safexcel_cipher.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939
  1. /*
  2. * Copyright (C) 2017 Marvell
  3. *
  4. * Antoine Tenart <antoine.tenart@free-electrons.com>
  5. *
  6. * This file is licensed under the terms of the GNU General Public
  7. * License version 2. This program is licensed "as is" without any
  8. * warranty of any kind, whether express or implied.
  9. */
  10. #include <linux/device.h>
  11. #include <linux/dma-mapping.h>
  12. #include <linux/dmapool.h>
  13. #include <crypto/aead.h>
  14. #include <crypto/aes.h>
  15. #include <crypto/authenc.h>
  16. #include <crypto/sha.h>
  17. #include <crypto/skcipher.h>
  18. #include <crypto/internal/aead.h>
  19. #include <crypto/internal/skcipher.h>
  20. #include "safexcel.h"
  21. enum safexcel_cipher_direction {
  22. SAFEXCEL_ENCRYPT,
  23. SAFEXCEL_DECRYPT,
  24. };
  25. struct safexcel_cipher_ctx {
  26. struct safexcel_context base;
  27. struct safexcel_crypto_priv *priv;
  28. u32 mode;
  29. bool aead;
  30. __le32 key[8];
  31. unsigned int key_len;
  32. /* All the below is AEAD specific */
  33. u32 alg;
  34. u32 state_sz;
  35. u32 ipad[SHA256_DIGEST_SIZE / sizeof(u32)];
  36. u32 opad[SHA256_DIGEST_SIZE / sizeof(u32)];
  37. };
  38. struct safexcel_cipher_req {
  39. enum safexcel_cipher_direction direction;
  40. bool needs_inv;
  41. };
  42. static void safexcel_skcipher_token(struct safexcel_cipher_ctx *ctx, u8 *iv,
  43. struct safexcel_command_desc *cdesc,
  44. u32 length)
  45. {
  46. struct safexcel_token *token;
  47. unsigned offset = 0;
  48. if (ctx->mode == CONTEXT_CONTROL_CRYPTO_MODE_CBC) {
  49. offset = AES_BLOCK_SIZE / sizeof(u32);
  50. memcpy(cdesc->control_data.token, iv, AES_BLOCK_SIZE);
  51. cdesc->control_data.options |= EIP197_OPTION_4_TOKEN_IV_CMD;
  52. }
  53. token = (struct safexcel_token *)(cdesc->control_data.token + offset);
  54. token[0].opcode = EIP197_TOKEN_OPCODE_DIRECTION;
  55. token[0].packet_length = length;
  56. token[0].stat = EIP197_TOKEN_STAT_LAST_PACKET |
  57. EIP197_TOKEN_STAT_LAST_HASH;
  58. token[0].instructions = EIP197_TOKEN_INS_LAST |
  59. EIP197_TOKEN_INS_TYPE_CRYTO |
  60. EIP197_TOKEN_INS_TYPE_OUTPUT;
  61. }
  62. static void safexcel_aead_token(struct safexcel_cipher_ctx *ctx, u8 *iv,
  63. struct safexcel_command_desc *cdesc,
  64. enum safexcel_cipher_direction direction,
  65. u32 cryptlen, u32 assoclen, u32 digestsize)
  66. {
  67. struct safexcel_token *token;
  68. unsigned offset = 0;
  69. if (ctx->mode == CONTEXT_CONTROL_CRYPTO_MODE_CBC) {
  70. offset = AES_BLOCK_SIZE / sizeof(u32);
  71. memcpy(cdesc->control_data.token, iv, AES_BLOCK_SIZE);
  72. cdesc->control_data.options |= EIP197_OPTION_4_TOKEN_IV_CMD;
  73. }
  74. token = (struct safexcel_token *)(cdesc->control_data.token + offset);
  75. if (direction == SAFEXCEL_DECRYPT)
  76. cryptlen -= digestsize;
  77. token[0].opcode = EIP197_TOKEN_OPCODE_DIRECTION;
  78. token[0].packet_length = assoclen;
  79. token[0].instructions = EIP197_TOKEN_INS_TYPE_HASH |
  80. EIP197_TOKEN_INS_TYPE_OUTPUT;
  81. token[1].opcode = EIP197_TOKEN_OPCODE_DIRECTION;
  82. token[1].packet_length = cryptlen;
  83. token[1].stat = EIP197_TOKEN_STAT_LAST_HASH;
  84. token[1].instructions = EIP197_TOKEN_INS_LAST |
  85. EIP197_TOKEN_INS_TYPE_CRYTO |
  86. EIP197_TOKEN_INS_TYPE_HASH |
  87. EIP197_TOKEN_INS_TYPE_OUTPUT;
  88. if (direction == SAFEXCEL_ENCRYPT) {
  89. token[2].opcode = EIP197_TOKEN_OPCODE_INSERT;
  90. token[2].packet_length = digestsize;
  91. token[2].stat = EIP197_TOKEN_STAT_LAST_HASH |
  92. EIP197_TOKEN_STAT_LAST_PACKET;
  93. token[2].instructions = EIP197_TOKEN_INS_TYPE_OUTPUT |
  94. EIP197_TOKEN_INS_INSERT_HASH_DIGEST;
  95. } else {
  96. token[2].opcode = EIP197_TOKEN_OPCODE_RETRIEVE;
  97. token[2].packet_length = digestsize;
  98. token[2].stat = EIP197_TOKEN_STAT_LAST_HASH |
  99. EIP197_TOKEN_STAT_LAST_PACKET;
  100. token[2].instructions = EIP197_TOKEN_INS_INSERT_HASH_DIGEST;
  101. token[3].opcode = EIP197_TOKEN_OPCODE_VERIFY;
  102. token[3].packet_length = digestsize |
  103. EIP197_TOKEN_HASH_RESULT_VERIFY;
  104. token[3].stat = EIP197_TOKEN_STAT_LAST_HASH |
  105. EIP197_TOKEN_STAT_LAST_PACKET;
  106. token[3].instructions = EIP197_TOKEN_INS_TYPE_OUTPUT;
  107. }
  108. }
  109. static int safexcel_skcipher_aes_setkey(struct crypto_skcipher *ctfm,
  110. const u8 *key, unsigned int len)
  111. {
  112. struct crypto_tfm *tfm = crypto_skcipher_tfm(ctfm);
  113. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  114. struct safexcel_crypto_priv *priv = ctx->priv;
  115. struct crypto_aes_ctx aes;
  116. int ret, i;
  117. ret = crypto_aes_expand_key(&aes, key, len);
  118. if (ret) {
  119. crypto_skcipher_set_flags(ctfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
  120. return ret;
  121. }
  122. if (priv->version == EIP197 && ctx->base.ctxr_dma) {
  123. for (i = 0; i < len / sizeof(u32); i++) {
  124. if (ctx->key[i] != cpu_to_le32(aes.key_enc[i])) {
  125. ctx->base.needs_inv = true;
  126. break;
  127. }
  128. }
  129. }
  130. for (i = 0; i < len / sizeof(u32); i++)
  131. ctx->key[i] = cpu_to_le32(aes.key_enc[i]);
  132. ctx->key_len = len;
  133. memzero_explicit(&aes, sizeof(aes));
  134. return 0;
  135. }
  136. static int safexcel_aead_aes_setkey(struct crypto_aead *ctfm, const u8 *key,
  137. unsigned int len)
  138. {
  139. struct crypto_tfm *tfm = crypto_aead_tfm(ctfm);
  140. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  141. struct safexcel_ahash_export_state istate, ostate;
  142. struct safexcel_crypto_priv *priv = ctx->priv;
  143. struct crypto_authenc_keys keys;
  144. if (crypto_authenc_extractkeys(&keys, key, len) != 0)
  145. goto badkey;
  146. if (keys.enckeylen > sizeof(ctx->key))
  147. goto badkey;
  148. /* Encryption key */
  149. if (priv->version == EIP197 && ctx->base.ctxr_dma &&
  150. memcmp(ctx->key, keys.enckey, keys.enckeylen))
  151. ctx->base.needs_inv = true;
  152. /* Auth key */
  153. if (safexcel_hmac_setkey("safexcel-sha256", keys.authkey,
  154. keys.authkeylen, &istate, &ostate))
  155. goto badkey;
  156. crypto_aead_set_flags(ctfm, crypto_aead_get_flags(ctfm) &
  157. CRYPTO_TFM_RES_MASK);
  158. if (priv->version == EIP197 && ctx->base.ctxr_dma &&
  159. (memcmp(ctx->ipad, istate.state, ctx->state_sz) ||
  160. memcmp(ctx->opad, ostate.state, ctx->state_sz)))
  161. ctx->base.needs_inv = true;
  162. /* Now copy the keys into the context */
  163. memcpy(ctx->key, keys.enckey, keys.enckeylen);
  164. ctx->key_len = keys.enckeylen;
  165. memcpy(ctx->ipad, &istate.state, ctx->state_sz);
  166. memcpy(ctx->opad, &ostate.state, ctx->state_sz);
  167. memzero_explicit(&keys, sizeof(keys));
  168. return 0;
  169. badkey:
  170. crypto_aead_set_flags(ctfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
  171. memzero_explicit(&keys, sizeof(keys));
  172. return -EINVAL;
  173. }
  174. static int safexcel_context_control(struct safexcel_cipher_ctx *ctx,
  175. struct crypto_async_request *async,
  176. struct safexcel_cipher_req *sreq,
  177. struct safexcel_command_desc *cdesc)
  178. {
  179. struct safexcel_crypto_priv *priv = ctx->priv;
  180. int ctrl_size;
  181. if (ctx->aead) {
  182. if (sreq->direction == SAFEXCEL_ENCRYPT)
  183. cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_ENCRYPT_HASH_OUT;
  184. else
  185. cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_HASH_DECRYPT_IN;
  186. } else {
  187. cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_CRYPTO_OUT;
  188. /* The decryption control type is a combination of the
  189. * encryption type and CONTEXT_CONTROL_TYPE_NULL_IN, for all
  190. * types.
  191. */
  192. if (sreq->direction == SAFEXCEL_DECRYPT)
  193. cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_NULL_IN;
  194. }
  195. cdesc->control_data.control0 |= CONTEXT_CONTROL_KEY_EN;
  196. cdesc->control_data.control1 |= ctx->mode;
  197. if (ctx->aead)
  198. cdesc->control_data.control0 |= CONTEXT_CONTROL_DIGEST_HMAC |
  199. ctx->alg;
  200. switch (ctx->key_len) {
  201. case AES_KEYSIZE_128:
  202. cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_AES128;
  203. break;
  204. case AES_KEYSIZE_192:
  205. cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_AES192;
  206. break;
  207. case AES_KEYSIZE_256:
  208. cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_AES256;
  209. break;
  210. default:
  211. dev_err(priv->dev, "aes keysize not supported: %u\n",
  212. ctx->key_len);
  213. return -EINVAL;
  214. }
  215. ctrl_size = ctx->key_len / sizeof(u32);
  216. if (ctx->aead)
  217. /* Take in account the ipad+opad digests */
  218. ctrl_size += ctx->state_sz / sizeof(u32) * 2;
  219. cdesc->control_data.control0 |= CONTEXT_CONTROL_SIZE(ctrl_size);
  220. return 0;
  221. }
  222. static int safexcel_handle_req_result(struct safexcel_crypto_priv *priv, int ring,
  223. struct crypto_async_request *async,
  224. struct scatterlist *src,
  225. struct scatterlist *dst,
  226. unsigned int cryptlen,
  227. struct safexcel_cipher_req *sreq,
  228. bool *should_complete, int *ret)
  229. {
  230. struct safexcel_result_desc *rdesc;
  231. int ndesc = 0;
  232. *ret = 0;
  233. spin_lock_bh(&priv->ring[ring].egress_lock);
  234. do {
  235. rdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].rdr);
  236. if (IS_ERR(rdesc)) {
  237. dev_err(priv->dev,
  238. "cipher: result: could not retrieve the result descriptor\n");
  239. *ret = PTR_ERR(rdesc);
  240. break;
  241. }
  242. if (likely(!*ret))
  243. *ret = safexcel_rdesc_check_errors(priv, rdesc);
  244. ndesc++;
  245. } while (!rdesc->last_seg);
  246. safexcel_complete(priv, ring);
  247. spin_unlock_bh(&priv->ring[ring].egress_lock);
  248. if (src == dst) {
  249. dma_unmap_sg(priv->dev, src,
  250. sg_nents_for_len(src, cryptlen),
  251. DMA_BIDIRECTIONAL);
  252. } else {
  253. dma_unmap_sg(priv->dev, src,
  254. sg_nents_for_len(src, cryptlen),
  255. DMA_TO_DEVICE);
  256. dma_unmap_sg(priv->dev, dst,
  257. sg_nents_for_len(dst, cryptlen),
  258. DMA_FROM_DEVICE);
  259. }
  260. *should_complete = true;
  261. return ndesc;
  262. }
  263. static int safexcel_aes_send(struct crypto_async_request *base, int ring,
  264. struct safexcel_request *request,
  265. struct safexcel_cipher_req *sreq,
  266. struct scatterlist *src, struct scatterlist *dst,
  267. unsigned int cryptlen, unsigned int assoclen,
  268. unsigned int digestsize, u8 *iv, int *commands,
  269. int *results)
  270. {
  271. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(base->tfm);
  272. struct safexcel_crypto_priv *priv = ctx->priv;
  273. struct safexcel_command_desc *cdesc;
  274. struct safexcel_result_desc *rdesc;
  275. struct scatterlist *sg;
  276. unsigned int totlen = cryptlen + assoclen;
  277. int nr_src, nr_dst, n_cdesc = 0, n_rdesc = 0, queued = totlen;
  278. int i, ret = 0;
  279. if (src == dst) {
  280. nr_src = dma_map_sg(priv->dev, src,
  281. sg_nents_for_len(src, totlen),
  282. DMA_BIDIRECTIONAL);
  283. nr_dst = nr_src;
  284. if (!nr_src)
  285. return -EINVAL;
  286. } else {
  287. nr_src = dma_map_sg(priv->dev, src,
  288. sg_nents_for_len(src, totlen),
  289. DMA_TO_DEVICE);
  290. if (!nr_src)
  291. return -EINVAL;
  292. nr_dst = dma_map_sg(priv->dev, dst,
  293. sg_nents_for_len(dst, totlen),
  294. DMA_FROM_DEVICE);
  295. if (!nr_dst) {
  296. dma_unmap_sg(priv->dev, src,
  297. sg_nents_for_len(src, totlen),
  298. DMA_TO_DEVICE);
  299. return -EINVAL;
  300. }
  301. }
  302. memcpy(ctx->base.ctxr->data, ctx->key, ctx->key_len);
  303. if (ctx->aead) {
  304. memcpy(ctx->base.ctxr->data + ctx->key_len / sizeof(u32),
  305. ctx->ipad, ctx->state_sz);
  306. memcpy(ctx->base.ctxr->data + (ctx->key_len + ctx->state_sz) / sizeof(u32),
  307. ctx->opad, ctx->state_sz);
  308. }
  309. spin_lock_bh(&priv->ring[ring].egress_lock);
  310. /* command descriptors */
  311. for_each_sg(src, sg, nr_src, i) {
  312. int len = sg_dma_len(sg);
  313. /* Do not overflow the request */
  314. if (queued - len < 0)
  315. len = queued;
  316. cdesc = safexcel_add_cdesc(priv, ring, !n_cdesc, !(queued - len),
  317. sg_dma_address(sg), len, totlen,
  318. ctx->base.ctxr_dma);
  319. if (IS_ERR(cdesc)) {
  320. /* No space left in the command descriptor ring */
  321. ret = PTR_ERR(cdesc);
  322. goto cdesc_rollback;
  323. }
  324. n_cdesc++;
  325. if (n_cdesc == 1) {
  326. safexcel_context_control(ctx, base, sreq, cdesc);
  327. if (ctx->aead)
  328. safexcel_aead_token(ctx, iv, cdesc,
  329. sreq->direction, cryptlen,
  330. assoclen, digestsize);
  331. else
  332. safexcel_skcipher_token(ctx, iv, cdesc,
  333. cryptlen);
  334. }
  335. queued -= len;
  336. if (!queued)
  337. break;
  338. }
  339. /* result descriptors */
  340. for_each_sg(dst, sg, nr_dst, i) {
  341. bool first = !i, last = (i == nr_dst - 1);
  342. u32 len = sg_dma_len(sg);
  343. rdesc = safexcel_add_rdesc(priv, ring, first, last,
  344. sg_dma_address(sg), len);
  345. if (IS_ERR(rdesc)) {
  346. /* No space left in the result descriptor ring */
  347. ret = PTR_ERR(rdesc);
  348. goto rdesc_rollback;
  349. }
  350. n_rdesc++;
  351. }
  352. spin_unlock_bh(&priv->ring[ring].egress_lock);
  353. request->req = base;
  354. *commands = n_cdesc;
  355. *results = n_rdesc;
  356. return 0;
  357. rdesc_rollback:
  358. for (i = 0; i < n_rdesc; i++)
  359. safexcel_ring_rollback_wptr(priv, &priv->ring[ring].rdr);
  360. cdesc_rollback:
  361. for (i = 0; i < n_cdesc; i++)
  362. safexcel_ring_rollback_wptr(priv, &priv->ring[ring].cdr);
  363. spin_unlock_bh(&priv->ring[ring].egress_lock);
  364. if (src == dst) {
  365. dma_unmap_sg(priv->dev, src,
  366. sg_nents_for_len(src, totlen),
  367. DMA_BIDIRECTIONAL);
  368. } else {
  369. dma_unmap_sg(priv->dev, src,
  370. sg_nents_for_len(src, totlen),
  371. DMA_TO_DEVICE);
  372. dma_unmap_sg(priv->dev, dst,
  373. sg_nents_for_len(dst, totlen),
  374. DMA_FROM_DEVICE);
  375. }
  376. return ret;
  377. }
  378. static int safexcel_handle_inv_result(struct safexcel_crypto_priv *priv,
  379. int ring,
  380. struct crypto_async_request *base,
  381. bool *should_complete, int *ret)
  382. {
  383. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(base->tfm);
  384. struct safexcel_result_desc *rdesc;
  385. int ndesc = 0, enq_ret;
  386. *ret = 0;
  387. spin_lock_bh(&priv->ring[ring].egress_lock);
  388. do {
  389. rdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].rdr);
  390. if (IS_ERR(rdesc)) {
  391. dev_err(priv->dev,
  392. "cipher: invalidate: could not retrieve the result descriptor\n");
  393. *ret = PTR_ERR(rdesc);
  394. break;
  395. }
  396. if (rdesc->result_data.error_code) {
  397. dev_err(priv->dev, "cipher: invalidate: result descriptor error (%d)\n",
  398. rdesc->result_data.error_code);
  399. *ret = -EIO;
  400. }
  401. ndesc++;
  402. } while (!rdesc->last_seg);
  403. safexcel_complete(priv, ring);
  404. spin_unlock_bh(&priv->ring[ring].egress_lock);
  405. if (ctx->base.exit_inv) {
  406. dma_pool_free(priv->context_pool, ctx->base.ctxr,
  407. ctx->base.ctxr_dma);
  408. *should_complete = true;
  409. return ndesc;
  410. }
  411. ring = safexcel_select_ring(priv);
  412. ctx->base.ring = ring;
  413. spin_lock_bh(&priv->ring[ring].queue_lock);
  414. enq_ret = crypto_enqueue_request(&priv->ring[ring].queue, base);
  415. spin_unlock_bh(&priv->ring[ring].queue_lock);
  416. if (enq_ret != -EINPROGRESS)
  417. *ret = enq_ret;
  418. queue_work(priv->ring[ring].workqueue,
  419. &priv->ring[ring].work_data.work);
  420. *should_complete = false;
  421. return ndesc;
  422. }
  423. static int safexcel_skcipher_handle_result(struct safexcel_crypto_priv *priv,
  424. int ring,
  425. struct crypto_async_request *async,
  426. bool *should_complete, int *ret)
  427. {
  428. struct skcipher_request *req = skcipher_request_cast(async);
  429. struct safexcel_cipher_req *sreq = skcipher_request_ctx(req);
  430. int err;
  431. if (sreq->needs_inv) {
  432. sreq->needs_inv = false;
  433. err = safexcel_handle_inv_result(priv, ring, async,
  434. should_complete, ret);
  435. } else {
  436. err = safexcel_handle_req_result(priv, ring, async, req->src,
  437. req->dst, req->cryptlen, sreq,
  438. should_complete, ret);
  439. }
  440. return err;
  441. }
  442. static int safexcel_aead_handle_result(struct safexcel_crypto_priv *priv,
  443. int ring,
  444. struct crypto_async_request *async,
  445. bool *should_complete, int *ret)
  446. {
  447. struct aead_request *req = aead_request_cast(async);
  448. struct crypto_aead *tfm = crypto_aead_reqtfm(req);
  449. struct safexcel_cipher_req *sreq = aead_request_ctx(req);
  450. int err;
  451. if (sreq->needs_inv) {
  452. sreq->needs_inv = false;
  453. err = safexcel_handle_inv_result(priv, ring, async,
  454. should_complete, ret);
  455. } else {
  456. err = safexcel_handle_req_result(priv, ring, async, req->src,
  457. req->dst,
  458. req->cryptlen + crypto_aead_authsize(tfm),
  459. sreq, should_complete, ret);
  460. }
  461. return err;
  462. }
  463. static int safexcel_cipher_send_inv(struct crypto_async_request *base,
  464. int ring, struct safexcel_request *request,
  465. int *commands, int *results)
  466. {
  467. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(base->tfm);
  468. struct safexcel_crypto_priv *priv = ctx->priv;
  469. int ret;
  470. ret = safexcel_invalidate_cache(base, priv, ctx->base.ctxr_dma, ring,
  471. request);
  472. if (unlikely(ret))
  473. return ret;
  474. *commands = 1;
  475. *results = 1;
  476. return 0;
  477. }
  478. static int safexcel_skcipher_send(struct crypto_async_request *async, int ring,
  479. struct safexcel_request *request,
  480. int *commands, int *results)
  481. {
  482. struct skcipher_request *req = skcipher_request_cast(async);
  483. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
  484. struct safexcel_cipher_req *sreq = skcipher_request_ctx(req);
  485. struct safexcel_crypto_priv *priv = ctx->priv;
  486. int ret;
  487. BUG_ON(priv->version == EIP97 && sreq->needs_inv);
  488. if (sreq->needs_inv)
  489. ret = safexcel_cipher_send_inv(async, ring, request, commands,
  490. results);
  491. else
  492. ret = safexcel_aes_send(async, ring, request, sreq, req->src,
  493. req->dst, req->cryptlen, 0, 0, req->iv,
  494. commands, results);
  495. return ret;
  496. }
  497. static int safexcel_aead_send(struct crypto_async_request *async, int ring,
  498. struct safexcel_request *request, int *commands,
  499. int *results)
  500. {
  501. struct aead_request *req = aead_request_cast(async);
  502. struct crypto_aead *tfm = crypto_aead_reqtfm(req);
  503. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
  504. struct safexcel_cipher_req *sreq = aead_request_ctx(req);
  505. struct safexcel_crypto_priv *priv = ctx->priv;
  506. int ret;
  507. BUG_ON(priv->version == EIP97 && sreq->needs_inv);
  508. if (sreq->needs_inv)
  509. ret = safexcel_cipher_send_inv(async, ring, request, commands,
  510. results);
  511. else
  512. ret = safexcel_aes_send(async, ring, request, sreq, req->src,
  513. req->dst, req->cryptlen, req->assoclen,
  514. crypto_aead_authsize(tfm), req->iv,
  515. commands, results);
  516. return ret;
  517. }
  518. static int safexcel_cipher_exit_inv(struct crypto_tfm *tfm,
  519. struct crypto_async_request *base,
  520. struct safexcel_cipher_req *sreq,
  521. struct safexcel_inv_result *result)
  522. {
  523. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  524. struct safexcel_crypto_priv *priv = ctx->priv;
  525. int ring = ctx->base.ring;
  526. init_completion(&result->completion);
  527. ctx = crypto_tfm_ctx(base->tfm);
  528. ctx->base.exit_inv = true;
  529. sreq->needs_inv = true;
  530. spin_lock_bh(&priv->ring[ring].queue_lock);
  531. crypto_enqueue_request(&priv->ring[ring].queue, base);
  532. spin_unlock_bh(&priv->ring[ring].queue_lock);
  533. queue_work(priv->ring[ring].workqueue,
  534. &priv->ring[ring].work_data.work);
  535. wait_for_completion(&result->completion);
  536. if (result->error) {
  537. dev_warn(priv->dev,
  538. "cipher: sync: invalidate: completion error %d\n",
  539. result->error);
  540. return result->error;
  541. }
  542. return 0;
  543. }
  544. static int safexcel_skcipher_exit_inv(struct crypto_tfm *tfm)
  545. {
  546. EIP197_REQUEST_ON_STACK(req, skcipher, EIP197_SKCIPHER_REQ_SIZE);
  547. struct safexcel_cipher_req *sreq = skcipher_request_ctx(req);
  548. struct safexcel_inv_result result = {};
  549. memset(req, 0, sizeof(struct skcipher_request));
  550. skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
  551. safexcel_inv_complete, &result);
  552. skcipher_request_set_tfm(req, __crypto_skcipher_cast(tfm));
  553. return safexcel_cipher_exit_inv(tfm, &req->base, sreq, &result);
  554. }
  555. static int safexcel_aead_exit_inv(struct crypto_tfm *tfm)
  556. {
  557. EIP197_REQUEST_ON_STACK(req, aead, EIP197_AEAD_REQ_SIZE);
  558. struct safexcel_cipher_req *sreq = aead_request_ctx(req);
  559. struct safexcel_inv_result result = {};
  560. memset(req, 0, sizeof(struct aead_request));
  561. aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
  562. safexcel_inv_complete, &result);
  563. aead_request_set_tfm(req, __crypto_aead_cast(tfm));
  564. return safexcel_cipher_exit_inv(tfm, &req->base, sreq, &result);
  565. }
  566. static int safexcel_aes(struct crypto_async_request *base,
  567. struct safexcel_cipher_req *sreq,
  568. enum safexcel_cipher_direction dir, u32 mode)
  569. {
  570. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(base->tfm);
  571. struct safexcel_crypto_priv *priv = ctx->priv;
  572. int ret, ring;
  573. sreq->needs_inv = false;
  574. sreq->direction = dir;
  575. ctx->mode = mode;
  576. if (ctx->base.ctxr) {
  577. if (priv->version == EIP197 && ctx->base.needs_inv) {
  578. sreq->needs_inv = true;
  579. ctx->base.needs_inv = false;
  580. }
  581. } else {
  582. ctx->base.ring = safexcel_select_ring(priv);
  583. ctx->base.ctxr = dma_pool_zalloc(priv->context_pool,
  584. EIP197_GFP_FLAGS(*base),
  585. &ctx->base.ctxr_dma);
  586. if (!ctx->base.ctxr)
  587. return -ENOMEM;
  588. }
  589. ring = ctx->base.ring;
  590. spin_lock_bh(&priv->ring[ring].queue_lock);
  591. ret = crypto_enqueue_request(&priv->ring[ring].queue, base);
  592. spin_unlock_bh(&priv->ring[ring].queue_lock);
  593. queue_work(priv->ring[ring].workqueue,
  594. &priv->ring[ring].work_data.work);
  595. return ret;
  596. }
  597. static int safexcel_ecb_aes_encrypt(struct skcipher_request *req)
  598. {
  599. return safexcel_aes(&req->base, skcipher_request_ctx(req),
  600. SAFEXCEL_ENCRYPT, CONTEXT_CONTROL_CRYPTO_MODE_ECB);
  601. }
  602. static int safexcel_ecb_aes_decrypt(struct skcipher_request *req)
  603. {
  604. return safexcel_aes(&req->base, skcipher_request_ctx(req),
  605. SAFEXCEL_DECRYPT, CONTEXT_CONTROL_CRYPTO_MODE_ECB);
  606. }
  607. static int safexcel_skcipher_cra_init(struct crypto_tfm *tfm)
  608. {
  609. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  610. struct safexcel_alg_template *tmpl =
  611. container_of(tfm->__crt_alg, struct safexcel_alg_template,
  612. alg.skcipher.base);
  613. crypto_skcipher_set_reqsize(__crypto_skcipher_cast(tfm),
  614. sizeof(struct safexcel_cipher_req));
  615. ctx->priv = tmpl->priv;
  616. ctx->base.send = safexcel_skcipher_send;
  617. ctx->base.handle_result = safexcel_skcipher_handle_result;
  618. return 0;
  619. }
  620. static int safexcel_cipher_cra_exit(struct crypto_tfm *tfm)
  621. {
  622. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  623. memzero_explicit(ctx->key, sizeof(ctx->key));
  624. /* context not allocated, skip invalidation */
  625. if (!ctx->base.ctxr)
  626. return -ENOMEM;
  627. memzero_explicit(ctx->base.ctxr->data, sizeof(ctx->base.ctxr->data));
  628. return 0;
  629. }
  630. static void safexcel_skcipher_cra_exit(struct crypto_tfm *tfm)
  631. {
  632. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  633. struct safexcel_crypto_priv *priv = ctx->priv;
  634. int ret;
  635. if (safexcel_cipher_cra_exit(tfm))
  636. return;
  637. if (priv->version == EIP197) {
  638. ret = safexcel_skcipher_exit_inv(tfm);
  639. if (ret)
  640. dev_warn(priv->dev, "skcipher: invalidation error %d\n",
  641. ret);
  642. } else {
  643. dma_pool_free(priv->context_pool, ctx->base.ctxr,
  644. ctx->base.ctxr_dma);
  645. }
  646. }
  647. static void safexcel_aead_cra_exit(struct crypto_tfm *tfm)
  648. {
  649. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  650. struct safexcel_crypto_priv *priv = ctx->priv;
  651. int ret;
  652. if (safexcel_cipher_cra_exit(tfm))
  653. return;
  654. if (priv->version == EIP197) {
  655. ret = safexcel_aead_exit_inv(tfm);
  656. if (ret)
  657. dev_warn(priv->dev, "aead: invalidation error %d\n",
  658. ret);
  659. } else {
  660. dma_pool_free(priv->context_pool, ctx->base.ctxr,
  661. ctx->base.ctxr_dma);
  662. }
  663. }
  664. struct safexcel_alg_template safexcel_alg_ecb_aes = {
  665. .type = SAFEXCEL_ALG_TYPE_SKCIPHER,
  666. .alg.skcipher = {
  667. .setkey = safexcel_skcipher_aes_setkey,
  668. .encrypt = safexcel_ecb_aes_encrypt,
  669. .decrypt = safexcel_ecb_aes_decrypt,
  670. .min_keysize = AES_MIN_KEY_SIZE,
  671. .max_keysize = AES_MAX_KEY_SIZE,
  672. .base = {
  673. .cra_name = "ecb(aes)",
  674. .cra_driver_name = "safexcel-ecb-aes",
  675. .cra_priority = 300,
  676. .cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_ASYNC |
  677. CRYPTO_ALG_KERN_DRIVER_ONLY,
  678. .cra_blocksize = AES_BLOCK_SIZE,
  679. .cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
  680. .cra_alignmask = 0,
  681. .cra_init = safexcel_skcipher_cra_init,
  682. .cra_exit = safexcel_skcipher_cra_exit,
  683. .cra_module = THIS_MODULE,
  684. },
  685. },
  686. };
  687. static int safexcel_cbc_aes_encrypt(struct skcipher_request *req)
  688. {
  689. return safexcel_aes(&req->base, skcipher_request_ctx(req),
  690. SAFEXCEL_ENCRYPT, CONTEXT_CONTROL_CRYPTO_MODE_CBC);
  691. }
  692. static int safexcel_cbc_aes_decrypt(struct skcipher_request *req)
  693. {
  694. return safexcel_aes(&req->base, skcipher_request_ctx(req),
  695. SAFEXCEL_DECRYPT, CONTEXT_CONTROL_CRYPTO_MODE_CBC);
  696. }
  697. struct safexcel_alg_template safexcel_alg_cbc_aes = {
  698. .type = SAFEXCEL_ALG_TYPE_SKCIPHER,
  699. .alg.skcipher = {
  700. .setkey = safexcel_skcipher_aes_setkey,
  701. .encrypt = safexcel_cbc_aes_encrypt,
  702. .decrypt = safexcel_cbc_aes_decrypt,
  703. .min_keysize = AES_MIN_KEY_SIZE,
  704. .max_keysize = AES_MAX_KEY_SIZE,
  705. .ivsize = AES_BLOCK_SIZE,
  706. .base = {
  707. .cra_name = "cbc(aes)",
  708. .cra_driver_name = "safexcel-cbc-aes",
  709. .cra_priority = 300,
  710. .cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_ASYNC |
  711. CRYPTO_ALG_KERN_DRIVER_ONLY,
  712. .cra_blocksize = AES_BLOCK_SIZE,
  713. .cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
  714. .cra_alignmask = 0,
  715. .cra_init = safexcel_skcipher_cra_init,
  716. .cra_exit = safexcel_skcipher_cra_exit,
  717. .cra_module = THIS_MODULE,
  718. },
  719. },
  720. };
  721. static int safexcel_aead_encrypt(struct aead_request *req)
  722. {
  723. struct safexcel_cipher_req *creq = aead_request_ctx(req);
  724. return safexcel_aes(&req->base, creq, SAFEXCEL_ENCRYPT,
  725. CONTEXT_CONTROL_CRYPTO_MODE_CBC);
  726. }
  727. static int safexcel_aead_decrypt(struct aead_request *req)
  728. {
  729. struct safexcel_cipher_req *creq = aead_request_ctx(req);
  730. return safexcel_aes(&req->base, creq, SAFEXCEL_DECRYPT,
  731. CONTEXT_CONTROL_CRYPTO_MODE_CBC);
  732. }
  733. static int safexcel_aead_cra_init(struct crypto_tfm *tfm)
  734. {
  735. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  736. struct safexcel_alg_template *tmpl =
  737. container_of(tfm->__crt_alg, struct safexcel_alg_template,
  738. alg.aead.base);
  739. crypto_aead_set_reqsize(__crypto_aead_cast(tfm),
  740. sizeof(struct safexcel_cipher_req));
  741. ctx->priv = tmpl->priv;
  742. ctx->aead = true;
  743. ctx->base.send = safexcel_aead_send;
  744. ctx->base.handle_result = safexcel_aead_handle_result;
  745. return 0;
  746. }
  747. static int safexcel_aead_sha256_cra_init(struct crypto_tfm *tfm)
  748. {
  749. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  750. safexcel_aead_cra_init(tfm);
  751. ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA256;
  752. ctx->state_sz = SHA256_DIGEST_SIZE;
  753. return 0;
  754. }
  755. struct safexcel_alg_template safexcel_alg_authenc_hmac_sha256_cbc_aes = {
  756. .type = SAFEXCEL_ALG_TYPE_AEAD,
  757. .alg.aead = {
  758. .setkey = safexcel_aead_aes_setkey,
  759. .encrypt = safexcel_aead_encrypt,
  760. .decrypt = safexcel_aead_decrypt,
  761. .ivsize = AES_BLOCK_SIZE,
  762. .maxauthsize = SHA256_DIGEST_SIZE,
  763. .base = {
  764. .cra_name = "authenc(hmac(sha256),cbc(aes))",
  765. .cra_driver_name = "safexcel-authenc-hmac-sha256-cbc-aes",
  766. .cra_priority = 300,
  767. .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC |
  768. CRYPTO_ALG_KERN_DRIVER_ONLY,
  769. .cra_blocksize = AES_BLOCK_SIZE,
  770. .cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
  771. .cra_alignmask = 0,
  772. .cra_init = safexcel_aead_sha256_cra_init,
  773. .cra_exit = safexcel_aead_cra_exit,
  774. .cra_module = THIS_MODULE,
  775. },
  776. },
  777. };