sdma_v3_0.c 48 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703
  1. /*
  2. * Copyright 2014 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. * Authors: Alex Deucher
  23. */
  24. #include <linux/firmware.h>
  25. #include <drm/drmP.h>
  26. #include "amdgpu.h"
  27. #include "amdgpu_ucode.h"
  28. #include "amdgpu_trace.h"
  29. #include "vi.h"
  30. #include "vid.h"
  31. #include "oss/oss_3_0_d.h"
  32. #include "oss/oss_3_0_sh_mask.h"
  33. #include "gmc/gmc_8_1_d.h"
  34. #include "gmc/gmc_8_1_sh_mask.h"
  35. #include "gca/gfx_8_0_d.h"
  36. #include "gca/gfx_8_0_enum.h"
  37. #include "gca/gfx_8_0_sh_mask.h"
  38. #include "bif/bif_5_0_d.h"
  39. #include "bif/bif_5_0_sh_mask.h"
  40. #include "tonga_sdma_pkt_open.h"
  41. static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev);
  42. static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev);
  43. static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev);
  44. static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev);
  45. MODULE_FIRMWARE("amdgpu/tonga_sdma.bin");
  46. MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin");
  47. MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin");
  48. MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin");
  49. MODULE_FIRMWARE("amdgpu/fiji_sdma.bin");
  50. MODULE_FIRMWARE("amdgpu/fiji_sdma1.bin");
  51. MODULE_FIRMWARE("amdgpu/stoney_sdma.bin");
  52. MODULE_FIRMWARE("amdgpu/polaris10_sdma.bin");
  53. MODULE_FIRMWARE("amdgpu/polaris10_sdma1.bin");
  54. MODULE_FIRMWARE("amdgpu/polaris11_sdma.bin");
  55. MODULE_FIRMWARE("amdgpu/polaris11_sdma1.bin");
  56. static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
  57. {
  58. SDMA0_REGISTER_OFFSET,
  59. SDMA1_REGISTER_OFFSET
  60. };
  61. static const u32 golden_settings_tonga_a11[] =
  62. {
  63. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  64. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  65. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  66. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  67. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  68. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  69. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  70. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  71. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  72. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  73. };
  74. static const u32 tonga_mgcg_cgcg_init[] =
  75. {
  76. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  77. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  78. };
  79. static const u32 golden_settings_fiji_a10[] =
  80. {
  81. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  82. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  83. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  84. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  85. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  86. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  87. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  88. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  89. };
  90. static const u32 fiji_mgcg_cgcg_init[] =
  91. {
  92. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  93. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  94. };
  95. static const u32 golden_settings_polaris11_a11[] =
  96. {
  97. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  98. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  99. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  100. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  101. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  102. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  103. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  104. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  105. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  106. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  107. };
  108. static const u32 golden_settings_polaris10_a11[] =
  109. {
  110. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  111. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  112. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  113. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  114. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  115. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  116. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  117. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  118. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  119. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  120. };
  121. static const u32 cz_golden_settings_a11[] =
  122. {
  123. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  124. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  125. mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
  126. mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
  127. mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  128. mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  129. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  130. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  131. mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100,
  132. mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800,
  133. mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  134. mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  135. };
  136. static const u32 cz_mgcg_cgcg_init[] =
  137. {
  138. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  139. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  140. };
  141. static const u32 stoney_golden_settings_a11[] =
  142. {
  143. mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
  144. mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
  145. mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  146. mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  147. };
  148. static const u32 stoney_mgcg_cgcg_init[] =
  149. {
  150. mmSDMA0_CLK_CTRL, 0xffffffff, 0x00000100,
  151. };
  152. /*
  153. * sDMA - System DMA
  154. * Starting with CIK, the GPU has new asynchronous
  155. * DMA engines. These engines are used for compute
  156. * and gfx. There are two DMA engines (SDMA0, SDMA1)
  157. * and each one supports 1 ring buffer used for gfx
  158. * and 2 queues used for compute.
  159. *
  160. * The programming model is very similar to the CP
  161. * (ring buffer, IBs, etc.), but sDMA has it's own
  162. * packet format that is different from the PM4 format
  163. * used by the CP. sDMA supports copying data, writing
  164. * embedded data, solid fills, and a number of other
  165. * things. It also has support for tiling/detiling of
  166. * buffers.
  167. */
  168. static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev)
  169. {
  170. switch (adev->asic_type) {
  171. case CHIP_FIJI:
  172. amdgpu_program_register_sequence(adev,
  173. fiji_mgcg_cgcg_init,
  174. (const u32)ARRAY_SIZE(fiji_mgcg_cgcg_init));
  175. amdgpu_program_register_sequence(adev,
  176. golden_settings_fiji_a10,
  177. (const u32)ARRAY_SIZE(golden_settings_fiji_a10));
  178. break;
  179. case CHIP_TONGA:
  180. amdgpu_program_register_sequence(adev,
  181. tonga_mgcg_cgcg_init,
  182. (const u32)ARRAY_SIZE(tonga_mgcg_cgcg_init));
  183. amdgpu_program_register_sequence(adev,
  184. golden_settings_tonga_a11,
  185. (const u32)ARRAY_SIZE(golden_settings_tonga_a11));
  186. break;
  187. case CHIP_POLARIS11:
  188. amdgpu_program_register_sequence(adev,
  189. golden_settings_polaris11_a11,
  190. (const u32)ARRAY_SIZE(golden_settings_polaris11_a11));
  191. break;
  192. case CHIP_POLARIS10:
  193. amdgpu_program_register_sequence(adev,
  194. golden_settings_polaris10_a11,
  195. (const u32)ARRAY_SIZE(golden_settings_polaris10_a11));
  196. break;
  197. case CHIP_CARRIZO:
  198. amdgpu_program_register_sequence(adev,
  199. cz_mgcg_cgcg_init,
  200. (const u32)ARRAY_SIZE(cz_mgcg_cgcg_init));
  201. amdgpu_program_register_sequence(adev,
  202. cz_golden_settings_a11,
  203. (const u32)ARRAY_SIZE(cz_golden_settings_a11));
  204. break;
  205. case CHIP_STONEY:
  206. amdgpu_program_register_sequence(adev,
  207. stoney_mgcg_cgcg_init,
  208. (const u32)ARRAY_SIZE(stoney_mgcg_cgcg_init));
  209. amdgpu_program_register_sequence(adev,
  210. stoney_golden_settings_a11,
  211. (const u32)ARRAY_SIZE(stoney_golden_settings_a11));
  212. break;
  213. default:
  214. break;
  215. }
  216. }
  217. static void sdma_v3_0_free_microcode(struct amdgpu_device *adev)
  218. {
  219. int i;
  220. for (i = 0; i < adev->sdma.num_instances; i++) {
  221. release_firmware(adev->sdma.instance[i].fw);
  222. adev->sdma.instance[i].fw = NULL;
  223. }
  224. }
  225. /**
  226. * sdma_v3_0_init_microcode - load ucode images from disk
  227. *
  228. * @adev: amdgpu_device pointer
  229. *
  230. * Use the firmware interface to load the ucode images into
  231. * the driver (not loaded into hw).
  232. * Returns 0 on success, error on failure.
  233. */
  234. static int sdma_v3_0_init_microcode(struct amdgpu_device *adev)
  235. {
  236. const char *chip_name;
  237. char fw_name[30];
  238. int err = 0, i;
  239. struct amdgpu_firmware_info *info = NULL;
  240. const struct common_firmware_header *header = NULL;
  241. const struct sdma_firmware_header_v1_0 *hdr;
  242. DRM_DEBUG("\n");
  243. switch (adev->asic_type) {
  244. case CHIP_TONGA:
  245. chip_name = "tonga";
  246. break;
  247. case CHIP_FIJI:
  248. chip_name = "fiji";
  249. break;
  250. case CHIP_POLARIS11:
  251. chip_name = "polaris11";
  252. break;
  253. case CHIP_POLARIS10:
  254. chip_name = "polaris10";
  255. break;
  256. case CHIP_CARRIZO:
  257. chip_name = "carrizo";
  258. break;
  259. case CHIP_STONEY:
  260. chip_name = "stoney";
  261. break;
  262. default: BUG();
  263. }
  264. for (i = 0; i < adev->sdma.num_instances; i++) {
  265. if (i == 0)
  266. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
  267. else
  268. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
  269. err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
  270. if (err)
  271. goto out;
  272. err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
  273. if (err)
  274. goto out;
  275. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  276. adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
  277. adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
  278. if (adev->sdma.instance[i].feature_version >= 20)
  279. adev->sdma.instance[i].burst_nop = true;
  280. if (adev->firmware.smu_load) {
  281. info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
  282. info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
  283. info->fw = adev->sdma.instance[i].fw;
  284. header = (const struct common_firmware_header *)info->fw->data;
  285. adev->firmware.fw_size +=
  286. ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
  287. }
  288. }
  289. out:
  290. if (err) {
  291. printk(KERN_ERR
  292. "sdma_v3_0: Failed to load firmware \"%s\"\n",
  293. fw_name);
  294. for (i = 0; i < adev->sdma.num_instances; i++) {
  295. release_firmware(adev->sdma.instance[i].fw);
  296. adev->sdma.instance[i].fw = NULL;
  297. }
  298. }
  299. return err;
  300. }
  301. /**
  302. * sdma_v3_0_ring_get_rptr - get the current read pointer
  303. *
  304. * @ring: amdgpu ring pointer
  305. *
  306. * Get the current rptr from the hardware (VI+).
  307. */
  308. static uint32_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring)
  309. {
  310. /* XXX check if swapping is necessary on BE */
  311. return ring->adev->wb.wb[ring->rptr_offs] >> 2;
  312. }
  313. /**
  314. * sdma_v3_0_ring_get_wptr - get the current write pointer
  315. *
  316. * @ring: amdgpu ring pointer
  317. *
  318. * Get the current wptr from the hardware (VI+).
  319. */
  320. static uint32_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring)
  321. {
  322. struct amdgpu_device *adev = ring->adev;
  323. u32 wptr;
  324. if (ring->use_doorbell) {
  325. /* XXX check if swapping is necessary on BE */
  326. wptr = ring->adev->wb.wb[ring->wptr_offs] >> 2;
  327. } else {
  328. int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
  329. wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me]) >> 2;
  330. }
  331. return wptr;
  332. }
  333. /**
  334. * sdma_v3_0_ring_set_wptr - commit the write pointer
  335. *
  336. * @ring: amdgpu ring pointer
  337. *
  338. * Write the wptr back to the hardware (VI+).
  339. */
  340. static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring)
  341. {
  342. struct amdgpu_device *adev = ring->adev;
  343. if (ring->use_doorbell) {
  344. /* XXX check if swapping is necessary on BE */
  345. adev->wb.wb[ring->wptr_offs] = ring->wptr << 2;
  346. WDOORBELL32(ring->doorbell_index, ring->wptr << 2);
  347. } else {
  348. int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
  349. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me], ring->wptr << 2);
  350. }
  351. }
  352. static void sdma_v3_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
  353. {
  354. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  355. int i;
  356. for (i = 0; i < count; i++)
  357. if (sdma && sdma->burst_nop && (i == 0))
  358. amdgpu_ring_write(ring, ring->funcs->nop |
  359. SDMA_PKT_NOP_HEADER_COUNT(count - 1));
  360. else
  361. amdgpu_ring_write(ring, ring->funcs->nop);
  362. }
  363. /**
  364. * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine
  365. *
  366. * @ring: amdgpu ring pointer
  367. * @ib: IB object to schedule
  368. *
  369. * Schedule an IB in the DMA ring (VI).
  370. */
  371. static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring,
  372. struct amdgpu_ib *ib,
  373. unsigned vm_id, bool ctx_switch)
  374. {
  375. u32 vmid = vm_id & 0xf;
  376. /* IB packet must end on a 8 DW boundary */
  377. sdma_v3_0_ring_insert_nop(ring, (10 - (ring->wptr & 7)) % 8);
  378. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
  379. SDMA_PKT_INDIRECT_HEADER_VMID(vmid));
  380. /* base must be 32 byte aligned */
  381. amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
  382. amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
  383. amdgpu_ring_write(ring, ib->length_dw);
  384. amdgpu_ring_write(ring, 0);
  385. amdgpu_ring_write(ring, 0);
  386. }
  387. /**
  388. * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
  389. *
  390. * @ring: amdgpu ring pointer
  391. *
  392. * Emit an hdp flush packet on the requested DMA ring.
  393. */
  394. static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
  395. {
  396. u32 ref_and_mask = 0;
  397. if (ring == &ring->adev->sdma.instance[0].ring)
  398. ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
  399. else
  400. ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
  401. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  402. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
  403. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
  404. amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
  405. amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
  406. amdgpu_ring_write(ring, ref_and_mask); /* reference */
  407. amdgpu_ring_write(ring, ref_and_mask); /* mask */
  408. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  409. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  410. }
  411. static void sdma_v3_0_ring_emit_hdp_invalidate(struct amdgpu_ring *ring)
  412. {
  413. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  414. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  415. amdgpu_ring_write(ring, mmHDP_DEBUG0);
  416. amdgpu_ring_write(ring, 1);
  417. }
  418. /**
  419. * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring
  420. *
  421. * @ring: amdgpu ring pointer
  422. * @fence: amdgpu fence object
  423. *
  424. * Add a DMA fence packet to the ring to write
  425. * the fence seq number and DMA trap packet to generate
  426. * an interrupt if needed (VI).
  427. */
  428. static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
  429. unsigned flags)
  430. {
  431. bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
  432. /* write the fence */
  433. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  434. amdgpu_ring_write(ring, lower_32_bits(addr));
  435. amdgpu_ring_write(ring, upper_32_bits(addr));
  436. amdgpu_ring_write(ring, lower_32_bits(seq));
  437. /* optionally write high bits as well */
  438. if (write64bit) {
  439. addr += 4;
  440. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  441. amdgpu_ring_write(ring, lower_32_bits(addr));
  442. amdgpu_ring_write(ring, upper_32_bits(addr));
  443. amdgpu_ring_write(ring, upper_32_bits(seq));
  444. }
  445. /* generate an interrupt */
  446. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
  447. amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
  448. }
  449. /**
  450. * sdma_v3_0_gfx_stop - stop the gfx async dma engines
  451. *
  452. * @adev: amdgpu_device pointer
  453. *
  454. * Stop the gfx async dma ring buffers (VI).
  455. */
  456. static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev)
  457. {
  458. struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
  459. struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
  460. u32 rb_cntl, ib_cntl;
  461. int i;
  462. if ((adev->mman.buffer_funcs_ring == sdma0) ||
  463. (adev->mman.buffer_funcs_ring == sdma1))
  464. amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);
  465. for (i = 0; i < adev->sdma.num_instances; i++) {
  466. rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
  467. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
  468. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  469. ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
  470. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
  471. WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
  472. }
  473. sdma0->ready = false;
  474. sdma1->ready = false;
  475. }
  476. /**
  477. * sdma_v3_0_rlc_stop - stop the compute async dma engines
  478. *
  479. * @adev: amdgpu_device pointer
  480. *
  481. * Stop the compute async dma queues (VI).
  482. */
  483. static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev)
  484. {
  485. /* XXX todo */
  486. }
  487. /**
  488. * sdma_v3_0_ctx_switch_enable - stop the async dma engines context switch
  489. *
  490. * @adev: amdgpu_device pointer
  491. * @enable: enable/disable the DMA MEs context switch.
  492. *
  493. * Halt or unhalt the async dma engines context switch (VI).
  494. */
  495. static void sdma_v3_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
  496. {
  497. u32 f32_cntl;
  498. int i;
  499. for (i = 0; i < adev->sdma.num_instances; i++) {
  500. f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]);
  501. if (enable)
  502. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  503. AUTO_CTXSW_ENABLE, 1);
  504. else
  505. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  506. AUTO_CTXSW_ENABLE, 0);
  507. WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl);
  508. }
  509. }
  510. /**
  511. * sdma_v3_0_enable - stop the async dma engines
  512. *
  513. * @adev: amdgpu_device pointer
  514. * @enable: enable/disable the DMA MEs.
  515. *
  516. * Halt or unhalt the async dma engines (VI).
  517. */
  518. static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable)
  519. {
  520. u32 f32_cntl;
  521. int i;
  522. if (!enable) {
  523. sdma_v3_0_gfx_stop(adev);
  524. sdma_v3_0_rlc_stop(adev);
  525. }
  526. for (i = 0; i < adev->sdma.num_instances; i++) {
  527. f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
  528. if (enable)
  529. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
  530. else
  531. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
  532. WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
  533. }
  534. }
  535. /**
  536. * sdma_v3_0_gfx_resume - setup and start the async dma engines
  537. *
  538. * @adev: amdgpu_device pointer
  539. *
  540. * Set up the gfx DMA ring buffers and enable them (VI).
  541. * Returns 0 for success, error for failure.
  542. */
  543. static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev)
  544. {
  545. struct amdgpu_ring *ring;
  546. u32 rb_cntl, ib_cntl;
  547. u32 rb_bufsz;
  548. u32 wb_offset;
  549. u32 doorbell;
  550. int i, j, r;
  551. for (i = 0; i < adev->sdma.num_instances; i++) {
  552. ring = &adev->sdma.instance[i].ring;
  553. wb_offset = (ring->rptr_offs * 4);
  554. mutex_lock(&adev->srbm_mutex);
  555. for (j = 0; j < 16; j++) {
  556. vi_srbm_select(adev, 0, 0, 0, j);
  557. /* SDMA GFX */
  558. WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
  559. WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
  560. }
  561. vi_srbm_select(adev, 0, 0, 0, 0);
  562. mutex_unlock(&adev->srbm_mutex);
  563. WREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i],
  564. adev->gfx.config.gb_addr_config & 0x70);
  565. WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
  566. /* Set ring buffer size in dwords */
  567. rb_bufsz = order_base_2(ring->ring_size / 4);
  568. rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
  569. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
  570. #ifdef __BIG_ENDIAN
  571. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
  572. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
  573. RPTR_WRITEBACK_SWAP_ENABLE, 1);
  574. #endif
  575. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  576. /* Initialize the ring buffer's read and write pointers */
  577. WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
  578. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0);
  579. WREG32(mmSDMA0_GFX_IB_RPTR + sdma_offsets[i], 0);
  580. WREG32(mmSDMA0_GFX_IB_OFFSET + sdma_offsets[i], 0);
  581. /* set the wb address whether it's enabled or not */
  582. WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
  583. upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
  584. WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
  585. lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
  586. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
  587. WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
  588. WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
  589. ring->wptr = 0;
  590. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], ring->wptr << 2);
  591. doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]);
  592. if (ring->use_doorbell) {
  593. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL,
  594. OFFSET, ring->doorbell_index);
  595. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
  596. } else {
  597. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
  598. }
  599. WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell);
  600. /* enable DMA RB */
  601. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
  602. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  603. ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
  604. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
  605. #ifdef __BIG_ENDIAN
  606. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
  607. #endif
  608. /* enable DMA IBs */
  609. WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
  610. ring->ready = true;
  611. }
  612. /* unhalt the MEs */
  613. sdma_v3_0_enable(adev, true);
  614. /* enable sdma ring preemption */
  615. sdma_v3_0_ctx_switch_enable(adev, true);
  616. for (i = 0; i < adev->sdma.num_instances; i++) {
  617. ring = &adev->sdma.instance[i].ring;
  618. r = amdgpu_ring_test_ring(ring);
  619. if (r) {
  620. ring->ready = false;
  621. return r;
  622. }
  623. if (adev->mman.buffer_funcs_ring == ring)
  624. amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size);
  625. }
  626. return 0;
  627. }
  628. /**
  629. * sdma_v3_0_rlc_resume - setup and start the async dma engines
  630. *
  631. * @adev: amdgpu_device pointer
  632. *
  633. * Set up the compute DMA queues and enable them (VI).
  634. * Returns 0 for success, error for failure.
  635. */
  636. static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev)
  637. {
  638. /* XXX todo */
  639. return 0;
  640. }
  641. /**
  642. * sdma_v3_0_load_microcode - load the sDMA ME ucode
  643. *
  644. * @adev: amdgpu_device pointer
  645. *
  646. * Loads the sDMA0/1 ucode.
  647. * Returns 0 for success, -EINVAL if the ucode is not available.
  648. */
  649. static int sdma_v3_0_load_microcode(struct amdgpu_device *adev)
  650. {
  651. const struct sdma_firmware_header_v1_0 *hdr;
  652. const __le32 *fw_data;
  653. u32 fw_size;
  654. int i, j;
  655. /* halt the MEs */
  656. sdma_v3_0_enable(adev, false);
  657. for (i = 0; i < adev->sdma.num_instances; i++) {
  658. if (!adev->sdma.instance[i].fw)
  659. return -EINVAL;
  660. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  661. amdgpu_ucode_print_sdma_hdr(&hdr->header);
  662. fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
  663. fw_data = (const __le32 *)
  664. (adev->sdma.instance[i].fw->data +
  665. le32_to_cpu(hdr->header.ucode_array_offset_bytes));
  666. WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0);
  667. for (j = 0; j < fw_size; j++)
  668. WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++));
  669. WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma.instance[i].fw_version);
  670. }
  671. return 0;
  672. }
  673. /**
  674. * sdma_v3_0_start - setup and start the async dma engines
  675. *
  676. * @adev: amdgpu_device pointer
  677. *
  678. * Set up the DMA engines and enable them (VI).
  679. * Returns 0 for success, error for failure.
  680. */
  681. static int sdma_v3_0_start(struct amdgpu_device *adev)
  682. {
  683. int r, i;
  684. if (!adev->pp_enabled) {
  685. if (!adev->firmware.smu_load) {
  686. r = sdma_v3_0_load_microcode(adev);
  687. if (r)
  688. return r;
  689. } else {
  690. for (i = 0; i < adev->sdma.num_instances; i++) {
  691. r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
  692. (i == 0) ?
  693. AMDGPU_UCODE_ID_SDMA0 :
  694. AMDGPU_UCODE_ID_SDMA1);
  695. if (r)
  696. return -EINVAL;
  697. }
  698. }
  699. }
  700. /* disble sdma engine before programing it */
  701. sdma_v3_0_ctx_switch_enable(adev, false);
  702. sdma_v3_0_enable(adev, false);
  703. /* start the gfx rings and rlc compute queues */
  704. r = sdma_v3_0_gfx_resume(adev);
  705. if (r)
  706. return r;
  707. r = sdma_v3_0_rlc_resume(adev);
  708. if (r)
  709. return r;
  710. return 0;
  711. }
  712. /**
  713. * sdma_v3_0_ring_test_ring - simple async dma engine test
  714. *
  715. * @ring: amdgpu_ring structure holding ring information
  716. *
  717. * Test the DMA engine by writing using it to write an
  718. * value to memory. (VI).
  719. * Returns 0 for success, error for failure.
  720. */
  721. static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring)
  722. {
  723. struct amdgpu_device *adev = ring->adev;
  724. unsigned i;
  725. unsigned index;
  726. int r;
  727. u32 tmp;
  728. u64 gpu_addr;
  729. r = amdgpu_wb_get(adev, &index);
  730. if (r) {
  731. dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
  732. return r;
  733. }
  734. gpu_addr = adev->wb.gpu_addr + (index * 4);
  735. tmp = 0xCAFEDEAD;
  736. adev->wb.wb[index] = cpu_to_le32(tmp);
  737. r = amdgpu_ring_alloc(ring, 5);
  738. if (r) {
  739. DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
  740. amdgpu_wb_free(adev, index);
  741. return r;
  742. }
  743. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  744. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
  745. amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
  746. amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
  747. amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
  748. amdgpu_ring_write(ring, 0xDEADBEEF);
  749. amdgpu_ring_commit(ring);
  750. for (i = 0; i < adev->usec_timeout; i++) {
  751. tmp = le32_to_cpu(adev->wb.wb[index]);
  752. if (tmp == 0xDEADBEEF)
  753. break;
  754. DRM_UDELAY(1);
  755. }
  756. if (i < adev->usec_timeout) {
  757. DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
  758. } else {
  759. DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
  760. ring->idx, tmp);
  761. r = -EINVAL;
  762. }
  763. amdgpu_wb_free(adev, index);
  764. return r;
  765. }
  766. /**
  767. * sdma_v3_0_ring_test_ib - test an IB on the DMA engine
  768. *
  769. * @ring: amdgpu_ring structure holding ring information
  770. *
  771. * Test a simple IB in the DMA ring (VI).
  772. * Returns 0 on success, error on failure.
  773. */
  774. static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
  775. {
  776. struct amdgpu_device *adev = ring->adev;
  777. struct amdgpu_ib ib;
  778. struct dma_fence *f = NULL;
  779. unsigned index;
  780. u32 tmp = 0;
  781. u64 gpu_addr;
  782. long r;
  783. r = amdgpu_wb_get(adev, &index);
  784. if (r) {
  785. dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
  786. return r;
  787. }
  788. gpu_addr = adev->wb.gpu_addr + (index * 4);
  789. tmp = 0xCAFEDEAD;
  790. adev->wb.wb[index] = cpu_to_le32(tmp);
  791. memset(&ib, 0, sizeof(ib));
  792. r = amdgpu_ib_get(adev, NULL, 256, &ib);
  793. if (r) {
  794. DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
  795. goto err0;
  796. }
  797. ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  798. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
  799. ib.ptr[1] = lower_32_bits(gpu_addr);
  800. ib.ptr[2] = upper_32_bits(gpu_addr);
  801. ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
  802. ib.ptr[4] = 0xDEADBEEF;
  803. ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  804. ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  805. ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  806. ib.length_dw = 8;
  807. r = amdgpu_ib_schedule(ring, 1, &ib, NULL, NULL, &f);
  808. if (r)
  809. goto err1;
  810. r = dma_fence_wait_timeout(f, false, timeout);
  811. if (r == 0) {
  812. DRM_ERROR("amdgpu: IB test timed out\n");
  813. r = -ETIMEDOUT;
  814. goto err1;
  815. } else if (r < 0) {
  816. DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
  817. goto err1;
  818. }
  819. tmp = le32_to_cpu(adev->wb.wb[index]);
  820. if (tmp == 0xDEADBEEF) {
  821. DRM_INFO("ib test on ring %d succeeded\n", ring->idx);
  822. r = 0;
  823. } else {
  824. DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
  825. r = -EINVAL;
  826. }
  827. err1:
  828. amdgpu_ib_free(adev, &ib, NULL);
  829. dma_fence_put(f);
  830. err0:
  831. amdgpu_wb_free(adev, index);
  832. return r;
  833. }
  834. /**
  835. * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART
  836. *
  837. * @ib: indirect buffer to fill with commands
  838. * @pe: addr of the page entry
  839. * @src: src addr to copy from
  840. * @count: number of page entries to update
  841. *
  842. * Update PTEs by copying them from the GART using sDMA (CIK).
  843. */
  844. static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib,
  845. uint64_t pe, uint64_t src,
  846. unsigned count)
  847. {
  848. unsigned bytes = count * 8;
  849. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  850. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  851. ib->ptr[ib->length_dw++] = bytes;
  852. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  853. ib->ptr[ib->length_dw++] = lower_32_bits(src);
  854. ib->ptr[ib->length_dw++] = upper_32_bits(src);
  855. ib->ptr[ib->length_dw++] = lower_32_bits(pe);
  856. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  857. }
  858. /**
  859. * sdma_v3_0_vm_write_pte - update PTEs by writing them manually
  860. *
  861. * @ib: indirect buffer to fill with commands
  862. * @pe: addr of the page entry
  863. * @value: dst addr to write into pe
  864. * @count: number of page entries to update
  865. * @incr: increase next addr by incr bytes
  866. *
  867. * Update PTEs by writing them manually using sDMA (CIK).
  868. */
  869. static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
  870. uint64_t value, unsigned count,
  871. uint32_t incr)
  872. {
  873. unsigned ndw = count * 2;
  874. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  875. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
  876. ib->ptr[ib->length_dw++] = lower_32_bits(pe);
  877. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  878. ib->ptr[ib->length_dw++] = ndw;
  879. for (; ndw > 0; ndw -= 2) {
  880. ib->ptr[ib->length_dw++] = lower_32_bits(value);
  881. ib->ptr[ib->length_dw++] = upper_32_bits(value);
  882. value += incr;
  883. }
  884. }
  885. /**
  886. * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA
  887. *
  888. * @ib: indirect buffer to fill with commands
  889. * @pe: addr of the page entry
  890. * @addr: dst addr to write into pe
  891. * @count: number of page entries to update
  892. * @incr: increase next addr by incr bytes
  893. * @flags: access flags
  894. *
  895. * Update the page tables using sDMA (CIK).
  896. */
  897. static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib, uint64_t pe,
  898. uint64_t addr, unsigned count,
  899. uint32_t incr, uint32_t flags)
  900. {
  901. /* for physically contiguous pages (vram) */
  902. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
  903. ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
  904. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  905. ib->ptr[ib->length_dw++] = flags; /* mask */
  906. ib->ptr[ib->length_dw++] = 0;
  907. ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
  908. ib->ptr[ib->length_dw++] = upper_32_bits(addr);
  909. ib->ptr[ib->length_dw++] = incr; /* increment size */
  910. ib->ptr[ib->length_dw++] = 0;
  911. ib->ptr[ib->length_dw++] = count; /* number of entries */
  912. }
  913. /**
  914. * sdma_v3_0_ring_pad_ib - pad the IB to the required number of dw
  915. *
  916. * @ib: indirect buffer to fill with padding
  917. *
  918. */
  919. static void sdma_v3_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
  920. {
  921. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  922. u32 pad_count;
  923. int i;
  924. pad_count = (8 - (ib->length_dw & 0x7)) % 8;
  925. for (i = 0; i < pad_count; i++)
  926. if (sdma && sdma->burst_nop && (i == 0))
  927. ib->ptr[ib->length_dw++] =
  928. SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
  929. SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
  930. else
  931. ib->ptr[ib->length_dw++] =
  932. SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
  933. }
  934. /**
  935. * sdma_v3_0_ring_emit_pipeline_sync - sync the pipeline
  936. *
  937. * @ring: amdgpu_ring pointer
  938. *
  939. * Make sure all previous operations are completed (CIK).
  940. */
  941. static void sdma_v3_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
  942. {
  943. uint32_t seq = ring->fence_drv.sync_seq;
  944. uint64_t addr = ring->fence_drv.gpu_addr;
  945. /* wait for idle */
  946. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  947. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  948. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
  949. SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
  950. amdgpu_ring_write(ring, addr & 0xfffffffc);
  951. amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
  952. amdgpu_ring_write(ring, seq); /* reference */
  953. amdgpu_ring_write(ring, 0xfffffff); /* mask */
  954. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  955. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
  956. }
  957. /**
  958. * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA
  959. *
  960. * @ring: amdgpu_ring pointer
  961. * @vm: amdgpu_vm pointer
  962. *
  963. * Update the page table base and flush the VM TLB
  964. * using sDMA (VI).
  965. */
  966. static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
  967. unsigned vm_id, uint64_t pd_addr)
  968. {
  969. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  970. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  971. if (vm_id < 8) {
  972. amdgpu_ring_write(ring, (mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + vm_id));
  973. } else {
  974. amdgpu_ring_write(ring, (mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vm_id - 8));
  975. }
  976. amdgpu_ring_write(ring, pd_addr >> 12);
  977. /* flush TLB */
  978. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  979. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  980. amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST);
  981. amdgpu_ring_write(ring, 1 << vm_id);
  982. /* wait for flush */
  983. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  984. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  985. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
  986. amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
  987. amdgpu_ring_write(ring, 0);
  988. amdgpu_ring_write(ring, 0); /* reference */
  989. amdgpu_ring_write(ring, 0); /* mask */
  990. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  991. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  992. }
  993. static int sdma_v3_0_early_init(void *handle)
  994. {
  995. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  996. switch (adev->asic_type) {
  997. case CHIP_STONEY:
  998. adev->sdma.num_instances = 1;
  999. break;
  1000. default:
  1001. adev->sdma.num_instances = SDMA_MAX_INSTANCE;
  1002. break;
  1003. }
  1004. sdma_v3_0_set_ring_funcs(adev);
  1005. sdma_v3_0_set_buffer_funcs(adev);
  1006. sdma_v3_0_set_vm_pte_funcs(adev);
  1007. sdma_v3_0_set_irq_funcs(adev);
  1008. return 0;
  1009. }
  1010. static int sdma_v3_0_sw_init(void *handle)
  1011. {
  1012. struct amdgpu_ring *ring;
  1013. int r, i;
  1014. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1015. /* SDMA trap event */
  1016. r = amdgpu_irq_add_id(adev, 224, &adev->sdma.trap_irq);
  1017. if (r)
  1018. return r;
  1019. /* SDMA Privileged inst */
  1020. r = amdgpu_irq_add_id(adev, 241, &adev->sdma.illegal_inst_irq);
  1021. if (r)
  1022. return r;
  1023. /* SDMA Privileged inst */
  1024. r = amdgpu_irq_add_id(adev, 247, &adev->sdma.illegal_inst_irq);
  1025. if (r)
  1026. return r;
  1027. r = sdma_v3_0_init_microcode(adev);
  1028. if (r) {
  1029. DRM_ERROR("Failed to load sdma firmware!\n");
  1030. return r;
  1031. }
  1032. for (i = 0; i < adev->sdma.num_instances; i++) {
  1033. ring = &adev->sdma.instance[i].ring;
  1034. ring->ring_obj = NULL;
  1035. ring->use_doorbell = true;
  1036. ring->doorbell_index = (i == 0) ?
  1037. AMDGPU_DOORBELL_sDMA_ENGINE0 : AMDGPU_DOORBELL_sDMA_ENGINE1;
  1038. sprintf(ring->name, "sdma%d", i);
  1039. r = amdgpu_ring_init(adev, ring, 1024,
  1040. &adev->sdma.trap_irq,
  1041. (i == 0) ?
  1042. AMDGPU_SDMA_IRQ_TRAP0 :
  1043. AMDGPU_SDMA_IRQ_TRAP1);
  1044. if (r)
  1045. return r;
  1046. }
  1047. return r;
  1048. }
  1049. static int sdma_v3_0_sw_fini(void *handle)
  1050. {
  1051. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1052. int i;
  1053. for (i = 0; i < adev->sdma.num_instances; i++)
  1054. amdgpu_ring_fini(&adev->sdma.instance[i].ring);
  1055. sdma_v3_0_free_microcode(adev);
  1056. return 0;
  1057. }
  1058. static int sdma_v3_0_hw_init(void *handle)
  1059. {
  1060. int r;
  1061. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1062. sdma_v3_0_init_golden_registers(adev);
  1063. r = sdma_v3_0_start(adev);
  1064. if (r)
  1065. return r;
  1066. return r;
  1067. }
  1068. static int sdma_v3_0_hw_fini(void *handle)
  1069. {
  1070. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1071. sdma_v3_0_ctx_switch_enable(adev, false);
  1072. sdma_v3_0_enable(adev, false);
  1073. return 0;
  1074. }
  1075. static int sdma_v3_0_suspend(void *handle)
  1076. {
  1077. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1078. return sdma_v3_0_hw_fini(adev);
  1079. }
  1080. static int sdma_v3_0_resume(void *handle)
  1081. {
  1082. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1083. return sdma_v3_0_hw_init(adev);
  1084. }
  1085. static bool sdma_v3_0_is_idle(void *handle)
  1086. {
  1087. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1088. u32 tmp = RREG32(mmSRBM_STATUS2);
  1089. if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
  1090. SRBM_STATUS2__SDMA1_BUSY_MASK))
  1091. return false;
  1092. return true;
  1093. }
  1094. static int sdma_v3_0_wait_for_idle(void *handle)
  1095. {
  1096. unsigned i;
  1097. u32 tmp;
  1098. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1099. for (i = 0; i < adev->usec_timeout; i++) {
  1100. tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
  1101. SRBM_STATUS2__SDMA1_BUSY_MASK);
  1102. if (!tmp)
  1103. return 0;
  1104. udelay(1);
  1105. }
  1106. return -ETIMEDOUT;
  1107. }
  1108. static bool sdma_v3_0_check_soft_reset(void *handle)
  1109. {
  1110. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1111. u32 srbm_soft_reset = 0;
  1112. u32 tmp = RREG32(mmSRBM_STATUS2);
  1113. if ((tmp & SRBM_STATUS2__SDMA_BUSY_MASK) ||
  1114. (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK)) {
  1115. srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
  1116. srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
  1117. }
  1118. if (srbm_soft_reset) {
  1119. adev->sdma.srbm_soft_reset = srbm_soft_reset;
  1120. return true;
  1121. } else {
  1122. adev->sdma.srbm_soft_reset = 0;
  1123. return false;
  1124. }
  1125. }
  1126. static int sdma_v3_0_pre_soft_reset(void *handle)
  1127. {
  1128. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1129. u32 srbm_soft_reset = 0;
  1130. if (!adev->sdma.srbm_soft_reset)
  1131. return 0;
  1132. srbm_soft_reset = adev->sdma.srbm_soft_reset;
  1133. if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
  1134. REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
  1135. sdma_v3_0_ctx_switch_enable(adev, false);
  1136. sdma_v3_0_enable(adev, false);
  1137. }
  1138. return 0;
  1139. }
  1140. static int sdma_v3_0_post_soft_reset(void *handle)
  1141. {
  1142. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1143. u32 srbm_soft_reset = 0;
  1144. if (!adev->sdma.srbm_soft_reset)
  1145. return 0;
  1146. srbm_soft_reset = adev->sdma.srbm_soft_reset;
  1147. if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
  1148. REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
  1149. sdma_v3_0_gfx_resume(adev);
  1150. sdma_v3_0_rlc_resume(adev);
  1151. }
  1152. return 0;
  1153. }
  1154. static int sdma_v3_0_soft_reset(void *handle)
  1155. {
  1156. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1157. u32 srbm_soft_reset = 0;
  1158. u32 tmp;
  1159. if (!adev->sdma.srbm_soft_reset)
  1160. return 0;
  1161. srbm_soft_reset = adev->sdma.srbm_soft_reset;
  1162. if (srbm_soft_reset) {
  1163. tmp = RREG32(mmSRBM_SOFT_RESET);
  1164. tmp |= srbm_soft_reset;
  1165. dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
  1166. WREG32(mmSRBM_SOFT_RESET, tmp);
  1167. tmp = RREG32(mmSRBM_SOFT_RESET);
  1168. udelay(50);
  1169. tmp &= ~srbm_soft_reset;
  1170. WREG32(mmSRBM_SOFT_RESET, tmp);
  1171. tmp = RREG32(mmSRBM_SOFT_RESET);
  1172. /* Wait a little for things to settle down */
  1173. udelay(50);
  1174. }
  1175. return 0;
  1176. }
  1177. static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev,
  1178. struct amdgpu_irq_src *source,
  1179. unsigned type,
  1180. enum amdgpu_interrupt_state state)
  1181. {
  1182. u32 sdma_cntl;
  1183. switch (type) {
  1184. case AMDGPU_SDMA_IRQ_TRAP0:
  1185. switch (state) {
  1186. case AMDGPU_IRQ_STATE_DISABLE:
  1187. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
  1188. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
  1189. WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
  1190. break;
  1191. case AMDGPU_IRQ_STATE_ENABLE:
  1192. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
  1193. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
  1194. WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
  1195. break;
  1196. default:
  1197. break;
  1198. }
  1199. break;
  1200. case AMDGPU_SDMA_IRQ_TRAP1:
  1201. switch (state) {
  1202. case AMDGPU_IRQ_STATE_DISABLE:
  1203. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
  1204. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
  1205. WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
  1206. break;
  1207. case AMDGPU_IRQ_STATE_ENABLE:
  1208. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
  1209. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
  1210. WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
  1211. break;
  1212. default:
  1213. break;
  1214. }
  1215. break;
  1216. default:
  1217. break;
  1218. }
  1219. return 0;
  1220. }
  1221. static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev,
  1222. struct amdgpu_irq_src *source,
  1223. struct amdgpu_iv_entry *entry)
  1224. {
  1225. u8 instance_id, queue_id;
  1226. instance_id = (entry->ring_id & 0x3) >> 0;
  1227. queue_id = (entry->ring_id & 0xc) >> 2;
  1228. DRM_DEBUG("IH: SDMA trap\n");
  1229. switch (instance_id) {
  1230. case 0:
  1231. switch (queue_id) {
  1232. case 0:
  1233. amdgpu_fence_process(&adev->sdma.instance[0].ring);
  1234. break;
  1235. case 1:
  1236. /* XXX compute */
  1237. break;
  1238. case 2:
  1239. /* XXX compute */
  1240. break;
  1241. }
  1242. break;
  1243. case 1:
  1244. switch (queue_id) {
  1245. case 0:
  1246. amdgpu_fence_process(&adev->sdma.instance[1].ring);
  1247. break;
  1248. case 1:
  1249. /* XXX compute */
  1250. break;
  1251. case 2:
  1252. /* XXX compute */
  1253. break;
  1254. }
  1255. break;
  1256. }
  1257. return 0;
  1258. }
  1259. static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev,
  1260. struct amdgpu_irq_src *source,
  1261. struct amdgpu_iv_entry *entry)
  1262. {
  1263. DRM_ERROR("Illegal instruction in SDMA command stream\n");
  1264. schedule_work(&adev->reset_work);
  1265. return 0;
  1266. }
  1267. static void sdma_v3_0_update_sdma_medium_grain_clock_gating(
  1268. struct amdgpu_device *adev,
  1269. bool enable)
  1270. {
  1271. uint32_t temp, data;
  1272. int i;
  1273. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
  1274. for (i = 0; i < adev->sdma.num_instances; i++) {
  1275. temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
  1276. data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1277. SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1278. SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1279. SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1280. SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1281. SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1282. SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1283. SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1284. if (data != temp)
  1285. WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
  1286. }
  1287. } else {
  1288. for (i = 0; i < adev->sdma.num_instances; i++) {
  1289. temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
  1290. data |= SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1291. SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1292. SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1293. SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1294. SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1295. SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1296. SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1297. SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK;
  1298. if (data != temp)
  1299. WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
  1300. }
  1301. }
  1302. }
  1303. static void sdma_v3_0_update_sdma_medium_grain_light_sleep(
  1304. struct amdgpu_device *adev,
  1305. bool enable)
  1306. {
  1307. uint32_t temp, data;
  1308. int i;
  1309. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
  1310. for (i = 0; i < adev->sdma.num_instances; i++) {
  1311. temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
  1312. data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1313. if (temp != data)
  1314. WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
  1315. }
  1316. } else {
  1317. for (i = 0; i < adev->sdma.num_instances; i++) {
  1318. temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
  1319. data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1320. if (temp != data)
  1321. WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
  1322. }
  1323. }
  1324. }
  1325. static int sdma_v3_0_set_clockgating_state(void *handle,
  1326. enum amd_clockgating_state state)
  1327. {
  1328. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1329. switch (adev->asic_type) {
  1330. case CHIP_FIJI:
  1331. case CHIP_CARRIZO:
  1332. case CHIP_STONEY:
  1333. sdma_v3_0_update_sdma_medium_grain_clock_gating(adev,
  1334. state == AMD_CG_STATE_GATE ? true : false);
  1335. sdma_v3_0_update_sdma_medium_grain_light_sleep(adev,
  1336. state == AMD_CG_STATE_GATE ? true : false);
  1337. break;
  1338. default:
  1339. break;
  1340. }
  1341. return 0;
  1342. }
  1343. static int sdma_v3_0_set_powergating_state(void *handle,
  1344. enum amd_powergating_state state)
  1345. {
  1346. return 0;
  1347. }
  1348. static const struct amd_ip_funcs sdma_v3_0_ip_funcs = {
  1349. .name = "sdma_v3_0",
  1350. .early_init = sdma_v3_0_early_init,
  1351. .late_init = NULL,
  1352. .sw_init = sdma_v3_0_sw_init,
  1353. .sw_fini = sdma_v3_0_sw_fini,
  1354. .hw_init = sdma_v3_0_hw_init,
  1355. .hw_fini = sdma_v3_0_hw_fini,
  1356. .suspend = sdma_v3_0_suspend,
  1357. .resume = sdma_v3_0_resume,
  1358. .is_idle = sdma_v3_0_is_idle,
  1359. .wait_for_idle = sdma_v3_0_wait_for_idle,
  1360. .check_soft_reset = sdma_v3_0_check_soft_reset,
  1361. .pre_soft_reset = sdma_v3_0_pre_soft_reset,
  1362. .post_soft_reset = sdma_v3_0_post_soft_reset,
  1363. .soft_reset = sdma_v3_0_soft_reset,
  1364. .set_clockgating_state = sdma_v3_0_set_clockgating_state,
  1365. .set_powergating_state = sdma_v3_0_set_powergating_state,
  1366. };
  1367. static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = {
  1368. .type = AMDGPU_RING_TYPE_SDMA,
  1369. .align_mask = 0xf,
  1370. .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
  1371. .get_rptr = sdma_v3_0_ring_get_rptr,
  1372. .get_wptr = sdma_v3_0_ring_get_wptr,
  1373. .set_wptr = sdma_v3_0_ring_set_wptr,
  1374. .emit_frame_size =
  1375. 6 + /* sdma_v3_0_ring_emit_hdp_flush */
  1376. 3 + /* sdma_v3_0_ring_emit_hdp_invalidate */
  1377. 6 + /* sdma_v3_0_ring_emit_pipeline_sync */
  1378. 12 + /* sdma_v3_0_ring_emit_vm_flush */
  1379. 10 + 10 + 10, /* sdma_v3_0_ring_emit_fence x3 for user fence, vm fence */
  1380. .emit_ib_size = 7 + 6, /* sdma_v3_0_ring_emit_ib */
  1381. .emit_ib = sdma_v3_0_ring_emit_ib,
  1382. .emit_fence = sdma_v3_0_ring_emit_fence,
  1383. .emit_pipeline_sync = sdma_v3_0_ring_emit_pipeline_sync,
  1384. .emit_vm_flush = sdma_v3_0_ring_emit_vm_flush,
  1385. .emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush,
  1386. .emit_hdp_invalidate = sdma_v3_0_ring_emit_hdp_invalidate,
  1387. .test_ring = sdma_v3_0_ring_test_ring,
  1388. .test_ib = sdma_v3_0_ring_test_ib,
  1389. .insert_nop = sdma_v3_0_ring_insert_nop,
  1390. .pad_ib = sdma_v3_0_ring_pad_ib,
  1391. };
  1392. static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev)
  1393. {
  1394. int i;
  1395. for (i = 0; i < adev->sdma.num_instances; i++)
  1396. adev->sdma.instance[i].ring.funcs = &sdma_v3_0_ring_funcs;
  1397. }
  1398. static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = {
  1399. .set = sdma_v3_0_set_trap_irq_state,
  1400. .process = sdma_v3_0_process_trap_irq,
  1401. };
  1402. static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = {
  1403. .process = sdma_v3_0_process_illegal_inst_irq,
  1404. };
  1405. static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev)
  1406. {
  1407. adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
  1408. adev->sdma.trap_irq.funcs = &sdma_v3_0_trap_irq_funcs;
  1409. adev->sdma.illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs;
  1410. }
  1411. /**
  1412. * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine
  1413. *
  1414. * @ring: amdgpu_ring structure holding ring information
  1415. * @src_offset: src GPU address
  1416. * @dst_offset: dst GPU address
  1417. * @byte_count: number of bytes to xfer
  1418. *
  1419. * Copy GPU buffers using the DMA engine (VI).
  1420. * Used by the amdgpu ttm implementation to move pages if
  1421. * registered as the asic copy callback.
  1422. */
  1423. static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ib *ib,
  1424. uint64_t src_offset,
  1425. uint64_t dst_offset,
  1426. uint32_t byte_count)
  1427. {
  1428. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  1429. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  1430. ib->ptr[ib->length_dw++] = byte_count;
  1431. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  1432. ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
  1433. ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
  1434. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1435. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1436. }
  1437. /**
  1438. * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine
  1439. *
  1440. * @ring: amdgpu_ring structure holding ring information
  1441. * @src_data: value to write to buffer
  1442. * @dst_offset: dst GPU address
  1443. * @byte_count: number of bytes to xfer
  1444. *
  1445. * Fill GPU buffers using the DMA engine (VI).
  1446. */
  1447. static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ib *ib,
  1448. uint32_t src_data,
  1449. uint64_t dst_offset,
  1450. uint32_t byte_count)
  1451. {
  1452. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
  1453. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1454. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1455. ib->ptr[ib->length_dw++] = src_data;
  1456. ib->ptr[ib->length_dw++] = byte_count;
  1457. }
  1458. static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = {
  1459. .copy_max_bytes = 0x1fffff,
  1460. .copy_num_dw = 7,
  1461. .emit_copy_buffer = sdma_v3_0_emit_copy_buffer,
  1462. .fill_max_bytes = 0x1fffff,
  1463. .fill_num_dw = 5,
  1464. .emit_fill_buffer = sdma_v3_0_emit_fill_buffer,
  1465. };
  1466. static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev)
  1467. {
  1468. if (adev->mman.buffer_funcs == NULL) {
  1469. adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs;
  1470. adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
  1471. }
  1472. }
  1473. static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = {
  1474. .copy_pte = sdma_v3_0_vm_copy_pte,
  1475. .write_pte = sdma_v3_0_vm_write_pte,
  1476. .set_pte_pde = sdma_v3_0_vm_set_pte_pde,
  1477. };
  1478. static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev)
  1479. {
  1480. unsigned i;
  1481. if (adev->vm_manager.vm_pte_funcs == NULL) {
  1482. adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs;
  1483. for (i = 0; i < adev->sdma.num_instances; i++)
  1484. adev->vm_manager.vm_pte_rings[i] =
  1485. &adev->sdma.instance[i].ring;
  1486. adev->vm_manager.vm_pte_num_rings = adev->sdma.num_instances;
  1487. }
  1488. }
  1489. const struct amdgpu_ip_block_version sdma_v3_0_ip_block =
  1490. {
  1491. .type = AMD_IP_BLOCK_TYPE_SDMA,
  1492. .major = 3,
  1493. .minor = 0,
  1494. .rev = 0,
  1495. .funcs = &sdma_v3_0_ip_funcs,
  1496. };
  1497. const struct amdgpu_ip_block_version sdma_v3_1_ip_block =
  1498. {
  1499. .type = AMD_IP_BLOCK_TYPE_SDMA,
  1500. .major = 3,
  1501. .minor = 1,
  1502. .rev = 0,
  1503. .funcs = &sdma_v3_0_ip_funcs,
  1504. };