pgtable.h 43 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479
  1. /*
  2. * S390 version
  3. * Copyright IBM Corp. 1999, 2000
  4. * Author(s): Hartmut Penner (hp@de.ibm.com)
  5. * Ulrich Weigand (weigand@de.ibm.com)
  6. * Martin Schwidefsky (schwidefsky@de.ibm.com)
  7. *
  8. * Derived from "include/asm-i386/pgtable.h"
  9. */
  10. #ifndef _ASM_S390_PGTABLE_H
  11. #define _ASM_S390_PGTABLE_H
  12. /*
  13. * The Linux memory management assumes a three-level page table setup.
  14. * For s390 64 bit we use up to four of the five levels the hardware
  15. * provides (region first tables are not used).
  16. *
  17. * The "pgd_xxx()" functions are trivial for a folded two-level
  18. * setup: the pgd is never bad, and a pmd always exists (as it's folded
  19. * into the pgd entry)
  20. *
  21. * This file contains the functions and defines necessary to modify and use
  22. * the S390 page table tree.
  23. */
  24. #ifndef __ASSEMBLY__
  25. #include <linux/sched.h>
  26. #include <linux/mm_types.h>
  27. #include <linux/page-flags.h>
  28. #include <linux/radix-tree.h>
  29. #include <linux/atomic.h>
  30. #include <asm/bug.h>
  31. #include <asm/page.h>
  32. extern pgd_t swapper_pg_dir[];
  33. extern void paging_init(void);
  34. extern void vmem_map_init(void);
  35. pmd_t *vmem_pmd_alloc(void);
  36. pte_t *vmem_pte_alloc(void);
  37. enum {
  38. PG_DIRECT_MAP_4K = 0,
  39. PG_DIRECT_MAP_1M,
  40. PG_DIRECT_MAP_2G,
  41. PG_DIRECT_MAP_MAX
  42. };
  43. extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
  44. static inline void update_page_count(int level, long count)
  45. {
  46. if (IS_ENABLED(CONFIG_PROC_FS))
  47. atomic_long_add(count, &direct_pages_count[level]);
  48. }
  49. struct seq_file;
  50. void arch_report_meminfo(struct seq_file *m);
  51. /*
  52. * The S390 doesn't have any external MMU info: the kernel page
  53. * tables contain all the necessary information.
  54. */
  55. #define update_mmu_cache(vma, address, ptep) do { } while (0)
  56. #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
  57. /*
  58. * ZERO_PAGE is a global shared page that is always zero; used
  59. * for zero-mapped memory areas etc..
  60. */
  61. extern unsigned long empty_zero_page;
  62. extern unsigned long zero_page_mask;
  63. #define ZERO_PAGE(vaddr) \
  64. (virt_to_page((void *)(empty_zero_page + \
  65. (((unsigned long)(vaddr)) &zero_page_mask))))
  66. #define __HAVE_COLOR_ZERO_PAGE
  67. /* TODO: s390 cannot support io_remap_pfn_range... */
  68. #endif /* !__ASSEMBLY__ */
  69. /*
  70. * PMD_SHIFT determines the size of the area a second-level page
  71. * table can map
  72. * PGDIR_SHIFT determines what a third-level page table entry can map
  73. */
  74. #define PMD_SHIFT 20
  75. #define PUD_SHIFT 31
  76. #define PGDIR_SHIFT 42
  77. #define PMD_SIZE (1UL << PMD_SHIFT)
  78. #define PMD_MASK (~(PMD_SIZE-1))
  79. #define PUD_SIZE (1UL << PUD_SHIFT)
  80. #define PUD_MASK (~(PUD_SIZE-1))
  81. #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
  82. #define PGDIR_MASK (~(PGDIR_SIZE-1))
  83. /*
  84. * entries per page directory level: the S390 is two-level, so
  85. * we don't really have any PMD directory physically.
  86. * for S390 segment-table entries are combined to one PGD
  87. * that leads to 1024 pte per pgd
  88. */
  89. #define PTRS_PER_PTE 256
  90. #define PTRS_PER_PMD 2048
  91. #define PTRS_PER_PUD 2048
  92. #define PTRS_PER_PGD 2048
  93. #define FIRST_USER_ADDRESS 0UL
  94. #define pte_ERROR(e) \
  95. printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
  96. #define pmd_ERROR(e) \
  97. printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
  98. #define pud_ERROR(e) \
  99. printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
  100. #define pgd_ERROR(e) \
  101. printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
  102. #ifndef __ASSEMBLY__
  103. /*
  104. * The vmalloc and module area will always be on the topmost area of the
  105. * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules.
  106. * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
  107. * modules will reside. That makes sure that inter module branches always
  108. * happen without trampolines and in addition the placement within a 2GB frame
  109. * is branch prediction unit friendly.
  110. */
  111. extern unsigned long VMALLOC_START;
  112. extern unsigned long VMALLOC_END;
  113. extern struct page *vmemmap;
  114. #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
  115. extern unsigned long MODULES_VADDR;
  116. extern unsigned long MODULES_END;
  117. #define MODULES_VADDR MODULES_VADDR
  118. #define MODULES_END MODULES_END
  119. #define MODULES_LEN (1UL << 31)
  120. static inline int is_module_addr(void *addr)
  121. {
  122. BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
  123. if (addr < (void *)MODULES_VADDR)
  124. return 0;
  125. if (addr > (void *)MODULES_END)
  126. return 0;
  127. return 1;
  128. }
  129. /*
  130. * A 64 bit pagetable entry of S390 has following format:
  131. * | PFRA |0IPC| OS |
  132. * 0000000000111111111122222222223333333333444444444455555555556666
  133. * 0123456789012345678901234567890123456789012345678901234567890123
  134. *
  135. * I Page-Invalid Bit: Page is not available for address-translation
  136. * P Page-Protection Bit: Store access not possible for page
  137. * C Change-bit override: HW is not required to set change bit
  138. *
  139. * A 64 bit segmenttable entry of S390 has following format:
  140. * | P-table origin | TT
  141. * 0000000000111111111122222222223333333333444444444455555555556666
  142. * 0123456789012345678901234567890123456789012345678901234567890123
  143. *
  144. * I Segment-Invalid Bit: Segment is not available for address-translation
  145. * C Common-Segment Bit: Segment is not private (PoP 3-30)
  146. * P Page-Protection Bit: Store access not possible for page
  147. * TT Type 00
  148. *
  149. * A 64 bit region table entry of S390 has following format:
  150. * | S-table origin | TF TTTL
  151. * 0000000000111111111122222222223333333333444444444455555555556666
  152. * 0123456789012345678901234567890123456789012345678901234567890123
  153. *
  154. * I Segment-Invalid Bit: Segment is not available for address-translation
  155. * TT Type 01
  156. * TF
  157. * TL Table length
  158. *
  159. * The 64 bit regiontable origin of S390 has following format:
  160. * | region table origon | DTTL
  161. * 0000000000111111111122222222223333333333444444444455555555556666
  162. * 0123456789012345678901234567890123456789012345678901234567890123
  163. *
  164. * X Space-Switch event:
  165. * G Segment-Invalid Bit:
  166. * P Private-Space Bit:
  167. * S Storage-Alteration:
  168. * R Real space
  169. * TL Table-Length:
  170. *
  171. * A storage key has the following format:
  172. * | ACC |F|R|C|0|
  173. * 0 3 4 5 6 7
  174. * ACC: access key
  175. * F : fetch protection bit
  176. * R : referenced bit
  177. * C : changed bit
  178. */
  179. /* Hardware bits in the page table entry */
  180. #define _PAGE_PROTECT 0x200 /* HW read-only bit */
  181. #define _PAGE_INVALID 0x400 /* HW invalid bit */
  182. #define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
  183. /* Software bits in the page table entry */
  184. #define _PAGE_PRESENT 0x001 /* SW pte present bit */
  185. #define _PAGE_YOUNG 0x004 /* SW pte young bit */
  186. #define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
  187. #define _PAGE_READ 0x010 /* SW pte read bit */
  188. #define _PAGE_WRITE 0x020 /* SW pte write bit */
  189. #define _PAGE_SPECIAL 0x040 /* SW associated with special page */
  190. #define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
  191. #define __HAVE_ARCH_PTE_SPECIAL
  192. #ifdef CONFIG_MEM_SOFT_DIRTY
  193. #define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */
  194. #else
  195. #define _PAGE_SOFT_DIRTY 0x000
  196. #endif
  197. /* Set of bits not changed in pte_modify */
  198. #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
  199. _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
  200. /*
  201. * handle_pte_fault uses pte_present and pte_none to find out the pte type
  202. * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
  203. * distinguish present from not-present ptes. It is changed only with the page
  204. * table lock held.
  205. *
  206. * The following table gives the different possible bit combinations for
  207. * the pte hardware and software bits in the last 12 bits of a pte
  208. * (. unassigned bit, x don't care, t swap type):
  209. *
  210. * 842100000000
  211. * 000084210000
  212. * 000000008421
  213. * .IR.uswrdy.p
  214. * empty .10.00000000
  215. * swap .11..ttttt.0
  216. * prot-none, clean, old .11.xx0000.1
  217. * prot-none, clean, young .11.xx0001.1
  218. * prot-none, dirty, old .11.xx0010.1
  219. * prot-none, dirty, young .11.xx0011.1
  220. * read-only, clean, old .11.xx0100.1
  221. * read-only, clean, young .01.xx0101.1
  222. * read-only, dirty, old .11.xx0110.1
  223. * read-only, dirty, young .01.xx0111.1
  224. * read-write, clean, old .11.xx1100.1
  225. * read-write, clean, young .01.xx1101.1
  226. * read-write, dirty, old .10.xx1110.1
  227. * read-write, dirty, young .00.xx1111.1
  228. * HW-bits: R read-only, I invalid
  229. * SW-bits: p present, y young, d dirty, r read, w write, s special,
  230. * u unused, l large
  231. *
  232. * pte_none is true for the bit pattern .10.00000000, pte == 0x400
  233. * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
  234. * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
  235. */
  236. /* Bits in the segment/region table address-space-control-element */
  237. #define _ASCE_ORIGIN ~0xfffUL/* segment table origin */
  238. #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
  239. #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
  240. #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
  241. #define _ASCE_REAL_SPACE 0x20 /* real space control */
  242. #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
  243. #define _ASCE_TYPE_REGION1 0x0c /* region first table type */
  244. #define _ASCE_TYPE_REGION2 0x08 /* region second table type */
  245. #define _ASCE_TYPE_REGION3 0x04 /* region third table type */
  246. #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
  247. #define _ASCE_TABLE_LENGTH 0x03 /* region table length */
  248. /* Bits in the region table entry */
  249. #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
  250. #define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
  251. #define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
  252. #define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
  253. #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
  254. #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
  255. #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
  256. #define _REGION_ENTRY_LENGTH 0x03 /* region third length */
  257. #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
  258. #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
  259. #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
  260. #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
  261. #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
  262. #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
  263. #define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address */
  264. #define _REGION3_ENTRY_ORIGIN ~0x7ffUL/* region third table origin */
  265. #define _REGION3_ENTRY_DIRTY 0x2000 /* SW region dirty bit */
  266. #define _REGION3_ENTRY_YOUNG 0x1000 /* SW region young bit */
  267. #define _REGION3_ENTRY_LARGE 0x0400 /* RTTE-format control, large page */
  268. #define _REGION3_ENTRY_READ 0x0002 /* SW region read bit */
  269. #define _REGION3_ENTRY_WRITE 0x0001 /* SW region write bit */
  270. #ifdef CONFIG_MEM_SOFT_DIRTY
  271. #define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
  272. #else
  273. #define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
  274. #endif
  275. #define _REGION_ENTRY_BITS 0xfffffffffffff227UL
  276. #define _REGION_ENTRY_BITS_LARGE 0xffffffff8000fe27UL
  277. /* Bits in the segment table entry */
  278. #define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
  279. #define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff0ff33UL
  280. #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
  281. #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */
  282. #define _SEGMENT_ENTRY_PROTECT 0x200 /* page protection bit */
  283. #define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
  284. #define _SEGMENT_ENTRY (0)
  285. #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
  286. #define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
  287. #define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
  288. #define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
  289. #define _SEGMENT_ENTRY_WRITE 0x0002 /* SW segment write bit */
  290. #define _SEGMENT_ENTRY_READ 0x0001 /* SW segment read bit */
  291. #ifdef CONFIG_MEM_SOFT_DIRTY
  292. #define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
  293. #else
  294. #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
  295. #endif
  296. /*
  297. * Segment table and region3 table entry encoding
  298. * (R = read-only, I = invalid, y = young bit):
  299. * dy..R...I...wr
  300. * prot-none, clean, old 00..1...1...00
  301. * prot-none, clean, young 01..1...1...00
  302. * prot-none, dirty, old 10..1...1...00
  303. * prot-none, dirty, young 11..1...1...00
  304. * read-only, clean, old 00..1...1...01
  305. * read-only, clean, young 01..1...0...01
  306. * read-only, dirty, old 10..1...1...01
  307. * read-only, dirty, young 11..1...0...01
  308. * read-write, clean, old 00..1...1...11
  309. * read-write, clean, young 01..1...0...11
  310. * read-write, dirty, old 10..0...1...11
  311. * read-write, dirty, young 11..0...0...11
  312. * The segment table origin is used to distinguish empty (origin==0) from
  313. * read-write, old segment table entries (origin!=0)
  314. * HW-bits: R read-only, I invalid
  315. * SW-bits: y young, d dirty, r read, w write
  316. */
  317. /* Page status table bits for virtualization */
  318. #define PGSTE_ACC_BITS 0xf000000000000000UL
  319. #define PGSTE_FP_BIT 0x0800000000000000UL
  320. #define PGSTE_PCL_BIT 0x0080000000000000UL
  321. #define PGSTE_HR_BIT 0x0040000000000000UL
  322. #define PGSTE_HC_BIT 0x0020000000000000UL
  323. #define PGSTE_GR_BIT 0x0004000000000000UL
  324. #define PGSTE_GC_BIT 0x0002000000000000UL
  325. #define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
  326. #define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
  327. /* Guest Page State used for virtualization */
  328. #define _PGSTE_GPS_ZERO 0x0000000080000000UL
  329. #define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
  330. #define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
  331. #define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
  332. /*
  333. * A user page table pointer has the space-switch-event bit, the
  334. * private-space-control bit and the storage-alteration-event-control
  335. * bit set. A kernel page table pointer doesn't need them.
  336. */
  337. #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
  338. _ASCE_ALT_EVENT)
  339. /*
  340. * Page protection definitions.
  341. */
  342. #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
  343. #define PAGE_READ __pgprot(_PAGE_PRESENT | _PAGE_READ | \
  344. _PAGE_INVALID | _PAGE_PROTECT)
  345. #define PAGE_WRITE __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
  346. _PAGE_INVALID | _PAGE_PROTECT)
  347. #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
  348. _PAGE_YOUNG | _PAGE_DIRTY)
  349. #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
  350. _PAGE_YOUNG | _PAGE_DIRTY)
  351. #define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
  352. _PAGE_PROTECT)
  353. /*
  354. * On s390 the page table entry has an invalid bit and a read-only bit.
  355. * Read permission implies execute permission and write permission
  356. * implies read permission.
  357. */
  358. /*xwr*/
  359. #define __P000 PAGE_NONE
  360. #define __P001 PAGE_READ
  361. #define __P010 PAGE_READ
  362. #define __P011 PAGE_READ
  363. #define __P100 PAGE_READ
  364. #define __P101 PAGE_READ
  365. #define __P110 PAGE_READ
  366. #define __P111 PAGE_READ
  367. #define __S000 PAGE_NONE
  368. #define __S001 PAGE_READ
  369. #define __S010 PAGE_WRITE
  370. #define __S011 PAGE_WRITE
  371. #define __S100 PAGE_READ
  372. #define __S101 PAGE_READ
  373. #define __S110 PAGE_WRITE
  374. #define __S111 PAGE_WRITE
  375. /*
  376. * Segment entry (large page) protection definitions.
  377. */
  378. #define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
  379. _SEGMENT_ENTRY_PROTECT)
  380. #define SEGMENT_READ __pgprot(_SEGMENT_ENTRY_PROTECT | \
  381. _SEGMENT_ENTRY_READ)
  382. #define SEGMENT_WRITE __pgprot(_SEGMENT_ENTRY_READ | \
  383. _SEGMENT_ENTRY_WRITE)
  384. #define SEGMENT_KERNEL __pgprot(_SEGMENT_ENTRY | \
  385. _SEGMENT_ENTRY_LARGE | \
  386. _SEGMENT_ENTRY_READ | \
  387. _SEGMENT_ENTRY_WRITE | \
  388. _SEGMENT_ENTRY_YOUNG | \
  389. _SEGMENT_ENTRY_DIRTY)
  390. #define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY | \
  391. _SEGMENT_ENTRY_LARGE | \
  392. _SEGMENT_ENTRY_READ | \
  393. _SEGMENT_ENTRY_YOUNG | \
  394. _SEGMENT_ENTRY_PROTECT)
  395. /*
  396. * Region3 entry (large page) protection definitions.
  397. */
  398. #define REGION3_KERNEL __pgprot(_REGION_ENTRY_TYPE_R3 | \
  399. _REGION3_ENTRY_LARGE | \
  400. _REGION3_ENTRY_READ | \
  401. _REGION3_ENTRY_WRITE | \
  402. _REGION3_ENTRY_YOUNG | \
  403. _REGION3_ENTRY_DIRTY)
  404. #define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
  405. _REGION3_ENTRY_LARGE | \
  406. _REGION3_ENTRY_READ | \
  407. _REGION3_ENTRY_YOUNG | \
  408. _REGION_ENTRY_PROTECT)
  409. static inline int mm_has_pgste(struct mm_struct *mm)
  410. {
  411. #ifdef CONFIG_PGSTE
  412. if (unlikely(mm->context.has_pgste))
  413. return 1;
  414. #endif
  415. return 0;
  416. }
  417. static inline int mm_alloc_pgste(struct mm_struct *mm)
  418. {
  419. #ifdef CONFIG_PGSTE
  420. if (unlikely(mm->context.alloc_pgste))
  421. return 1;
  422. #endif
  423. return 0;
  424. }
  425. /*
  426. * In the case that a guest uses storage keys
  427. * faults should no longer be backed by zero pages
  428. */
  429. #define mm_forbids_zeropage mm_use_skey
  430. static inline int mm_use_skey(struct mm_struct *mm)
  431. {
  432. #ifdef CONFIG_PGSTE
  433. if (mm->context.use_skey)
  434. return 1;
  435. #endif
  436. return 0;
  437. }
  438. static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
  439. {
  440. register unsigned long reg2 asm("2") = old;
  441. register unsigned long reg3 asm("3") = new;
  442. unsigned long address = (unsigned long)ptr | 1;
  443. asm volatile(
  444. " csp %0,%3"
  445. : "+d" (reg2), "+m" (*ptr)
  446. : "d" (reg3), "d" (address)
  447. : "cc");
  448. }
  449. static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
  450. {
  451. register unsigned long reg2 asm("2") = old;
  452. register unsigned long reg3 asm("3") = new;
  453. unsigned long address = (unsigned long)ptr | 1;
  454. asm volatile(
  455. " .insn rre,0xb98a0000,%0,%3"
  456. : "+d" (reg2), "+m" (*ptr)
  457. : "d" (reg3), "d" (address)
  458. : "cc");
  459. }
  460. #define CRDTE_DTT_PAGE 0x00UL
  461. #define CRDTE_DTT_SEGMENT 0x10UL
  462. #define CRDTE_DTT_REGION3 0x14UL
  463. #define CRDTE_DTT_REGION2 0x18UL
  464. #define CRDTE_DTT_REGION1 0x1cUL
  465. static inline void crdte(unsigned long old, unsigned long new,
  466. unsigned long table, unsigned long dtt,
  467. unsigned long address, unsigned long asce)
  468. {
  469. register unsigned long reg2 asm("2") = old;
  470. register unsigned long reg3 asm("3") = new;
  471. register unsigned long reg4 asm("4") = table | dtt;
  472. register unsigned long reg5 asm("5") = address;
  473. asm volatile(".insn rrf,0xb98f0000,%0,%2,%4,0"
  474. : "+d" (reg2)
  475. : "d" (reg3), "d" (reg4), "d" (reg5), "a" (asce)
  476. : "memory", "cc");
  477. }
  478. /*
  479. * pgd/pmd/pte query functions
  480. */
  481. static inline int pgd_present(pgd_t pgd)
  482. {
  483. if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
  484. return 1;
  485. return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
  486. }
  487. static inline int pgd_none(pgd_t pgd)
  488. {
  489. if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
  490. return 0;
  491. return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
  492. }
  493. static inline int pgd_bad(pgd_t pgd)
  494. {
  495. /*
  496. * With dynamic page table levels the pgd can be a region table
  497. * entry or a segment table entry. Check for the bit that are
  498. * invalid for either table entry.
  499. */
  500. unsigned long mask =
  501. ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
  502. ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
  503. return (pgd_val(pgd) & mask) != 0;
  504. }
  505. static inline int pud_present(pud_t pud)
  506. {
  507. if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
  508. return 1;
  509. return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
  510. }
  511. static inline int pud_none(pud_t pud)
  512. {
  513. if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
  514. return 0;
  515. return pud_val(pud) == _REGION3_ENTRY_EMPTY;
  516. }
  517. static inline int pud_large(pud_t pud)
  518. {
  519. if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
  520. return 0;
  521. return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
  522. }
  523. static inline unsigned long pud_pfn(pud_t pud)
  524. {
  525. unsigned long origin_mask;
  526. origin_mask = _REGION3_ENTRY_ORIGIN;
  527. if (pud_large(pud))
  528. origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
  529. return (pud_val(pud) & origin_mask) >> PAGE_SHIFT;
  530. }
  531. static inline int pmd_large(pmd_t pmd)
  532. {
  533. return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
  534. }
  535. static inline int pmd_bad(pmd_t pmd)
  536. {
  537. if (pmd_large(pmd))
  538. return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0;
  539. return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
  540. }
  541. static inline int pud_bad(pud_t pud)
  542. {
  543. if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
  544. return pmd_bad(__pmd(pud_val(pud)));
  545. if (pud_large(pud))
  546. return (pud_val(pud) & ~_REGION_ENTRY_BITS_LARGE) != 0;
  547. return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
  548. }
  549. static inline int pmd_present(pmd_t pmd)
  550. {
  551. return pmd_val(pmd) != _SEGMENT_ENTRY_INVALID;
  552. }
  553. static inline int pmd_none(pmd_t pmd)
  554. {
  555. return pmd_val(pmd) == _SEGMENT_ENTRY_INVALID;
  556. }
  557. static inline unsigned long pmd_pfn(pmd_t pmd)
  558. {
  559. unsigned long origin_mask;
  560. origin_mask = _SEGMENT_ENTRY_ORIGIN;
  561. if (pmd_large(pmd))
  562. origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
  563. return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT;
  564. }
  565. #define __HAVE_ARCH_PMD_WRITE
  566. static inline int pmd_write(pmd_t pmd)
  567. {
  568. return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
  569. }
  570. static inline int pmd_dirty(pmd_t pmd)
  571. {
  572. int dirty = 1;
  573. if (pmd_large(pmd))
  574. dirty = (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
  575. return dirty;
  576. }
  577. static inline int pmd_young(pmd_t pmd)
  578. {
  579. int young = 1;
  580. if (pmd_large(pmd))
  581. young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
  582. return young;
  583. }
  584. static inline int pte_present(pte_t pte)
  585. {
  586. /* Bit pattern: (pte & 0x001) == 0x001 */
  587. return (pte_val(pte) & _PAGE_PRESENT) != 0;
  588. }
  589. static inline int pte_none(pte_t pte)
  590. {
  591. /* Bit pattern: pte == 0x400 */
  592. return pte_val(pte) == _PAGE_INVALID;
  593. }
  594. static inline int pte_swap(pte_t pte)
  595. {
  596. /* Bit pattern: (pte & 0x201) == 0x200 */
  597. return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
  598. == _PAGE_PROTECT;
  599. }
  600. static inline int pte_special(pte_t pte)
  601. {
  602. return (pte_val(pte) & _PAGE_SPECIAL);
  603. }
  604. #define __HAVE_ARCH_PTE_SAME
  605. static inline int pte_same(pte_t a, pte_t b)
  606. {
  607. return pte_val(a) == pte_val(b);
  608. }
  609. #ifdef CONFIG_NUMA_BALANCING
  610. static inline int pte_protnone(pte_t pte)
  611. {
  612. return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
  613. }
  614. static inline int pmd_protnone(pmd_t pmd)
  615. {
  616. /* pmd_large(pmd) implies pmd_present(pmd) */
  617. return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
  618. }
  619. #endif
  620. static inline int pte_soft_dirty(pte_t pte)
  621. {
  622. return pte_val(pte) & _PAGE_SOFT_DIRTY;
  623. }
  624. #define pte_swp_soft_dirty pte_soft_dirty
  625. static inline pte_t pte_mksoft_dirty(pte_t pte)
  626. {
  627. pte_val(pte) |= _PAGE_SOFT_DIRTY;
  628. return pte;
  629. }
  630. #define pte_swp_mksoft_dirty pte_mksoft_dirty
  631. static inline pte_t pte_clear_soft_dirty(pte_t pte)
  632. {
  633. pte_val(pte) &= ~_PAGE_SOFT_DIRTY;
  634. return pte;
  635. }
  636. #define pte_swp_clear_soft_dirty pte_clear_soft_dirty
  637. static inline int pmd_soft_dirty(pmd_t pmd)
  638. {
  639. return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
  640. }
  641. static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
  642. {
  643. pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY;
  644. return pmd;
  645. }
  646. static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
  647. {
  648. pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY;
  649. return pmd;
  650. }
  651. /*
  652. * query functions pte_write/pte_dirty/pte_young only work if
  653. * pte_present() is true. Undefined behaviour if not..
  654. */
  655. static inline int pte_write(pte_t pte)
  656. {
  657. return (pte_val(pte) & _PAGE_WRITE) != 0;
  658. }
  659. static inline int pte_dirty(pte_t pte)
  660. {
  661. return (pte_val(pte) & _PAGE_DIRTY) != 0;
  662. }
  663. static inline int pte_young(pte_t pte)
  664. {
  665. return (pte_val(pte) & _PAGE_YOUNG) != 0;
  666. }
  667. #define __HAVE_ARCH_PTE_UNUSED
  668. static inline int pte_unused(pte_t pte)
  669. {
  670. return pte_val(pte) & _PAGE_UNUSED;
  671. }
  672. /*
  673. * pgd/pmd/pte modification functions
  674. */
  675. static inline void pgd_clear(pgd_t *pgd)
  676. {
  677. if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
  678. pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
  679. }
  680. static inline void pud_clear(pud_t *pud)
  681. {
  682. if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
  683. pud_val(*pud) = _REGION3_ENTRY_EMPTY;
  684. }
  685. static inline void pmd_clear(pmd_t *pmdp)
  686. {
  687. pmd_val(*pmdp) = _SEGMENT_ENTRY_INVALID;
  688. }
  689. static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
  690. {
  691. pte_val(*ptep) = _PAGE_INVALID;
  692. }
  693. /*
  694. * The following pte modification functions only work if
  695. * pte_present() is true. Undefined behaviour if not..
  696. */
  697. static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
  698. {
  699. pte_val(pte) &= _PAGE_CHG_MASK;
  700. pte_val(pte) |= pgprot_val(newprot);
  701. /*
  702. * newprot for PAGE_NONE, PAGE_READ and PAGE_WRITE has the
  703. * invalid bit set, clear it again for readable, young pages
  704. */
  705. if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
  706. pte_val(pte) &= ~_PAGE_INVALID;
  707. /*
  708. * newprot for PAGE_READ and PAGE_WRITE has the page protection
  709. * bit set, clear it again for writable, dirty pages
  710. */
  711. if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
  712. pte_val(pte) &= ~_PAGE_PROTECT;
  713. return pte;
  714. }
  715. static inline pte_t pte_wrprotect(pte_t pte)
  716. {
  717. pte_val(pte) &= ~_PAGE_WRITE;
  718. pte_val(pte) |= _PAGE_PROTECT;
  719. return pte;
  720. }
  721. static inline pte_t pte_mkwrite(pte_t pte)
  722. {
  723. pte_val(pte) |= _PAGE_WRITE;
  724. if (pte_val(pte) & _PAGE_DIRTY)
  725. pte_val(pte) &= ~_PAGE_PROTECT;
  726. return pte;
  727. }
  728. static inline pte_t pte_mkclean(pte_t pte)
  729. {
  730. pte_val(pte) &= ~_PAGE_DIRTY;
  731. pte_val(pte) |= _PAGE_PROTECT;
  732. return pte;
  733. }
  734. static inline pte_t pte_mkdirty(pte_t pte)
  735. {
  736. pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY;
  737. if (pte_val(pte) & _PAGE_WRITE)
  738. pte_val(pte) &= ~_PAGE_PROTECT;
  739. return pte;
  740. }
  741. static inline pte_t pte_mkold(pte_t pte)
  742. {
  743. pte_val(pte) &= ~_PAGE_YOUNG;
  744. pte_val(pte) |= _PAGE_INVALID;
  745. return pte;
  746. }
  747. static inline pte_t pte_mkyoung(pte_t pte)
  748. {
  749. pte_val(pte) |= _PAGE_YOUNG;
  750. if (pte_val(pte) & _PAGE_READ)
  751. pte_val(pte) &= ~_PAGE_INVALID;
  752. return pte;
  753. }
  754. static inline pte_t pte_mkspecial(pte_t pte)
  755. {
  756. pte_val(pte) |= _PAGE_SPECIAL;
  757. return pte;
  758. }
  759. #ifdef CONFIG_HUGETLB_PAGE
  760. static inline pte_t pte_mkhuge(pte_t pte)
  761. {
  762. pte_val(pte) |= _PAGE_LARGE;
  763. return pte;
  764. }
  765. #endif
  766. static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
  767. {
  768. unsigned long pto = (unsigned long) ptep;
  769. /* Invalidation + global TLB flush for the pte */
  770. asm volatile(
  771. " ipte %2,%3"
  772. : "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address));
  773. }
  774. static inline void __ptep_ipte_local(unsigned long address, pte_t *ptep)
  775. {
  776. unsigned long pto = (unsigned long) ptep;
  777. /* Invalidation + local TLB flush for the pte */
  778. asm volatile(
  779. " .insn rrf,0xb2210000,%2,%3,0,1"
  780. : "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address));
  781. }
  782. static inline void __ptep_ipte_range(unsigned long address, int nr, pte_t *ptep)
  783. {
  784. unsigned long pto = (unsigned long) ptep;
  785. /* Invalidate a range of ptes + global TLB flush of the ptes */
  786. do {
  787. asm volatile(
  788. " .insn rrf,0xb2210000,%2,%0,%1,0"
  789. : "+a" (address), "+a" (nr) : "a" (pto) : "memory");
  790. } while (nr != 255);
  791. }
  792. /*
  793. * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
  794. * both clear the TLB for the unmapped pte. The reason is that
  795. * ptep_get_and_clear is used in common code (e.g. change_pte_range)
  796. * to modify an active pte. The sequence is
  797. * 1) ptep_get_and_clear
  798. * 2) set_pte_at
  799. * 3) flush_tlb_range
  800. * On s390 the tlb needs to get flushed with the modification of the pte
  801. * if the pte is active. The only way how this can be implemented is to
  802. * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
  803. * is a nop.
  804. */
  805. pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
  806. pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
  807. #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
  808. static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
  809. unsigned long addr, pte_t *ptep)
  810. {
  811. pte_t pte = *ptep;
  812. pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
  813. return pte_young(pte);
  814. }
  815. #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
  816. static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
  817. unsigned long address, pte_t *ptep)
  818. {
  819. return ptep_test_and_clear_young(vma, address, ptep);
  820. }
  821. #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
  822. static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
  823. unsigned long addr, pte_t *ptep)
  824. {
  825. return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
  826. }
  827. #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
  828. pte_t ptep_modify_prot_start(struct mm_struct *, unsigned long, pte_t *);
  829. void ptep_modify_prot_commit(struct mm_struct *, unsigned long, pte_t *, pte_t);
  830. #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
  831. static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
  832. unsigned long addr, pte_t *ptep)
  833. {
  834. return ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
  835. }
  836. /*
  837. * The batched pte unmap code uses ptep_get_and_clear_full to clear the
  838. * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
  839. * tlbs of an mm if it can guarantee that the ptes of the mm_struct
  840. * cannot be accessed while the batched unmap is running. In this case
  841. * full==1 and a simple pte_clear is enough. See tlb.h.
  842. */
  843. #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
  844. static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
  845. unsigned long addr,
  846. pte_t *ptep, int full)
  847. {
  848. if (full) {
  849. pte_t pte = *ptep;
  850. *ptep = __pte(_PAGE_INVALID);
  851. return pte;
  852. }
  853. return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
  854. }
  855. #define __HAVE_ARCH_PTEP_SET_WRPROTECT
  856. static inline void ptep_set_wrprotect(struct mm_struct *mm,
  857. unsigned long addr, pte_t *ptep)
  858. {
  859. pte_t pte = *ptep;
  860. if (pte_write(pte))
  861. ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
  862. }
  863. #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
  864. static inline int ptep_set_access_flags(struct vm_area_struct *vma,
  865. unsigned long addr, pte_t *ptep,
  866. pte_t entry, int dirty)
  867. {
  868. if (pte_same(*ptep, entry))
  869. return 0;
  870. ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
  871. return 1;
  872. }
  873. /*
  874. * Additional functions to handle KVM guest page tables
  875. */
  876. void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
  877. pte_t *ptep, pte_t entry);
  878. void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
  879. void ptep_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
  880. void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
  881. pte_t *ptep , int reset);
  882. void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
  883. bool test_and_clear_guest_dirty(struct mm_struct *mm, unsigned long address);
  884. int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
  885. unsigned char key, bool nq);
  886. unsigned char get_guest_storage_key(struct mm_struct *mm, unsigned long addr);
  887. /*
  888. * Certain architectures need to do special things when PTEs
  889. * within a page table are directly modified. Thus, the following
  890. * hook is made available.
  891. */
  892. static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
  893. pte_t *ptep, pte_t entry)
  894. {
  895. if (mm_has_pgste(mm))
  896. ptep_set_pte_at(mm, addr, ptep, entry);
  897. else
  898. *ptep = entry;
  899. }
  900. /*
  901. * Conversion functions: convert a page and protection to a page entry,
  902. * and a page entry and page directory to the page they refer to.
  903. */
  904. static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
  905. {
  906. pte_t __pte;
  907. pte_val(__pte) = physpage + pgprot_val(pgprot);
  908. return pte_mkyoung(__pte);
  909. }
  910. static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
  911. {
  912. unsigned long physpage = page_to_phys(page);
  913. pte_t __pte = mk_pte_phys(physpage, pgprot);
  914. if (pte_write(__pte) && PageDirty(page))
  915. __pte = pte_mkdirty(__pte);
  916. return __pte;
  917. }
  918. #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
  919. #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
  920. #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
  921. #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
  922. #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
  923. #define pgd_offset_k(address) pgd_offset(&init_mm, address)
  924. #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
  925. #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
  926. #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
  927. static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
  928. {
  929. pud_t *pud = (pud_t *) pgd;
  930. if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
  931. pud = (pud_t *) pgd_deref(*pgd);
  932. return pud + pud_index(address);
  933. }
  934. static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
  935. {
  936. pmd_t *pmd = (pmd_t *) pud;
  937. if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
  938. pmd = (pmd_t *) pud_deref(*pud);
  939. return pmd + pmd_index(address);
  940. }
  941. #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
  942. #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
  943. #define pte_page(x) pfn_to_page(pte_pfn(x))
  944. #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
  945. #define pud_page(pud) pfn_to_page(pud_pfn(pud))
  946. /* Find an entry in the lowest level page table.. */
  947. #define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
  948. #define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
  949. #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
  950. #define pte_unmap(pte) do { } while (0)
  951. static inline pmd_t pmd_wrprotect(pmd_t pmd)
  952. {
  953. pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
  954. pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
  955. return pmd;
  956. }
  957. static inline pmd_t pmd_mkwrite(pmd_t pmd)
  958. {
  959. pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
  960. if (pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
  961. return pmd;
  962. pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
  963. return pmd;
  964. }
  965. static inline pmd_t pmd_mkclean(pmd_t pmd)
  966. {
  967. if (pmd_large(pmd)) {
  968. pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
  969. pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
  970. }
  971. return pmd;
  972. }
  973. static inline pmd_t pmd_mkdirty(pmd_t pmd)
  974. {
  975. if (pmd_large(pmd)) {
  976. pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY |
  977. _SEGMENT_ENTRY_SOFT_DIRTY;
  978. if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
  979. pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
  980. }
  981. return pmd;
  982. }
  983. static inline pud_t pud_wrprotect(pud_t pud)
  984. {
  985. pud_val(pud) &= ~_REGION3_ENTRY_WRITE;
  986. pud_val(pud) |= _REGION_ENTRY_PROTECT;
  987. return pud;
  988. }
  989. static inline pud_t pud_mkwrite(pud_t pud)
  990. {
  991. pud_val(pud) |= _REGION3_ENTRY_WRITE;
  992. if (pud_large(pud) && !(pud_val(pud) & _REGION3_ENTRY_DIRTY))
  993. return pud;
  994. pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
  995. return pud;
  996. }
  997. static inline pud_t pud_mkclean(pud_t pud)
  998. {
  999. if (pud_large(pud)) {
  1000. pud_val(pud) &= ~_REGION3_ENTRY_DIRTY;
  1001. pud_val(pud) |= _REGION_ENTRY_PROTECT;
  1002. }
  1003. return pud;
  1004. }
  1005. static inline pud_t pud_mkdirty(pud_t pud)
  1006. {
  1007. if (pud_large(pud)) {
  1008. pud_val(pud) |= _REGION3_ENTRY_DIRTY |
  1009. _REGION3_ENTRY_SOFT_DIRTY;
  1010. if (pud_val(pud) & _REGION3_ENTRY_WRITE)
  1011. pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
  1012. }
  1013. return pud;
  1014. }
  1015. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
  1016. static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
  1017. {
  1018. /*
  1019. * pgprot is PAGE_NONE, PAGE_READ, or PAGE_WRITE (see __Pxxx / __Sxxx)
  1020. * Convert to segment table entry format.
  1021. */
  1022. if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
  1023. return pgprot_val(SEGMENT_NONE);
  1024. if (pgprot_val(pgprot) == pgprot_val(PAGE_READ))
  1025. return pgprot_val(SEGMENT_READ);
  1026. return pgprot_val(SEGMENT_WRITE);
  1027. }
  1028. static inline pmd_t pmd_mkyoung(pmd_t pmd)
  1029. {
  1030. if (pmd_large(pmd)) {
  1031. pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
  1032. if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
  1033. pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
  1034. }
  1035. return pmd;
  1036. }
  1037. static inline pmd_t pmd_mkold(pmd_t pmd)
  1038. {
  1039. if (pmd_large(pmd)) {
  1040. pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
  1041. pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
  1042. }
  1043. return pmd;
  1044. }
  1045. static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
  1046. {
  1047. if (pmd_large(pmd)) {
  1048. pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
  1049. _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
  1050. _SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY;
  1051. pmd_val(pmd) |= massage_pgprot_pmd(newprot);
  1052. if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
  1053. pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
  1054. if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
  1055. pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
  1056. return pmd;
  1057. }
  1058. pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN;
  1059. pmd_val(pmd) |= massage_pgprot_pmd(newprot);
  1060. return pmd;
  1061. }
  1062. static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
  1063. {
  1064. pmd_t __pmd;
  1065. pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
  1066. return __pmd;
  1067. }
  1068. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
  1069. static inline void __pmdp_csp(pmd_t *pmdp)
  1070. {
  1071. csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
  1072. pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
  1073. }
  1074. static inline void __pmdp_idte(unsigned long address, pmd_t *pmdp)
  1075. {
  1076. unsigned long sto;
  1077. sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
  1078. asm volatile(
  1079. " .insn rrf,0xb98e0000,%2,%3,0,0"
  1080. : "=m" (*pmdp)
  1081. : "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK))
  1082. : "cc" );
  1083. }
  1084. static inline void __pudp_idte(unsigned long address, pud_t *pudp)
  1085. {
  1086. unsigned long r3o;
  1087. r3o = (unsigned long) pudp - pud_index(address) * sizeof(pud_t);
  1088. r3o |= _ASCE_TYPE_REGION3;
  1089. asm volatile(
  1090. " .insn rrf,0xb98e0000,%2,%3,0,0"
  1091. : "=m" (*pudp)
  1092. : "m" (*pudp), "a" (r3o), "a" ((address & PUD_MASK))
  1093. : "cc");
  1094. }
  1095. static inline void __pmdp_idte_local(unsigned long address, pmd_t *pmdp)
  1096. {
  1097. unsigned long sto;
  1098. sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
  1099. asm volatile(
  1100. " .insn rrf,0xb98e0000,%2,%3,0,1"
  1101. : "=m" (*pmdp)
  1102. : "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK))
  1103. : "cc" );
  1104. }
  1105. static inline void __pudp_idte_local(unsigned long address, pud_t *pudp)
  1106. {
  1107. unsigned long r3o;
  1108. r3o = (unsigned long) pudp - pud_index(address) * sizeof(pud_t);
  1109. r3o |= _ASCE_TYPE_REGION3;
  1110. asm volatile(
  1111. " .insn rrf,0xb98e0000,%2,%3,0,1"
  1112. : "=m" (*pudp)
  1113. : "m" (*pudp), "a" (r3o), "a" ((address & PUD_MASK))
  1114. : "cc");
  1115. }
  1116. pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
  1117. pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
  1118. pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
  1119. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1120. #define __HAVE_ARCH_PGTABLE_DEPOSIT
  1121. void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
  1122. pgtable_t pgtable);
  1123. #define __HAVE_ARCH_PGTABLE_WITHDRAW
  1124. pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
  1125. #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
  1126. static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
  1127. unsigned long addr, pmd_t *pmdp,
  1128. pmd_t entry, int dirty)
  1129. {
  1130. VM_BUG_ON(addr & ~HPAGE_MASK);
  1131. entry = pmd_mkyoung(entry);
  1132. if (dirty)
  1133. entry = pmd_mkdirty(entry);
  1134. if (pmd_val(*pmdp) == pmd_val(entry))
  1135. return 0;
  1136. pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
  1137. return 1;
  1138. }
  1139. #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
  1140. static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
  1141. unsigned long addr, pmd_t *pmdp)
  1142. {
  1143. pmd_t pmd = *pmdp;
  1144. pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
  1145. return pmd_young(pmd);
  1146. }
  1147. #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
  1148. static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
  1149. unsigned long addr, pmd_t *pmdp)
  1150. {
  1151. VM_BUG_ON(addr & ~HPAGE_MASK);
  1152. return pmdp_test_and_clear_young(vma, addr, pmdp);
  1153. }
  1154. static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
  1155. pmd_t *pmdp, pmd_t entry)
  1156. {
  1157. *pmdp = entry;
  1158. }
  1159. static inline pmd_t pmd_mkhuge(pmd_t pmd)
  1160. {
  1161. pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
  1162. pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
  1163. pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
  1164. return pmd;
  1165. }
  1166. #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
  1167. static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
  1168. unsigned long addr, pmd_t *pmdp)
  1169. {
  1170. return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_INVALID));
  1171. }
  1172. #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
  1173. static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
  1174. unsigned long addr,
  1175. pmd_t *pmdp, int full)
  1176. {
  1177. if (full) {
  1178. pmd_t pmd = *pmdp;
  1179. *pmdp = __pmd(_SEGMENT_ENTRY_INVALID);
  1180. return pmd;
  1181. }
  1182. return pmdp_xchg_lazy(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_INVALID));
  1183. }
  1184. #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
  1185. static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
  1186. unsigned long addr, pmd_t *pmdp)
  1187. {
  1188. return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
  1189. }
  1190. #define __HAVE_ARCH_PMDP_INVALIDATE
  1191. static inline void pmdp_invalidate(struct vm_area_struct *vma,
  1192. unsigned long addr, pmd_t *pmdp)
  1193. {
  1194. pmdp_xchg_direct(vma->vm_mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_INVALID));
  1195. }
  1196. #define __HAVE_ARCH_PMDP_SET_WRPROTECT
  1197. static inline void pmdp_set_wrprotect(struct mm_struct *mm,
  1198. unsigned long addr, pmd_t *pmdp)
  1199. {
  1200. pmd_t pmd = *pmdp;
  1201. if (pmd_write(pmd))
  1202. pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
  1203. }
  1204. static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
  1205. unsigned long address,
  1206. pmd_t *pmdp)
  1207. {
  1208. return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
  1209. }
  1210. #define pmdp_collapse_flush pmdp_collapse_flush
  1211. #define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
  1212. #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
  1213. static inline int pmd_trans_huge(pmd_t pmd)
  1214. {
  1215. return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
  1216. }
  1217. #define has_transparent_hugepage has_transparent_hugepage
  1218. static inline int has_transparent_hugepage(void)
  1219. {
  1220. return MACHINE_HAS_HPAGE ? 1 : 0;
  1221. }
  1222. #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
  1223. /*
  1224. * 64 bit swap entry format:
  1225. * A page-table entry has some bits we have to treat in a special way.
  1226. * Bits 52 and bit 55 have to be zero, otherwise a specification
  1227. * exception will occur instead of a page translation exception. The
  1228. * specification exception has the bad habit not to store necessary
  1229. * information in the lowcore.
  1230. * Bits 54 and 63 are used to indicate the page type.
  1231. * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
  1232. * This leaves the bits 0-51 and bits 56-62 to store type and offset.
  1233. * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
  1234. * for the offset.
  1235. * | offset |01100|type |00|
  1236. * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
  1237. * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
  1238. */
  1239. #define __SWP_OFFSET_MASK ((1UL << 52) - 1)
  1240. #define __SWP_OFFSET_SHIFT 12
  1241. #define __SWP_TYPE_MASK ((1UL << 5) - 1)
  1242. #define __SWP_TYPE_SHIFT 2
  1243. static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
  1244. {
  1245. pte_t pte;
  1246. pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT;
  1247. pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
  1248. pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
  1249. return pte;
  1250. }
  1251. static inline unsigned long __swp_type(swp_entry_t entry)
  1252. {
  1253. return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
  1254. }
  1255. static inline unsigned long __swp_offset(swp_entry_t entry)
  1256. {
  1257. return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
  1258. }
  1259. static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
  1260. {
  1261. return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
  1262. }
  1263. #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
  1264. #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
  1265. #endif /* !__ASSEMBLY__ */
  1266. #define kern_addr_valid(addr) (1)
  1267. extern int vmem_add_mapping(unsigned long start, unsigned long size);
  1268. extern int vmem_remove_mapping(unsigned long start, unsigned long size);
  1269. extern int s390_enable_sie(void);
  1270. extern int s390_enable_skey(void);
  1271. extern void s390_reset_cmma(struct mm_struct *mm);
  1272. /* s390 has a private copy of get unmapped area to deal with cache synonyms */
  1273. #define HAVE_ARCH_UNMAPPED_AREA
  1274. #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
  1275. /*
  1276. * No page table caches to initialise
  1277. */
  1278. static inline void pgtable_cache_init(void) { }
  1279. static inline void check_pgt_cache(void) { }
  1280. #include <asm-generic/pgtable.h>
  1281. #endif /* _S390_PAGE_H */