page_io.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * linux/mm/page_io.c
  4. *
  5. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  6. *
  7. * Swap reorganised 29.12.95,
  8. * Asynchronous swapping added 30.12.95. Stephen Tweedie
  9. * Removed race in async swapping. 14.4.1996. Bruno Haible
  10. * Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
  11. * Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
  12. */
  13. #include <linux/mm.h>
  14. #include <linux/kernel_stat.h>
  15. #include <linux/gfp.h>
  16. #include <linux/pagemap.h>
  17. #include <linux/swap.h>
  18. #include <linux/bio.h>
  19. #include <linux/swapops.h>
  20. #include <linux/buffer_head.h>
  21. #include <linux/writeback.h>
  22. #include <linux/frontswap.h>
  23. #include <linux/blkdev.h>
  24. #include <linux/uio.h>
  25. #include <linux/sched/task.h>
  26. #include <asm/pgtable.h>
  27. static struct bio *get_swap_bio(gfp_t gfp_flags,
  28. struct page *page, bio_end_io_t end_io)
  29. {
  30. int i, nr = hpage_nr_pages(page);
  31. struct bio *bio;
  32. bio = bio_alloc(gfp_flags, nr);
  33. if (bio) {
  34. struct block_device *bdev;
  35. bio->bi_iter.bi_sector = map_swap_page(page, &bdev);
  36. bio_set_dev(bio, bdev);
  37. bio->bi_iter.bi_sector <<= PAGE_SHIFT - 9;
  38. bio->bi_end_io = end_io;
  39. for (i = 0; i < nr; i++)
  40. bio_add_page(bio, page + i, PAGE_SIZE, 0);
  41. VM_BUG_ON(bio->bi_iter.bi_size != PAGE_SIZE * nr);
  42. }
  43. return bio;
  44. }
  45. void end_swap_bio_write(struct bio *bio)
  46. {
  47. struct page *page = bio_first_page_all(bio);
  48. if (bio->bi_status) {
  49. SetPageError(page);
  50. /*
  51. * We failed to write the page out to swap-space.
  52. * Re-dirty the page in order to avoid it being reclaimed.
  53. * Also print a dire warning that things will go BAD (tm)
  54. * very quickly.
  55. *
  56. * Also clear PG_reclaim to avoid rotate_reclaimable_page()
  57. */
  58. set_page_dirty(page);
  59. pr_alert("Write-error on swap-device (%u:%u:%llu)\n",
  60. MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
  61. (unsigned long long)bio->bi_iter.bi_sector);
  62. ClearPageReclaim(page);
  63. }
  64. end_page_writeback(page);
  65. bio_put(bio);
  66. }
  67. static void swap_slot_free_notify(struct page *page)
  68. {
  69. struct swap_info_struct *sis;
  70. struct gendisk *disk;
  71. /*
  72. * There is no guarantee that the page is in swap cache - the software
  73. * suspend code (at least) uses end_swap_bio_read() against a non-
  74. * swapcache page. So we must check PG_swapcache before proceeding with
  75. * this optimization.
  76. */
  77. if (unlikely(!PageSwapCache(page)))
  78. return;
  79. sis = page_swap_info(page);
  80. if (!(sis->flags & SWP_BLKDEV))
  81. return;
  82. /*
  83. * The swap subsystem performs lazy swap slot freeing,
  84. * expecting that the page will be swapped out again.
  85. * So we can avoid an unnecessary write if the page
  86. * isn't redirtied.
  87. * This is good for real swap storage because we can
  88. * reduce unnecessary I/O and enhance wear-leveling
  89. * if an SSD is used as the as swap device.
  90. * But if in-memory swap device (eg zram) is used,
  91. * this causes a duplicated copy between uncompressed
  92. * data in VM-owned memory and compressed data in
  93. * zram-owned memory. So let's free zram-owned memory
  94. * and make the VM-owned decompressed page *dirty*,
  95. * so the page should be swapped out somewhere again if
  96. * we again wish to reclaim it.
  97. */
  98. disk = sis->bdev->bd_disk;
  99. if (disk->fops->swap_slot_free_notify) {
  100. swp_entry_t entry;
  101. unsigned long offset;
  102. entry.val = page_private(page);
  103. offset = swp_offset(entry);
  104. SetPageDirty(page);
  105. disk->fops->swap_slot_free_notify(sis->bdev,
  106. offset);
  107. }
  108. }
  109. static void end_swap_bio_read(struct bio *bio)
  110. {
  111. struct page *page = bio_first_page_all(bio);
  112. struct task_struct *waiter = bio->bi_private;
  113. if (bio->bi_status) {
  114. SetPageError(page);
  115. ClearPageUptodate(page);
  116. pr_alert("Read-error on swap-device (%u:%u:%llu)\n",
  117. MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
  118. (unsigned long long)bio->bi_iter.bi_sector);
  119. goto out;
  120. }
  121. SetPageUptodate(page);
  122. swap_slot_free_notify(page);
  123. out:
  124. unlock_page(page);
  125. WRITE_ONCE(bio->bi_private, NULL);
  126. bio_put(bio);
  127. wake_up_process(waiter);
  128. put_task_struct(waiter);
  129. }
  130. int generic_swapfile_activate(struct swap_info_struct *sis,
  131. struct file *swap_file,
  132. sector_t *span)
  133. {
  134. struct address_space *mapping = swap_file->f_mapping;
  135. struct inode *inode = mapping->host;
  136. unsigned blocks_per_page;
  137. unsigned long page_no;
  138. unsigned blkbits;
  139. sector_t probe_block;
  140. sector_t last_block;
  141. sector_t lowest_block = -1;
  142. sector_t highest_block = 0;
  143. int nr_extents = 0;
  144. int ret;
  145. blkbits = inode->i_blkbits;
  146. blocks_per_page = PAGE_SIZE >> blkbits;
  147. /*
  148. * Map all the blocks into the extent list. This code doesn't try
  149. * to be very smart.
  150. */
  151. probe_block = 0;
  152. page_no = 0;
  153. last_block = i_size_read(inode) >> blkbits;
  154. while ((probe_block + blocks_per_page) <= last_block &&
  155. page_no < sis->max) {
  156. unsigned block_in_page;
  157. sector_t first_block;
  158. cond_resched();
  159. first_block = bmap(inode, probe_block);
  160. if (first_block == 0)
  161. goto bad_bmap;
  162. /*
  163. * It must be PAGE_SIZE aligned on-disk
  164. */
  165. if (first_block & (blocks_per_page - 1)) {
  166. probe_block++;
  167. goto reprobe;
  168. }
  169. for (block_in_page = 1; block_in_page < blocks_per_page;
  170. block_in_page++) {
  171. sector_t block;
  172. block = bmap(inode, probe_block + block_in_page);
  173. if (block == 0)
  174. goto bad_bmap;
  175. if (block != first_block + block_in_page) {
  176. /* Discontiguity */
  177. probe_block++;
  178. goto reprobe;
  179. }
  180. }
  181. first_block >>= (PAGE_SHIFT - blkbits);
  182. if (page_no) { /* exclude the header page */
  183. if (first_block < lowest_block)
  184. lowest_block = first_block;
  185. if (first_block > highest_block)
  186. highest_block = first_block;
  187. }
  188. /*
  189. * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
  190. */
  191. ret = add_swap_extent(sis, page_no, 1, first_block);
  192. if (ret < 0)
  193. goto out;
  194. nr_extents += ret;
  195. page_no++;
  196. probe_block += blocks_per_page;
  197. reprobe:
  198. continue;
  199. }
  200. ret = nr_extents;
  201. *span = 1 + highest_block - lowest_block;
  202. if (page_no == 0)
  203. page_no = 1; /* force Empty message */
  204. sis->max = page_no;
  205. sis->pages = page_no - 1;
  206. sis->highest_bit = page_no - 1;
  207. out:
  208. return ret;
  209. bad_bmap:
  210. pr_err("swapon: swapfile has holes\n");
  211. ret = -EINVAL;
  212. goto out;
  213. }
  214. /*
  215. * We may have stale swap cache pages in memory: notice
  216. * them here and get rid of the unnecessary final write.
  217. */
  218. int swap_writepage(struct page *page, struct writeback_control *wbc)
  219. {
  220. int ret = 0;
  221. if (try_to_free_swap(page)) {
  222. unlock_page(page);
  223. goto out;
  224. }
  225. if (frontswap_store(page) == 0) {
  226. set_page_writeback(page);
  227. unlock_page(page);
  228. end_page_writeback(page);
  229. goto out;
  230. }
  231. ret = __swap_writepage(page, wbc, end_swap_bio_write);
  232. out:
  233. return ret;
  234. }
  235. static sector_t swap_page_sector(struct page *page)
  236. {
  237. return (sector_t)__page_file_index(page) << (PAGE_SHIFT - 9);
  238. }
  239. static inline void count_swpout_vm_event(struct page *page)
  240. {
  241. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  242. if (unlikely(PageTransHuge(page)))
  243. count_vm_event(THP_SWPOUT);
  244. #endif
  245. count_vm_events(PSWPOUT, hpage_nr_pages(page));
  246. }
  247. int __swap_writepage(struct page *page, struct writeback_control *wbc,
  248. bio_end_io_t end_write_func)
  249. {
  250. struct bio *bio;
  251. int ret;
  252. struct swap_info_struct *sis = page_swap_info(page);
  253. VM_BUG_ON_PAGE(!PageSwapCache(page), page);
  254. if (sis->flags & SWP_FS) {
  255. struct kiocb kiocb;
  256. struct file *swap_file = sis->swap_file;
  257. struct address_space *mapping = swap_file->f_mapping;
  258. struct bio_vec bv = {
  259. .bv_page = page,
  260. .bv_len = PAGE_SIZE,
  261. .bv_offset = 0
  262. };
  263. struct iov_iter from;
  264. iov_iter_bvec(&from, WRITE, &bv, 1, PAGE_SIZE);
  265. init_sync_kiocb(&kiocb, swap_file);
  266. kiocb.ki_pos = page_file_offset(page);
  267. set_page_writeback(page);
  268. unlock_page(page);
  269. ret = mapping->a_ops->direct_IO(&kiocb, &from);
  270. if (ret == PAGE_SIZE) {
  271. count_vm_event(PSWPOUT);
  272. ret = 0;
  273. } else {
  274. /*
  275. * In the case of swap-over-nfs, this can be a
  276. * temporary failure if the system has limited
  277. * memory for allocating transmit buffers.
  278. * Mark the page dirty and avoid
  279. * rotate_reclaimable_page but rate-limit the
  280. * messages but do not flag PageError like
  281. * the normal direct-to-bio case as it could
  282. * be temporary.
  283. */
  284. set_page_dirty(page);
  285. ClearPageReclaim(page);
  286. pr_err_ratelimited("Write error on dio swapfile (%llu)\n",
  287. page_file_offset(page));
  288. }
  289. end_page_writeback(page);
  290. return ret;
  291. }
  292. ret = bdev_write_page(sis->bdev, swap_page_sector(page), page, wbc);
  293. if (!ret) {
  294. count_swpout_vm_event(page);
  295. return 0;
  296. }
  297. ret = 0;
  298. bio = get_swap_bio(GFP_NOIO, page, end_write_func);
  299. if (bio == NULL) {
  300. set_page_dirty(page);
  301. unlock_page(page);
  302. ret = -ENOMEM;
  303. goto out;
  304. }
  305. bio->bi_opf = REQ_OP_WRITE | REQ_SWAP | wbc_to_write_flags(wbc);
  306. bio_associate_blkcg_from_page(bio, page);
  307. count_swpout_vm_event(page);
  308. set_page_writeback(page);
  309. unlock_page(page);
  310. submit_bio(bio);
  311. out:
  312. return ret;
  313. }
  314. int swap_readpage(struct page *page, bool synchronous)
  315. {
  316. struct bio *bio;
  317. int ret = 0;
  318. struct swap_info_struct *sis = page_swap_info(page);
  319. blk_qc_t qc;
  320. struct gendisk *disk;
  321. VM_BUG_ON_PAGE(!PageSwapCache(page) && !synchronous, page);
  322. VM_BUG_ON_PAGE(!PageLocked(page), page);
  323. VM_BUG_ON_PAGE(PageUptodate(page), page);
  324. if (frontswap_load(page) == 0) {
  325. SetPageUptodate(page);
  326. unlock_page(page);
  327. goto out;
  328. }
  329. if (sis->flags & SWP_FS) {
  330. struct file *swap_file = sis->swap_file;
  331. struct address_space *mapping = swap_file->f_mapping;
  332. ret = mapping->a_ops->readpage(swap_file, page);
  333. if (!ret)
  334. count_vm_event(PSWPIN);
  335. return ret;
  336. }
  337. ret = bdev_read_page(sis->bdev, swap_page_sector(page), page);
  338. if (!ret) {
  339. if (trylock_page(page)) {
  340. swap_slot_free_notify(page);
  341. unlock_page(page);
  342. }
  343. count_vm_event(PSWPIN);
  344. return 0;
  345. }
  346. ret = 0;
  347. bio = get_swap_bio(GFP_KERNEL, page, end_swap_bio_read);
  348. if (bio == NULL) {
  349. unlock_page(page);
  350. ret = -ENOMEM;
  351. goto out;
  352. }
  353. disk = bio->bi_disk;
  354. /*
  355. * Keep this task valid during swap readpage because the oom killer may
  356. * attempt to access it in the page fault retry time check.
  357. */
  358. get_task_struct(current);
  359. bio->bi_private = current;
  360. bio_set_op_attrs(bio, REQ_OP_READ, 0);
  361. count_vm_event(PSWPIN);
  362. bio_get(bio);
  363. qc = submit_bio(bio);
  364. while (synchronous) {
  365. set_current_state(TASK_UNINTERRUPTIBLE);
  366. if (!READ_ONCE(bio->bi_private))
  367. break;
  368. if (!blk_poll(disk->queue, qc))
  369. break;
  370. }
  371. __set_current_state(TASK_RUNNING);
  372. bio_put(bio);
  373. out:
  374. return ret;
  375. }
  376. int swap_set_page_dirty(struct page *page)
  377. {
  378. struct swap_info_struct *sis = page_swap_info(page);
  379. if (sis->flags & SWP_FS) {
  380. struct address_space *mapping = sis->swap_file->f_mapping;
  381. VM_BUG_ON_PAGE(!PageSwapCache(page), page);
  382. return mapping->a_ops->set_page_dirty(page);
  383. } else {
  384. return __set_page_dirty_no_writeback(page);
  385. }
  386. }