ccp-dev-v5.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020
  1. /*
  2. * AMD Cryptographic Coprocessor (CCP) driver
  3. *
  4. * Copyright (C) 2016 Advanced Micro Devices, Inc.
  5. *
  6. * Author: Gary R Hook <gary.hook@amd.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/module.h>
  13. #include <linux/kernel.h>
  14. #include <linux/pci.h>
  15. #include <linux/kthread.h>
  16. #include <linux/dma-mapping.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/compiler.h>
  19. #include <linux/ccp.h>
  20. #include "ccp-dev.h"
  21. /* Allocate the requested number of contiguous LSB slots
  22. * from the LSB bitmap. Look in the private range for this
  23. * queue first; failing that, check the public area.
  24. * If no space is available, wait around.
  25. * Return: first slot number
  26. */
  27. static u32 ccp_lsb_alloc(struct ccp_cmd_queue *cmd_q, unsigned int count)
  28. {
  29. struct ccp_device *ccp;
  30. int start;
  31. /* First look at the map for the queue */
  32. if (cmd_q->lsb >= 0) {
  33. start = (u32)bitmap_find_next_zero_area(cmd_q->lsbmap,
  34. LSB_SIZE,
  35. 0, count, 0);
  36. if (start < LSB_SIZE) {
  37. bitmap_set(cmd_q->lsbmap, start, count);
  38. return start + cmd_q->lsb * LSB_SIZE;
  39. }
  40. }
  41. /* No joy; try to get an entry from the shared blocks */
  42. ccp = cmd_q->ccp;
  43. for (;;) {
  44. mutex_lock(&ccp->sb_mutex);
  45. start = (u32)bitmap_find_next_zero_area(ccp->lsbmap,
  46. MAX_LSB_CNT * LSB_SIZE,
  47. 0,
  48. count, 0);
  49. if (start <= MAX_LSB_CNT * LSB_SIZE) {
  50. bitmap_set(ccp->lsbmap, start, count);
  51. mutex_unlock(&ccp->sb_mutex);
  52. return start;
  53. }
  54. ccp->sb_avail = 0;
  55. mutex_unlock(&ccp->sb_mutex);
  56. /* Wait for KSB entries to become available */
  57. if (wait_event_interruptible(ccp->sb_queue, ccp->sb_avail))
  58. return 0;
  59. }
  60. }
  61. /* Free a number of LSB slots from the bitmap, starting at
  62. * the indicated starting slot number.
  63. */
  64. static void ccp_lsb_free(struct ccp_cmd_queue *cmd_q, unsigned int start,
  65. unsigned int count)
  66. {
  67. if (!start)
  68. return;
  69. if (cmd_q->lsb == start) {
  70. /* An entry from the private LSB */
  71. bitmap_clear(cmd_q->lsbmap, start, count);
  72. } else {
  73. /* From the shared LSBs */
  74. struct ccp_device *ccp = cmd_q->ccp;
  75. mutex_lock(&ccp->sb_mutex);
  76. bitmap_clear(ccp->lsbmap, start, count);
  77. ccp->sb_avail = 1;
  78. mutex_unlock(&ccp->sb_mutex);
  79. wake_up_interruptible_all(&ccp->sb_queue);
  80. }
  81. }
  82. /* CCP version 5: Union to define the function field (cmd_reg1/dword0) */
  83. union ccp_function {
  84. struct {
  85. u16 size:7;
  86. u16 encrypt:1;
  87. u16 mode:5;
  88. u16 type:2;
  89. } aes;
  90. struct {
  91. u16 size:7;
  92. u16 encrypt:1;
  93. u16 rsvd:5;
  94. u16 type:2;
  95. } aes_xts;
  96. struct {
  97. u16 rsvd1:10;
  98. u16 type:4;
  99. u16 rsvd2:1;
  100. } sha;
  101. struct {
  102. u16 mode:3;
  103. u16 size:12;
  104. } rsa;
  105. struct {
  106. u16 byteswap:2;
  107. u16 bitwise:3;
  108. u16 reflect:2;
  109. u16 rsvd:8;
  110. } pt;
  111. struct {
  112. u16 rsvd:13;
  113. } zlib;
  114. struct {
  115. u16 size:10;
  116. u16 type:2;
  117. u16 mode:3;
  118. } ecc;
  119. u16 raw;
  120. };
  121. #define CCP_AES_SIZE(p) ((p)->aes.size)
  122. #define CCP_AES_ENCRYPT(p) ((p)->aes.encrypt)
  123. #define CCP_AES_MODE(p) ((p)->aes.mode)
  124. #define CCP_AES_TYPE(p) ((p)->aes.type)
  125. #define CCP_XTS_SIZE(p) ((p)->aes_xts.size)
  126. #define CCP_XTS_ENCRYPT(p) ((p)->aes_xts.encrypt)
  127. #define CCP_SHA_TYPE(p) ((p)->sha.type)
  128. #define CCP_RSA_SIZE(p) ((p)->rsa.size)
  129. #define CCP_PT_BYTESWAP(p) ((p)->pt.byteswap)
  130. #define CCP_PT_BITWISE(p) ((p)->pt.bitwise)
  131. #define CCP_ECC_MODE(p) ((p)->ecc.mode)
  132. #define CCP_ECC_AFFINE(p) ((p)->ecc.one)
  133. /* Word 0 */
  134. #define CCP5_CMD_DW0(p) ((p)->dw0)
  135. #define CCP5_CMD_SOC(p) (CCP5_CMD_DW0(p).soc)
  136. #define CCP5_CMD_IOC(p) (CCP5_CMD_DW0(p).ioc)
  137. #define CCP5_CMD_INIT(p) (CCP5_CMD_DW0(p).init)
  138. #define CCP5_CMD_EOM(p) (CCP5_CMD_DW0(p).eom)
  139. #define CCP5_CMD_FUNCTION(p) (CCP5_CMD_DW0(p).function)
  140. #define CCP5_CMD_ENGINE(p) (CCP5_CMD_DW0(p).engine)
  141. #define CCP5_CMD_PROT(p) (CCP5_CMD_DW0(p).prot)
  142. /* Word 1 */
  143. #define CCP5_CMD_DW1(p) ((p)->length)
  144. #define CCP5_CMD_LEN(p) (CCP5_CMD_DW1(p))
  145. /* Word 2 */
  146. #define CCP5_CMD_DW2(p) ((p)->src_lo)
  147. #define CCP5_CMD_SRC_LO(p) (CCP5_CMD_DW2(p))
  148. /* Word 3 */
  149. #define CCP5_CMD_DW3(p) ((p)->dw3)
  150. #define CCP5_CMD_SRC_MEM(p) ((p)->dw3.src_mem)
  151. #define CCP5_CMD_SRC_HI(p) ((p)->dw3.src_hi)
  152. #define CCP5_CMD_LSB_ID(p) ((p)->dw3.lsb_cxt_id)
  153. #define CCP5_CMD_FIX_SRC(p) ((p)->dw3.fixed)
  154. /* Words 4/5 */
  155. #define CCP5_CMD_DW4(p) ((p)->dw4)
  156. #define CCP5_CMD_DST_LO(p) (CCP5_CMD_DW4(p).dst_lo)
  157. #define CCP5_CMD_DW5(p) ((p)->dw5.fields.dst_hi)
  158. #define CCP5_CMD_DST_HI(p) (CCP5_CMD_DW5(p))
  159. #define CCP5_CMD_DST_MEM(p) ((p)->dw5.fields.dst_mem)
  160. #define CCP5_CMD_FIX_DST(p) ((p)->dw5.fields.fixed)
  161. #define CCP5_CMD_SHA_LO(p) ((p)->dw4.sha_len_lo)
  162. #define CCP5_CMD_SHA_HI(p) ((p)->dw5.sha_len_hi)
  163. /* Word 6/7 */
  164. #define CCP5_CMD_DW6(p) ((p)->key_lo)
  165. #define CCP5_CMD_KEY_LO(p) (CCP5_CMD_DW6(p))
  166. #define CCP5_CMD_DW7(p) ((p)->dw7)
  167. #define CCP5_CMD_KEY_HI(p) ((p)->dw7.key_hi)
  168. #define CCP5_CMD_KEY_MEM(p) ((p)->dw7.key_mem)
  169. static inline u32 low_address(unsigned long addr)
  170. {
  171. return (u64)addr & 0x0ffffffff;
  172. }
  173. static inline u32 high_address(unsigned long addr)
  174. {
  175. return ((u64)addr >> 32) & 0x00000ffff;
  176. }
  177. static unsigned int ccp5_get_free_slots(struct ccp_cmd_queue *cmd_q)
  178. {
  179. unsigned int head_idx, n;
  180. u32 head_lo, queue_start;
  181. queue_start = low_address(cmd_q->qdma_tail);
  182. head_lo = ioread32(cmd_q->reg_head_lo);
  183. head_idx = (head_lo - queue_start) / sizeof(struct ccp5_desc);
  184. n = head_idx + COMMANDS_PER_QUEUE - cmd_q->qidx - 1;
  185. return n % COMMANDS_PER_QUEUE; /* Always one unused spot */
  186. }
  187. static int ccp5_do_cmd(struct ccp5_desc *desc,
  188. struct ccp_cmd_queue *cmd_q)
  189. {
  190. u32 *mP;
  191. __le32 *dP;
  192. u32 tail;
  193. int i;
  194. int ret = 0;
  195. if (CCP5_CMD_SOC(desc)) {
  196. CCP5_CMD_IOC(desc) = 1;
  197. CCP5_CMD_SOC(desc) = 0;
  198. }
  199. mutex_lock(&cmd_q->q_mutex);
  200. mP = (u32 *) &cmd_q->qbase[cmd_q->qidx];
  201. dP = (__le32 *) desc;
  202. for (i = 0; i < 8; i++)
  203. mP[i] = cpu_to_le32(dP[i]); /* handle endianness */
  204. cmd_q->qidx = (cmd_q->qidx + 1) % COMMANDS_PER_QUEUE;
  205. /* The data used by this command must be flushed to memory */
  206. wmb();
  207. /* Write the new tail address back to the queue register */
  208. tail = low_address(cmd_q->qdma_tail + cmd_q->qidx * Q_DESC_SIZE);
  209. iowrite32(tail, cmd_q->reg_tail_lo);
  210. /* Turn the queue back on using our cached control register */
  211. iowrite32(cmd_q->qcontrol | CMD5_Q_RUN, cmd_q->reg_control);
  212. mutex_unlock(&cmd_q->q_mutex);
  213. if (CCP5_CMD_IOC(desc)) {
  214. /* Wait for the job to complete */
  215. ret = wait_event_interruptible(cmd_q->int_queue,
  216. cmd_q->int_rcvd);
  217. if (ret || cmd_q->cmd_error) {
  218. if (cmd_q->cmd_error)
  219. ccp_log_error(cmd_q->ccp,
  220. cmd_q->cmd_error);
  221. /* A version 5 device doesn't use Job IDs... */
  222. if (!ret)
  223. ret = -EIO;
  224. }
  225. cmd_q->int_rcvd = 0;
  226. }
  227. return 0;
  228. }
  229. static int ccp5_perform_aes(struct ccp_op *op)
  230. {
  231. struct ccp5_desc desc;
  232. union ccp_function function;
  233. u32 key_addr = op->sb_key * LSB_ITEM_SIZE;
  234. /* Zero out all the fields of the command desc */
  235. memset(&desc, 0, Q_DESC_SIZE);
  236. CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_AES;
  237. CCP5_CMD_SOC(&desc) = op->soc;
  238. CCP5_CMD_IOC(&desc) = 1;
  239. CCP5_CMD_INIT(&desc) = op->init;
  240. CCP5_CMD_EOM(&desc) = op->eom;
  241. CCP5_CMD_PROT(&desc) = 0;
  242. function.raw = 0;
  243. CCP_AES_ENCRYPT(&function) = op->u.aes.action;
  244. CCP_AES_MODE(&function) = op->u.aes.mode;
  245. CCP_AES_TYPE(&function) = op->u.aes.type;
  246. CCP_AES_SIZE(&function) = op->u.aes.size;
  247. CCP5_CMD_FUNCTION(&desc) = function.raw;
  248. CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
  249. CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
  250. CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
  251. CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
  252. CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
  253. CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
  254. CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
  255. CCP5_CMD_KEY_LO(&desc) = lower_32_bits(key_addr);
  256. CCP5_CMD_KEY_HI(&desc) = 0;
  257. CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SB;
  258. CCP5_CMD_LSB_ID(&desc) = op->sb_ctx;
  259. return ccp5_do_cmd(&desc, op->cmd_q);
  260. }
  261. static int ccp5_perform_xts_aes(struct ccp_op *op)
  262. {
  263. struct ccp5_desc desc;
  264. union ccp_function function;
  265. u32 key_addr = op->sb_key * LSB_ITEM_SIZE;
  266. /* Zero out all the fields of the command desc */
  267. memset(&desc, 0, Q_DESC_SIZE);
  268. CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_XTS_AES_128;
  269. CCP5_CMD_SOC(&desc) = op->soc;
  270. CCP5_CMD_IOC(&desc) = 1;
  271. CCP5_CMD_INIT(&desc) = op->init;
  272. CCP5_CMD_EOM(&desc) = op->eom;
  273. CCP5_CMD_PROT(&desc) = 0;
  274. function.raw = 0;
  275. CCP_XTS_ENCRYPT(&function) = op->u.xts.action;
  276. CCP_XTS_SIZE(&function) = op->u.xts.unit_size;
  277. CCP5_CMD_FUNCTION(&desc) = function.raw;
  278. CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
  279. CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
  280. CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
  281. CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
  282. CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
  283. CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
  284. CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
  285. CCP5_CMD_KEY_LO(&desc) = lower_32_bits(key_addr);
  286. CCP5_CMD_KEY_HI(&desc) = 0;
  287. CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SB;
  288. CCP5_CMD_LSB_ID(&desc) = op->sb_ctx;
  289. return ccp5_do_cmd(&desc, op->cmd_q);
  290. }
  291. static int ccp5_perform_sha(struct ccp_op *op)
  292. {
  293. struct ccp5_desc desc;
  294. union ccp_function function;
  295. /* Zero out all the fields of the command desc */
  296. memset(&desc, 0, Q_DESC_SIZE);
  297. CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_SHA;
  298. CCP5_CMD_SOC(&desc) = op->soc;
  299. CCP5_CMD_IOC(&desc) = 1;
  300. CCP5_CMD_INIT(&desc) = 1;
  301. CCP5_CMD_EOM(&desc) = op->eom;
  302. CCP5_CMD_PROT(&desc) = 0;
  303. function.raw = 0;
  304. CCP_SHA_TYPE(&function) = op->u.sha.type;
  305. CCP5_CMD_FUNCTION(&desc) = function.raw;
  306. CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
  307. CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
  308. CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
  309. CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
  310. CCP5_CMD_LSB_ID(&desc) = op->sb_ctx;
  311. if (op->eom) {
  312. CCP5_CMD_SHA_LO(&desc) = lower_32_bits(op->u.sha.msg_bits);
  313. CCP5_CMD_SHA_HI(&desc) = upper_32_bits(op->u.sha.msg_bits);
  314. } else {
  315. CCP5_CMD_SHA_LO(&desc) = 0;
  316. CCP5_CMD_SHA_HI(&desc) = 0;
  317. }
  318. return ccp5_do_cmd(&desc, op->cmd_q);
  319. }
  320. static int ccp5_perform_rsa(struct ccp_op *op)
  321. {
  322. struct ccp5_desc desc;
  323. union ccp_function function;
  324. /* Zero out all the fields of the command desc */
  325. memset(&desc, 0, Q_DESC_SIZE);
  326. CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_RSA;
  327. CCP5_CMD_SOC(&desc) = op->soc;
  328. CCP5_CMD_IOC(&desc) = 1;
  329. CCP5_CMD_INIT(&desc) = 0;
  330. CCP5_CMD_EOM(&desc) = 1;
  331. CCP5_CMD_PROT(&desc) = 0;
  332. function.raw = 0;
  333. CCP_RSA_SIZE(&function) = op->u.rsa.mod_size >> 3;
  334. CCP5_CMD_FUNCTION(&desc) = function.raw;
  335. CCP5_CMD_LEN(&desc) = op->u.rsa.input_len;
  336. /* Source is from external memory */
  337. CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
  338. CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
  339. CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
  340. /* Destination is in external memory */
  341. CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
  342. CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
  343. CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
  344. /* Exponent is in LSB memory */
  345. CCP5_CMD_KEY_LO(&desc) = op->sb_key * LSB_ITEM_SIZE;
  346. CCP5_CMD_KEY_HI(&desc) = 0;
  347. CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SB;
  348. return ccp5_do_cmd(&desc, op->cmd_q);
  349. }
  350. static int ccp5_perform_passthru(struct ccp_op *op)
  351. {
  352. struct ccp5_desc desc;
  353. union ccp_function function;
  354. struct ccp_dma_info *saddr = &op->src.u.dma;
  355. struct ccp_dma_info *daddr = &op->dst.u.dma;
  356. memset(&desc, 0, Q_DESC_SIZE);
  357. CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_PASSTHRU;
  358. CCP5_CMD_SOC(&desc) = 0;
  359. CCP5_CMD_IOC(&desc) = 1;
  360. CCP5_CMD_INIT(&desc) = 0;
  361. CCP5_CMD_EOM(&desc) = op->eom;
  362. CCP5_CMD_PROT(&desc) = 0;
  363. function.raw = 0;
  364. CCP_PT_BYTESWAP(&function) = op->u.passthru.byte_swap;
  365. CCP_PT_BITWISE(&function) = op->u.passthru.bit_mod;
  366. CCP5_CMD_FUNCTION(&desc) = function.raw;
  367. /* Length of source data is always 256 bytes */
  368. if (op->src.type == CCP_MEMTYPE_SYSTEM)
  369. CCP5_CMD_LEN(&desc) = saddr->length;
  370. else
  371. CCP5_CMD_LEN(&desc) = daddr->length;
  372. if (op->src.type == CCP_MEMTYPE_SYSTEM) {
  373. CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
  374. CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
  375. CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
  376. if (op->u.passthru.bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
  377. CCP5_CMD_LSB_ID(&desc) = op->sb_key;
  378. } else {
  379. u32 key_addr = op->src.u.sb * CCP_SB_BYTES;
  380. CCP5_CMD_SRC_LO(&desc) = lower_32_bits(key_addr);
  381. CCP5_CMD_SRC_HI(&desc) = 0;
  382. CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SB;
  383. }
  384. if (op->dst.type == CCP_MEMTYPE_SYSTEM) {
  385. CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
  386. CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
  387. CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
  388. } else {
  389. u32 key_addr = op->dst.u.sb * CCP_SB_BYTES;
  390. CCP5_CMD_DST_LO(&desc) = lower_32_bits(key_addr);
  391. CCP5_CMD_DST_HI(&desc) = 0;
  392. CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SB;
  393. }
  394. return ccp5_do_cmd(&desc, op->cmd_q);
  395. }
  396. static int ccp5_perform_ecc(struct ccp_op *op)
  397. {
  398. struct ccp5_desc desc;
  399. union ccp_function function;
  400. /* Zero out all the fields of the command desc */
  401. memset(&desc, 0, Q_DESC_SIZE);
  402. CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_ECC;
  403. CCP5_CMD_SOC(&desc) = 0;
  404. CCP5_CMD_IOC(&desc) = 1;
  405. CCP5_CMD_INIT(&desc) = 0;
  406. CCP5_CMD_EOM(&desc) = 1;
  407. CCP5_CMD_PROT(&desc) = 0;
  408. function.raw = 0;
  409. function.ecc.mode = op->u.ecc.function;
  410. CCP5_CMD_FUNCTION(&desc) = function.raw;
  411. CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
  412. CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
  413. CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
  414. CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
  415. CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
  416. CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
  417. CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
  418. return ccp5_do_cmd(&desc, op->cmd_q);
  419. }
  420. static int ccp_find_lsb_regions(struct ccp_cmd_queue *cmd_q, u64 status)
  421. {
  422. int q_mask = 1 << cmd_q->id;
  423. int queues = 0;
  424. int j;
  425. /* Build a bit mask to know which LSBs this queue has access to.
  426. * Don't bother with segment 0 as it has special privileges.
  427. */
  428. for (j = 1; j < MAX_LSB_CNT; j++) {
  429. if (status & q_mask)
  430. bitmap_set(cmd_q->lsbmask, j, 1);
  431. status >>= LSB_REGION_WIDTH;
  432. }
  433. queues = bitmap_weight(cmd_q->lsbmask, MAX_LSB_CNT);
  434. dev_info(cmd_q->ccp->dev, "Queue %d can access %d LSB regions\n",
  435. cmd_q->id, queues);
  436. return queues ? 0 : -EINVAL;
  437. }
  438. static int ccp_find_and_assign_lsb_to_q(struct ccp_device *ccp,
  439. int lsb_cnt, int n_lsbs,
  440. unsigned long *lsb_pub)
  441. {
  442. DECLARE_BITMAP(qlsb, MAX_LSB_CNT);
  443. int bitno;
  444. int qlsb_wgt;
  445. int i;
  446. /* For each queue:
  447. * If the count of potential LSBs available to a queue matches the
  448. * ordinal given to us in lsb_cnt:
  449. * Copy the mask of possible LSBs for this queue into "qlsb";
  450. * For each bit in qlsb, see if the corresponding bit in the
  451. * aggregation mask is set; if so, we have a match.
  452. * If we have a match, clear the bit in the aggregation to
  453. * mark it as no longer available.
  454. * If there is no match, clear the bit in qlsb and keep looking.
  455. */
  456. for (i = 0; i < ccp->cmd_q_count; i++) {
  457. struct ccp_cmd_queue *cmd_q = &ccp->cmd_q[i];
  458. qlsb_wgt = bitmap_weight(cmd_q->lsbmask, MAX_LSB_CNT);
  459. if (qlsb_wgt == lsb_cnt) {
  460. bitmap_copy(qlsb, cmd_q->lsbmask, MAX_LSB_CNT);
  461. bitno = find_first_bit(qlsb, MAX_LSB_CNT);
  462. while (bitno < MAX_LSB_CNT) {
  463. if (test_bit(bitno, lsb_pub)) {
  464. /* We found an available LSB
  465. * that this queue can access
  466. */
  467. cmd_q->lsb = bitno;
  468. bitmap_clear(lsb_pub, bitno, 1);
  469. dev_info(ccp->dev,
  470. "Queue %d gets LSB %d\n",
  471. i, bitno);
  472. break;
  473. }
  474. bitmap_clear(qlsb, bitno, 1);
  475. bitno = find_first_bit(qlsb, MAX_LSB_CNT);
  476. }
  477. if (bitno >= MAX_LSB_CNT)
  478. return -EINVAL;
  479. n_lsbs--;
  480. }
  481. }
  482. return n_lsbs;
  483. }
  484. /* For each queue, from the most- to least-constrained:
  485. * find an LSB that can be assigned to the queue. If there are N queues that
  486. * can only use M LSBs, where N > M, fail; otherwise, every queue will get a
  487. * dedicated LSB. Remaining LSB regions become a shared resource.
  488. * If we have fewer LSBs than queues, all LSB regions become shared resources.
  489. */
  490. static int ccp_assign_lsbs(struct ccp_device *ccp)
  491. {
  492. DECLARE_BITMAP(lsb_pub, MAX_LSB_CNT);
  493. DECLARE_BITMAP(qlsb, MAX_LSB_CNT);
  494. int n_lsbs = 0;
  495. int bitno;
  496. int i, lsb_cnt;
  497. int rc = 0;
  498. bitmap_zero(lsb_pub, MAX_LSB_CNT);
  499. /* Create an aggregate bitmap to get a total count of available LSBs */
  500. for (i = 0; i < ccp->cmd_q_count; i++)
  501. bitmap_or(lsb_pub,
  502. lsb_pub, ccp->cmd_q[i].lsbmask,
  503. MAX_LSB_CNT);
  504. n_lsbs = bitmap_weight(lsb_pub, MAX_LSB_CNT);
  505. if (n_lsbs >= ccp->cmd_q_count) {
  506. /* We have enough LSBS to give every queue a private LSB.
  507. * Brute force search to start with the queues that are more
  508. * constrained in LSB choice. When an LSB is privately
  509. * assigned, it is removed from the public mask.
  510. * This is an ugly N squared algorithm with some optimization.
  511. */
  512. for (lsb_cnt = 1;
  513. n_lsbs && (lsb_cnt <= MAX_LSB_CNT);
  514. lsb_cnt++) {
  515. rc = ccp_find_and_assign_lsb_to_q(ccp, lsb_cnt, n_lsbs,
  516. lsb_pub);
  517. if (rc < 0)
  518. return -EINVAL;
  519. n_lsbs = rc;
  520. }
  521. }
  522. rc = 0;
  523. /* What's left of the LSBs, according to the public mask, now become
  524. * shared. Any zero bits in the lsb_pub mask represent an LSB region
  525. * that can't be used as a shared resource, so mark the LSB slots for
  526. * them as "in use".
  527. */
  528. bitmap_copy(qlsb, lsb_pub, MAX_LSB_CNT);
  529. bitno = find_first_zero_bit(qlsb, MAX_LSB_CNT);
  530. while (bitno < MAX_LSB_CNT) {
  531. bitmap_set(ccp->lsbmap, bitno * LSB_SIZE, LSB_SIZE);
  532. bitmap_set(qlsb, bitno, 1);
  533. bitno = find_first_zero_bit(qlsb, MAX_LSB_CNT);
  534. }
  535. return rc;
  536. }
  537. static int ccp5_init(struct ccp_device *ccp)
  538. {
  539. struct device *dev = ccp->dev;
  540. struct ccp_cmd_queue *cmd_q;
  541. struct dma_pool *dma_pool;
  542. char dma_pool_name[MAX_DMAPOOL_NAME_LEN];
  543. unsigned int qmr, qim, i;
  544. u64 status;
  545. u32 status_lo, status_hi;
  546. int ret;
  547. /* Find available queues */
  548. qim = 0;
  549. qmr = ioread32(ccp->io_regs + Q_MASK_REG);
  550. for (i = 0; i < MAX_HW_QUEUES; i++) {
  551. if (!(qmr & (1 << i)))
  552. continue;
  553. /* Allocate a dma pool for this queue */
  554. snprintf(dma_pool_name, sizeof(dma_pool_name), "%s_q%d",
  555. ccp->name, i);
  556. dma_pool = dma_pool_create(dma_pool_name, dev,
  557. CCP_DMAPOOL_MAX_SIZE,
  558. CCP_DMAPOOL_ALIGN, 0);
  559. if (!dma_pool) {
  560. dev_err(dev, "unable to allocate dma pool\n");
  561. ret = -ENOMEM;
  562. }
  563. cmd_q = &ccp->cmd_q[ccp->cmd_q_count];
  564. ccp->cmd_q_count++;
  565. cmd_q->ccp = ccp;
  566. cmd_q->id = i;
  567. cmd_q->dma_pool = dma_pool;
  568. mutex_init(&cmd_q->q_mutex);
  569. /* Page alignment satisfies our needs for N <= 128 */
  570. BUILD_BUG_ON(COMMANDS_PER_QUEUE > 128);
  571. cmd_q->qsize = Q_SIZE(Q_DESC_SIZE);
  572. cmd_q->qbase = dma_zalloc_coherent(dev, cmd_q->qsize,
  573. &cmd_q->qbase_dma,
  574. GFP_KERNEL);
  575. if (!cmd_q->qbase) {
  576. dev_err(dev, "unable to allocate command queue\n");
  577. ret = -ENOMEM;
  578. goto e_pool;
  579. }
  580. cmd_q->qidx = 0;
  581. /* Preset some register values and masks that are queue
  582. * number dependent
  583. */
  584. cmd_q->reg_control = ccp->io_regs +
  585. CMD5_Q_STATUS_INCR * (i + 1);
  586. cmd_q->reg_tail_lo = cmd_q->reg_control + CMD5_Q_TAIL_LO_BASE;
  587. cmd_q->reg_head_lo = cmd_q->reg_control + CMD5_Q_HEAD_LO_BASE;
  588. cmd_q->reg_int_enable = cmd_q->reg_control +
  589. CMD5_Q_INT_ENABLE_BASE;
  590. cmd_q->reg_interrupt_status = cmd_q->reg_control +
  591. CMD5_Q_INTERRUPT_STATUS_BASE;
  592. cmd_q->reg_status = cmd_q->reg_control + CMD5_Q_STATUS_BASE;
  593. cmd_q->reg_int_status = cmd_q->reg_control +
  594. CMD5_Q_INT_STATUS_BASE;
  595. cmd_q->reg_dma_status = cmd_q->reg_control +
  596. CMD5_Q_DMA_STATUS_BASE;
  597. cmd_q->reg_dma_read_status = cmd_q->reg_control +
  598. CMD5_Q_DMA_READ_STATUS_BASE;
  599. cmd_q->reg_dma_write_status = cmd_q->reg_control +
  600. CMD5_Q_DMA_WRITE_STATUS_BASE;
  601. init_waitqueue_head(&cmd_q->int_queue);
  602. dev_dbg(dev, "queue #%u available\n", i);
  603. }
  604. if (ccp->cmd_q_count == 0) {
  605. dev_notice(dev, "no command queues available\n");
  606. ret = -EIO;
  607. goto e_pool;
  608. }
  609. dev_notice(dev, "%u command queues available\n", ccp->cmd_q_count);
  610. /* Turn off the queues and disable interrupts until ready */
  611. for (i = 0; i < ccp->cmd_q_count; i++) {
  612. cmd_q = &ccp->cmd_q[i];
  613. cmd_q->qcontrol = 0; /* Start with nothing */
  614. iowrite32(cmd_q->qcontrol, cmd_q->reg_control);
  615. /* Disable the interrupts */
  616. iowrite32(0x00, cmd_q->reg_int_enable);
  617. ioread32(cmd_q->reg_int_status);
  618. ioread32(cmd_q->reg_status);
  619. /* Clear the interrupts */
  620. iowrite32(ALL_INTERRUPTS, cmd_q->reg_interrupt_status);
  621. }
  622. dev_dbg(dev, "Requesting an IRQ...\n");
  623. /* Request an irq */
  624. ret = ccp->get_irq(ccp);
  625. if (ret) {
  626. dev_err(dev, "unable to allocate an IRQ\n");
  627. goto e_pool;
  628. }
  629. dev_dbg(dev, "Loading LSB map...\n");
  630. /* Copy the private LSB mask to the public registers */
  631. status_lo = ioread32(ccp->io_regs + LSB_PRIVATE_MASK_LO_OFFSET);
  632. status_hi = ioread32(ccp->io_regs + LSB_PRIVATE_MASK_HI_OFFSET);
  633. iowrite32(status_lo, ccp->io_regs + LSB_PUBLIC_MASK_LO_OFFSET);
  634. iowrite32(status_hi, ccp->io_regs + LSB_PUBLIC_MASK_HI_OFFSET);
  635. status = ((u64)status_hi<<30) | (u64)status_lo;
  636. dev_dbg(dev, "Configuring virtual queues...\n");
  637. /* Configure size of each virtual queue accessible to host */
  638. for (i = 0; i < ccp->cmd_q_count; i++) {
  639. u32 dma_addr_lo;
  640. u32 dma_addr_hi;
  641. cmd_q = &ccp->cmd_q[i];
  642. cmd_q->qcontrol &= ~(CMD5_Q_SIZE << CMD5_Q_SHIFT);
  643. cmd_q->qcontrol |= QUEUE_SIZE_VAL << CMD5_Q_SHIFT;
  644. cmd_q->qdma_tail = cmd_q->qbase_dma;
  645. dma_addr_lo = low_address(cmd_q->qdma_tail);
  646. iowrite32((u32)dma_addr_lo, cmd_q->reg_tail_lo);
  647. iowrite32((u32)dma_addr_lo, cmd_q->reg_head_lo);
  648. dma_addr_hi = high_address(cmd_q->qdma_tail);
  649. cmd_q->qcontrol |= (dma_addr_hi << 16);
  650. iowrite32(cmd_q->qcontrol, cmd_q->reg_control);
  651. /* Find the LSB regions accessible to the queue */
  652. ccp_find_lsb_regions(cmd_q, status);
  653. cmd_q->lsb = -1; /* Unassigned value */
  654. }
  655. dev_dbg(dev, "Assigning LSBs...\n");
  656. ret = ccp_assign_lsbs(ccp);
  657. if (ret) {
  658. dev_err(dev, "Unable to assign LSBs (%d)\n", ret);
  659. goto e_irq;
  660. }
  661. /* Optimization: pre-allocate LSB slots for each queue */
  662. for (i = 0; i < ccp->cmd_q_count; i++) {
  663. ccp->cmd_q[i].sb_key = ccp_lsb_alloc(&ccp->cmd_q[i], 2);
  664. ccp->cmd_q[i].sb_ctx = ccp_lsb_alloc(&ccp->cmd_q[i], 2);
  665. }
  666. dev_dbg(dev, "Starting threads...\n");
  667. /* Create a kthread for each queue */
  668. for (i = 0; i < ccp->cmd_q_count; i++) {
  669. struct task_struct *kthread;
  670. cmd_q = &ccp->cmd_q[i];
  671. kthread = kthread_create(ccp_cmd_queue_thread, cmd_q,
  672. "%s-q%u", ccp->name, cmd_q->id);
  673. if (IS_ERR(kthread)) {
  674. dev_err(dev, "error creating queue thread (%ld)\n",
  675. PTR_ERR(kthread));
  676. ret = PTR_ERR(kthread);
  677. goto e_kthread;
  678. }
  679. cmd_q->kthread = kthread;
  680. wake_up_process(kthread);
  681. }
  682. dev_dbg(dev, "Enabling interrupts...\n");
  683. /* Enable interrupts */
  684. for (i = 0; i < ccp->cmd_q_count; i++) {
  685. cmd_q = &ccp->cmd_q[i];
  686. iowrite32(ALL_INTERRUPTS, cmd_q->reg_int_enable);
  687. }
  688. dev_dbg(dev, "Registering device...\n");
  689. /* Put this on the unit list to make it available */
  690. ccp_add_device(ccp);
  691. ret = ccp_register_rng(ccp);
  692. if (ret)
  693. goto e_kthread;
  694. /* Register the DMA engine support */
  695. ret = ccp_dmaengine_register(ccp);
  696. if (ret)
  697. goto e_hwrng;
  698. return 0;
  699. e_hwrng:
  700. ccp_unregister_rng(ccp);
  701. e_kthread:
  702. for (i = 0; i < ccp->cmd_q_count; i++)
  703. if (ccp->cmd_q[i].kthread)
  704. kthread_stop(ccp->cmd_q[i].kthread);
  705. e_irq:
  706. ccp->free_irq(ccp);
  707. e_pool:
  708. for (i = 0; i < ccp->cmd_q_count; i++)
  709. dma_pool_destroy(ccp->cmd_q[i].dma_pool);
  710. return ret;
  711. }
  712. static void ccp5_destroy(struct ccp_device *ccp)
  713. {
  714. struct device *dev = ccp->dev;
  715. struct ccp_cmd_queue *cmd_q;
  716. struct ccp_cmd *cmd;
  717. unsigned int i;
  718. /* Unregister the DMA engine */
  719. ccp_dmaengine_unregister(ccp);
  720. /* Unregister the RNG */
  721. ccp_unregister_rng(ccp);
  722. /* Remove this device from the list of available units first */
  723. ccp_del_device(ccp);
  724. /* Disable and clear interrupts */
  725. for (i = 0; i < ccp->cmd_q_count; i++) {
  726. cmd_q = &ccp->cmd_q[i];
  727. /* Turn off the run bit */
  728. iowrite32(cmd_q->qcontrol & ~CMD5_Q_RUN, cmd_q->reg_control);
  729. /* Disable the interrupts */
  730. iowrite32(ALL_INTERRUPTS, cmd_q->reg_interrupt_status);
  731. /* Clear the interrupt status */
  732. iowrite32(0x00, cmd_q->reg_int_enable);
  733. ioread32(cmd_q->reg_int_status);
  734. ioread32(cmd_q->reg_status);
  735. }
  736. /* Stop the queue kthreads */
  737. for (i = 0; i < ccp->cmd_q_count; i++)
  738. if (ccp->cmd_q[i].kthread)
  739. kthread_stop(ccp->cmd_q[i].kthread);
  740. ccp->free_irq(ccp);
  741. for (i = 0; i < ccp->cmd_q_count; i++) {
  742. cmd_q = &ccp->cmd_q[i];
  743. dma_free_coherent(dev, cmd_q->qsize, cmd_q->qbase,
  744. cmd_q->qbase_dma);
  745. }
  746. /* Flush the cmd and backlog queue */
  747. while (!list_empty(&ccp->cmd)) {
  748. /* Invoke the callback directly with an error code */
  749. cmd = list_first_entry(&ccp->cmd, struct ccp_cmd, entry);
  750. list_del(&cmd->entry);
  751. cmd->callback(cmd->data, -ENODEV);
  752. }
  753. while (!list_empty(&ccp->backlog)) {
  754. /* Invoke the callback directly with an error code */
  755. cmd = list_first_entry(&ccp->backlog, struct ccp_cmd, entry);
  756. list_del(&cmd->entry);
  757. cmd->callback(cmd->data, -ENODEV);
  758. }
  759. }
  760. static irqreturn_t ccp5_irq_handler(int irq, void *data)
  761. {
  762. struct device *dev = data;
  763. struct ccp_device *ccp = dev_get_drvdata(dev);
  764. u32 status;
  765. unsigned int i;
  766. for (i = 0; i < ccp->cmd_q_count; i++) {
  767. struct ccp_cmd_queue *cmd_q = &ccp->cmd_q[i];
  768. status = ioread32(cmd_q->reg_interrupt_status);
  769. if (status) {
  770. cmd_q->int_status = status;
  771. cmd_q->q_status = ioread32(cmd_q->reg_status);
  772. cmd_q->q_int_status = ioread32(cmd_q->reg_int_status);
  773. /* On error, only save the first error value */
  774. if ((status & INT_ERROR) && !cmd_q->cmd_error)
  775. cmd_q->cmd_error = CMD_Q_ERROR(cmd_q->q_status);
  776. cmd_q->int_rcvd = 1;
  777. /* Acknowledge the interrupt and wake the kthread */
  778. iowrite32(ALL_INTERRUPTS, cmd_q->reg_interrupt_status);
  779. wake_up_interruptible(&cmd_q->int_queue);
  780. }
  781. }
  782. return IRQ_HANDLED;
  783. }
  784. static void ccp5_config(struct ccp_device *ccp)
  785. {
  786. /* Public side */
  787. iowrite32(0x0, ccp->io_regs + CMD5_REQID_CONFIG_OFFSET);
  788. }
  789. static void ccp5other_config(struct ccp_device *ccp)
  790. {
  791. int i;
  792. u32 rnd;
  793. /* We own all of the queues on the NTB CCP */
  794. iowrite32(0x00012D57, ccp->io_regs + CMD5_TRNG_CTL_OFFSET);
  795. iowrite32(0x00000003, ccp->io_regs + CMD5_CONFIG_0_OFFSET);
  796. for (i = 0; i < 12; i++) {
  797. rnd = ioread32(ccp->io_regs + TRNG_OUT_REG);
  798. iowrite32(rnd, ccp->io_regs + CMD5_AES_MASK_OFFSET);
  799. }
  800. iowrite32(0x0000001F, ccp->io_regs + CMD5_QUEUE_MASK_OFFSET);
  801. iowrite32(0x00005B6D, ccp->io_regs + CMD5_QUEUE_PRIO_OFFSET);
  802. iowrite32(0x00000000, ccp->io_regs + CMD5_CMD_TIMEOUT_OFFSET);
  803. iowrite32(0x3FFFFFFF, ccp->io_regs + LSB_PRIVATE_MASK_LO_OFFSET);
  804. iowrite32(0x000003FF, ccp->io_regs + LSB_PRIVATE_MASK_HI_OFFSET);
  805. iowrite32(0x00108823, ccp->io_regs + CMD5_CLK_GATE_CTL_OFFSET);
  806. ccp5_config(ccp);
  807. }
  808. /* Version 5 adds some function, but is essentially the same as v5 */
  809. static const struct ccp_actions ccp5_actions = {
  810. .aes = ccp5_perform_aes,
  811. .xts_aes = ccp5_perform_xts_aes,
  812. .sha = ccp5_perform_sha,
  813. .rsa = ccp5_perform_rsa,
  814. .passthru = ccp5_perform_passthru,
  815. .ecc = ccp5_perform_ecc,
  816. .sballoc = ccp_lsb_alloc,
  817. .sbfree = ccp_lsb_free,
  818. .init = ccp5_init,
  819. .destroy = ccp5_destroy,
  820. .get_free_slots = ccp5_get_free_slots,
  821. .irqhandler = ccp5_irq_handler,
  822. };
  823. const struct ccp_vdata ccpv5a = {
  824. .version = CCP_VERSION(5, 0),
  825. .setup = ccp5_config,
  826. .perform = &ccp5_actions,
  827. .bar = 2,
  828. .offset = 0x0,
  829. };
  830. const struct ccp_vdata ccpv5b = {
  831. .version = CCP_VERSION(5, 0),
  832. .setup = ccp5other_config,
  833. .perform = &ccp5_actions,
  834. .bar = 2,
  835. .offset = 0x0,
  836. };