  1700. },
  1701. {
  1702. .compatible = "atmel,at91sam9260-nand-controller",
  1703. .data = &atmel_rm9200_nc_caps,
  1704. },
  1705. {
  1706. .compatible = "atmel,at91sam9261-nand-controller",
  1707. .data = &atmel_sam9261_nc_caps,
  1708. },
  1709. {
  1710. .compatible = "atmel,at91sam9g45-nand-controller",
  1711. .data = &atmel_sam9g45_nc_caps,
  1712. },
  1713. {
  1714. .compatible = "atmel,sama5d3-nand-controller",
  1715. .data = &atmel_sama5_nc_caps,
  1716. },
  1717. /* Support for old/deprecated bindings: */
  1718. {
  1719. .compatible = "atmel,at91rm9200-nand",
  1720. .data = &atmel_rm9200_nand_caps,
  1721. },
  1722. {
  1723. .compatible = "atmel,sama5d4-nand",
  1724. .data = &atmel_rm9200_nand_caps,
  1725. },
  1726. {
  1727. .compatible = "atmel,sama5d2-nand",
  1728. .data = &atmel_rm9200_nand_caps,
  1729. },
  1730. { /* sentinel */ },
  1731. };
  1732. MODULE_DEVICE_TABLE(of, atmel_nand_controller_of_ids);
  1733. static int atmel_nand_controller_probe(struct platform_device *pdev)
  1734. {
  1735. const struct atmel_nand_controller_caps *caps;
  1736. if (pdev->id_entry)
  1737. caps = (void *)pdev->id_entry->driver_data;
  1738. else
  1739. caps = of_device_get_match_data(&pdev->dev);
  1740. if (!caps) {
  1741. dev_err(&pdev->dev, "Could not retrieve NFC caps\n");
  1742. return -EINVAL;
  1743. }
  1744. if (caps->legacy_of_bindings) {
  1745. u32 ale_offs = 21;
  1746. /*
  1747. * If we are parsing legacy DT props and the DT contains a
  1748. * valid NFC node, forward the request to the sama5 logic.
  1749. */
  1750. if (of_find_compatible_node(pdev->dev.of_node, NULL,
  1751. "atmel,sama5d3-nfc"))
  1752. caps = &atmel_sama5_nand_caps;
  1753. /*
  1754. * Even if the compatible says we are dealing with an
  1755. * at91rm9200 controller, the atmel,nand-has-dma specify that
  1756. * this controller supports DMA, which means we are in fact
  1757. * dealing with an at91sam9g45+ controller.
  1758. */
  1759. if (!caps->has_dma &&
  1760. of_property_read_bool(pdev->dev.of_node,
  1761. "atmel,nand-has-dma"))
  1762. caps = &atmel_sam9g45_nand_caps;
  1763. /*
  1764. * All SoCs except the at91sam9261 are assigning ALE to A21 and
  1765. * CLE to A22. If atmel,nand-addr-offset != 21 this means we're
  1766. * actually dealing with an at91sam9261 controller.
  1767. */
  1768. of_property_read_u32(pdev->dev.of_node,
  1769. "atmel,nand-addr-offset", &ale_offs);
  1770. if (ale_offs != 21)
  1771. caps = &atmel_sam9261_nand_caps;
  1772. }
  1773. return caps->ops->probe(pdev, caps);
  1774. }
  1775. static int atmel_nand_controller_remove(struct platform_device *pdev)
  1776. {
  1777. struct atmel_nand_controller *nc = platform_get_drvdata(pdev);
  1778. return nc->caps->ops->remove(nc);
  1779. }
  1780. static struct platform_driver atmel_nand_controller_driver = {
  1781. .driver = {
  1782. .name = "atmel-nand-controller",
  1783. .of_match_table = of_match_ptr(atmel_nand_controller_of_ids),
  1784. },
  1785. .probe = atmel_nand_controller_probe,
  1786. .remove = atmel_nand_controller_remove,
  1787. };
  1788. module_platform_driver(atmel_nand_controller_driver);
  1789. MODULE_LICENSE("GPL");
  1790. MODULE_AUTHOR("Boris Brezillon <boris.brezillon@free-electrons.com>");
  1791. MODULE_DESCRIPTION("NAND Flash Controller driver for Atmel SoCs");
  1792. MODULE_ALIAS("platform:atmel-nand-controller");