mm.h 76 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444
  1. #ifndef _LINUX_MM_H
  2. #define _LINUX_MM_H
  3. #include <linux/errno.h>
  4. #ifdef __KERNEL__
  5. #include <linux/mmdebug.h>
  6. #include <linux/gfp.h>
  7. #include <linux/bug.h>
  8. #include <linux/list.h>
  9. #include <linux/mmzone.h>
  10. #include <linux/rbtree.h>
  11. #include <linux/atomic.h>
  12. #include <linux/debug_locks.h>
  13. #include <linux/mm_types.h>
  14. #include <linux/range.h>
  15. #include <linux/pfn.h>
  16. #include <linux/percpu-refcount.h>
  17. #include <linux/bit_spinlock.h>
  18. #include <linux/shrinker.h>
  19. #include <linux/resource.h>
  20. #include <linux/page_ext.h>
  21. #include <linux/err.h>
  22. #include <linux/page_ref.h>
  23. struct mempolicy;
  24. struct anon_vma;
  25. struct anon_vma_chain;
  26. struct file_ra_state;
  27. struct user_struct;
  28. struct writeback_control;
  29. struct bdi_writeback;
  30. #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
  31. extern unsigned long max_mapnr;
  32. static inline void set_max_mapnr(unsigned long limit)
  33. {
  34. max_mapnr = limit;
  35. }
  36. #else
  37. static inline void set_max_mapnr(unsigned long limit) { }
  38. #endif
  39. extern unsigned long totalram_pages;
  40. extern void * high_memory;
  41. extern int page_cluster;
  42. #ifdef CONFIG_SYSCTL
  43. extern int sysctl_legacy_va_layout;
  44. #else
  45. #define sysctl_legacy_va_layout 0
  46. #endif
  47. #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
  48. extern const int mmap_rnd_bits_min;
  49. extern const int mmap_rnd_bits_max;
  50. extern int mmap_rnd_bits __read_mostly;
  51. #endif
  52. #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
  53. extern const int mmap_rnd_compat_bits_min;
  54. extern const int mmap_rnd_compat_bits_max;
  55. extern int mmap_rnd_compat_bits __read_mostly;
  56. #endif
  57. #include <asm/page.h>
  58. #include <asm/pgtable.h>
  59. #include <asm/processor.h>
  60. #ifndef __pa_symbol
  61. #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
  62. #endif
  63. #ifndef page_to_virt
  64. #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
  65. #endif
  66. /*
  67. * To prevent common memory management code establishing
  68. * a zero page mapping on a read fault.
  69. * This macro should be defined within <asm/pgtable.h>.
  70. * s390 does this to prevent multiplexing of hardware bits
  71. * related to the physical page in case of virtualization.
  72. */
  73. #ifndef mm_forbids_zeropage
  74. #define mm_forbids_zeropage(X) (0)
  75. #endif
  76. /*
  77. * Default maximum number of active map areas, this limits the number of vmas
  78. * per mm struct. Users can overwrite this number by sysctl but there is a
  79. * problem.
  80. *
  81. * When a program's coredump is generated as ELF format, a section is created
  82. * per a vma. In ELF, the number of sections is represented in unsigned short.
  83. * This means the number of sections should be smaller than 65535 at coredump.
  84. * Because the kernel adds some informative sections to a image of program at
  85. * generating coredump, we need some margin. The number of extra sections is
  86. * 1-3 now and depends on arch. We use "5" as safe margin, here.
  87. *
  88. * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
  89. * not a hard limit any more. Although some userspace tools can be surprised by
  90. * that.
  91. */
  92. #define MAPCOUNT_ELF_CORE_MARGIN (5)
  93. #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
  94. extern int sysctl_max_map_count;
  95. extern unsigned long sysctl_user_reserve_kbytes;
  96. extern unsigned long sysctl_admin_reserve_kbytes;
  97. extern int sysctl_overcommit_memory;
  98. extern int sysctl_overcommit_ratio;
  99. extern unsigned long sysctl_overcommit_kbytes;
  100. extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
  101. size_t *, loff_t *);
  102. extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
  103. size_t *, loff_t *);
  104. #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
  105. /* to align the pointer to the (next) page boundary */
  106. #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
  107. /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
  108. #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
  109. /*
  110. * Linux kernel virtual memory manager primitives.
  111. * The idea being to have a "virtual" mm in the same way
  112. * we have a virtual fs - giving a cleaner interface to the
  113. * mm details, and allowing different kinds of memory mappings
  114. * (from shared memory to executable loading to arbitrary
  115. * mmap() functions).
  116. */
  117. extern struct kmem_cache *vm_area_cachep;
  118. #ifndef CONFIG_MMU
  119. extern struct rb_root nommu_region_tree;
  120. extern struct rw_semaphore nommu_region_sem;
  121. extern unsigned int kobjsize(const void *objp);
  122. #endif
  123. /*
  124. * vm_flags in vm_area_struct, see mm_types.h.
  125. * When changing, update also include/trace/events/mmflags.h
  126. */
  127. #define VM_NONE 0x00000000
  128. #define VM_READ 0x00000001 /* currently active flags */
  129. #define VM_WRITE 0x00000002
  130. #define VM_EXEC 0x00000004
  131. #define VM_SHARED 0x00000008
  132. /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
  133. #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
  134. #define VM_MAYWRITE 0x00000020
  135. #define VM_MAYEXEC 0x00000040
  136. #define VM_MAYSHARE 0x00000080
  137. #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
  138. #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
  139. #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
  140. #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
  141. #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
  142. #define VM_LOCKED 0x00002000
  143. #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
  144. /* Used by sys_madvise() */
  145. #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
  146. #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
  147. #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
  148. #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
  149. #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
  150. #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
  151. #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
  152. #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
  153. #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
  154. #define VM_ARCH_2 0x02000000
  155. #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
  156. #ifdef CONFIG_MEM_SOFT_DIRTY
  157. # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
  158. #else
  159. # define VM_SOFTDIRTY 0
  160. #endif
  161. #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
  162. #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
  163. #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
  164. #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
  165. #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
  166. #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
  167. #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
  168. #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
  169. #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
  170. #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
  171. #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
  172. #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
  173. #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
  174. #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
  175. #if defined(CONFIG_X86)
  176. # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
  177. #if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
  178. # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
  179. # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
  180. # define VM_PKEY_BIT1 VM_HIGH_ARCH_1
  181. # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
  182. # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
  183. #endif
  184. #elif defined(CONFIG_PPC)
  185. # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
  186. #elif defined(CONFIG_PARISC)
  187. # define VM_GROWSUP VM_ARCH_1
  188. #elif defined(CONFIG_METAG)
  189. # define VM_GROWSUP VM_ARCH_1
  190. #elif defined(CONFIG_IA64)
  191. # define VM_GROWSUP VM_ARCH_1
  192. #elif !defined(CONFIG_MMU)
  193. # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
  194. #endif
  195. #if defined(CONFIG_X86)
  196. /* MPX specific bounds table or bounds directory */
  197. # define VM_MPX VM_ARCH_2
  198. #endif
  199. #ifndef VM_GROWSUP
  200. # define VM_GROWSUP VM_NONE
  201. #endif
  202. /* Bits set in the VMA until the stack is in its final location */
  203. #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
  204. #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
  205. #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
  206. #endif
  207. #ifdef CONFIG_STACK_GROWSUP
  208. #define VM_STACK VM_GROWSUP
  209. #else
  210. #define VM_STACK VM_GROWSDOWN
  211. #endif
  212. #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  213. /*
  214. * Special vmas that are non-mergable, non-mlock()able.
  215. * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
  216. */
  217. #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
  218. /* This mask defines which mm->def_flags a process can inherit its parent */
  219. #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
  220. /* This mask is used to clear all the VMA flags used by mlock */
  221. #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
  222. /*
  223. * mapping from the currently active vm_flags protection bits (the
  224. * low four bits) to a page protection mask..
  225. */
  226. extern pgprot_t protection_map[16];
  227. #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
  228. #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
  229. #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
  230. #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
  231. #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
  232. #define FAULT_FLAG_TRIED 0x20 /* Second try */
  233. #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
  234. #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
  235. #define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
  236. /*
  237. * vm_fault is filled by the the pagefault handler and passed to the vma's
  238. * ->fault function. The vma's ->fault is responsible for returning a bitmask
  239. * of VM_FAULT_xxx flags that give details about how the fault was handled.
  240. *
  241. * MM layer fills up gfp_mask for page allocations but fault handler might
  242. * alter it if its implementation requires a different allocation context.
  243. *
  244. * pgoff should be used in favour of virtual_address, if possible.
  245. */
  246. struct vm_fault {
  247. struct vm_area_struct *vma; /* Target VMA */
  248. unsigned int flags; /* FAULT_FLAG_xxx flags */
  249. gfp_t gfp_mask; /* gfp mask to be used for allocations */
  250. pgoff_t pgoff; /* Logical page offset based on vma */
  251. unsigned long address; /* Faulting virtual address */
  252. pmd_t *pmd; /* Pointer to pmd entry matching
  253. * the 'address' */
  254. pte_t orig_pte; /* Value of PTE at the time of fault */
  255. struct page *cow_page; /* Page handler may use for COW fault */
  256. struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
  257. struct page *page; /* ->fault handlers should return a
  258. * page here, unless VM_FAULT_NOPAGE
  259. * is set (which is also implied by
  260. * VM_FAULT_ERROR).
  261. */
  262. /* These three entries are valid only while holding ptl lock */
  263. pte_t *pte; /* Pointer to pte entry matching
  264. * the 'address'. NULL if the page
  265. * table hasn't been allocated.
  266. */
  267. spinlock_t *ptl; /* Page table lock.
  268. * Protects pte page table if 'pte'
  269. * is not NULL, otherwise pmd.
  270. */
  271. pgtable_t prealloc_pte; /* Pre-allocated pte page table.
  272. * vm_ops->map_pages() calls
  273. * alloc_set_pte() from atomic context.
  274. * do_fault_around() pre-allocates
  275. * page table to avoid allocation from
  276. * atomic context.
  277. */
  278. };
  279. /*
  280. * These are the virtual MM functions - opening of an area, closing and
  281. * unmapping it (needed to keep files on disk up-to-date etc), pointer
  282. * to the functions called when a no-page or a wp-page exception occurs.
  283. */
  284. struct vm_operations_struct {
  285. void (*open)(struct vm_area_struct * area);
  286. void (*close)(struct vm_area_struct * area);
  287. int (*mremap)(struct vm_area_struct * area);
  288. int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
  289. int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
  290. pmd_t *, unsigned int flags);
  291. void (*map_pages)(struct vm_fault *vmf,
  292. pgoff_t start_pgoff, pgoff_t end_pgoff);
  293. /* notification that a previously read-only page is about to become
  294. * writable, if an error is returned it will cause a SIGBUS */
  295. int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
  296. /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
  297. int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
  298. /* called by access_process_vm when get_user_pages() fails, typically
  299. * for use by special VMAs that can switch between memory and hardware
  300. */
  301. int (*access)(struct vm_area_struct *vma, unsigned long addr,
  302. void *buf, int len, int write);
  303. /* Called by the /proc/PID/maps code to ask the vma whether it
  304. * has a special name. Returning non-NULL will also cause this
  305. * vma to be dumped unconditionally. */
  306. const char *(*name)(struct vm_area_struct *vma);
  307. #ifdef CONFIG_NUMA
  308. /*
  309. * set_policy() op must add a reference to any non-NULL @new mempolicy
  310. * to hold the policy upon return. Caller should pass NULL @new to
  311. * remove a policy and fall back to surrounding context--i.e. do not
  312. * install a MPOL_DEFAULT policy, nor the task or system default
  313. * mempolicy.
  314. */
  315. int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
  316. /*
  317. * get_policy() op must add reference [mpol_get()] to any policy at
  318. * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
  319. * in mm/mempolicy.c will do this automatically.
  320. * get_policy() must NOT add a ref if the policy at (vma,addr) is not
  321. * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
  322. * If no [shared/vma] mempolicy exists at the addr, get_policy() op
  323. * must return NULL--i.e., do not "fallback" to task or system default
  324. * policy.
  325. */
  326. struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
  327. unsigned long addr);
  328. #endif
  329. /*
  330. * Called by vm_normal_page() for special PTEs to find the
  331. * page for @addr. This is useful if the default behavior
  332. * (using pte_page()) would not find the correct page.
  333. */
  334. struct page *(*find_special_page)(struct vm_area_struct *vma,
  335. unsigned long addr);
  336. };
  337. struct mmu_gather;
  338. struct inode;
  339. #define page_private(page) ((page)->private)
  340. #define set_page_private(page, v) ((page)->private = (v))
  341. #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
  342. static inline int pmd_devmap(pmd_t pmd)
  343. {
  344. return 0;
  345. }
  346. #endif
  347. /*
  348. * FIXME: take this include out, include page-flags.h in
  349. * files which need it (119 of them)
  350. */
  351. #include <linux/page-flags.h>
  352. #include <linux/huge_mm.h>
  353. /*
  354. * Methods to modify the page usage count.
  355. *
  356. * What counts for a page usage:
  357. * - cache mapping (page->mapping)
  358. * - private data (page->private)
  359. * - page mapped in a task's page tables, each mapping
  360. * is counted separately
  361. *
  362. * Also, many kernel routines increase the page count before a critical
  363. * routine so they can be sure the page doesn't go away from under them.
  364. */
  365. /*
  366. * Drop a ref, return true if the refcount fell to zero (the page has no users)
  367. */
  368. static inline int put_page_testzero(struct page *page)
  369. {
  370. VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
  371. return page_ref_dec_and_test(page);
  372. }
  373. /*
  374. * Try to grab a ref unless the page has a refcount of zero, return false if
  375. * that is the case.
  376. * This can be called when MMU is off so it must not access
  377. * any of the virtual mappings.
  378. */
  379. static inline int get_page_unless_zero(struct page *page)
  380. {
  381. return page_ref_add_unless(page, 1, 0);
  382. }
  383. extern int page_is_ram(unsigned long pfn);
  384. enum {
  385. REGION_INTERSECTS,
  386. REGION_DISJOINT,
  387. REGION_MIXED,
  388. };
  389. int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
  390. unsigned long desc);
  391. /* Support for virtually mapped pages */
  392. struct page *vmalloc_to_page(const void *addr);
  393. unsigned long vmalloc_to_pfn(const void *addr);
  394. /*
  395. * Determine if an address is within the vmalloc range
  396. *
  397. * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
  398. * is no special casing required.
  399. */
  400. static inline bool is_vmalloc_addr(const void *x)
  401. {
  402. #ifdef CONFIG_MMU
  403. unsigned long addr = (unsigned long)x;
  404. return addr >= VMALLOC_START && addr < VMALLOC_END;
  405. #else
  406. return false;
  407. #endif
  408. }
  409. #ifdef CONFIG_MMU
  410. extern int is_vmalloc_or_module_addr(const void *x);
  411. #else
  412. static inline int is_vmalloc_or_module_addr(const void *x)
  413. {
  414. return 0;
  415. }
  416. #endif
  417. extern void kvfree(const void *addr);
  418. static inline atomic_t *compound_mapcount_ptr(struct page *page)
  419. {
  420. return &page[1].compound_mapcount;
  421. }
  422. static inline int compound_mapcount(struct page *page)
  423. {
  424. VM_BUG_ON_PAGE(!PageCompound(page), page);
  425. page = compound_head(page);
  426. return atomic_read(compound_mapcount_ptr(page)) + 1;
  427. }
  428. /*
  429. * The atomic page->_mapcount, starts from -1: so that transitions
  430. * both from it and to it can be tracked, using atomic_inc_and_test
  431. * and atomic_add_negative(-1).
  432. */
  433. static inline void page_mapcount_reset(struct page *page)
  434. {
  435. atomic_set(&(page)->_mapcount, -1);
  436. }
  437. int __page_mapcount(struct page *page);
  438. static inline int page_mapcount(struct page *page)
  439. {
  440. VM_BUG_ON_PAGE(PageSlab(page), page);
  441. if (unlikely(PageCompound(page)))
  442. return __page_mapcount(page);
  443. return atomic_read(&page->_mapcount) + 1;
  444. }
  445. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  446. int total_mapcount(struct page *page);
  447. int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
  448. #else
  449. static inline int total_mapcount(struct page *page)
  450. {
  451. return page_mapcount(page);
  452. }
  453. static inline int page_trans_huge_mapcount(struct page *page,
  454. int *total_mapcount)
  455. {
  456. int mapcount = page_mapcount(page);
  457. if (total_mapcount)
  458. *total_mapcount = mapcount;
  459. return mapcount;
  460. }
  461. #endif
  462. static inline struct page *virt_to_head_page(const void *x)
  463. {
  464. struct page *page = virt_to_page(x);
  465. return compound_head(page);
  466. }
  467. void __put_page(struct page *page);
  468. void put_pages_list(struct list_head *pages);
  469. void split_page(struct page *page, unsigned int order);
  470. /*
  471. * Compound pages have a destructor function. Provide a
  472. * prototype for that function and accessor functions.
  473. * These are _only_ valid on the head of a compound page.
  474. */
  475. typedef void compound_page_dtor(struct page *);
  476. /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
  477. enum compound_dtor_id {
  478. NULL_COMPOUND_DTOR,
  479. COMPOUND_PAGE_DTOR,
  480. #ifdef CONFIG_HUGETLB_PAGE
  481. HUGETLB_PAGE_DTOR,
  482. #endif
  483. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  484. TRANSHUGE_PAGE_DTOR,
  485. #endif
  486. NR_COMPOUND_DTORS,
  487. };
  488. extern compound_page_dtor * const compound_page_dtors[];
  489. static inline void set_compound_page_dtor(struct page *page,
  490. enum compound_dtor_id compound_dtor)
  491. {
  492. VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
  493. page[1].compound_dtor = compound_dtor;
  494. }
  495. static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
  496. {
  497. VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
  498. return compound_page_dtors[page[1].compound_dtor];
  499. }
  500. static inline unsigned int compound_order(struct page *page)
  501. {
  502. if (!PageHead(page))
  503. return 0;
  504. return page[1].compound_order;
  505. }
  506. static inline void set_compound_order(struct page *page, unsigned int order)
  507. {
  508. page[1].compound_order = order;
  509. }
  510. void free_compound_page(struct page *page);
  511. #ifdef CONFIG_MMU
  512. /*
  513. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  514. * servicing faults for write access. In the normal case, do always want
  515. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  516. * that do not have writing enabled, when used by access_process_vm.
  517. */
  518. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  519. {
  520. if (likely(vma->vm_flags & VM_WRITE))
  521. pte = pte_mkwrite(pte);
  522. return pte;
  523. }
  524. int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
  525. struct page *page);
  526. int finish_fault(struct vm_fault *vmf);
  527. int finish_mkwrite_fault(struct vm_fault *vmf);
  528. #endif
  529. /*
  530. * Multiple processes may "see" the same page. E.g. for untouched
  531. * mappings of /dev/null, all processes see the same page full of
  532. * zeroes, and text pages of executables and shared libraries have
  533. * only one copy in memory, at most, normally.
  534. *
  535. * For the non-reserved pages, page_count(page) denotes a reference count.
  536. * page_count() == 0 means the page is free. page->lru is then used for
  537. * freelist management in the buddy allocator.
  538. * page_count() > 0 means the page has been allocated.
  539. *
  540. * Pages are allocated by the slab allocator in order to provide memory
  541. * to kmalloc and kmem_cache_alloc. In this case, the management of the
  542. * page, and the fields in 'struct page' are the responsibility of mm/slab.c
  543. * unless a particular usage is carefully commented. (the responsibility of
  544. * freeing the kmalloc memory is the caller's, of course).
  545. *
  546. * A page may be used by anyone else who does a __get_free_page().
  547. * In this case, page_count still tracks the references, and should only
  548. * be used through the normal accessor functions. The top bits of page->flags
  549. * and page->virtual store page management information, but all other fields
  550. * are unused and could be used privately, carefully. The management of this
  551. * page is the responsibility of the one who allocated it, and those who have
  552. * subsequently been given references to it.
  553. *
  554. * The other pages (we may call them "pagecache pages") are completely
  555. * managed by the Linux memory manager: I/O, buffers, swapping etc.
  556. * The following discussion applies only to them.
  557. *
  558. * A pagecache page contains an opaque `private' member, which belongs to the
  559. * page's address_space. Usually, this is the address of a circular list of
  560. * the page's disk buffers. PG_private must be set to tell the VM to call
  561. * into the filesystem to release these pages.
  562. *
  563. * A page may belong to an inode's memory mapping. In this case, page->mapping
  564. * is the pointer to the inode, and page->index is the file offset of the page,
  565. * in units of PAGE_SIZE.
  566. *
  567. * If pagecache pages are not associated with an inode, they are said to be
  568. * anonymous pages. These may become associated with the swapcache, and in that
  569. * case PG_swapcache is set, and page->private is an offset into the swapcache.
  570. *
  571. * In either case (swapcache or inode backed), the pagecache itself holds one
  572. * reference to the page. Setting PG_private should also increment the
  573. * refcount. The each user mapping also has a reference to the page.
  574. *
  575. * The pagecache pages are stored in a per-mapping radix tree, which is
  576. * rooted at mapping->page_tree, and indexed by offset.
  577. * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
  578. * lists, we instead now tag pages as dirty/writeback in the radix tree.
  579. *
  580. * All pagecache pages may be subject to I/O:
  581. * - inode pages may need to be read from disk,
  582. * - inode pages which have been modified and are MAP_SHARED may need
  583. * to be written back to the inode on disk,
  584. * - anonymous pages (including MAP_PRIVATE file mappings) which have been
  585. * modified may need to be swapped out to swap space and (later) to be read
  586. * back into memory.
  587. */
  588. /*
  589. * The zone field is never updated after free_area_init_core()
  590. * sets it, so none of the operations on it need to be atomic.
  591. */
  592. /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
  593. #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
  594. #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
  595. #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
  596. #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
  597. /*
  598. * Define the bit shifts to access each section. For non-existent
  599. * sections we define the shift as 0; that plus a 0 mask ensures
  600. * the compiler will optimise away reference to them.
  601. */
  602. #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
  603. #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
  604. #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
  605. #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
  606. /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
  607. #ifdef NODE_NOT_IN_PAGE_FLAGS
  608. #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
  609. #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
  610. SECTIONS_PGOFF : ZONES_PGOFF)
  611. #else
  612. #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
  613. #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
  614. NODES_PGOFF : ZONES_PGOFF)
  615. #endif
  616. #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
  617. #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  618. #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  619. #endif
  620. #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
  621. #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
  622. #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
  623. #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
  624. #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
  625. static inline enum zone_type page_zonenum(const struct page *page)
  626. {
  627. return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
  628. }
  629. #ifdef CONFIG_ZONE_DEVICE
  630. void get_zone_device_page(struct page *page);
  631. void put_zone_device_page(struct page *page);
  632. static inline bool is_zone_device_page(const struct page *page)
  633. {
  634. return page_zonenum(page) == ZONE_DEVICE;
  635. }
  636. #else
  637. static inline void get_zone_device_page(struct page *page)
  638. {
  639. }
  640. static inline void put_zone_device_page(struct page *page)
  641. {
  642. }
  643. static inline bool is_zone_device_page(const struct page *page)
  644. {
  645. return false;
  646. }
  647. #endif
  648. static inline void get_page(struct page *page)
  649. {
  650. page = compound_head(page);
  651. /*
  652. * Getting a normal page or the head of a compound page
  653. * requires to already have an elevated page->_refcount.
  654. */
  655. VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
  656. page_ref_inc(page);
  657. if (unlikely(is_zone_device_page(page)))
  658. get_zone_device_page(page);
  659. }
  660. static inline void put_page(struct page *page)
  661. {
  662. page = compound_head(page);
  663. if (put_page_testzero(page))
  664. __put_page(page);
  665. if (unlikely(is_zone_device_page(page)))
  666. put_zone_device_page(page);
  667. }
  668. #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
  669. #define SECTION_IN_PAGE_FLAGS
  670. #endif
  671. /*
  672. * The identification function is mainly used by the buddy allocator for
  673. * determining if two pages could be buddies. We are not really identifying
  674. * the zone since we could be using the section number id if we do not have
  675. * node id available in page flags.
  676. * We only guarantee that it will return the same value for two combinable
  677. * pages in a zone.
  678. */
  679. static inline int page_zone_id(struct page *page)
  680. {
  681. return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
  682. }
  683. static inline int zone_to_nid(struct zone *zone)
  684. {
  685. #ifdef CONFIG_NUMA
  686. return zone->node;
  687. #else
  688. return 0;
  689. #endif
  690. }
  691. #ifdef NODE_NOT_IN_PAGE_FLAGS
  692. extern int page_to_nid(const struct page *page);
  693. #else
  694. static inline int page_to_nid(const struct page *page)
  695. {
  696. return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
  697. }
  698. #endif
  699. #ifdef CONFIG_NUMA_BALANCING
  700. static inline int cpu_pid_to_cpupid(int cpu, int pid)
  701. {
  702. return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
  703. }
  704. static inline int cpupid_to_pid(int cpupid)
  705. {
  706. return cpupid & LAST__PID_MASK;
  707. }
  708. static inline int cpupid_to_cpu(int cpupid)
  709. {
  710. return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
  711. }
  712. static inline int cpupid_to_nid(int cpupid)
  713. {
  714. return cpu_to_node(cpupid_to_cpu(cpupid));
  715. }
  716. static inline bool cpupid_pid_unset(int cpupid)
  717. {
  718. return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
  719. }
  720. static inline bool cpupid_cpu_unset(int cpupid)
  721. {
  722. return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
  723. }
  724. static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
  725. {
  726. return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
  727. }
  728. #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
  729. #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
  730. static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
  731. {
  732. return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
  733. }
  734. static inline int page_cpupid_last(struct page *page)
  735. {
  736. return page->_last_cpupid;
  737. }
  738. static inline void page_cpupid_reset_last(struct page *page)
  739. {
  740. page->_last_cpupid = -1 & LAST_CPUPID_MASK;
  741. }
  742. #else
  743. static inline int page_cpupid_last(struct page *page)
  744. {
  745. return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
  746. }
  747. extern int page_cpupid_xchg_last(struct page *page, int cpupid);
  748. static inline void page_cpupid_reset_last(struct page *page)
  749. {
  750. page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
  751. }
  752. #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
  753. #else /* !CONFIG_NUMA_BALANCING */
  754. static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
  755. {
  756. return page_to_nid(page); /* XXX */
  757. }
  758. static inline int page_cpupid_last(struct page *page)
  759. {
  760. return page_to_nid(page); /* XXX */
  761. }
  762. static inline int cpupid_to_nid(int cpupid)
  763. {
  764. return -1;
  765. }
  766. static inline int cpupid_to_pid(int cpupid)
  767. {
  768. return -1;
  769. }
  770. static inline int cpupid_to_cpu(int cpupid)
  771. {
  772. return -1;
  773. }
  774. static inline int cpu_pid_to_cpupid(int nid, int pid)
  775. {
  776. return -1;
  777. }
  778. static inline bool cpupid_pid_unset(int cpupid)
  779. {
  780. return 1;
  781. }
  782. static inline void page_cpupid_reset_last(struct page *page)
  783. {
  784. }
  785. static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
  786. {
  787. return false;
  788. }
  789. #endif /* CONFIG_NUMA_BALANCING */
  790. static inline struct zone *page_zone(const struct page *page)
  791. {
  792. return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
  793. }
  794. static inline pg_data_t *page_pgdat(const struct page *page)
  795. {
  796. return NODE_DATA(page_to_nid(page));
  797. }
  798. #ifdef SECTION_IN_PAGE_FLAGS
  799. static inline void set_page_section(struct page *page, unsigned long section)
  800. {
  801. page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
  802. page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
  803. }
  804. static inline unsigned long page_to_section(const struct page *page)
  805. {
  806. return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
  807. }
  808. #endif
  809. static inline void set_page_zone(struct page *page, enum zone_type zone)
  810. {
  811. page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
  812. page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
  813. }
  814. static inline void set_page_node(struct page *page, unsigned long node)
  815. {
  816. page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
  817. page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
  818. }
  819. static inline void set_page_links(struct page *page, enum zone_type zone,
  820. unsigned long node, unsigned long pfn)
  821. {
  822. set_page_zone(page, zone);
  823. set_page_node(page, node);
  824. #ifdef SECTION_IN_PAGE_FLAGS
  825. set_page_section(page, pfn_to_section_nr(pfn));
  826. #endif
  827. }
  828. #ifdef CONFIG_MEMCG
  829. static inline struct mem_cgroup *page_memcg(struct page *page)
  830. {
  831. return page->mem_cgroup;
  832. }
  833. static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
  834. {
  835. WARN_ON_ONCE(!rcu_read_lock_held());
  836. return READ_ONCE(page->mem_cgroup);
  837. }
  838. #else
  839. static inline struct mem_cgroup *page_memcg(struct page *page)
  840. {
  841. return NULL;
  842. }
  843. static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
  844. {
  845. WARN_ON_ONCE(!rcu_read_lock_held());
  846. return NULL;
  847. }
  848. #endif
  849. /*
  850. * Some inline functions in vmstat.h depend on page_zone()
  851. */
  852. #include <linux/vmstat.h>
  853. static __always_inline void *lowmem_page_address(const struct page *page)
  854. {
  855. return page_to_virt(page);
  856. }
  857. #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
  858. #define HASHED_PAGE_VIRTUAL
  859. #endif
  860. #if defined(WANT_PAGE_VIRTUAL)
  861. static inline void *page_address(const struct page *page)
  862. {
  863. return page->virtual;
  864. }
  865. static inline void set_page_address(struct page *page, void *address)
  866. {
  867. page->virtual = address;
  868. }
  869. #define page_address_init() do { } while(0)
  870. #endif
  871. #if defined(HASHED_PAGE_VIRTUAL)
  872. void *page_address(const struct page *page);
  873. void set_page_address(struct page *page, void *virtual);
  874. void page_address_init(void);
  875. #endif
  876. #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
  877. #define page_address(page) lowmem_page_address(page)
  878. #define set_page_address(page, address) do { } while(0)
  879. #define page_address_init() do { } while(0)
  880. #endif
  881. extern void *page_rmapping(struct page *page);
  882. extern struct anon_vma *page_anon_vma(struct page *page);
  883. extern struct address_space *page_mapping(struct page *page);
  884. extern struct address_space *__page_file_mapping(struct page *);
  885. static inline
  886. struct address_space *page_file_mapping(struct page *page)
  887. {
  888. if (unlikely(PageSwapCache(page)))
  889. return __page_file_mapping(page);
  890. return page->mapping;
  891. }
  892. extern pgoff_t __page_file_index(struct page *page);
  893. /*
  894. * Return the pagecache index of the passed page. Regular pagecache pages
  895. * use ->index whereas swapcache pages use swp_offset(->private)
  896. */
  897. static inline pgoff_t page_index(struct page *page)
  898. {
  899. if (unlikely(PageSwapCache(page)))
  900. return __page_file_index(page);
  901. return page->index;
  902. }
  903. bool page_mapped(struct page *page);
  904. struct address_space *page_mapping(struct page *page);
  905. /*
  906. * Return true only if the page has been allocated with
  907. * ALLOC_NO_WATERMARKS and the low watermark was not
  908. * met implying that the system is under some pressure.
  909. */
  910. static inline bool page_is_pfmemalloc(struct page *page)
  911. {
  912. /*
  913. * Page index cannot be this large so this must be
  914. * a pfmemalloc page.
  915. */
  916. return page->index == -1UL;
  917. }
  918. /*
  919. * Only to be called by the page allocator on a freshly allocated
  920. * page.
  921. */
  922. static inline void set_page_pfmemalloc(struct page *page)
  923. {
  924. page->index = -1UL;
  925. }
  926. static inline void clear_page_pfmemalloc(struct page *page)
  927. {
  928. page->index = 0;
  929. }
  930. /*
  931. * Different kinds of faults, as returned by handle_mm_fault().
  932. * Used to decide whether a process gets delivered SIGBUS or
  933. * just gets major/minor fault counters bumped up.
  934. */
  935. #define VM_FAULT_OOM 0x0001
  936. #define VM_FAULT_SIGBUS 0x0002
  937. #define VM_FAULT_MAJOR 0x0004
  938. #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
  939. #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
  940. #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
  941. #define VM_FAULT_SIGSEGV 0x0040
  942. #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
  943. #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
  944. #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
  945. #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
  946. #define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */
  947. #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
  948. #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
  949. VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
  950. VM_FAULT_FALLBACK)
  951. /* Encode hstate index for a hwpoisoned large page */
  952. #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
  953. #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
  954. /*
  955. * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
  956. */
  957. extern void pagefault_out_of_memory(void);
  958. #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
  959. /*
  960. * Flags passed to show_mem() and show_free_areas() to suppress output in
  961. * various contexts.
  962. */
  963. #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
  964. extern void show_free_areas(unsigned int flags);
  965. extern bool skip_free_areas_node(unsigned int flags, int nid);
  966. int shmem_zero_setup(struct vm_area_struct *);
  967. #ifdef CONFIG_SHMEM
  968. bool shmem_mapping(struct address_space *mapping);
  969. #else
  970. static inline bool shmem_mapping(struct address_space *mapping)
  971. {
  972. return false;
  973. }
  974. #endif
  975. extern bool can_do_mlock(void);
  976. extern int user_shm_lock(size_t, struct user_struct *);
  977. extern void user_shm_unlock(size_t, struct user_struct *);
  978. /*
  979. * Parameter block passed down to zap_pte_range in exceptional cases.
  980. */
  981. struct zap_details {
  982. struct address_space *check_mapping; /* Check page->mapping if set */
  983. pgoff_t first_index; /* Lowest page->index to unmap */
  984. pgoff_t last_index; /* Highest page->index to unmap */
  985. bool ignore_dirty; /* Ignore dirty pages */
  986. bool check_swap_entries; /* Check also swap entries */
  987. };
  988. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  989. pte_t pte);
  990. struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
  991. pmd_t pmd);
  992. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  993. unsigned long size);
  994. void zap_page_range(struct vm_area_struct *vma, unsigned long address,
  995. unsigned long size, struct zap_details *);
  996. void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
  997. unsigned long start, unsigned long end);
  998. /**
  999. * mm_walk - callbacks for walk_page_range
  1000. * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
  1001. * this handler is required to be able to handle
  1002. * pmd_trans_huge() pmds. They may simply choose to
  1003. * split_huge_page() instead of handling it explicitly.
  1004. * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
  1005. * @pte_hole: if set, called for each hole at all levels
  1006. * @hugetlb_entry: if set, called for each hugetlb entry
  1007. * @test_walk: caller specific callback function to determine whether
  1008. * we walk over the current vma or not. Returning 0
  1009. * value means "do page table walk over the current vma,"
  1010. * and a negative one means "abort current page table walk
  1011. * right now." 1 means "skip the current vma."
  1012. * @mm: mm_struct representing the target process of page table walk
  1013. * @vma: vma currently walked (NULL if walking outside vmas)
  1014. * @private: private data for callbacks' usage
  1015. *
  1016. * (see the comment on walk_page_range() for more details)
  1017. */
  1018. struct mm_walk {
  1019. int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
  1020. unsigned long next, struct mm_walk *walk);
  1021. int (*pte_entry)(pte_t *pte, unsigned long addr,
  1022. unsigned long next, struct mm_walk *walk);
  1023. int (*pte_hole)(unsigned long addr, unsigned long next,
  1024. struct mm_walk *walk);
  1025. int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
  1026. unsigned long addr, unsigned long next,
  1027. struct mm_walk *walk);
  1028. int (*test_walk)(unsigned long addr, unsigned long next,
  1029. struct mm_walk *walk);
  1030. struct mm_struct *mm;
  1031. struct vm_area_struct *vma;
  1032. void *private;
  1033. };
  1034. int walk_page_range(unsigned long addr, unsigned long end,
  1035. struct mm_walk *walk);
  1036. int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
  1037. void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
  1038. unsigned long end, unsigned long floor, unsigned long ceiling);
  1039. int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
  1040. struct vm_area_struct *vma);
  1041. void unmap_mapping_range(struct address_space *mapping,
  1042. loff_t const holebegin, loff_t const holelen, int even_cows);
  1043. int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
  1044. pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
  1045. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  1046. unsigned long *pfn);
  1047. int follow_phys(struct vm_area_struct *vma, unsigned long address,
  1048. unsigned int flags, unsigned long *prot, resource_size_t *phys);
  1049. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  1050. void *buf, int len, int write);
  1051. static inline void unmap_shared_mapping_range(struct address_space *mapping,
  1052. loff_t const holebegin, loff_t const holelen)
  1053. {
  1054. unmap_mapping_range(mapping, holebegin, holelen, 0);
  1055. }
  1056. extern void truncate_pagecache(struct inode *inode, loff_t new);
  1057. extern void truncate_setsize(struct inode *inode, loff_t newsize);
  1058. void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
  1059. void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
  1060. int truncate_inode_page(struct address_space *mapping, struct page *page);
  1061. int generic_error_remove_page(struct address_space *mapping, struct page *page);
  1062. int invalidate_inode_page(struct page *page);
  1063. #ifdef CONFIG_MMU
  1064. extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
  1065. unsigned int flags);
  1066. extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
  1067. unsigned long address, unsigned int fault_flags,
  1068. bool *unlocked);
  1069. #else
  1070. static inline int handle_mm_fault(struct vm_area_struct *vma,
  1071. unsigned long address, unsigned int flags)
  1072. {
  1073. /* should never happen if there's no MMU */
  1074. BUG();
  1075. return VM_FAULT_SIGBUS;
  1076. }
  1077. static inline int fixup_user_fault(struct task_struct *tsk,
  1078. struct mm_struct *mm, unsigned long address,
  1079. unsigned int fault_flags, bool *unlocked)
  1080. {
  1081. /* should never happen if there's no MMU */
  1082. BUG();
  1083. return -EFAULT;
  1084. }
  1085. #endif
  1086. extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
  1087. unsigned int gup_flags);
  1088. extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
  1089. void *buf, int len, unsigned int gup_flags);
  1090. extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
  1091. unsigned long addr, void *buf, int len, unsigned int gup_flags);
  1092. long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
  1093. unsigned long start, unsigned long nr_pages,
  1094. unsigned int gup_flags, struct page **pages,
  1095. struct vm_area_struct **vmas, int *locked);
  1096. long get_user_pages(unsigned long start, unsigned long nr_pages,
  1097. unsigned int gup_flags, struct page **pages,
  1098. struct vm_area_struct **vmas);
  1099. long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
  1100. unsigned int gup_flags, struct page **pages, int *locked);
  1101. long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
  1102. struct page **pages, unsigned int gup_flags);
  1103. int get_user_pages_fast(unsigned long start, int nr_pages, int write,
  1104. struct page **pages);
  1105. /* Container for pinned pfns / pages */
  1106. struct frame_vector {
  1107. unsigned int nr_allocated; /* Number of frames we have space for */
  1108. unsigned int nr_frames; /* Number of frames stored in ptrs array */
  1109. bool got_ref; /* Did we pin pages by getting page ref? */
  1110. bool is_pfns; /* Does array contain pages or pfns? */
  1111. void *ptrs[0]; /* Array of pinned pfns / pages. Use
  1112. * pfns_vector_pages() or pfns_vector_pfns()
  1113. * for access */
  1114. };
  1115. struct frame_vector *frame_vector_create(unsigned int nr_frames);
  1116. void frame_vector_destroy(struct frame_vector *vec);
  1117. int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
  1118. unsigned int gup_flags, struct frame_vector *vec);
  1119. void put_vaddr_frames(struct frame_vector *vec);
  1120. int frame_vector_to_pages(struct frame_vector *vec);
  1121. void frame_vector_to_pfns(struct frame_vector *vec);
  1122. static inline unsigned int frame_vector_count(struct frame_vector *vec)
  1123. {
  1124. return vec->nr_frames;
  1125. }
  1126. static inline struct page **frame_vector_pages(struct frame_vector *vec)
  1127. {
  1128. if (vec->is_pfns) {
  1129. int err = frame_vector_to_pages(vec);
  1130. if (err)
  1131. return ERR_PTR(err);
  1132. }
  1133. return (struct page **)(vec->ptrs);
  1134. }
  1135. static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
  1136. {
  1137. if (!vec->is_pfns)
  1138. frame_vector_to_pfns(vec);
  1139. return (unsigned long *)(vec->ptrs);
  1140. }
  1141. struct kvec;
  1142. int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
  1143. struct page **pages);
  1144. int get_kernel_page(unsigned long start, int write, struct page **pages);
  1145. struct page *get_dump_page(unsigned long addr);
  1146. extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
  1147. extern void do_invalidatepage(struct page *page, unsigned int offset,
  1148. unsigned int length);
  1149. int __set_page_dirty_nobuffers(struct page *page);
  1150. int __set_page_dirty_no_writeback(struct page *page);
  1151. int redirty_page_for_writepage(struct writeback_control *wbc,
  1152. struct page *page);
  1153. void account_page_dirtied(struct page *page, struct address_space *mapping);
  1154. void account_page_cleaned(struct page *page, struct address_space *mapping,
  1155. struct bdi_writeback *wb);
  1156. int set_page_dirty(struct page *page);
  1157. int set_page_dirty_lock(struct page *page);
  1158. void cancel_dirty_page(struct page *page);
  1159. int clear_page_dirty_for_io(struct page *page);
  1160. int get_cmdline(struct task_struct *task, char *buffer, int buflen);
  1161. /* Is the vma a continuation of the stack vma above it? */
  1162. static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
  1163. {
  1164. return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
  1165. }
  1166. static inline bool vma_is_anonymous(struct vm_area_struct *vma)
  1167. {
  1168. return !vma->vm_ops;
  1169. }
  1170. static inline int stack_guard_page_start(struct vm_area_struct *vma,
  1171. unsigned long addr)
  1172. {
  1173. return (vma->vm_flags & VM_GROWSDOWN) &&
  1174. (vma->vm_start == addr) &&
  1175. !vma_growsdown(vma->vm_prev, addr);
  1176. }
  1177. /* Is the vma a continuation of the stack vma below it? */
  1178. static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
  1179. {
  1180. return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
  1181. }
  1182. static inline int stack_guard_page_end(struct vm_area_struct *vma,
  1183. unsigned long addr)
  1184. {
  1185. return (vma->vm_flags & VM_GROWSUP) &&
  1186. (vma->vm_end == addr) &&
  1187. !vma_growsup(vma->vm_next, addr);
  1188. }
  1189. int vma_is_stack_for_current(struct vm_area_struct *vma);
  1190. extern unsigned long move_page_tables(struct vm_area_struct *vma,
  1191. unsigned long old_addr, struct vm_area_struct *new_vma,
  1192. unsigned long new_addr, unsigned long len,
  1193. bool need_rmap_locks);
  1194. extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
  1195. unsigned long end, pgprot_t newprot,
  1196. int dirty_accountable, int prot_numa);
  1197. extern int mprotect_fixup(struct vm_area_struct *vma,
  1198. struct vm_area_struct **pprev, unsigned long start,
  1199. unsigned long end, unsigned long newflags);
  1200. /*
  1201. * doesn't attempt to fault and will return short.
  1202. */
  1203. int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
  1204. struct page **pages);
  1205. /*
  1206. * per-process(per-mm_struct) statistics.
  1207. */
  1208. static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
  1209. {
  1210. long val = atomic_long_read(&mm->rss_stat.count[member]);
  1211. #ifdef SPLIT_RSS_COUNTING
  1212. /*
  1213. * counter is updated in asynchronous manner and may go to minus.
  1214. * But it's never be expected number for users.
  1215. */
  1216. if (val < 0)
  1217. val = 0;
  1218. #endif
  1219. return (unsigned long)val;
  1220. }
  1221. static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
  1222. {
  1223. atomic_long_add(value, &mm->rss_stat.count[member]);
  1224. }
  1225. static inline void inc_mm_counter(struct mm_struct *mm, int member)
  1226. {
  1227. atomic_long_inc(&mm->rss_stat.count[member]);
  1228. }
  1229. static inline void dec_mm_counter(struct mm_struct *mm, int member)
  1230. {
  1231. atomic_long_dec(&mm->rss_stat.count[member]);
  1232. }
  1233. /* Optimized variant when page is already known not to be PageAnon */
  1234. static inline int mm_counter_file(struct page *page)
  1235. {
  1236. if (PageSwapBacked(page))
  1237. return MM_SHMEMPAGES;
  1238. return MM_FILEPAGES;
  1239. }
  1240. static inline int mm_counter(struct page *page)
  1241. {
  1242. if (PageAnon(page))
  1243. return MM_ANONPAGES;
  1244. return mm_counter_file(page);
  1245. }
  1246. static inline unsigned long get_mm_rss(struct mm_struct *mm)
  1247. {
  1248. return get_mm_counter(mm, MM_FILEPAGES) +
  1249. get_mm_counter(mm, MM_ANONPAGES) +
  1250. get_mm_counter(mm, MM_SHMEMPAGES);
  1251. }
  1252. static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
  1253. {
  1254. return max(mm->hiwater_rss, get_mm_rss(mm));
  1255. }
  1256. static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
  1257. {
  1258. return max(mm->hiwater_vm, mm->total_vm);
  1259. }
  1260. static inline void update_hiwater_rss(struct mm_struct *mm)
  1261. {
  1262. unsigned long _rss = get_mm_rss(mm);
  1263. if ((mm)->hiwater_rss < _rss)
  1264. (mm)->hiwater_rss = _rss;
  1265. }
  1266. static inline void update_hiwater_vm(struct mm_struct *mm)
  1267. {
  1268. if (mm->hiwater_vm < mm->total_vm)
  1269. mm->hiwater_vm = mm->total_vm;
  1270. }
  1271. static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
  1272. {
  1273. mm->hiwater_rss = get_mm_rss(mm);
  1274. }
  1275. static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
  1276. struct mm_struct *mm)
  1277. {
  1278. unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
  1279. if (*maxrss < hiwater_rss)
  1280. *maxrss = hiwater_rss;
  1281. }
  1282. #if defined(SPLIT_RSS_COUNTING)
  1283. void sync_mm_rss(struct mm_struct *mm);
  1284. #else
  1285. static inline void sync_mm_rss(struct mm_struct *mm)
  1286. {
  1287. }
  1288. #endif
  1289. #ifndef __HAVE_ARCH_PTE_DEVMAP
  1290. static inline int pte_devmap(pte_t pte)
  1291. {
  1292. return 0;
  1293. }
  1294. #endif
  1295. int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
  1296. extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1297. spinlock_t **ptl);
  1298. static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1299. spinlock_t **ptl)
  1300. {
  1301. pte_t *ptep;
  1302. __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
  1303. return ptep;
  1304. }
  1305. #ifdef __PAGETABLE_PUD_FOLDED
  1306. static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
  1307. unsigned long address)
  1308. {
  1309. return 0;
  1310. }
  1311. #else
  1312. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
  1313. #endif
  1314. #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
  1315. static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
  1316. unsigned long address)
  1317. {
  1318. return 0;
  1319. }
  1320. static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
  1321. static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
  1322. {
  1323. return 0;
  1324. }
  1325. static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
  1326. static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
  1327. #else
  1328. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
  1329. static inline void mm_nr_pmds_init(struct mm_struct *mm)
  1330. {
  1331. atomic_long_set(&mm->nr_pmds, 0);
  1332. }
  1333. static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
  1334. {
  1335. return atomic_long_read(&mm->nr_pmds);
  1336. }
  1337. static inline void mm_inc_nr_pmds(struct mm_struct *mm)
  1338. {
  1339. atomic_long_inc(&mm->nr_pmds);
  1340. }
  1341. static inline void mm_dec_nr_pmds(struct mm_struct *mm)
  1342. {
  1343. atomic_long_dec(&mm->nr_pmds);
  1344. }
  1345. #endif
  1346. int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
  1347. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
  1348. /*
  1349. * The following ifdef needed to get the 4level-fixup.h header to work.
  1350. * Remove it when 4level-fixup.h has been removed.
  1351. */
  1352. #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
  1353. static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  1354. {
  1355. return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
  1356. NULL: pud_offset(pgd, address);
  1357. }
  1358. static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  1359. {
  1360. return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
  1361. NULL: pmd_offset(pud, address);
  1362. }
  1363. #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
  1364. #if USE_SPLIT_PTE_PTLOCKS
  1365. #if ALLOC_SPLIT_PTLOCKS
  1366. void __init ptlock_cache_init(void);
  1367. extern bool ptlock_alloc(struct page *page);
  1368. extern void ptlock_free(struct page *page);
  1369. static inline spinlock_t *ptlock_ptr(struct page *page)
  1370. {
  1371. return page->ptl;
  1372. }
  1373. #else /* ALLOC_SPLIT_PTLOCKS */
  1374. static inline void ptlock_cache_init(void)
  1375. {
  1376. }
  1377. static inline bool ptlock_alloc(struct page *page)
  1378. {
  1379. return true;
  1380. }
  1381. static inline void ptlock_free(struct page *page)
  1382. {
  1383. }
  1384. static inline spinlock_t *ptlock_ptr(struct page *page)
  1385. {
  1386. return &page->ptl;
  1387. }
  1388. #endif /* ALLOC_SPLIT_PTLOCKS */
  1389. static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1390. {
  1391. return ptlock_ptr(pmd_page(*pmd));
  1392. }
  1393. static inline bool ptlock_init(struct page *page)
  1394. {
  1395. /*
  1396. * prep_new_page() initialize page->private (and therefore page->ptl)
  1397. * with 0. Make sure nobody took it in use in between.
  1398. *
  1399. * It can happen if arch try to use slab for page table allocation:
  1400. * slab code uses page->slab_cache, which share storage with page->ptl.
  1401. */
  1402. VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
  1403. if (!ptlock_alloc(page))
  1404. return false;
  1405. spin_lock_init(ptlock_ptr(page));
  1406. return true;
  1407. }
  1408. /* Reset page->mapping so free_pages_check won't complain. */
  1409. static inline void pte_lock_deinit(struct page *page)
  1410. {
  1411. page->mapping = NULL;
  1412. ptlock_free(page);
  1413. }
  1414. #else /* !USE_SPLIT_PTE_PTLOCKS */
  1415. /*
  1416. * We use mm->page_table_lock to guard all pagetable pages of the mm.
  1417. */
  1418. static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1419. {
  1420. return &mm->page_table_lock;
  1421. }
  1422. static inline void ptlock_cache_init(void) {}
  1423. static inline bool ptlock_init(struct page *page) { return true; }
  1424. static inline void pte_lock_deinit(struct page *page) {}
  1425. #endif /* USE_SPLIT_PTE_PTLOCKS */
  1426. static inline void pgtable_init(void)
  1427. {
  1428. ptlock_cache_init();
  1429. pgtable_cache_init();
  1430. }
  1431. static inline bool pgtable_page_ctor(struct page *page)
  1432. {
  1433. if (!ptlock_init(page))
  1434. return false;
  1435. inc_zone_page_state(page, NR_PAGETABLE);
  1436. return true;
  1437. }
  1438. static inline void pgtable_page_dtor(struct page *page)
  1439. {
  1440. pte_lock_deinit(page);
  1441. dec_zone_page_state(page, NR_PAGETABLE);
  1442. }
  1443. #define pte_offset_map_lock(mm, pmd, address, ptlp) \
  1444. ({ \
  1445. spinlock_t *__ptl = pte_lockptr(mm, pmd); \
  1446. pte_t *__pte = pte_offset_map(pmd, address); \
  1447. *(ptlp) = __ptl; \
  1448. spin_lock(__ptl); \
  1449. __pte; \
  1450. })
  1451. #define pte_unmap_unlock(pte, ptl) do { \
  1452. spin_unlock(ptl); \
  1453. pte_unmap(pte); \
  1454. } while (0)
  1455. #define pte_alloc(mm, pmd, address) \
  1456. (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
  1457. #define pte_alloc_map(mm, pmd, address) \
  1458. (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
  1459. #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
  1460. (pte_alloc(mm, pmd, address) ? \
  1461. NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
  1462. #define pte_alloc_kernel(pmd, address) \
  1463. ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
  1464. NULL: pte_offset_kernel(pmd, address))
  1465. #if USE_SPLIT_PMD_PTLOCKS
  1466. static struct page *pmd_to_page(pmd_t *pmd)
  1467. {
  1468. unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
  1469. return virt_to_page((void *)((unsigned long) pmd & mask));
  1470. }
  1471. static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1472. {
  1473. return ptlock_ptr(pmd_to_page(pmd));
  1474. }
  1475. static inline bool pgtable_pmd_page_ctor(struct page *page)
  1476. {
  1477. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1478. page->pmd_huge_pte = NULL;
  1479. #endif
  1480. return ptlock_init(page);
  1481. }
  1482. static inline void pgtable_pmd_page_dtor(struct page *page)
  1483. {
  1484. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1485. VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
  1486. #endif
  1487. ptlock_free(page);
  1488. }
  1489. #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
  1490. #else
  1491. static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1492. {
  1493. return &mm->page_table_lock;
  1494. }
  1495. static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
  1496. static inline void pgtable_pmd_page_dtor(struct page *page) {}
  1497. #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
  1498. #endif
  1499. static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
  1500. {
  1501. spinlock_t *ptl = pmd_lockptr(mm, pmd);
  1502. spin_lock(ptl);
  1503. return ptl;
  1504. }
  1505. extern void __init pagecache_init(void);
  1506. extern void free_area_init(unsigned long * zones_size);
  1507. extern void free_area_init_node(int nid, unsigned long * zones_size,
  1508. unsigned long zone_start_pfn, unsigned long *zholes_size);
  1509. extern void free_initmem(void);
  1510. /*
  1511. * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
  1512. * into the buddy system. The freed pages will be poisoned with pattern
  1513. * "poison" if it's within range [0, UCHAR_MAX].
  1514. * Return pages freed into the buddy system.
  1515. */
  1516. extern unsigned long free_reserved_area(void *start, void *end,
  1517. int poison, char *s);
  1518. #ifdef CONFIG_HIGHMEM
  1519. /*
  1520. * Free a highmem page into the buddy system, adjusting totalhigh_pages
  1521. * and totalram_pages.
  1522. */
  1523. extern void free_highmem_page(struct page *page);
  1524. #endif
  1525. extern void adjust_managed_page_count(struct page *page, long count);
  1526. extern void mem_init_print_info(const char *str);
  1527. extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
  1528. /* Free the reserved page into the buddy system, so it gets managed. */
  1529. static inline void __free_reserved_page(struct page *page)
  1530. {
  1531. ClearPageReserved(page);
  1532. init_page_count(page);
  1533. __free_page(page);
  1534. }
  1535. static inline void free_reserved_page(struct page *page)
  1536. {
  1537. __free_reserved_page(page);
  1538. adjust_managed_page_count(page, 1);
  1539. }
  1540. static inline void mark_page_reserved(struct page *page)
  1541. {
  1542. SetPageReserved(page);
  1543. adjust_managed_page_count(page, -1);
  1544. }
  1545. /*
  1546. * Default method to free all the __init memory into the buddy system.
  1547. * The freed pages will be poisoned with pattern "poison" if it's within
  1548. * range [0, UCHAR_MAX].
  1549. * Return pages freed into the buddy system.
  1550. */
  1551. static inline unsigned long free_initmem_default(int poison)
  1552. {
  1553. extern char __init_begin[], __init_end[];
  1554. return free_reserved_area(&__init_begin, &__init_end,
  1555. poison, "unused kernel");
  1556. }
  1557. static inline unsigned long get_num_physpages(void)
  1558. {
  1559. int nid;
  1560. unsigned long phys_pages = 0;
  1561. for_each_online_node(nid)
  1562. phys_pages += node_present_pages(nid);
  1563. return phys_pages;
  1564. }
  1565. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  1566. /*
  1567. * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
  1568. * zones, allocate the backing mem_map and account for memory holes in a more
  1569. * architecture independent manner. This is a substitute for creating the
  1570. * zone_sizes[] and zholes_size[] arrays and passing them to
  1571. * free_area_init_node()
  1572. *
  1573. * An architecture is expected to register range of page frames backed by
  1574. * physical memory with memblock_add[_node]() before calling
  1575. * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
  1576. * usage, an architecture is expected to do something like
  1577. *
  1578. * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
  1579. * max_highmem_pfn};
  1580. * for_each_valid_physical_page_range()
  1581. * memblock_add_node(base, size, nid)
  1582. * free_area_init_nodes(max_zone_pfns);
  1583. *
  1584. * free_bootmem_with_active_regions() calls free_bootmem_node() for each
  1585. * registered physical page range. Similarly
  1586. * sparse_memory_present_with_active_regions() calls memory_present() for
  1587. * each range when SPARSEMEM is enabled.
  1588. *
  1589. * See mm/page_alloc.c for more information on each function exposed by
  1590. * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
  1591. */
  1592. extern void free_area_init_nodes(unsigned long *max_zone_pfn);
  1593. unsigned long node_map_pfn_alignment(void);
  1594. unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
  1595. unsigned long end_pfn);
  1596. extern unsigned long absent_pages_in_range(unsigned long start_pfn,
  1597. unsigned long end_pfn);
  1598. extern void get_pfn_range_for_nid(unsigned int nid,
  1599. unsigned long *start_pfn, unsigned long *end_pfn);
  1600. extern unsigned long find_min_pfn_with_active_regions(void);
  1601. extern void free_bootmem_with_active_regions(int nid,
  1602. unsigned long max_low_pfn);
  1603. extern void sparse_memory_present_with_active_regions(int nid);
  1604. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  1605. #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
  1606. !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
  1607. static inline int __early_pfn_to_nid(unsigned long pfn,
  1608. struct mminit_pfnnid_cache *state)
  1609. {
  1610. return 0;
  1611. }
  1612. #else
  1613. /* please see mm/page_alloc.c */
  1614. extern int __meminit early_pfn_to_nid(unsigned long pfn);
  1615. /* there is a per-arch backend function. */
  1616. extern int __meminit __early_pfn_to_nid(unsigned long pfn,
  1617. struct mminit_pfnnid_cache *state);
  1618. #endif
  1619. extern void set_dma_reserve(unsigned long new_dma_reserve);
  1620. extern void memmap_init_zone(unsigned long, int, unsigned long,
  1621. unsigned long, enum memmap_context);
  1622. extern void setup_per_zone_wmarks(void);
  1623. extern int __meminit init_per_zone_wmark_min(void);
  1624. extern void mem_init(void);
  1625. extern void __init mmap_init(void);
  1626. extern void show_mem(unsigned int flags);
  1627. extern long si_mem_available(void);
  1628. extern void si_meminfo(struct sysinfo * val);
  1629. extern void si_meminfo_node(struct sysinfo *val, int nid);
  1630. #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
  1631. extern unsigned long arch_reserved_kernel_pages(void);
  1632. #endif
  1633. extern __printf(2, 3)
  1634. void warn_alloc(gfp_t gfp_mask, const char *fmt, ...);
  1635. extern void setup_per_cpu_pageset(void);
  1636. extern void zone_pcp_update(struct zone *zone);
  1637. extern void zone_pcp_reset(struct zone *zone);
  1638. /* page_alloc.c */
  1639. extern int min_free_kbytes;
  1640. extern int watermark_scale_factor;
  1641. /* nommu.c */
  1642. extern atomic_long_t mmap_pages_allocated;
  1643. extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
  1644. /* interval_tree.c */
  1645. void vma_interval_tree_insert(struct vm_area_struct *node,
  1646. struct rb_root *root);
  1647. void vma_interval_tree_insert_after(struct vm_area_struct *node,
  1648. struct vm_area_struct *prev,
  1649. struct rb_root *root);
  1650. void vma_interval_tree_remove(struct vm_area_struct *node,
  1651. struct rb_root *root);
  1652. struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
  1653. unsigned long start, unsigned long last);
  1654. struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
  1655. unsigned long start, unsigned long last);
  1656. #define vma_interval_tree_foreach(vma, root, start, last) \
  1657. for (vma = vma_interval_tree_iter_first(root, start, last); \
  1658. vma; vma = vma_interval_tree_iter_next(vma, start, last))
  1659. void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
  1660. struct rb_root *root);
  1661. void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
  1662. struct rb_root *root);
  1663. struct anon_vma_chain *anon_vma_interval_tree_iter_first(
  1664. struct rb_root *root, unsigned long start, unsigned long last);
  1665. struct anon_vma_chain *anon_vma_interval_tree_iter_next(
  1666. struct anon_vma_chain *node, unsigned long start, unsigned long last);
  1667. #ifdef CONFIG_DEBUG_VM_RB
  1668. void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
  1669. #endif
  1670. #define anon_vma_interval_tree_foreach(avc, root, start, last) \
  1671. for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
  1672. avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
  1673. /* mmap.c */
  1674. extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
  1675. extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
  1676. unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
  1677. struct vm_area_struct *expand);
  1678. static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
  1679. unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
  1680. {
  1681. return __vma_adjust(vma, start, end, pgoff, insert, NULL);
  1682. }
  1683. extern struct vm_area_struct *vma_merge(struct mm_struct *,
  1684. struct vm_area_struct *prev, unsigned long addr, unsigned long end,
  1685. unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
  1686. struct mempolicy *, struct vm_userfaultfd_ctx);
  1687. extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
  1688. extern int split_vma(struct mm_struct *,
  1689. struct vm_area_struct *, unsigned long addr, int new_below);
  1690. extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
  1691. extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
  1692. struct rb_node **, struct rb_node *);
  1693. extern void unlink_file_vma(struct vm_area_struct *);
  1694. extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
  1695. unsigned long addr, unsigned long len, pgoff_t pgoff,
  1696. bool *need_rmap_locks);
  1697. extern void exit_mmap(struct mm_struct *);
  1698. static inline int check_data_rlimit(unsigned long rlim,
  1699. unsigned long new,
  1700. unsigned long start,
  1701. unsigned long end_data,
  1702. unsigned long start_data)
  1703. {
  1704. if (rlim < RLIM_INFINITY) {
  1705. if (((new - start) + (end_data - start_data)) > rlim)
  1706. return -ENOSPC;
  1707. }
  1708. return 0;
  1709. }
  1710. extern int mm_take_all_locks(struct mm_struct *mm);
  1711. extern void mm_drop_all_locks(struct mm_struct *mm);
  1712. extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
  1713. extern struct file *get_mm_exe_file(struct mm_struct *mm);
  1714. extern struct file *get_task_exe_file(struct task_struct *task);
  1715. extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
  1716. extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
  1717. extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
  1718. const struct vm_special_mapping *sm);
  1719. extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
  1720. unsigned long addr, unsigned long len,
  1721. unsigned long flags,
  1722. const struct vm_special_mapping *spec);
  1723. /* This is an obsolete alternative to _install_special_mapping. */
  1724. extern int install_special_mapping(struct mm_struct *mm,
  1725. unsigned long addr, unsigned long len,
  1726. unsigned long flags, struct page **pages);
  1727. extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
  1728. extern unsigned long mmap_region(struct file *file, unsigned long addr,
  1729. unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
  1730. extern unsigned long do_mmap(struct file *file, unsigned long addr,
  1731. unsigned long len, unsigned long prot, unsigned long flags,
  1732. vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
  1733. extern int do_munmap(struct mm_struct *, unsigned long, size_t);
  1734. static inline unsigned long
  1735. do_mmap_pgoff(struct file *file, unsigned long addr,
  1736. unsigned long len, unsigned long prot, unsigned long flags,
  1737. unsigned long pgoff, unsigned long *populate)
  1738. {
  1739. return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
  1740. }
  1741. #ifdef CONFIG_MMU
  1742. extern int __mm_populate(unsigned long addr, unsigned long len,
  1743. int ignore_errors);
  1744. static inline void mm_populate(unsigned long addr, unsigned long len)
  1745. {
  1746. /* Ignore errors */
  1747. (void) __mm_populate(addr, len, 1);
  1748. }
  1749. #else
  1750. static inline void mm_populate(unsigned long addr, unsigned long len) {}
  1751. #endif
  1752. /* These take the mm semaphore themselves */
  1753. extern int __must_check vm_brk(unsigned long, unsigned long);
  1754. extern int vm_munmap(unsigned long, size_t);
  1755. extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
  1756. unsigned long, unsigned long,
  1757. unsigned long, unsigned long);
  1758. struct vm_unmapped_area_info {
  1759. #define VM_UNMAPPED_AREA_TOPDOWN 1
  1760. unsigned long flags;
  1761. unsigned long length;
  1762. unsigned long low_limit;
  1763. unsigned long high_limit;
  1764. unsigned long align_mask;
  1765. unsigned long align_offset;
  1766. };
  1767. extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
  1768. extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
  1769. /*
  1770. * Search for an unmapped address range.
  1771. *
  1772. * We are looking for a range that:
  1773. * - does not intersect with any VMA;
  1774. * - is contained within the [low_limit, high_limit) interval;
  1775. * - is at least the desired size.
  1776. * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
  1777. */
  1778. static inline unsigned long
  1779. vm_unmapped_area(struct vm_unmapped_area_info *info)
  1780. {
  1781. if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
  1782. return unmapped_area_topdown(info);
  1783. else
  1784. return unmapped_area(info);
  1785. }
  1786. /* truncate.c */
  1787. extern void truncate_inode_pages(struct address_space *, loff_t);
  1788. extern void truncate_inode_pages_range(struct address_space *,
  1789. loff_t lstart, loff_t lend);
  1790. extern void truncate_inode_pages_final(struct address_space *);
  1791. /* generic vm_area_ops exported for stackable file systems */
  1792. extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
  1793. extern void filemap_map_pages(struct vm_fault *vmf,
  1794. pgoff_t start_pgoff, pgoff_t end_pgoff);
  1795. extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
  1796. /* mm/page-writeback.c */
  1797. int write_one_page(struct page *page, int wait);
  1798. void task_dirty_inc(struct task_struct *tsk);
  1799. /* readahead.c */
  1800. #define VM_MAX_READAHEAD 128 /* kbytes */
  1801. #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
  1802. int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
  1803. pgoff_t offset, unsigned long nr_to_read);
  1804. void page_cache_sync_readahead(struct address_space *mapping,
  1805. struct file_ra_state *ra,
  1806. struct file *filp,
  1807. pgoff_t offset,
  1808. unsigned long size);
  1809. void page_cache_async_readahead(struct address_space *mapping,
  1810. struct file_ra_state *ra,
  1811. struct file *filp,
  1812. struct page *pg,
  1813. pgoff_t offset,
  1814. unsigned long size);
  1815. /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
  1816. extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
  1817. /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
  1818. extern int expand_downwards(struct vm_area_struct *vma,
  1819. unsigned long address);
  1820. #if VM_GROWSUP
  1821. extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
  1822. #else
  1823. #define expand_upwards(vma, address) (0)
  1824. #endif
  1825. /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
  1826. extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
  1827. extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
  1828. struct vm_area_struct **pprev);
  1829. /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
  1830. NULL if none. Assume start_addr < end_addr. */
  1831. static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
  1832. {
  1833. struct vm_area_struct * vma = find_vma(mm,start_addr);
  1834. if (vma && end_addr <= vma->vm_start)
  1835. vma = NULL;
  1836. return vma;
  1837. }
  1838. static inline unsigned long vma_pages(struct vm_area_struct *vma)
  1839. {
  1840. return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
  1841. }
  1842. /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
  1843. static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
  1844. unsigned long vm_start, unsigned long vm_end)
  1845. {
  1846. struct vm_area_struct *vma = find_vma(mm, vm_start);
  1847. if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
  1848. vma = NULL;
  1849. return vma;
  1850. }
  1851. #ifdef CONFIG_MMU
  1852. pgprot_t vm_get_page_prot(unsigned long vm_flags);
  1853. void vma_set_page_prot(struct vm_area_struct *vma);
  1854. #else
  1855. static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
  1856. {
  1857. return __pgprot(0);
  1858. }
  1859. static inline void vma_set_page_prot(struct vm_area_struct *vma)
  1860. {
  1861. vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
  1862. }
  1863. #endif
  1864. #ifdef CONFIG_NUMA_BALANCING
  1865. unsigned long change_prot_numa(struct vm_area_struct *vma,
  1866. unsigned long start, unsigned long end);
  1867. #endif
  1868. struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
  1869. int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
  1870. unsigned long pfn, unsigned long size, pgprot_t);
  1871. int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
  1872. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1873. unsigned long pfn);
  1874. int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
  1875. unsigned long pfn, pgprot_t pgprot);
  1876. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1877. pfn_t pfn);
  1878. int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
  1879. struct page *follow_page_mask(struct vm_area_struct *vma,
  1880. unsigned long address, unsigned int foll_flags,
  1881. unsigned int *page_mask);
  1882. static inline struct page *follow_page(struct vm_area_struct *vma,
  1883. unsigned long address, unsigned int foll_flags)
  1884. {
  1885. unsigned int unused_page_mask;
  1886. return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
  1887. }
  1888. #define FOLL_WRITE 0x01 /* check pte is writable */
  1889. #define FOLL_TOUCH 0x02 /* mark page accessed */
  1890. #define FOLL_GET 0x04 /* do get_page on page */
  1891. #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
  1892. #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
  1893. #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
  1894. * and return without waiting upon it */
  1895. #define FOLL_POPULATE 0x40 /* fault in page */
  1896. #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
  1897. #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
  1898. #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
  1899. #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
  1900. #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
  1901. #define FOLL_MLOCK 0x1000 /* lock present pages */
  1902. #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
  1903. #define FOLL_COW 0x4000 /* internal GUP flag */
  1904. typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
  1905. void *data);
  1906. extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
  1907. unsigned long size, pte_fn_t fn, void *data);
  1908. #ifdef CONFIG_PAGE_POISONING
  1909. extern bool page_poisoning_enabled(void);
  1910. extern void kernel_poison_pages(struct page *page, int numpages, int enable);
  1911. extern bool page_is_poisoned(struct page *page);
  1912. #else
  1913. static inline bool page_poisoning_enabled(void) { return false; }
  1914. static inline void kernel_poison_pages(struct page *page, int numpages,
  1915. int enable) { }
  1916. static inline bool page_is_poisoned(struct page *page) { return false; }
  1917. #endif
  1918. #ifdef CONFIG_DEBUG_PAGEALLOC
  1919. extern bool _debug_pagealloc_enabled;
  1920. extern void __kernel_map_pages(struct page *page, int numpages, int enable);
  1921. static inline bool debug_pagealloc_enabled(void)
  1922. {
  1923. return _debug_pagealloc_enabled;
  1924. }
  1925. static inline void
  1926. kernel_map_pages(struct page *page, int numpages, int enable)
  1927. {
  1928. if (!debug_pagealloc_enabled())
  1929. return;
  1930. __kernel_map_pages(page, numpages, enable);
  1931. }
  1932. #ifdef CONFIG_HIBERNATION
  1933. extern bool kernel_page_present(struct page *page);
  1934. #endif /* CONFIG_HIBERNATION */
  1935. #else /* CONFIG_DEBUG_PAGEALLOC */
  1936. static inline void
  1937. kernel_map_pages(struct page *page, int numpages, int enable) {}
  1938. #ifdef CONFIG_HIBERNATION
  1939. static inline bool kernel_page_present(struct page *page) { return true; }
  1940. #endif /* CONFIG_HIBERNATION */
  1941. static inline bool debug_pagealloc_enabled(void)
  1942. {
  1943. return false;
  1944. }
  1945. #endif /* CONFIG_DEBUG_PAGEALLOC */
  1946. #ifdef __HAVE_ARCH_GATE_AREA
  1947. extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
  1948. extern int in_gate_area_no_mm(unsigned long addr);
  1949. extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
  1950. #else
  1951. static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
  1952. {
  1953. return NULL;
  1954. }
  1955. static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
  1956. static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
  1957. {
  1958. return 0;
  1959. }
  1960. #endif /* __HAVE_ARCH_GATE_AREA */
  1961. extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
  1962. #ifdef CONFIG_SYSCTL
  1963. extern int sysctl_drop_caches;
  1964. int drop_caches_sysctl_handler(struct ctl_table *, int,
  1965. void __user *, size_t *, loff_t *);
  1966. #endif
  1967. void drop_slab(void);
  1968. void drop_slab_node(int nid);
  1969. #ifndef CONFIG_MMU
  1970. #define randomize_va_space 0
  1971. #else
  1972. extern int randomize_va_space;
  1973. #endif
  1974. const char * arch_vma_name(struct vm_area_struct *vma);
  1975. void print_vma_addr(char *prefix, unsigned long rip);
  1976. void sparse_mem_maps_populate_node(struct page **map_map,
  1977. unsigned long pnum_begin,
  1978. unsigned long pnum_end,
  1979. unsigned long map_count,
  1980. int nodeid);
  1981. struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
  1982. pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
  1983. pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
  1984. pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
  1985. pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
  1986. void *vmemmap_alloc_block(unsigned long size, int node);
  1987. struct vmem_altmap;
  1988. void *__vmemmap_alloc_block_buf(unsigned long size, int node,
  1989. struct vmem_altmap *altmap);
  1990. static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
  1991. {
  1992. return __vmemmap_alloc_block_buf(size, node, NULL);
  1993. }
  1994. void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
  1995. int vmemmap_populate_basepages(unsigned long start, unsigned long end,
  1996. int node);
  1997. int vmemmap_populate(unsigned long start, unsigned long end, int node);
  1998. void vmemmap_populate_print_last(void);
  1999. #ifdef CONFIG_MEMORY_HOTPLUG
  2000. void vmemmap_free(unsigned long start, unsigned long end);
  2001. #endif
  2002. void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
  2003. unsigned long size);
  2004. enum mf_flags {
  2005. MF_COUNT_INCREASED = 1 << 0,
  2006. MF_ACTION_REQUIRED = 1 << 1,
  2007. MF_MUST_KILL = 1 << 2,
  2008. MF_SOFT_OFFLINE = 1 << 3,
  2009. };
  2010. extern int memory_failure(unsigned long pfn, int trapno, int flags);
  2011. extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
  2012. extern int unpoison_memory(unsigned long pfn);
  2013. extern int get_hwpoison_page(struct page *page);
  2014. #define put_hwpoison_page(page) put_page(page)
  2015. extern int sysctl_memory_failure_early_kill;
  2016. extern int sysctl_memory_failure_recovery;
  2017. extern void shake_page(struct page *p, int access);
  2018. extern atomic_long_t num_poisoned_pages;
  2019. extern int soft_offline_page(struct page *page, int flags);
  2020. /*
  2021. * Error handlers for various types of pages.
  2022. */
  2023. enum mf_result {
  2024. MF_IGNORED, /* Error: cannot be handled */
  2025. MF_FAILED, /* Error: handling failed */
  2026. MF_DELAYED, /* Will be handled later */
  2027. MF_RECOVERED, /* Successfully recovered */
  2028. };
  2029. enum mf_action_page_type {
  2030. MF_MSG_KERNEL,
  2031. MF_MSG_KERNEL_HIGH_ORDER,
  2032. MF_MSG_SLAB,
  2033. MF_MSG_DIFFERENT_COMPOUND,
  2034. MF_MSG_POISONED_HUGE,
  2035. MF_MSG_HUGE,
  2036. MF_MSG_FREE_HUGE,
  2037. MF_MSG_UNMAP_FAILED,
  2038. MF_MSG_DIRTY_SWAPCACHE,
  2039. MF_MSG_CLEAN_SWAPCACHE,
  2040. MF_MSG_DIRTY_MLOCKED_LRU,
  2041. MF_MSG_CLEAN_MLOCKED_LRU,
  2042. MF_MSG_DIRTY_UNEVICTABLE_LRU,
  2043. MF_MSG_CLEAN_UNEVICTABLE_LRU,
  2044. MF_MSG_DIRTY_LRU,
  2045. MF_MSG_CLEAN_LRU,
  2046. MF_MSG_TRUNCATED_LRU,
  2047. MF_MSG_BUDDY,
  2048. MF_MSG_BUDDY_2ND,
  2049. MF_MSG_UNKNOWN,
  2050. };
  2051. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
  2052. extern void clear_huge_page(struct page *page,
  2053. unsigned long addr,
  2054. unsigned int pages_per_huge_page);
  2055. extern void copy_user_huge_page(struct page *dst, struct page *src,
  2056. unsigned long addr, struct vm_area_struct *vma,
  2057. unsigned int pages_per_huge_page);
  2058. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
  2059. extern struct page_ext_operations debug_guardpage_ops;
  2060. extern struct page_ext_operations page_poisoning_ops;
  2061. #ifdef CONFIG_DEBUG_PAGEALLOC
  2062. extern unsigned int _debug_guardpage_minorder;
  2063. extern bool _debug_guardpage_enabled;
  2064. static inline unsigned int debug_guardpage_minorder(void)
  2065. {
  2066. return _debug_guardpage_minorder;
  2067. }
  2068. static inline bool debug_guardpage_enabled(void)
  2069. {
  2070. return _debug_guardpage_enabled;
  2071. }
  2072. static inline bool page_is_guard(struct page *page)
  2073. {
  2074. struct page_ext *page_ext;
  2075. if (!debug_guardpage_enabled())
  2076. return false;
  2077. page_ext = lookup_page_ext(page);
  2078. if (unlikely(!page_ext))
  2079. return false;
  2080. return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  2081. }
  2082. #else
  2083. static inline unsigned int debug_guardpage_minorder(void) { return 0; }
  2084. static inline bool debug_guardpage_enabled(void) { return false; }
  2085. static inline bool page_is_guard(struct page *page) { return false; }
  2086. #endif /* CONFIG_DEBUG_PAGEALLOC */
  2087. #if MAX_NUMNODES > 1
  2088. void __init setup_nr_node_ids(void);
  2089. #else
  2090. static inline void setup_nr_node_ids(void) {}
  2091. #endif
  2092. #endif /* __KERNEL__ */
  2093. #endif /* _LINUX_MM_H */