page_alloc.c 225 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/memblock.h>
  23. #include <linux/compiler.h>
  24. #include <linux/kernel.h>
  25. #include <linux/kasan.h>
  26. #include <linux/module.h>
  27. #include <linux/suspend.h>
  28. #include <linux/pagevec.h>
  29. #include <linux/blkdev.h>
  30. #include <linux/slab.h>
  31. #include <linux/ratelimit.h>
  32. #include <linux/oom.h>
  33. #include <linux/topology.h>
  34. #include <linux/sysctl.h>
  35. #include <linux/cpu.h>
  36. #include <linux/cpuset.h>
  37. #include <linux/memory_hotplug.h>
  38. #include <linux/nodemask.h>
  39. #include <linux/vmalloc.h>
  40. #include <linux/vmstat.h>
  41. #include <linux/mempolicy.h>
  42. #include <linux/memremap.h>
  43. #include <linux/stop_machine.h>
  44. #include <linux/sort.h>
  45. #include <linux/pfn.h>
  46. #include <linux/backing-dev.h>
  47. #include <linux/fault-inject.h>
  48. #include <linux/page-isolation.h>
  49. #include <linux/page_ext.h>
  50. #include <linux/debugobjects.h>
  51. #include <linux/kmemleak.h>
  52. #include <linux/compaction.h>
  53. #include <trace/events/kmem.h>
  54. #include <trace/events/oom.h>
  55. #include <linux/prefetch.h>
  56. #include <linux/mm_inline.h>
  57. #include <linux/migrate.h>
  58. #include <linux/hugetlb.h>
  59. #include <linux/sched/rt.h>
  60. #include <linux/sched/mm.h>
  61. #include <linux/page_owner.h>
  62. #include <linux/kthread.h>
  63. #include <linux/memcontrol.h>
  64. #include <linux/ftrace.h>
  65. #include <linux/lockdep.h>
  66. #include <linux/nmi.h>
  67. #include <linux/psi.h>
  68. #include <asm/sections.h>
  69. #include <asm/tlbflush.h>
  70. #include <asm/div64.h>
  71. #include "internal.h"
  72. /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
  73. static DEFINE_MUTEX(pcp_batch_high_lock);
  74. #define MIN_PERCPU_PAGELIST_FRACTION (8)
  75. #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  76. DEFINE_PER_CPU(int, numa_node);
  77. EXPORT_PER_CPU_SYMBOL(numa_node);
  78. #endif
  79. DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
  80. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  81. /*
  82. * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  83. * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  84. * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  85. * defined in <linux/topology.h>.
  86. */
  87. DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
  88. EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  89. int _node_numa_mem_[MAX_NUMNODES];
  90. #endif
  91. /* work_structs for global per-cpu drains */
  92. DEFINE_MUTEX(pcpu_drain_mutex);
  93. DEFINE_PER_CPU(struct work_struct, pcpu_drain);
  94. #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
  95. volatile unsigned long latent_entropy __latent_entropy;
  96. EXPORT_SYMBOL(latent_entropy);
  97. #endif
  98. /*
  99. * Array of node states.
  100. */
  101. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  102. [N_POSSIBLE] = NODE_MASK_ALL,
  103. [N_ONLINE] = { { [0] = 1UL } },
  104. #ifndef CONFIG_NUMA
  105. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  106. #ifdef CONFIG_HIGHMEM
  107. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  108. #endif
  109. [N_MEMORY] = { { [0] = 1UL } },
  110. [N_CPU] = { { [0] = 1UL } },
  111. #endif /* NUMA */
  112. };
  113. EXPORT_SYMBOL(node_states);
  114. /* Protect totalram_pages and zone->managed_pages */
  115. static DEFINE_SPINLOCK(managed_page_count_lock);
  116. unsigned long totalram_pages __read_mostly;
  117. unsigned long totalreserve_pages __read_mostly;
  118. unsigned long totalcma_pages __read_mostly;
  119. int percpu_pagelist_fraction;
  120. gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
  121. /*
  122. * A cached value of the page's pageblock's migratetype, used when the page is
  123. * put on a pcplist. Used to avoid the pageblock migratetype lookup when
  124. * freeing from pcplists in most cases, at the cost of possibly becoming stale.
  125. * Also the migratetype set in the page does not necessarily match the pcplist
  126. * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
  127. * other index - this ensures that it will be put on the correct CMA freelist.
  128. */
  129. static inline int get_pcppage_migratetype(struct page *page)
  130. {
  131. return page->index;
  132. }
  133. static inline void set_pcppage_migratetype(struct page *page, int migratetype)
  134. {
  135. page->index = migratetype;
  136. }
  137. #ifdef CONFIG_PM_SLEEP
  138. /*
  139. * The following functions are used by the suspend/hibernate code to temporarily
  140. * change gfp_allowed_mask in order to avoid using I/O during memory allocations
  141. * while devices are suspended. To avoid races with the suspend/hibernate code,
  142. * they should always be called with system_transition_mutex held
  143. * (gfp_allowed_mask also should only be modified with system_transition_mutex
  144. * held, unless the suspend/hibernate code is guaranteed not to run in parallel
  145. * with that modification).
  146. */
  147. static gfp_t saved_gfp_mask;
  148. void pm_restore_gfp_mask(void)
  149. {
  150. WARN_ON(!mutex_is_locked(&system_transition_mutex));
  151. if (saved_gfp_mask) {
  152. gfp_allowed_mask = saved_gfp_mask;
  153. saved_gfp_mask = 0;
  154. }
  155. }
  156. void pm_restrict_gfp_mask(void)
  157. {
  158. WARN_ON(!mutex_is_locked(&system_transition_mutex));
  159. WARN_ON(saved_gfp_mask);
  160. saved_gfp_mask = gfp_allowed_mask;
  161. gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
  162. }
  163. bool pm_suspended_storage(void)
  164. {
  165. if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
  166. return false;
  167. return true;
  168. }
  169. #endif /* CONFIG_PM_SLEEP */
  170. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  171. unsigned int pageblock_order __read_mostly;
  172. #endif
  173. static void __free_pages_ok(struct page *page, unsigned int order);
  174. /*
  175. * results with 256, 32 in the lowmem_reserve sysctl:
  176. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  177. * 1G machine -> (16M dma, 784M normal, 224M high)
  178. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  179. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  180. * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
  181. *
  182. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  183. * don't need any ZONE_NORMAL reservation
  184. */
  185. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
  186. #ifdef CONFIG_ZONE_DMA
  187. [ZONE_DMA] = 256,
  188. #endif
  189. #ifdef CONFIG_ZONE_DMA32
  190. [ZONE_DMA32] = 256,
  191. #endif
  192. [ZONE_NORMAL] = 32,
  193. #ifdef CONFIG_HIGHMEM
  194. [ZONE_HIGHMEM] = 0,
  195. #endif
  196. [ZONE_MOVABLE] = 0,
  197. };
  198. EXPORT_SYMBOL(totalram_pages);
  199. static char * const zone_names[MAX_NR_ZONES] = {
  200. #ifdef CONFIG_ZONE_DMA
  201. "DMA",
  202. #endif
  203. #ifdef CONFIG_ZONE_DMA32
  204. "DMA32",
  205. #endif
  206. "Normal",
  207. #ifdef CONFIG_HIGHMEM
  208. "HighMem",
  209. #endif
  210. "Movable",
  211. #ifdef CONFIG_ZONE_DEVICE
  212. "Device",
  213. #endif
  214. };
  215. char * const migratetype_names[MIGRATE_TYPES] = {
  216. "Unmovable",
  217. "Movable",
  218. "Reclaimable",
  219. "HighAtomic",
  220. #ifdef CONFIG_CMA
  221. "CMA",
  222. #endif
  223. #ifdef CONFIG_MEMORY_ISOLATION
  224. "Isolate",
  225. #endif
  226. };
  227. compound_page_dtor * const compound_page_dtors[] = {
  228. NULL,
  229. free_compound_page,
  230. #ifdef CONFIG_HUGETLB_PAGE
  231. free_huge_page,
  232. #endif
  233. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  234. free_transhuge_page,
  235. #endif
  236. };
  237. int min_free_kbytes = 1024;
  238. int user_min_free_kbytes = -1;
  239. int watermark_scale_factor = 10;
  240. static unsigned long nr_kernel_pages __meminitdata;
  241. static unsigned long nr_all_pages __meminitdata;
  242. static unsigned long dma_reserve __meminitdata;
  243. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  244. static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __meminitdata;
  245. static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __meminitdata;
  246. static unsigned long required_kernelcore __initdata;
  247. static unsigned long required_kernelcore_percent __initdata;
  248. static unsigned long required_movablecore __initdata;
  249. static unsigned long required_movablecore_percent __initdata;
  250. static unsigned long zone_movable_pfn[MAX_NUMNODES] __meminitdata;
  251. static bool mirrored_kernelcore __meminitdata;
  252. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  253. int movable_zone;
  254. EXPORT_SYMBOL(movable_zone);
  255. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  256. #if MAX_NUMNODES > 1
  257. int nr_node_ids __read_mostly = MAX_NUMNODES;
  258. int nr_online_nodes __read_mostly = 1;
  259. EXPORT_SYMBOL(nr_node_ids);
  260. EXPORT_SYMBOL(nr_online_nodes);
  261. #endif
  262. int page_group_by_mobility_disabled __read_mostly;
  263. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  264. /* Returns true if the struct page for the pfn is uninitialised */
  265. static inline bool __meminit early_page_uninitialised(unsigned long pfn)
  266. {
  267. int nid = early_pfn_to_nid(pfn);
  268. if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
  269. return true;
  270. return false;
  271. }
  272. /*
  273. * Returns true when the remaining initialisation should be deferred until
  274. * later in the boot cycle when it can be parallelised.
  275. */
  276. static bool __meminit
  277. defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
  278. {
  279. static unsigned long prev_end_pfn, nr_initialised;
  280. /*
  281. * prev_end_pfn static that contains the end of previous zone
  282. * No need to protect because called very early in boot before smp_init.
  283. */
  284. if (prev_end_pfn != end_pfn) {
  285. prev_end_pfn = end_pfn;
  286. nr_initialised = 0;
  287. }
  288. /* Always populate low zones for address-constrained allocations */
  289. if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
  290. return false;
  291. nr_initialised++;
  292. if ((nr_initialised > NODE_DATA(nid)->static_init_pgcnt) &&
  293. (pfn & (PAGES_PER_SECTION - 1)) == 0) {
  294. NODE_DATA(nid)->first_deferred_pfn = pfn;
  295. return true;
  296. }
  297. return false;
  298. }
  299. #else
  300. static inline bool early_page_uninitialised(unsigned long pfn)
  301. {
  302. return false;
  303. }
  304. static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
  305. {
  306. return false;
  307. }
  308. #endif
  309. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  310. static inline unsigned long *get_pageblock_bitmap(struct page *page,
  311. unsigned long pfn)
  312. {
  313. #ifdef CONFIG_SPARSEMEM
  314. return __pfn_to_section(pfn)->pageblock_flags;
  315. #else
  316. return page_zone(page)->pageblock_flags;
  317. #endif /* CONFIG_SPARSEMEM */
  318. }
  319. static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
  320. {
  321. #ifdef CONFIG_SPARSEMEM
  322. pfn &= (PAGES_PER_SECTION-1);
  323. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  324. #else
  325. pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
  326. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  327. #endif /* CONFIG_SPARSEMEM */
  328. }
  329. /**
  330. * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
  331. * @page: The page within the block of interest
  332. * @pfn: The target page frame number
  333. * @end_bitidx: The last bit of interest to retrieve
  334. * @mask: mask of bits that the caller is interested in
  335. *
  336. * Return: pageblock_bits flags
  337. */
  338. static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
  339. unsigned long pfn,
  340. unsigned long end_bitidx,
  341. unsigned long mask)
  342. {
  343. unsigned long *bitmap;
  344. unsigned long bitidx, word_bitidx;
  345. unsigned long word;
  346. bitmap = get_pageblock_bitmap(page, pfn);
  347. bitidx = pfn_to_bitidx(page, pfn);
  348. word_bitidx = bitidx / BITS_PER_LONG;
  349. bitidx &= (BITS_PER_LONG-1);
  350. word = bitmap[word_bitidx];
  351. bitidx += end_bitidx;
  352. return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
  353. }
  354. unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
  355. unsigned long end_bitidx,
  356. unsigned long mask)
  357. {
  358. return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
  359. }
  360. static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
  361. {
  362. return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
  363. }
  364. /**
  365. * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
  366. * @page: The page within the block of interest
  367. * @flags: The flags to set
  368. * @pfn: The target page frame number
  369. * @end_bitidx: The last bit of interest
  370. * @mask: mask of bits that the caller is interested in
  371. */
  372. void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
  373. unsigned long pfn,
  374. unsigned long end_bitidx,
  375. unsigned long mask)
  376. {
  377. unsigned long *bitmap;
  378. unsigned long bitidx, word_bitidx;
  379. unsigned long old_word, word;
  380. BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
  381. bitmap = get_pageblock_bitmap(page, pfn);
  382. bitidx = pfn_to_bitidx(page, pfn);
  383. word_bitidx = bitidx / BITS_PER_LONG;
  384. bitidx &= (BITS_PER_LONG-1);
  385. VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
  386. bitidx += end_bitidx;
  387. mask <<= (BITS_PER_LONG - bitidx - 1);
  388. flags <<= (BITS_PER_LONG - bitidx - 1);
  389. word = READ_ONCE(bitmap[word_bitidx]);
  390. for (;;) {
  391. old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
  392. if (word == old_word)
  393. break;
  394. word = old_word;
  395. }
  396. }
  397. void set_pageblock_migratetype(struct page *page, int migratetype)
  398. {
  399. if (unlikely(page_group_by_mobility_disabled &&
  400. migratetype < MIGRATE_PCPTYPES))
  401. migratetype = MIGRATE_UNMOVABLE;
  402. set_pageblock_flags_group(page, (unsigned long)migratetype,
  403. PB_migrate, PB_migrate_end);
  404. }
  405. #ifdef CONFIG_DEBUG_VM
  406. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  407. {
  408. int ret = 0;
  409. unsigned seq;
  410. unsigned long pfn = page_to_pfn(page);
  411. unsigned long sp, start_pfn;
  412. do {
  413. seq = zone_span_seqbegin(zone);
  414. start_pfn = zone->zone_start_pfn;
  415. sp = zone->spanned_pages;
  416. if (!zone_spans_pfn(zone, pfn))
  417. ret = 1;
  418. } while (zone_span_seqretry(zone, seq));
  419. if (ret)
  420. pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
  421. pfn, zone_to_nid(zone), zone->name,
  422. start_pfn, start_pfn + sp);
  423. return ret;
  424. }
  425. static int page_is_consistent(struct zone *zone, struct page *page)
  426. {
  427. if (!pfn_valid_within(page_to_pfn(page)))
  428. return 0;
  429. if (zone != page_zone(page))
  430. return 0;
  431. return 1;
  432. }
  433. /*
  434. * Temporary debugging check for pages not lying within a given zone.
  435. */
  436. static int __maybe_unused bad_range(struct zone *zone, struct page *page)
  437. {
  438. if (page_outside_zone_boundaries(zone, page))
  439. return 1;
  440. if (!page_is_consistent(zone, page))
  441. return 1;
  442. return 0;
  443. }
  444. #else
  445. static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
  446. {
  447. return 0;
  448. }
  449. #endif
  450. static void bad_page(struct page *page, const char *reason,
  451. unsigned long bad_flags)
  452. {
  453. static unsigned long resume;
  454. static unsigned long nr_shown;
  455. static unsigned long nr_unshown;
  456. /*
  457. * Allow a burst of 60 reports, then keep quiet for that minute;
  458. * or allow a steady drip of one report per second.
  459. */
  460. if (nr_shown == 60) {
  461. if (time_before(jiffies, resume)) {
  462. nr_unshown++;
  463. goto out;
  464. }
  465. if (nr_unshown) {
  466. pr_alert(
  467. "BUG: Bad page state: %lu messages suppressed\n",
  468. nr_unshown);
  469. nr_unshown = 0;
  470. }
  471. nr_shown = 0;
  472. }
  473. if (nr_shown++ == 0)
  474. resume = jiffies + 60 * HZ;
  475. pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
  476. current->comm, page_to_pfn(page));
  477. __dump_page(page, reason);
  478. bad_flags &= page->flags;
  479. if (bad_flags)
  480. pr_alert("bad because of flags: %#lx(%pGp)\n",
  481. bad_flags, &bad_flags);
  482. dump_page_owner(page);
  483. print_modules();
  484. dump_stack();
  485. out:
  486. /* Leave bad fields for debug, except PageBuddy could make trouble */
  487. page_mapcount_reset(page); /* remove PageBuddy */
  488. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  489. }
  490. /*
  491. * Higher-order pages are called "compound pages". They are structured thusly:
  492. *
  493. * The first PAGE_SIZE page is called the "head page" and have PG_head set.
  494. *
  495. * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
  496. * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
  497. *
  498. * The first tail page's ->compound_dtor holds the offset in array of compound
  499. * page destructors. See compound_page_dtors.
  500. *
  501. * The first tail page's ->compound_order holds the order of allocation.
  502. * This usage means that zero-order pages may not be compound.
  503. */
  504. void free_compound_page(struct page *page)
  505. {
  506. __free_pages_ok(page, compound_order(page));
  507. }
  508. void prep_compound_page(struct page *page, unsigned int order)
  509. {
  510. int i;
  511. int nr_pages = 1 << order;
  512. set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
  513. set_compound_order(page, order);
  514. __SetPageHead(page);
  515. for (i = 1; i < nr_pages; i++) {
  516. struct page *p = page + i;
  517. set_page_count(p, 0);
  518. p->mapping = TAIL_MAPPING;
  519. set_compound_head(p, page);
  520. }
  521. atomic_set(compound_mapcount_ptr(page), -1);
  522. }
  523. #ifdef CONFIG_DEBUG_PAGEALLOC
  524. unsigned int _debug_guardpage_minorder;
  525. bool _debug_pagealloc_enabled __read_mostly
  526. = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
  527. EXPORT_SYMBOL(_debug_pagealloc_enabled);
  528. bool _debug_guardpage_enabled __read_mostly;
  529. static int __init early_debug_pagealloc(char *buf)
  530. {
  531. if (!buf)
  532. return -EINVAL;
  533. return kstrtobool(buf, &_debug_pagealloc_enabled);
  534. }
  535. early_param("debug_pagealloc", early_debug_pagealloc);
  536. static bool need_debug_guardpage(void)
  537. {
  538. /* If we don't use debug_pagealloc, we don't need guard page */
  539. if (!debug_pagealloc_enabled())
  540. return false;
  541. if (!debug_guardpage_minorder())
  542. return false;
  543. return true;
  544. }
  545. static void init_debug_guardpage(void)
  546. {
  547. if (!debug_pagealloc_enabled())
  548. return;
  549. if (!debug_guardpage_minorder())
  550. return;
  551. _debug_guardpage_enabled = true;
  552. }
  553. struct page_ext_operations debug_guardpage_ops = {
  554. .need = need_debug_guardpage,
  555. .init = init_debug_guardpage,
  556. };
  557. static int __init debug_guardpage_minorder_setup(char *buf)
  558. {
  559. unsigned long res;
  560. if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
  561. pr_err("Bad debug_guardpage_minorder value\n");
  562. return 0;
  563. }
  564. _debug_guardpage_minorder = res;
  565. pr_info("Setting debug_guardpage_minorder to %lu\n", res);
  566. return 0;
  567. }
  568. early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
  569. static inline bool set_page_guard(struct zone *zone, struct page *page,
  570. unsigned int order, int migratetype)
  571. {
  572. struct page_ext *page_ext;
  573. if (!debug_guardpage_enabled())
  574. return false;
  575. if (order >= debug_guardpage_minorder())
  576. return false;
  577. page_ext = lookup_page_ext(page);
  578. if (unlikely(!page_ext))
  579. return false;
  580. __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  581. INIT_LIST_HEAD(&page->lru);
  582. set_page_private(page, order);
  583. /* Guard pages are not available for any usage */
  584. __mod_zone_freepage_state(zone, -(1 << order), migratetype);
  585. return true;
  586. }
  587. static inline void clear_page_guard(struct zone *zone, struct page *page,
  588. unsigned int order, int migratetype)
  589. {
  590. struct page_ext *page_ext;
  591. if (!debug_guardpage_enabled())
  592. return;
  593. page_ext = lookup_page_ext(page);
  594. if (unlikely(!page_ext))
  595. return;
  596. __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  597. set_page_private(page, 0);
  598. if (!is_migrate_isolate(migratetype))
  599. __mod_zone_freepage_state(zone, (1 << order), migratetype);
  600. }
  601. #else
  602. struct page_ext_operations debug_guardpage_ops;
  603. static inline bool set_page_guard(struct zone *zone, struct page *page,
  604. unsigned int order, int migratetype) { return false; }
  605. static inline void clear_page_guard(struct zone *zone, struct page *page,
  606. unsigned int order, int migratetype) {}
  607. #endif
  608. static inline void set_page_order(struct page *page, unsigned int order)
  609. {
  610. set_page_private(page, order);
  611. __SetPageBuddy(page);
  612. }
  613. static inline void rmv_page_order(struct page *page)
  614. {
  615. __ClearPageBuddy(page);
  616. set_page_private(page, 0);
  617. }
  618. /*
  619. * This function checks whether a page is free && is the buddy
  620. * we can coalesce a page and its buddy if
  621. * (a) the buddy is not in a hole (check before calling!) &&
  622. * (b) the buddy is in the buddy system &&
  623. * (c) a page and its buddy have the same order &&
  624. * (d) a page and its buddy are in the same zone.
  625. *
  626. * For recording whether a page is in the buddy system, we set PageBuddy.
  627. * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
  628. *
  629. * For recording page's order, we use page_private(page).
  630. */
  631. static inline int page_is_buddy(struct page *page, struct page *buddy,
  632. unsigned int order)
  633. {
  634. if (page_is_guard(buddy) && page_order(buddy) == order) {
  635. if (page_zone_id(page) != page_zone_id(buddy))
  636. return 0;
  637. VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
  638. return 1;
  639. }
  640. if (PageBuddy(buddy) && page_order(buddy) == order) {
  641. /*
  642. * zone check is done late to avoid uselessly
  643. * calculating zone/node ids for pages that could
  644. * never merge.
  645. */
  646. if (page_zone_id(page) != page_zone_id(buddy))
  647. return 0;
  648. VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
  649. return 1;
  650. }
  651. return 0;
  652. }
  653. /*
  654. * Freeing function for a buddy system allocator.
  655. *
  656. * The concept of a buddy system is to maintain direct-mapped table
  657. * (containing bit values) for memory blocks of various "orders".
  658. * The bottom level table contains the map for the smallest allocatable
  659. * units of memory (here, pages), and each level above it describes
  660. * pairs of units from the levels below, hence, "buddies".
  661. * At a high level, all that happens here is marking the table entry
  662. * at the bottom level available, and propagating the changes upward
  663. * as necessary, plus some accounting needed to play nicely with other
  664. * parts of the VM system.
  665. * At each level, we keep a list of pages, which are heads of continuous
  666. * free pages of length of (1 << order) and marked with PageBuddy.
  667. * Page's order is recorded in page_private(page) field.
  668. * So when we are allocating or freeing one, we can derive the state of the
  669. * other. That is, if we allocate a small block, and both were
  670. * free, the remainder of the region must be split into blocks.
  671. * If a block is freed, and its buddy is also free, then this
  672. * triggers coalescing into a block of larger size.
  673. *
  674. * -- nyc
  675. */
  676. static inline void __free_one_page(struct page *page,
  677. unsigned long pfn,
  678. struct zone *zone, unsigned int order,
  679. int migratetype)
  680. {
  681. unsigned long combined_pfn;
  682. unsigned long uninitialized_var(buddy_pfn);
  683. struct page *buddy;
  684. unsigned int max_order;
  685. max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
  686. VM_BUG_ON(!zone_is_initialized(zone));
  687. VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
  688. VM_BUG_ON(migratetype == -1);
  689. if (likely(!is_migrate_isolate(migratetype)))
  690. __mod_zone_freepage_state(zone, 1 << order, migratetype);
  691. VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
  692. VM_BUG_ON_PAGE(bad_range(zone, page), page);
  693. continue_merging:
  694. while (order < max_order - 1) {
  695. buddy_pfn = __find_buddy_pfn(pfn, order);
  696. buddy = page + (buddy_pfn - pfn);
  697. if (!pfn_valid_within(buddy_pfn))
  698. goto done_merging;
  699. if (!page_is_buddy(page, buddy, order))
  700. goto done_merging;
  701. /*
  702. * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
  703. * merge with it and move up one order.
  704. */
  705. if (page_is_guard(buddy)) {
  706. clear_page_guard(zone, buddy, order, migratetype);
  707. } else {
  708. list_del(&buddy->lru);
  709. zone->free_area[order].nr_free--;
  710. rmv_page_order(buddy);
  711. }
  712. combined_pfn = buddy_pfn & pfn;
  713. page = page + (combined_pfn - pfn);
  714. pfn = combined_pfn;
  715. order++;
  716. }
  717. if (max_order < MAX_ORDER) {
  718. /* If we are here, it means order is >= pageblock_order.
  719. * We want to prevent merge between freepages on isolate
  720. * pageblock and normal pageblock. Without this, pageblock
  721. * isolation could cause incorrect freepage or CMA accounting.
  722. *
  723. * We don't want to hit this code for the more frequent
  724. * low-order merging.
  725. */
  726. if (unlikely(has_isolate_pageblock(zone))) {
  727. int buddy_mt;
  728. buddy_pfn = __find_buddy_pfn(pfn, order);
  729. buddy = page + (buddy_pfn - pfn);
  730. buddy_mt = get_pageblock_migratetype(buddy);
  731. if (migratetype != buddy_mt
  732. && (is_migrate_isolate(migratetype) ||
  733. is_migrate_isolate(buddy_mt)))
  734. goto done_merging;
  735. }
  736. max_order++;
  737. goto continue_merging;
  738. }
  739. done_merging:
  740. set_page_order(page, order);
  741. /*
  742. * If this is not the largest possible page, check if the buddy
  743. * of the next-highest order is free. If it is, it's possible
  744. * that pages are being freed that will coalesce soon. In case,
  745. * that is happening, add the free page to the tail of the list
  746. * so it's less likely to be used soon and more likely to be merged
  747. * as a higher order page
  748. */
  749. if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
  750. struct page *higher_page, *higher_buddy;
  751. combined_pfn = buddy_pfn & pfn;
  752. higher_page = page + (combined_pfn - pfn);
  753. buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
  754. higher_buddy = higher_page + (buddy_pfn - combined_pfn);
  755. if (pfn_valid_within(buddy_pfn) &&
  756. page_is_buddy(higher_page, higher_buddy, order + 1)) {
  757. list_add_tail(&page->lru,
  758. &zone->free_area[order].free_list[migratetype]);
  759. goto out;
  760. }
  761. }
  762. list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
  763. out:
  764. zone->free_area[order].nr_free++;
  765. }
  766. /*
  767. * A bad page could be due to a number of fields. Instead of multiple branches,
  768. * try and check multiple fields with one check. The caller must do a detailed
  769. * check if necessary.
  770. */
  771. static inline bool page_expected_state(struct page *page,
  772. unsigned long check_flags)
  773. {
  774. if (unlikely(atomic_read(&page->_mapcount) != -1))
  775. return false;
  776. if (unlikely((unsigned long)page->mapping |
  777. page_ref_count(page) |
  778. #ifdef CONFIG_MEMCG
  779. (unsigned long)page->mem_cgroup |
  780. #endif
  781. (page->flags & check_flags)))
  782. return false;
  783. return true;
  784. }
  785. static void free_pages_check_bad(struct page *page)
  786. {
  787. const char *bad_reason;
  788. unsigned long bad_flags;
  789. bad_reason = NULL;
  790. bad_flags = 0;
  791. if (unlikely(atomic_read(&page->_mapcount) != -1))
  792. bad_reason = "nonzero mapcount";
  793. if (unlikely(page->mapping != NULL))
  794. bad_reason = "non-NULL mapping";
  795. if (unlikely(page_ref_count(page) != 0))
  796. bad_reason = "nonzero _refcount";
  797. if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
  798. bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
  799. bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
  800. }
  801. #ifdef CONFIG_MEMCG
  802. if (unlikely(page->mem_cgroup))
  803. bad_reason = "page still charged to cgroup";
  804. #endif
  805. bad_page(page, bad_reason, bad_flags);
  806. }
  807. static inline int free_pages_check(struct page *page)
  808. {
  809. if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
  810. return 0;
  811. /* Something has gone sideways, find it */
  812. free_pages_check_bad(page);
  813. return 1;
  814. }
  815. static int free_tail_pages_check(struct page *head_page, struct page *page)
  816. {
  817. int ret = 1;
  818. /*
  819. * We rely page->lru.next never has bit 0 set, unless the page
  820. * is PageTail(). Let's make sure that's true even for poisoned ->lru.
  821. */
  822. BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
  823. if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
  824. ret = 0;
  825. goto out;
  826. }
  827. switch (page - head_page) {
  828. case 1:
  829. /* the first tail page: ->mapping may be compound_mapcount() */
  830. if (unlikely(compound_mapcount(page))) {
  831. bad_page(page, "nonzero compound_mapcount", 0);
  832. goto out;
  833. }
  834. break;
  835. case 2:
  836. /*
  837. * the second tail page: ->mapping is
  838. * deferred_list.next -- ignore value.
  839. */
  840. break;
  841. default:
  842. if (page->mapping != TAIL_MAPPING) {
  843. bad_page(page, "corrupted mapping in tail page", 0);
  844. goto out;
  845. }
  846. break;
  847. }
  848. if (unlikely(!PageTail(page))) {
  849. bad_page(page, "PageTail not set", 0);
  850. goto out;
  851. }
  852. if (unlikely(compound_head(page) != head_page)) {
  853. bad_page(page, "compound_head not consistent", 0);
  854. goto out;
  855. }
  856. ret = 0;
  857. out:
  858. page->mapping = NULL;
  859. clear_compound_head(page);
  860. return ret;
  861. }
  862. static __always_inline bool free_pages_prepare(struct page *page,
  863. unsigned int order, bool check_free)
  864. {
  865. int bad = 0;
  866. VM_BUG_ON_PAGE(PageTail(page), page);
  867. trace_mm_page_free(page, order);
  868. /*
  869. * Check tail pages before head page information is cleared to
  870. * avoid checking PageCompound for order-0 pages.
  871. */
  872. if (unlikely(order)) {
  873. bool compound = PageCompound(page);
  874. int i;
  875. VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
  876. if (compound)
  877. ClearPageDoubleMap(page);
  878. for (i = 1; i < (1 << order); i++) {
  879. if (compound)
  880. bad += free_tail_pages_check(page, page + i);
  881. if (unlikely(free_pages_check(page + i))) {
  882. bad++;
  883. continue;
  884. }
  885. (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  886. }
  887. }
  888. if (PageMappingFlags(page))
  889. page->mapping = NULL;
  890. if (memcg_kmem_enabled() && PageKmemcg(page))
  891. memcg_kmem_uncharge(page, order);
  892. if (check_free)
  893. bad += free_pages_check(page);
  894. if (bad)
  895. return false;
  896. page_cpupid_reset_last(page);
  897. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  898. reset_page_owner(page, order);
  899. if (!PageHighMem(page)) {
  900. debug_check_no_locks_freed(page_address(page),
  901. PAGE_SIZE << order);
  902. debug_check_no_obj_freed(page_address(page),
  903. PAGE_SIZE << order);
  904. }
  905. arch_free_page(page, order);
  906. kernel_poison_pages(page, 1 << order, 0);
  907. kernel_map_pages(page, 1 << order, 0);
  908. kasan_free_pages(page, order);
  909. return true;
  910. }
  911. #ifdef CONFIG_DEBUG_VM
  912. static inline bool free_pcp_prepare(struct page *page)
  913. {
  914. return free_pages_prepare(page, 0, true);
  915. }
  916. static inline bool bulkfree_pcp_prepare(struct page *page)
  917. {
  918. return false;
  919. }
  920. #else
  921. static bool free_pcp_prepare(struct page *page)
  922. {
  923. return free_pages_prepare(page, 0, false);
  924. }
  925. static bool bulkfree_pcp_prepare(struct page *page)
  926. {
  927. return free_pages_check(page);
  928. }
  929. #endif /* CONFIG_DEBUG_VM */
  930. static inline void prefetch_buddy(struct page *page)
  931. {
  932. unsigned long pfn = page_to_pfn(page);
  933. unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
  934. struct page *buddy = page + (buddy_pfn - pfn);
  935. prefetch(buddy);
  936. }
  937. /*
  938. * Frees a number of pages from the PCP lists
  939. * Assumes all pages on list are in same zone, and of same order.
  940. * count is the number of pages to free.
  941. *
  942. * If the zone was previously in an "all pages pinned" state then look to
  943. * see if this freeing clears that state.
  944. *
  945. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  946. * pinned" detection logic.
  947. */
  948. static void free_pcppages_bulk(struct zone *zone, int count,
  949. struct per_cpu_pages *pcp)
  950. {
  951. int migratetype = 0;
  952. int batch_free = 0;
  953. int prefetch_nr = 0;
  954. bool isolated_pageblocks;
  955. struct page *page, *tmp;
  956. LIST_HEAD(head);
  957. while (count) {
  958. struct list_head *list;
  959. /*
  960. * Remove pages from lists in a round-robin fashion. A
  961. * batch_free count is maintained that is incremented when an
  962. * empty list is encountered. This is so more pages are freed
  963. * off fuller lists instead of spinning excessively around empty
  964. * lists
  965. */
  966. do {
  967. batch_free++;
  968. if (++migratetype == MIGRATE_PCPTYPES)
  969. migratetype = 0;
  970. list = &pcp->lists[migratetype];
  971. } while (list_empty(list));
  972. /* This is the only non-empty list. Free them all. */
  973. if (batch_free == MIGRATE_PCPTYPES)
  974. batch_free = count;
  975. do {
  976. page = list_last_entry(list, struct page, lru);
  977. /* must delete to avoid corrupting pcp list */
  978. list_del(&page->lru);
  979. pcp->count--;
  980. if (bulkfree_pcp_prepare(page))
  981. continue;
  982. list_add_tail(&page->lru, &head);
  983. /*
  984. * We are going to put the page back to the global
  985. * pool, prefetch its buddy to speed up later access
  986. * under zone->lock. It is believed the overhead of
  987. * an additional test and calculating buddy_pfn here
  988. * can be offset by reduced memory latency later. To
  989. * avoid excessive prefetching due to large count, only
  990. * prefetch buddy for the first pcp->batch nr of pages.
  991. */
  992. if (prefetch_nr++ < pcp->batch)
  993. prefetch_buddy(page);
  994. } while (--count && --batch_free && !list_empty(list));
  995. }
  996. spin_lock(&zone->lock);
  997. isolated_pageblocks = has_isolate_pageblock(zone);
  998. /*
  999. * Use safe version since after __free_one_page(),
  1000. * page->lru.next will not point to original list.
  1001. */
  1002. list_for_each_entry_safe(page, tmp, &head, lru) {
  1003. int mt = get_pcppage_migratetype(page);
  1004. /* MIGRATE_ISOLATE page should not go to pcplists */
  1005. VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
  1006. /* Pageblock could have been isolated meanwhile */
  1007. if (unlikely(isolated_pageblocks))
  1008. mt = get_pageblock_migratetype(page);
  1009. __free_one_page(page, page_to_pfn(page), zone, 0, mt);
  1010. trace_mm_page_pcpu_drain(page, 0, mt);
  1011. }
  1012. spin_unlock(&zone->lock);
  1013. }
  1014. static void free_one_page(struct zone *zone,
  1015. struct page *page, unsigned long pfn,
  1016. unsigned int order,
  1017. int migratetype)
  1018. {
  1019. spin_lock(&zone->lock);
  1020. if (unlikely(has_isolate_pageblock(zone) ||
  1021. is_migrate_isolate(migratetype))) {
  1022. migratetype = get_pfnblock_migratetype(page, pfn);
  1023. }
  1024. __free_one_page(page, pfn, zone, order, migratetype);
  1025. spin_unlock(&zone->lock);
  1026. }
  1027. static void __meminit __init_single_page(struct page *page, unsigned long pfn,
  1028. unsigned long zone, int nid)
  1029. {
  1030. mm_zero_struct_page(page);
  1031. set_page_links(page, zone, nid, pfn);
  1032. init_page_count(page);
  1033. page_mapcount_reset(page);
  1034. page_cpupid_reset_last(page);
  1035. INIT_LIST_HEAD(&page->lru);
  1036. #ifdef WANT_PAGE_VIRTUAL
  1037. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  1038. if (!is_highmem_idx(zone))
  1039. set_page_address(page, __va(pfn << PAGE_SHIFT));
  1040. #endif
  1041. }
  1042. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  1043. static void __meminit init_reserved_page(unsigned long pfn)
  1044. {
  1045. pg_data_t *pgdat;
  1046. int nid, zid;
  1047. if (!early_page_uninitialised(pfn))
  1048. return;
  1049. nid = early_pfn_to_nid(pfn);
  1050. pgdat = NODE_DATA(nid);
  1051. for (zid = 0; zid < MAX_NR_ZONES; zid++) {
  1052. struct zone *zone = &pgdat->node_zones[zid];
  1053. if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
  1054. break;
  1055. }
  1056. __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
  1057. }
  1058. #else
  1059. static inline void init_reserved_page(unsigned long pfn)
  1060. {
  1061. }
  1062. #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
  1063. /*
  1064. * Initialised pages do not have PageReserved set. This function is
  1065. * called for each range allocated by the bootmem allocator and
  1066. * marks the pages PageReserved. The remaining valid pages are later
  1067. * sent to the buddy page allocator.
  1068. */
  1069. void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
  1070. {
  1071. unsigned long start_pfn = PFN_DOWN(start);
  1072. unsigned long end_pfn = PFN_UP(end);
  1073. for (; start_pfn < end_pfn; start_pfn++) {
  1074. if (pfn_valid(start_pfn)) {
  1075. struct page *page = pfn_to_page(start_pfn);
  1076. init_reserved_page(start_pfn);
  1077. /* Avoid false-positive PageTail() */
  1078. INIT_LIST_HEAD(&page->lru);
  1079. /*
  1080. * no need for atomic set_bit because the struct
  1081. * page is not visible yet so nobody should
  1082. * access it yet.
  1083. */
  1084. __SetPageReserved(page);
  1085. }
  1086. }
  1087. }
  1088. static void __free_pages_ok(struct page *page, unsigned int order)
  1089. {
  1090. unsigned long flags;
  1091. int migratetype;
  1092. unsigned long pfn = page_to_pfn(page);
  1093. if (!free_pages_prepare(page, order, true))
  1094. return;
  1095. migratetype = get_pfnblock_migratetype(page, pfn);
  1096. local_irq_save(flags);
  1097. __count_vm_events(PGFREE, 1 << order);
  1098. free_one_page(page_zone(page), page, pfn, order, migratetype);
  1099. local_irq_restore(flags);
  1100. }
  1101. static void __init __free_pages_boot_core(struct page *page, unsigned int order)
  1102. {
  1103. unsigned int nr_pages = 1 << order;
  1104. struct page *p = page;
  1105. unsigned int loop;
  1106. prefetchw(p);
  1107. for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
  1108. prefetchw(p + 1);
  1109. __ClearPageReserved(p);
  1110. set_page_count(p, 0);
  1111. }
  1112. __ClearPageReserved(p);
  1113. set_page_count(p, 0);
  1114. page_zone(page)->managed_pages += nr_pages;
  1115. set_page_refcounted(page);
  1116. __free_pages(page, order);
  1117. }
  1118. #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
  1119. defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
  1120. static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
  1121. int __meminit early_pfn_to_nid(unsigned long pfn)
  1122. {
  1123. static DEFINE_SPINLOCK(early_pfn_lock);
  1124. int nid;
  1125. spin_lock(&early_pfn_lock);
  1126. nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
  1127. if (nid < 0)
  1128. nid = first_online_node;
  1129. spin_unlock(&early_pfn_lock);
  1130. return nid;
  1131. }
  1132. #endif
  1133. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  1134. static inline bool __meminit __maybe_unused
  1135. meminit_pfn_in_nid(unsigned long pfn, int node,
  1136. struct mminit_pfnnid_cache *state)
  1137. {
  1138. int nid;
  1139. nid = __early_pfn_to_nid(pfn, state);
  1140. if (nid >= 0 && nid != node)
  1141. return false;
  1142. return true;
  1143. }
  1144. /* Only safe to use early in boot when initialisation is single-threaded */
  1145. static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  1146. {
  1147. return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
  1148. }
  1149. #else
  1150. static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  1151. {
  1152. return true;
  1153. }
  1154. static inline bool __meminit __maybe_unused
  1155. meminit_pfn_in_nid(unsigned long pfn, int node,
  1156. struct mminit_pfnnid_cache *state)
  1157. {
  1158. return true;
  1159. }
  1160. #endif
  1161. void __init memblock_free_pages(struct page *page, unsigned long pfn,
  1162. unsigned int order)
  1163. {
  1164. if (early_page_uninitialised(pfn))
  1165. return;
  1166. return __free_pages_boot_core(page, order);
  1167. }
  1168. /*
  1169. * Check that the whole (or subset of) a pageblock given by the interval of
  1170. * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
  1171. * with the migration of free compaction scanner. The scanners then need to
  1172. * use only pfn_valid_within() check for arches that allow holes within
  1173. * pageblocks.
  1174. *
  1175. * Return struct page pointer of start_pfn, or NULL if checks were not passed.
  1176. *
  1177. * It's possible on some configurations to have a setup like node0 node1 node0
  1178. * i.e. it's possible that all pages within a zones range of pages do not
  1179. * belong to a single zone. We assume that a border between node0 and node1
  1180. * can occur within a single pageblock, but not a node0 node1 node0
  1181. * interleaving within a single pageblock. It is therefore sufficient to check
  1182. * the first and last page of a pageblock and avoid checking each individual
  1183. * page in a pageblock.
  1184. */
  1185. struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
  1186. unsigned long end_pfn, struct zone *zone)
  1187. {
  1188. struct page *start_page;
  1189. struct page *end_page;
  1190. /* end_pfn is one past the range we are checking */
  1191. end_pfn--;
  1192. if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
  1193. return NULL;
  1194. start_page = pfn_to_online_page(start_pfn);
  1195. if (!start_page)
  1196. return NULL;
  1197. if (page_zone(start_page) != zone)
  1198. return NULL;
  1199. end_page = pfn_to_page(end_pfn);
  1200. /* This gives a shorter code than deriving page_zone(end_page) */
  1201. if (page_zone_id(start_page) != page_zone_id(end_page))
  1202. return NULL;
  1203. return start_page;
  1204. }
  1205. void set_zone_contiguous(struct zone *zone)
  1206. {
  1207. unsigned long block_start_pfn = zone->zone_start_pfn;
  1208. unsigned long block_end_pfn;
  1209. block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
  1210. for (; block_start_pfn < zone_end_pfn(zone);
  1211. block_start_pfn = block_end_pfn,
  1212. block_end_pfn += pageblock_nr_pages) {
  1213. block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
  1214. if (!__pageblock_pfn_to_page(block_start_pfn,
  1215. block_end_pfn, zone))
  1216. return;
  1217. }
  1218. /* We confirm that there is no hole */
  1219. zone->contiguous = true;
  1220. }
  1221. void clear_zone_contiguous(struct zone *zone)
  1222. {
  1223. zone->contiguous = false;
  1224. }
  1225. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  1226. static void __init deferred_free_range(unsigned long pfn,
  1227. unsigned long nr_pages)
  1228. {
  1229. struct page *page;
  1230. unsigned long i;
  1231. if (!nr_pages)
  1232. return;
  1233. page = pfn_to_page(pfn);
  1234. /* Free a large naturally-aligned chunk if possible */
  1235. if (nr_pages == pageblock_nr_pages &&
  1236. (pfn & (pageblock_nr_pages - 1)) == 0) {
  1237. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  1238. __free_pages_boot_core(page, pageblock_order);
  1239. return;
  1240. }
  1241. for (i = 0; i < nr_pages; i++, page++, pfn++) {
  1242. if ((pfn & (pageblock_nr_pages - 1)) == 0)
  1243. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  1244. __free_pages_boot_core(page, 0);
  1245. }
  1246. }
  1247. /* Completion tracking for deferred_init_memmap() threads */
  1248. static atomic_t pgdat_init_n_undone __initdata;
  1249. static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
  1250. static inline void __init pgdat_init_report_one_done(void)
  1251. {
  1252. if (atomic_dec_and_test(&pgdat_init_n_undone))
  1253. complete(&pgdat_init_all_done_comp);
  1254. }
  1255. /*
  1256. * Returns true if page needs to be initialized or freed to buddy allocator.
  1257. *
  1258. * First we check if pfn is valid on architectures where it is possible to have
  1259. * holes within pageblock_nr_pages. On systems where it is not possible, this
  1260. * function is optimized out.
  1261. *
  1262. * Then, we check if a current large page is valid by only checking the validity
  1263. * of the head pfn.
  1264. *
  1265. * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
  1266. * within a node: a pfn is between start and end of a node, but does not belong
  1267. * to this memory node.
  1268. */
  1269. static inline bool __init
  1270. deferred_pfn_valid(int nid, unsigned long pfn,
  1271. struct mminit_pfnnid_cache *nid_init_state)
  1272. {
  1273. if (!pfn_valid_within(pfn))
  1274. return false;
  1275. if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
  1276. return false;
  1277. if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
  1278. return false;
  1279. return true;
  1280. }
  1281. /*
  1282. * Free pages to buddy allocator. Try to free aligned pages in
  1283. * pageblock_nr_pages sizes.
  1284. */
  1285. static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
  1286. unsigned long end_pfn)
  1287. {
  1288. struct mminit_pfnnid_cache nid_init_state = { };
  1289. unsigned long nr_pgmask = pageblock_nr_pages - 1;
  1290. unsigned long nr_free = 0;
  1291. for (; pfn < end_pfn; pfn++) {
  1292. if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
  1293. deferred_free_range(pfn - nr_free, nr_free);
  1294. nr_free = 0;
  1295. } else if (!(pfn & nr_pgmask)) {
  1296. deferred_free_range(pfn - nr_free, nr_free);
  1297. nr_free = 1;
  1298. touch_nmi_watchdog();
  1299. } else {
  1300. nr_free++;
  1301. }
  1302. }
  1303. /* Free the last block of pages to allocator */
  1304. deferred_free_range(pfn - nr_free, nr_free);
  1305. }
  1306. /*
  1307. * Initialize struct pages. We minimize pfn page lookups and scheduler checks
  1308. * by performing it only once every pageblock_nr_pages.
  1309. * Return number of pages initialized.
  1310. */
  1311. static unsigned long __init deferred_init_pages(int nid, int zid,
  1312. unsigned long pfn,
  1313. unsigned long end_pfn)
  1314. {
  1315. struct mminit_pfnnid_cache nid_init_state = { };
  1316. unsigned long nr_pgmask = pageblock_nr_pages - 1;
  1317. unsigned long nr_pages = 0;
  1318. struct page *page = NULL;
  1319. for (; pfn < end_pfn; pfn++) {
  1320. if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
  1321. page = NULL;
  1322. continue;
  1323. } else if (!page || !(pfn & nr_pgmask)) {
  1324. page = pfn_to_page(pfn);
  1325. touch_nmi_watchdog();
  1326. } else {
  1327. page++;
  1328. }
  1329. __init_single_page(page, pfn, zid, nid);
  1330. nr_pages++;
  1331. }
  1332. return (nr_pages);
  1333. }
  1334. /* Initialise remaining memory on a node */
  1335. static int __init deferred_init_memmap(void *data)
  1336. {
  1337. pg_data_t *pgdat = data;
  1338. int nid = pgdat->node_id;
  1339. unsigned long start = jiffies;
  1340. unsigned long nr_pages = 0;
  1341. unsigned long spfn, epfn, first_init_pfn, flags;
  1342. phys_addr_t spa, epa;
  1343. int zid;
  1344. struct zone *zone;
  1345. const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
  1346. u64 i;
  1347. /* Bind memory initialisation thread to a local node if possible */
  1348. if (!cpumask_empty(cpumask))
  1349. set_cpus_allowed_ptr(current, cpumask);
  1350. pgdat_resize_lock(pgdat, &flags);
  1351. first_init_pfn = pgdat->first_deferred_pfn;
  1352. if (first_init_pfn == ULONG_MAX) {
  1353. pgdat_resize_unlock(pgdat, &flags);
  1354. pgdat_init_report_one_done();
  1355. return 0;
  1356. }
  1357. /* Sanity check boundaries */
  1358. BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
  1359. BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
  1360. pgdat->first_deferred_pfn = ULONG_MAX;
  1361. /* Only the highest zone is deferred so find it */
  1362. for (zid = 0; zid < MAX_NR_ZONES; zid++) {
  1363. zone = pgdat->node_zones + zid;
  1364. if (first_init_pfn < zone_end_pfn(zone))
  1365. break;
  1366. }
  1367. first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
  1368. /*
  1369. * Initialize and free pages. We do it in two loops: first we initialize
  1370. * struct page, than free to buddy allocator, because while we are
  1371. * freeing pages we can access pages that are ahead (computing buddy
  1372. * page in __free_one_page()).
  1373. */
  1374. for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
  1375. spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
  1376. epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
  1377. nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
  1378. }
  1379. for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
  1380. spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
  1381. epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
  1382. deferred_free_pages(nid, zid, spfn, epfn);
  1383. }
  1384. pgdat_resize_unlock(pgdat, &flags);
  1385. /* Sanity check that the next zone really is unpopulated */
  1386. WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
  1387. pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
  1388. jiffies_to_msecs(jiffies - start));
  1389. pgdat_init_report_one_done();
  1390. return 0;
  1391. }
  1392. /*
  1393. * During boot we initialize deferred pages on-demand, as needed, but once
  1394. * page_alloc_init_late() has finished, the deferred pages are all initialized,
  1395. * and we can permanently disable that path.
  1396. */
  1397. static DEFINE_STATIC_KEY_TRUE(deferred_pages);
  1398. /*
  1399. * If this zone has deferred pages, try to grow it by initializing enough
  1400. * deferred pages to satisfy the allocation specified by order, rounded up to
  1401. * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
  1402. * of SECTION_SIZE bytes by initializing struct pages in increments of
  1403. * PAGES_PER_SECTION * sizeof(struct page) bytes.
  1404. *
  1405. * Return true when zone was grown, otherwise return false. We return true even
  1406. * when we grow less than requested, to let the caller decide if there are
  1407. * enough pages to satisfy the allocation.
  1408. *
  1409. * Note: We use noinline because this function is needed only during boot, and
  1410. * it is called from a __ref function _deferred_grow_zone. This way we are
  1411. * making sure that it is not inlined into permanent text section.
  1412. */
  1413. static noinline bool __init
  1414. deferred_grow_zone(struct zone *zone, unsigned int order)
  1415. {
  1416. int zid = zone_idx(zone);
  1417. int nid = zone_to_nid(zone);
  1418. pg_data_t *pgdat = NODE_DATA(nid);
  1419. unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
  1420. unsigned long nr_pages = 0;
  1421. unsigned long first_init_pfn, spfn, epfn, t, flags;
  1422. unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
  1423. phys_addr_t spa, epa;
  1424. u64 i;
  1425. /* Only the last zone may have deferred pages */
  1426. if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
  1427. return false;
  1428. pgdat_resize_lock(pgdat, &flags);
  1429. /*
  1430. * If deferred pages have been initialized while we were waiting for
  1431. * the lock, return true, as the zone was grown. The caller will retry
  1432. * this zone. We won't return to this function since the caller also
  1433. * has this static branch.
  1434. */
  1435. if (!static_branch_unlikely(&deferred_pages)) {
  1436. pgdat_resize_unlock(pgdat, &flags);
  1437. return true;
  1438. }
  1439. /*
  1440. * If someone grew this zone while we were waiting for spinlock, return
  1441. * true, as there might be enough pages already.
  1442. */
  1443. if (first_deferred_pfn != pgdat->first_deferred_pfn) {
  1444. pgdat_resize_unlock(pgdat, &flags);
  1445. return true;
  1446. }
  1447. first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn);
  1448. if (first_init_pfn >= pgdat_end_pfn(pgdat)) {
  1449. pgdat_resize_unlock(pgdat, &flags);
  1450. return false;
  1451. }
  1452. for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
  1453. spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
  1454. epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
  1455. while (spfn < epfn && nr_pages < nr_pages_needed) {
  1456. t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION);
  1457. first_deferred_pfn = min(t, epfn);
  1458. nr_pages += deferred_init_pages(nid, zid, spfn,
  1459. first_deferred_pfn);
  1460. spfn = first_deferred_pfn;
  1461. }
  1462. if (nr_pages >= nr_pages_needed)
  1463. break;
  1464. }
  1465. for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
  1466. spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
  1467. epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa));
  1468. deferred_free_pages(nid, zid, spfn, epfn);
  1469. if (first_deferred_pfn == epfn)
  1470. break;
  1471. }
  1472. pgdat->first_deferred_pfn = first_deferred_pfn;
  1473. pgdat_resize_unlock(pgdat, &flags);
  1474. return nr_pages > 0;
  1475. }
  1476. /*
  1477. * deferred_grow_zone() is __init, but it is called from
  1478. * get_page_from_freelist() during early boot until deferred_pages permanently
  1479. * disables this call. This is why we have refdata wrapper to avoid warning,
  1480. * and to ensure that the function body gets unloaded.
  1481. */
  1482. static bool __ref
  1483. _deferred_grow_zone(struct zone *zone, unsigned int order)
  1484. {
  1485. return deferred_grow_zone(zone, order);
  1486. }
  1487. #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
  1488. void __init page_alloc_init_late(void)
  1489. {
  1490. struct zone *zone;
  1491. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  1492. int nid;
  1493. /* There will be num_node_state(N_MEMORY) threads */
  1494. atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
  1495. for_each_node_state(nid, N_MEMORY) {
  1496. kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
  1497. }
  1498. /* Block until all are initialised */
  1499. wait_for_completion(&pgdat_init_all_done_comp);
  1500. /*
  1501. * We initialized the rest of the deferred pages. Permanently disable
  1502. * on-demand struct page initialization.
  1503. */
  1504. static_branch_disable(&deferred_pages);
  1505. /* Reinit limits that are based on free pages after the kernel is up */
  1506. files_maxfiles_init();
  1507. #endif
  1508. #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
  1509. /* Discard memblock private memory */
  1510. memblock_discard();
  1511. #endif
  1512. for_each_populated_zone(zone)
  1513. set_zone_contiguous(zone);
  1514. }
  1515. #ifdef CONFIG_CMA
  1516. /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
  1517. void __init init_cma_reserved_pageblock(struct page *page)
  1518. {
  1519. unsigned i = pageblock_nr_pages;
  1520. struct page *p = page;
  1521. do {
  1522. __ClearPageReserved(p);
  1523. set_page_count(p, 0);
  1524. } while (++p, --i);
  1525. set_pageblock_migratetype(page, MIGRATE_CMA);
  1526. if (pageblock_order >= MAX_ORDER) {
  1527. i = pageblock_nr_pages;
  1528. p = page;
  1529. do {
  1530. set_page_refcounted(p);
  1531. __free_pages(p, MAX_ORDER - 1);
  1532. p += MAX_ORDER_NR_PAGES;
  1533. } while (i -= MAX_ORDER_NR_PAGES);
  1534. } else {
  1535. set_page_refcounted(page);
  1536. __free_pages(page, pageblock_order);
  1537. }
  1538. adjust_managed_page_count(page, pageblock_nr_pages);
  1539. }
  1540. #endif
  1541. /*
  1542. * The order of subdivision here is critical for the IO subsystem.
  1543. * Please do not alter this order without good reasons and regression
  1544. * testing. Specifically, as large blocks of memory are subdivided,
  1545. * the order in which smaller blocks are delivered depends on the order
  1546. * they're subdivided in this function. This is the primary factor
  1547. * influencing the order in which pages are delivered to the IO
  1548. * subsystem according to empirical testing, and this is also justified
  1549. * by considering the behavior of a buddy system containing a single
  1550. * large block of memory acted on by a series of small allocations.
  1551. * This behavior is a critical factor in sglist merging's success.
  1552. *
  1553. * -- nyc
  1554. */
  1555. static inline void expand(struct zone *zone, struct page *page,
  1556. int low, int high, struct free_area *area,
  1557. int migratetype)
  1558. {
  1559. unsigned long size = 1 << high;
  1560. while (high > low) {
  1561. area--;
  1562. high--;
  1563. size >>= 1;
  1564. VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
  1565. /*
  1566. * Mark as guard pages (or page), that will allow to
  1567. * merge back to allocator when buddy will be freed.
  1568. * Corresponding page table entries will not be touched,
  1569. * pages will stay not present in virtual address space
  1570. */
  1571. if (set_page_guard(zone, &page[size], high, migratetype))
  1572. continue;
  1573. list_add(&page[size].lru, &area->free_list[migratetype]);
  1574. area->nr_free++;
  1575. set_page_order(&page[size], high);
  1576. }
  1577. }
  1578. static void check_new_page_bad(struct page *page)
  1579. {
  1580. const char *bad_reason = NULL;
  1581. unsigned long bad_flags = 0;
  1582. if (unlikely(atomic_read(&page->_mapcount) != -1))
  1583. bad_reason = "nonzero mapcount";
  1584. if (unlikely(page->mapping != NULL))
  1585. bad_reason = "non-NULL mapping";
  1586. if (unlikely(page_ref_count(page) != 0))
  1587. bad_reason = "nonzero _count";
  1588. if (unlikely(page->flags & __PG_HWPOISON)) {
  1589. bad_reason = "HWPoisoned (hardware-corrupted)";
  1590. bad_flags = __PG_HWPOISON;
  1591. /* Don't complain about hwpoisoned pages */
  1592. page_mapcount_reset(page); /* remove PageBuddy */
  1593. return;
  1594. }
  1595. if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
  1596. bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
  1597. bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
  1598. }
  1599. #ifdef CONFIG_MEMCG
  1600. if (unlikely(page->mem_cgroup))
  1601. bad_reason = "page still charged to cgroup";
  1602. #endif
  1603. bad_page(page, bad_reason, bad_flags);
  1604. }
  1605. /*
  1606. * This page is about to be returned from the page allocator
  1607. */
  1608. static inline int check_new_page(struct page *page)
  1609. {
  1610. if (likely(page_expected_state(page,
  1611. PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
  1612. return 0;
  1613. check_new_page_bad(page);
  1614. return 1;
  1615. }
  1616. static inline bool free_pages_prezeroed(void)
  1617. {
  1618. return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
  1619. page_poisoning_enabled();
  1620. }
  1621. #ifdef CONFIG_DEBUG_VM
  1622. static bool check_pcp_refill(struct page *page)
  1623. {
  1624. return false;
  1625. }
  1626. static bool check_new_pcp(struct page *page)
  1627. {
  1628. return check_new_page(page);
  1629. }
  1630. #else
  1631. static bool check_pcp_refill(struct page *page)
  1632. {
  1633. return check_new_page(page);
  1634. }
  1635. static bool check_new_pcp(struct page *page)
  1636. {
  1637. return false;
  1638. }
  1639. #endif /* CONFIG_DEBUG_VM */
  1640. static bool check_new_pages(struct page *page, unsigned int order)
  1641. {
  1642. int i;
  1643. for (i = 0; i < (1 << order); i++) {
  1644. struct page *p = page + i;
  1645. if (unlikely(check_new_page(p)))
  1646. return true;
  1647. }
  1648. return false;
  1649. }
  1650. inline void post_alloc_hook(struct page *page, unsigned int order,
  1651. gfp_t gfp_flags)
  1652. {
  1653. set_page_private(page, 0);
  1654. set_page_refcounted(page);
  1655. arch_alloc_page(page, order);
  1656. kernel_map_pages(page, 1 << order, 1);
  1657. kernel_poison_pages(page, 1 << order, 1);
  1658. kasan_alloc_pages(page, order);
  1659. set_page_owner(page, order, gfp_flags);
  1660. }
  1661. static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
  1662. unsigned int alloc_flags)
  1663. {
  1664. int i;
  1665. post_alloc_hook(page, order, gfp_flags);
  1666. if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
  1667. for (i = 0; i < (1 << order); i++)
  1668. clear_highpage(page + i);
  1669. if (order && (gfp_flags & __GFP_COMP))
  1670. prep_compound_page(page, order);
  1671. /*
  1672. * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
  1673. * allocate the page. The expectation is that the caller is taking
  1674. * steps that will free more memory. The caller should avoid the page
  1675. * being used for !PFMEMALLOC purposes.
  1676. */
  1677. if (alloc_flags & ALLOC_NO_WATERMARKS)
  1678. set_page_pfmemalloc(page);
  1679. else
  1680. clear_page_pfmemalloc(page);
  1681. }
  1682. /*
  1683. * Go through the free lists for the given migratetype and remove
  1684. * the smallest available page from the freelists
  1685. */
  1686. static __always_inline
  1687. struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  1688. int migratetype)
  1689. {
  1690. unsigned int current_order;
  1691. struct free_area *area;
  1692. struct page *page;
  1693. /* Find a page of the appropriate size in the preferred list */
  1694. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  1695. area = &(zone->free_area[current_order]);
  1696. page = list_first_entry_or_null(&area->free_list[migratetype],
  1697. struct page, lru);
  1698. if (!page)
  1699. continue;
  1700. list_del(&page->lru);
  1701. rmv_page_order(page);
  1702. area->nr_free--;
  1703. expand(zone, page, order, current_order, area, migratetype);
  1704. set_pcppage_migratetype(page, migratetype);
  1705. return page;
  1706. }
  1707. return NULL;
  1708. }
  1709. /*
  1710. * This array describes the order lists are fallen back to when
  1711. * the free lists for the desirable migrate type are depleted
  1712. */
  1713. static int fallbacks[MIGRATE_TYPES][4] = {
  1714. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
  1715. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
  1716. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
  1717. #ifdef CONFIG_CMA
  1718. [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
  1719. #endif
  1720. #ifdef CONFIG_MEMORY_ISOLATION
  1721. [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
  1722. #endif
  1723. };
  1724. #ifdef CONFIG_CMA
  1725. static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
  1726. unsigned int order)
  1727. {
  1728. return __rmqueue_smallest(zone, order, MIGRATE_CMA);
  1729. }
  1730. #else
  1731. static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
  1732. unsigned int order) { return NULL; }
  1733. #endif
  1734. /*
  1735. * Move the free pages in a range to the free lists of the requested type.
  1736. * Note that start_page and end_pages are not aligned on a pageblock
  1737. * boundary. If alignment is required, use move_freepages_block()
  1738. */
  1739. static int move_freepages(struct zone *zone,
  1740. struct page *start_page, struct page *end_page,
  1741. int migratetype, int *num_movable)
  1742. {
  1743. struct page *page;
  1744. unsigned int order;
  1745. int pages_moved = 0;
  1746. #ifndef CONFIG_HOLES_IN_ZONE
  1747. /*
  1748. * page_zone is not safe to call in this context when
  1749. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  1750. * anyway as we check zone boundaries in move_freepages_block().
  1751. * Remove at a later date when no bug reports exist related to
  1752. * grouping pages by mobility
  1753. */
  1754. VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
  1755. pfn_valid(page_to_pfn(end_page)) &&
  1756. page_zone(start_page) != page_zone(end_page));
  1757. #endif
  1758. for (page = start_page; page <= end_page;) {
  1759. if (!pfn_valid_within(page_to_pfn(page))) {
  1760. page++;
  1761. continue;
  1762. }
  1763. /* Make sure we are not inadvertently changing nodes */
  1764. VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
  1765. if (!PageBuddy(page)) {
  1766. /*
  1767. * We assume that pages that could be isolated for
  1768. * migration are movable. But we don't actually try
  1769. * isolating, as that would be expensive.
  1770. */
  1771. if (num_movable &&
  1772. (PageLRU(page) || __PageMovable(page)))
  1773. (*num_movable)++;
  1774. page++;
  1775. continue;
  1776. }
  1777. order = page_order(page);
  1778. list_move(&page->lru,
  1779. &zone->free_area[order].free_list[migratetype]);
  1780. page += 1 << order;
  1781. pages_moved += 1 << order;
  1782. }
  1783. return pages_moved;
  1784. }
  1785. int move_freepages_block(struct zone *zone, struct page *page,
  1786. int migratetype, int *num_movable)
  1787. {
  1788. unsigned long start_pfn, end_pfn;
  1789. struct page *start_page, *end_page;
  1790. if (num_movable)
  1791. *num_movable = 0;
  1792. start_pfn = page_to_pfn(page);
  1793. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  1794. start_page = pfn_to_page(start_pfn);
  1795. end_page = start_page + pageblock_nr_pages - 1;
  1796. end_pfn = start_pfn + pageblock_nr_pages - 1;
  1797. /* Do not cross zone boundaries */
  1798. if (!zone_spans_pfn(zone, start_pfn))
  1799. start_page = page;
  1800. if (!zone_spans_pfn(zone, end_pfn))
  1801. return 0;
  1802. return move_freepages(zone, start_page, end_page, migratetype,
  1803. num_movable);
  1804. }
  1805. static void change_pageblock_range(struct page *pageblock_page,
  1806. int start_order, int migratetype)
  1807. {
  1808. int nr_pageblocks = 1 << (start_order - pageblock_order);
  1809. while (nr_pageblocks--) {
  1810. set_pageblock_migratetype(pageblock_page, migratetype);
  1811. pageblock_page += pageblock_nr_pages;
  1812. }
  1813. }
  1814. /*
  1815. * When we are falling back to another migratetype during allocation, try to
  1816. * steal extra free pages from the same pageblocks to satisfy further
  1817. * allocations, instead of polluting multiple pageblocks.
  1818. *
  1819. * If we are stealing a relatively large buddy page, it is likely there will
  1820. * be more free pages in the pageblock, so try to steal them all. For
  1821. * reclaimable and unmovable allocations, we steal regardless of page size,
  1822. * as fragmentation caused by those allocations polluting movable pageblocks
  1823. * is worse than movable allocations stealing from unmovable and reclaimable
  1824. * pageblocks.
  1825. */
  1826. static bool can_steal_fallback(unsigned int order, int start_mt)
  1827. {
  1828. /*
  1829. * Leaving this order check is intended, although there is
  1830. * relaxed order check in next check. The reason is that
  1831. * we can actually steal whole pageblock if this condition met,
  1832. * but, below check doesn't guarantee it and that is just heuristic
  1833. * so could be changed anytime.
  1834. */
  1835. if (order >= pageblock_order)
  1836. return true;
  1837. if (order >= pageblock_order / 2 ||
  1838. start_mt == MIGRATE_RECLAIMABLE ||
  1839. start_mt == MIGRATE_UNMOVABLE ||
  1840. page_group_by_mobility_disabled)
  1841. return true;
  1842. return false;
  1843. }
  1844. /*
  1845. * This function implements actual steal behaviour. If order is large enough,
  1846. * we can steal whole pageblock. If not, we first move freepages in this
  1847. * pageblock to our migratetype and determine how many already-allocated pages
  1848. * are there in the pageblock with a compatible migratetype. If at least half
  1849. * of pages are free or compatible, we can change migratetype of the pageblock
  1850. * itself, so pages freed in the future will be put on the correct free list.
  1851. */
  1852. static void steal_suitable_fallback(struct zone *zone, struct page *page,
  1853. int start_type, bool whole_block)
  1854. {
  1855. unsigned int current_order = page_order(page);
  1856. struct free_area *area;
  1857. int free_pages, movable_pages, alike_pages;
  1858. int old_block_type;
  1859. old_block_type = get_pageblock_migratetype(page);
  1860. /*
  1861. * This can happen due to races and we want to prevent broken
  1862. * highatomic accounting.
  1863. */
  1864. if (is_migrate_highatomic(old_block_type))
  1865. goto single_page;
  1866. /* Take ownership for orders >= pageblock_order */
  1867. if (current_order >= pageblock_order) {
  1868. change_pageblock_range(page, current_order, start_type);
  1869. goto single_page;
  1870. }
  1871. /* We are not allowed to try stealing from the whole block */
  1872. if (!whole_block)
  1873. goto single_page;
  1874. free_pages = move_freepages_block(zone, page, start_type,
  1875. &movable_pages);
  1876. /*
  1877. * Determine how many pages are compatible with our allocation.
  1878. * For movable allocation, it's the number of movable pages which
  1879. * we just obtained. For other types it's a bit more tricky.
  1880. */
  1881. if (start_type == MIGRATE_MOVABLE) {
  1882. alike_pages = movable_pages;
  1883. } else {
  1884. /*
  1885. * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
  1886. * to MOVABLE pageblock, consider all non-movable pages as
  1887. * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
  1888. * vice versa, be conservative since we can't distinguish the
  1889. * exact migratetype of non-movable pages.
  1890. */
  1891. if (old_block_type == MIGRATE_MOVABLE)
  1892. alike_pages = pageblock_nr_pages
  1893. - (free_pages + movable_pages);
  1894. else
  1895. alike_pages = 0;
  1896. }
  1897. /* moving whole block can fail due to zone boundary conditions */
  1898. if (!free_pages)
  1899. goto single_page;
  1900. /*
  1901. * If a sufficient number of pages in the block are either free or of
  1902. * comparable migratability as our allocation, claim the whole block.
  1903. */
  1904. if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
  1905. page_group_by_mobility_disabled)
  1906. set_pageblock_migratetype(page, start_type);
  1907. return;
  1908. single_page:
  1909. area = &zone->free_area[current_order];
  1910. list_move(&page->lru, &area->free_list[start_type]);
  1911. }
  1912. /*
  1913. * Check whether there is a suitable fallback freepage with requested order.
  1914. * If only_stealable is true, this function returns fallback_mt only if
  1915. * we can steal other freepages all together. This would help to reduce
  1916. * fragmentation due to mixed migratetype pages in one pageblock.
  1917. */
  1918. int find_suitable_fallback(struct free_area *area, unsigned int order,
  1919. int migratetype, bool only_stealable, bool *can_steal)
  1920. {
  1921. int i;
  1922. int fallback_mt;
  1923. if (area->nr_free == 0)
  1924. return -1;
  1925. *can_steal = false;
  1926. for (i = 0;; i++) {
  1927. fallback_mt = fallbacks[migratetype][i];
  1928. if (fallback_mt == MIGRATE_TYPES)
  1929. break;
  1930. if (list_empty(&area->free_list[fallback_mt]))
  1931. continue;
  1932. if (can_steal_fallback(order, migratetype))
  1933. *can_steal = true;
  1934. if (!only_stealable)
  1935. return fallback_mt;
  1936. if (*can_steal)
  1937. return fallback_mt;
  1938. }
  1939. return -1;
  1940. }
  1941. /*
  1942. * Reserve a pageblock for exclusive use of high-order atomic allocations if
  1943. * there are no empty page blocks that contain a page with a suitable order
  1944. */
  1945. static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
  1946. unsigned int alloc_order)
  1947. {
  1948. int mt;
  1949. unsigned long max_managed, flags;
  1950. /*
  1951. * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
  1952. * Check is race-prone but harmless.
  1953. */
  1954. max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
  1955. if (zone->nr_reserved_highatomic >= max_managed)
  1956. return;
  1957. spin_lock_irqsave(&zone->lock, flags);
  1958. /* Recheck the nr_reserved_highatomic limit under the lock */
  1959. if (zone->nr_reserved_highatomic >= max_managed)
  1960. goto out_unlock;
  1961. /* Yoink! */
  1962. mt = get_pageblock_migratetype(page);
  1963. if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
  1964. && !is_migrate_cma(mt)) {
  1965. zone->nr_reserved_highatomic += pageblock_nr_pages;
  1966. set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
  1967. move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
  1968. }
  1969. out_unlock:
  1970. spin_unlock_irqrestore(&zone->lock, flags);
  1971. }
  1972. /*
  1973. * Used when an allocation is about to fail under memory pressure. This
  1974. * potentially hurts the reliability of high-order allocations when under
  1975. * intense memory pressure but failed atomic allocations should be easier
  1976. * to recover from than an OOM.
  1977. *
  1978. * If @force is true, try to unreserve a pageblock even though highatomic
  1979. * pageblock is exhausted.
  1980. */
  1981. static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
  1982. bool force)
  1983. {
  1984. struct zonelist *zonelist = ac->zonelist;
  1985. unsigned long flags;
  1986. struct zoneref *z;
  1987. struct zone *zone;
  1988. struct page *page;
  1989. int order;
  1990. bool ret;
  1991. for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
  1992. ac->nodemask) {
  1993. /*
  1994. * Preserve at least one pageblock unless memory pressure
  1995. * is really high.
  1996. */
  1997. if (!force && zone->nr_reserved_highatomic <=
  1998. pageblock_nr_pages)
  1999. continue;
  2000. spin_lock_irqsave(&zone->lock, flags);
  2001. for (order = 0; order < MAX_ORDER; order++) {
  2002. struct free_area *area = &(zone->free_area[order]);
  2003. page = list_first_entry_or_null(
  2004. &area->free_list[MIGRATE_HIGHATOMIC],
  2005. struct page, lru);
  2006. if (!page)
  2007. continue;
  2008. /*
  2009. * In page freeing path, migratetype change is racy so
  2010. * we can counter several free pages in a pageblock
  2011. * in this loop althoug we changed the pageblock type
  2012. * from highatomic to ac->migratetype. So we should
  2013. * adjust the count once.
  2014. */
  2015. if (is_migrate_highatomic_page(page)) {
  2016. /*
  2017. * It should never happen but changes to
  2018. * locking could inadvertently allow a per-cpu
  2019. * drain to add pages to MIGRATE_HIGHATOMIC
  2020. * while unreserving so be safe and watch for
  2021. * underflows.
  2022. */
  2023. zone->nr_reserved_highatomic -= min(
  2024. pageblock_nr_pages,
  2025. zone->nr_reserved_highatomic);
  2026. }
  2027. /*
  2028. * Convert to ac->migratetype and avoid the normal
  2029. * pageblock stealing heuristics. Minimally, the caller
  2030. * is doing the work and needs the pages. More
  2031. * importantly, if the block was always converted to
  2032. * MIGRATE_UNMOVABLE or another type then the number
  2033. * of pageblocks that cannot be completely freed
  2034. * may increase.
  2035. */
  2036. set_pageblock_migratetype(page, ac->migratetype);
  2037. ret = move_freepages_block(zone, page, ac->migratetype,
  2038. NULL);
  2039. if (ret) {
  2040. spin_unlock_irqrestore(&zone->lock, flags);
  2041. return ret;
  2042. }
  2043. }
  2044. spin_unlock_irqrestore(&zone->lock, flags);
  2045. }
  2046. return false;
  2047. }
  2048. /*
  2049. * Try finding a free buddy page on the fallback list and put it on the free
  2050. * list of requested migratetype, possibly along with other pages from the same
  2051. * block, depending on fragmentation avoidance heuristics. Returns true if
  2052. * fallback was found so that __rmqueue_smallest() can grab it.
  2053. *
  2054. * The use of signed ints for order and current_order is a deliberate
  2055. * deviation from the rest of this file, to make the for loop
  2056. * condition simpler.
  2057. */
  2058. static __always_inline bool
  2059. __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
  2060. {
  2061. struct free_area *area;
  2062. int current_order;
  2063. struct page *page;
  2064. int fallback_mt;
  2065. bool can_steal;
  2066. /*
  2067. * Find the largest available free page in the other list. This roughly
  2068. * approximates finding the pageblock with the most free pages, which
  2069. * would be too costly to do exactly.
  2070. */
  2071. for (current_order = MAX_ORDER - 1; current_order >= order;
  2072. --current_order) {
  2073. area = &(zone->free_area[current_order]);
  2074. fallback_mt = find_suitable_fallback(area, current_order,
  2075. start_migratetype, false, &can_steal);
  2076. if (fallback_mt == -1)
  2077. continue;
  2078. /*
  2079. * We cannot steal all free pages from the pageblock and the
  2080. * requested migratetype is movable. In that case it's better to
  2081. * steal and split the smallest available page instead of the
  2082. * largest available page, because even if the next movable
  2083. * allocation falls back into a different pageblock than this
  2084. * one, it won't cause permanent fragmentation.
  2085. */
  2086. if (!can_steal && start_migratetype == MIGRATE_MOVABLE
  2087. && current_order > order)
  2088. goto find_smallest;
  2089. goto do_steal;
  2090. }
  2091. return false;
  2092. find_smallest:
  2093. for (current_order = order; current_order < MAX_ORDER;
  2094. current_order++) {
  2095. area = &(zone->free_area[current_order]);
  2096. fallback_mt = find_suitable_fallback(area, current_order,
  2097. start_migratetype, false, &can_steal);
  2098. if (fallback_mt != -1)
  2099. break;
  2100. }
  2101. /*
  2102. * This should not happen - we already found a suitable fallback
  2103. * when looking for the largest page.
  2104. */
  2105. VM_BUG_ON(current_order == MAX_ORDER);
  2106. do_steal:
  2107. page = list_first_entry(&area->free_list[fallback_mt],
  2108. struct page, lru);
  2109. steal_suitable_fallback(zone, page, start_migratetype, can_steal);
  2110. trace_mm_page_alloc_extfrag(page, order, current_order,
  2111. start_migratetype, fallback_mt);
  2112. return true;
  2113. }
  2114. /*
  2115. * Do the hard work of removing an element from the buddy allocator.
  2116. * Call me with the zone->lock already held.
  2117. */
  2118. static __always_inline struct page *
  2119. __rmqueue(struct zone *zone, unsigned int order, int migratetype)
  2120. {
  2121. struct page *page;
  2122. retry:
  2123. page = __rmqueue_smallest(zone, order, migratetype);
  2124. if (unlikely(!page)) {
  2125. if (migratetype == MIGRATE_MOVABLE)
  2126. page = __rmqueue_cma_fallback(zone, order);
  2127. if (!page && __rmqueue_fallback(zone, order, migratetype))
  2128. goto retry;
  2129. }
  2130. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  2131. return page;
  2132. }
  2133. /*
  2134. * Obtain a specified number of elements from the buddy allocator, all under
  2135. * a single hold of the lock, for efficiency. Add them to the supplied list.
  2136. * Returns the number of new pages which were placed at *list.
  2137. */
  2138. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  2139. unsigned long count, struct list_head *list,
  2140. int migratetype)
  2141. {
  2142. int i, alloced = 0;
  2143. spin_lock(&zone->lock);
  2144. for (i = 0; i < count; ++i) {
  2145. struct page *page = __rmqueue(zone, order, migratetype);
  2146. if (unlikely(page == NULL))
  2147. break;
  2148. if (unlikely(check_pcp_refill(page)))
  2149. continue;
  2150. /*
  2151. * Split buddy pages returned by expand() are received here in
  2152. * physical page order. The page is added to the tail of
  2153. * caller's list. From the callers perspective, the linked list
  2154. * is ordered by page number under some conditions. This is
  2155. * useful for IO devices that can forward direction from the
  2156. * head, thus also in the physical page order. This is useful
  2157. * for IO devices that can merge IO requests if the physical
  2158. * pages are ordered properly.
  2159. */
  2160. list_add_tail(&page->lru, list);
  2161. alloced++;
  2162. if (is_migrate_cma(get_pcppage_migratetype(page)))
  2163. __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
  2164. -(1 << order));
  2165. }
  2166. /*
  2167. * i pages were removed from the buddy list even if some leak due
  2168. * to check_pcp_refill failing so adjust NR_FREE_PAGES based
  2169. * on i. Do not confuse with 'alloced' which is the number of
  2170. * pages added to the pcp list.
  2171. */
  2172. __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
  2173. spin_unlock(&zone->lock);
  2174. return alloced;
  2175. }
  2176. #ifdef CONFIG_NUMA
  2177. /*
  2178. * Called from the vmstat counter updater to drain pagesets of this
  2179. * currently executing processor on remote nodes after they have
  2180. * expired.
  2181. *
  2182. * Note that this function must be called with the thread pinned to
  2183. * a single processor.
  2184. */
  2185. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  2186. {
  2187. unsigned long flags;
  2188. int to_drain, batch;
  2189. local_irq_save(flags);
  2190. batch = READ_ONCE(pcp->batch);
  2191. to_drain = min(pcp->count, batch);
  2192. if (to_drain > 0)
  2193. free_pcppages_bulk(zone, to_drain, pcp);
  2194. local_irq_restore(flags);
  2195. }
  2196. #endif
  2197. /*
  2198. * Drain pcplists of the indicated processor and zone.
  2199. *
  2200. * The processor must either be the current processor and the
  2201. * thread pinned to the current processor or a processor that
  2202. * is not online.
  2203. */
  2204. static void drain_pages_zone(unsigned int cpu, struct zone *zone)
  2205. {
  2206. unsigned long flags;
  2207. struct per_cpu_pageset *pset;
  2208. struct per_cpu_pages *pcp;
  2209. local_irq_save(flags);
  2210. pset = per_cpu_ptr(zone->pageset, cpu);
  2211. pcp = &pset->pcp;
  2212. if (pcp->count)
  2213. free_pcppages_bulk(zone, pcp->count, pcp);
  2214. local_irq_restore(flags);
  2215. }
  2216. /*
  2217. * Drain pcplists of all zones on the indicated processor.
  2218. *
  2219. * The processor must either be the current processor and the
  2220. * thread pinned to the current processor or a processor that
  2221. * is not online.
  2222. */
  2223. static void drain_pages(unsigned int cpu)
  2224. {
  2225. struct zone *zone;
  2226. for_each_populated_zone(zone) {
  2227. drain_pages_zone(cpu, zone);
  2228. }
  2229. }
  2230. /*
  2231. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  2232. *
  2233. * The CPU has to be pinned. When zone parameter is non-NULL, spill just
  2234. * the single zone's pages.
  2235. */
  2236. void drain_local_pages(struct zone *zone)
  2237. {
  2238. int cpu = smp_processor_id();
  2239. if (zone)
  2240. drain_pages_zone(cpu, zone);
  2241. else
  2242. drain_pages(cpu);
  2243. }
  2244. static void drain_local_pages_wq(struct work_struct *work)
  2245. {
  2246. /*
  2247. * drain_all_pages doesn't use proper cpu hotplug protection so
  2248. * we can race with cpu offline when the WQ can move this from
  2249. * a cpu pinned worker to an unbound one. We can operate on a different
  2250. * cpu which is allright but we also have to make sure to not move to
  2251. * a different one.
  2252. */
  2253. preempt_disable();
  2254. drain_local_pages(NULL);
  2255. preempt_enable();
  2256. }
  2257. /*
  2258. * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
  2259. *
  2260. * When zone parameter is non-NULL, spill just the single zone's pages.
  2261. *
  2262. * Note that this can be extremely slow as the draining happens in a workqueue.
  2263. */
  2264. void drain_all_pages(struct zone *zone)
  2265. {
  2266. int cpu;
  2267. /*
  2268. * Allocate in the BSS so we wont require allocation in
  2269. * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
  2270. */
  2271. static cpumask_t cpus_with_pcps;
  2272. /*
  2273. * Make sure nobody triggers this path before mm_percpu_wq is fully
  2274. * initialized.
  2275. */
  2276. if (WARN_ON_ONCE(!mm_percpu_wq))
  2277. return;
  2278. /*
  2279. * Do not drain if one is already in progress unless it's specific to
  2280. * a zone. Such callers are primarily CMA and memory hotplug and need
  2281. * the drain to be complete when the call returns.
  2282. */
  2283. if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
  2284. if (!zone)
  2285. return;
  2286. mutex_lock(&pcpu_drain_mutex);
  2287. }
  2288. /*
  2289. * We don't care about racing with CPU hotplug event
  2290. * as offline notification will cause the notified
  2291. * cpu to drain that CPU pcps and on_each_cpu_mask
  2292. * disables preemption as part of its processing
  2293. */
  2294. for_each_online_cpu(cpu) {
  2295. struct per_cpu_pageset *pcp;
  2296. struct zone *z;
  2297. bool has_pcps = false;
  2298. if (zone) {
  2299. pcp = per_cpu_ptr(zone->pageset, cpu);
  2300. if (pcp->pcp.count)
  2301. has_pcps = true;
  2302. } else {
  2303. for_each_populated_zone(z) {
  2304. pcp = per_cpu_ptr(z->pageset, cpu);
  2305. if (pcp->pcp.count) {
  2306. has_pcps = true;
  2307. break;
  2308. }
  2309. }
  2310. }
  2311. if (has_pcps)
  2312. cpumask_set_cpu(cpu, &cpus_with_pcps);
  2313. else
  2314. cpumask_clear_cpu(cpu, &cpus_with_pcps);
  2315. }
  2316. for_each_cpu(cpu, &cpus_with_pcps) {
  2317. struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
  2318. INIT_WORK(work, drain_local_pages_wq);
  2319. queue_work_on(cpu, mm_percpu_wq, work);
  2320. }
  2321. for_each_cpu(cpu, &cpus_with_pcps)
  2322. flush_work(per_cpu_ptr(&pcpu_drain, cpu));
  2323. mutex_unlock(&pcpu_drain_mutex);
  2324. }
  2325. #ifdef CONFIG_HIBERNATION
  2326. /*
  2327. * Touch the watchdog for every WD_PAGE_COUNT pages.
  2328. */
  2329. #define WD_PAGE_COUNT (128*1024)
  2330. void mark_free_pages(struct zone *zone)
  2331. {
  2332. unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
  2333. unsigned long flags;
  2334. unsigned int order, t;
  2335. struct page *page;
  2336. if (zone_is_empty(zone))
  2337. return;
  2338. spin_lock_irqsave(&zone->lock, flags);
  2339. max_zone_pfn = zone_end_pfn(zone);
  2340. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  2341. if (pfn_valid(pfn)) {
  2342. page = pfn_to_page(pfn);
  2343. if (!--page_count) {
  2344. touch_nmi_watchdog();
  2345. page_count = WD_PAGE_COUNT;
  2346. }
  2347. if (page_zone(page) != zone)
  2348. continue;
  2349. if (!swsusp_page_is_forbidden(page))
  2350. swsusp_unset_page_free(page);
  2351. }
  2352. for_each_migratetype_order(order, t) {
  2353. list_for_each_entry(page,
  2354. &zone->free_area[order].free_list[t], lru) {
  2355. unsigned long i;
  2356. pfn = page_to_pfn(page);
  2357. for (i = 0; i < (1UL << order); i++) {
  2358. if (!--page_count) {
  2359. touch_nmi_watchdog();
  2360. page_count = WD_PAGE_COUNT;
  2361. }
  2362. swsusp_set_page_free(pfn_to_page(pfn + i));
  2363. }
  2364. }
  2365. }
  2366. spin_unlock_irqrestore(&zone->lock, flags);
  2367. }
  2368. #endif /* CONFIG_PM */
  2369. static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
  2370. {
  2371. int migratetype;
  2372. if (!free_pcp_prepare(page))
  2373. return false;
  2374. migratetype = get_pfnblock_migratetype(page, pfn);
  2375. set_pcppage_migratetype(page, migratetype);
  2376. return true;
  2377. }
  2378. static void free_unref_page_commit(struct page *page, unsigned long pfn)
  2379. {
  2380. struct zone *zone = page_zone(page);
  2381. struct per_cpu_pages *pcp;
  2382. int migratetype;
  2383. migratetype = get_pcppage_migratetype(page);
  2384. __count_vm_event(PGFREE);
  2385. /*
  2386. * We only track unmovable, reclaimable and movable on pcp lists.
  2387. * Free ISOLATE pages back to the allocator because they are being
  2388. * offlined but treat HIGHATOMIC as movable pages so we can get those
  2389. * areas back if necessary. Otherwise, we may have to free
  2390. * excessively into the page allocator
  2391. */
  2392. if (migratetype >= MIGRATE_PCPTYPES) {
  2393. if (unlikely(is_migrate_isolate(migratetype))) {
  2394. free_one_page(zone, page, pfn, 0, migratetype);
  2395. return;
  2396. }
  2397. migratetype = MIGRATE_MOVABLE;
  2398. }
  2399. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  2400. list_add(&page->lru, &pcp->lists[migratetype]);
  2401. pcp->count++;
  2402. if (pcp->count >= pcp->high) {
  2403. unsigned long batch = READ_ONCE(pcp->batch);
  2404. free_pcppages_bulk(zone, batch, pcp);
  2405. }
  2406. }
  2407. /*
  2408. * Free a 0-order page
  2409. */
  2410. void free_unref_page(struct page *page)
  2411. {
  2412. unsigned long flags;
  2413. unsigned long pfn = page_to_pfn(page);
  2414. if (!free_unref_page_prepare(page, pfn))
  2415. return;
  2416. local_irq_save(flags);
  2417. free_unref_page_commit(page, pfn);
  2418. local_irq_restore(flags);
  2419. }
  2420. /*
  2421. * Free a list of 0-order pages
  2422. */
  2423. void free_unref_page_list(struct list_head *list)
  2424. {
  2425. struct page *page, *next;
  2426. unsigned long flags, pfn;
  2427. int batch_count = 0;
  2428. /* Prepare pages for freeing */
  2429. list_for_each_entry_safe(page, next, list, lru) {
  2430. pfn = page_to_pfn(page);
  2431. if (!free_unref_page_prepare(page, pfn))
  2432. list_del(&page->lru);
  2433. set_page_private(page, pfn);
  2434. }
  2435. local_irq_save(flags);
  2436. list_for_each_entry_safe(page, next, list, lru) {
  2437. unsigned long pfn = page_private(page);
  2438. set_page_private(page, 0);
  2439. trace_mm_page_free_batched(page);
  2440. free_unref_page_commit(page, pfn);
  2441. /*
  2442. * Guard against excessive IRQ disabled times when we get
  2443. * a large list of pages to free.
  2444. */
  2445. if (++batch_count == SWAP_CLUSTER_MAX) {
  2446. local_irq_restore(flags);
  2447. batch_count = 0;
  2448. local_irq_save(flags);
  2449. }
  2450. }
  2451. local_irq_restore(flags);
  2452. }
  2453. /*
  2454. * split_page takes a non-compound higher-order page, and splits it into
  2455. * n (1<<order) sub-pages: page[0..n]
  2456. * Each sub-page must be freed individually.
  2457. *
  2458. * Note: this is probably too low level an operation for use in drivers.
  2459. * Please consult with lkml before using this in your driver.
  2460. */
  2461. void split_page(struct page *page, unsigned int order)
  2462. {
  2463. int i;
  2464. VM_BUG_ON_PAGE(PageCompound(page), page);
  2465. VM_BUG_ON_PAGE(!page_count(page), page);
  2466. for (i = 1; i < (1 << order); i++)
  2467. set_page_refcounted(page + i);
  2468. split_page_owner(page, order);
  2469. }
  2470. EXPORT_SYMBOL_GPL(split_page);
  2471. int __isolate_free_page(struct page *page, unsigned int order)
  2472. {
  2473. unsigned long watermark;
  2474. struct zone *zone;
  2475. int mt;
  2476. BUG_ON(!PageBuddy(page));
  2477. zone = page_zone(page);
  2478. mt = get_pageblock_migratetype(page);
  2479. if (!is_migrate_isolate(mt)) {
  2480. /*
  2481. * Obey watermarks as if the page was being allocated. We can
  2482. * emulate a high-order watermark check with a raised order-0
  2483. * watermark, because we already know our high-order page
  2484. * exists.
  2485. */
  2486. watermark = min_wmark_pages(zone) + (1UL << order);
  2487. if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
  2488. return 0;
  2489. __mod_zone_freepage_state(zone, -(1UL << order), mt);
  2490. }
  2491. /* Remove page from free list */
  2492. list_del(&page->lru);
  2493. zone->free_area[order].nr_free--;
  2494. rmv_page_order(page);
  2495. /*
  2496. * Set the pageblock if the isolated page is at least half of a
  2497. * pageblock
  2498. */
  2499. if (order >= pageblock_order - 1) {
  2500. struct page *endpage = page + (1 << order) - 1;
  2501. for (; page < endpage; page += pageblock_nr_pages) {
  2502. int mt = get_pageblock_migratetype(page);
  2503. if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
  2504. && !is_migrate_highatomic(mt))
  2505. set_pageblock_migratetype(page,
  2506. MIGRATE_MOVABLE);
  2507. }
  2508. }
  2509. return 1UL << order;
  2510. }
  2511. /*
  2512. * Update NUMA hit/miss statistics
  2513. *
  2514. * Must be called with interrupts disabled.
  2515. */
  2516. static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
  2517. {
  2518. #ifdef CONFIG_NUMA
  2519. enum numa_stat_item local_stat = NUMA_LOCAL;
  2520. /* skip numa counters update if numa stats is disabled */
  2521. if (!static_branch_likely(&vm_numa_stat_key))
  2522. return;
  2523. if (zone_to_nid(z) != numa_node_id())
  2524. local_stat = NUMA_OTHER;
  2525. if (zone_to_nid(z) == zone_to_nid(preferred_zone))
  2526. __inc_numa_state(z, NUMA_HIT);
  2527. else {
  2528. __inc_numa_state(z, NUMA_MISS);
  2529. __inc_numa_state(preferred_zone, NUMA_FOREIGN);
  2530. }
  2531. __inc_numa_state(z, local_stat);
  2532. #endif
  2533. }
  2534. /* Remove page from the per-cpu list, caller must protect the list */
  2535. static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
  2536. struct per_cpu_pages *pcp,
  2537. struct list_head *list)
  2538. {
  2539. struct page *page;
  2540. do {
  2541. if (list_empty(list)) {
  2542. pcp->count += rmqueue_bulk(zone, 0,
  2543. pcp->batch, list,
  2544. migratetype);
  2545. if (unlikely(list_empty(list)))
  2546. return NULL;
  2547. }
  2548. page = list_first_entry(list, struct page, lru);
  2549. list_del(&page->lru);
  2550. pcp->count--;
  2551. } while (check_new_pcp(page));
  2552. return page;
  2553. }
  2554. /* Lock and remove page from the per-cpu list */
  2555. static struct page *rmqueue_pcplist(struct zone *preferred_zone,
  2556. struct zone *zone, unsigned int order,
  2557. gfp_t gfp_flags, int migratetype)
  2558. {
  2559. struct per_cpu_pages *pcp;
  2560. struct list_head *list;
  2561. struct page *page;
  2562. unsigned long flags;
  2563. local_irq_save(flags);
  2564. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  2565. list = &pcp->lists[migratetype];
  2566. page = __rmqueue_pcplist(zone, migratetype, pcp, list);
  2567. if (page) {
  2568. __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
  2569. zone_statistics(preferred_zone, zone);
  2570. }
  2571. local_irq_restore(flags);
  2572. return page;
  2573. }
  2574. /*
  2575. * Allocate a page from the given zone. Use pcplists for order-0 allocations.
  2576. */
  2577. static inline
  2578. struct page *rmqueue(struct zone *preferred_zone,
  2579. struct zone *zone, unsigned int order,
  2580. gfp_t gfp_flags, unsigned int alloc_flags,
  2581. int migratetype)
  2582. {
  2583. unsigned long flags;
  2584. struct page *page;
  2585. if (likely(order == 0)) {
  2586. page = rmqueue_pcplist(preferred_zone, zone, order,
  2587. gfp_flags, migratetype);
  2588. goto out;
  2589. }
  2590. /*
  2591. * We most definitely don't want callers attempting to
  2592. * allocate greater than order-1 page units with __GFP_NOFAIL.
  2593. */
  2594. WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
  2595. spin_lock_irqsave(&zone->lock, flags);
  2596. do {
  2597. page = NULL;
  2598. if (alloc_flags & ALLOC_HARDER) {
  2599. page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
  2600. if (page)
  2601. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  2602. }
  2603. if (!page)
  2604. page = __rmqueue(zone, order, migratetype);
  2605. } while (page && check_new_pages(page, order));
  2606. spin_unlock(&zone->lock);
  2607. if (!page)
  2608. goto failed;
  2609. __mod_zone_freepage_state(zone, -(1 << order),
  2610. get_pcppage_migratetype(page));
  2611. __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
  2612. zone_statistics(preferred_zone, zone);
  2613. local_irq_restore(flags);
  2614. out:
  2615. VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
  2616. return page;
  2617. failed:
  2618. local_irq_restore(flags);
  2619. return NULL;
  2620. }
  2621. #ifdef CONFIG_FAIL_PAGE_ALLOC
  2622. static struct {
  2623. struct fault_attr attr;
  2624. bool ignore_gfp_highmem;
  2625. bool ignore_gfp_reclaim;
  2626. u32 min_order;
  2627. } fail_page_alloc = {
  2628. .attr = FAULT_ATTR_INITIALIZER,
  2629. .ignore_gfp_reclaim = true,
  2630. .ignore_gfp_highmem = true,
  2631. .min_order = 1,
  2632. };
  2633. static int __init setup_fail_page_alloc(char *str)
  2634. {
  2635. return setup_fault_attr(&fail_page_alloc.attr, str);
  2636. }
  2637. __setup("fail_page_alloc=", setup_fail_page_alloc);
  2638. static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  2639. {
  2640. if (order < fail_page_alloc.min_order)
  2641. return false;
  2642. if (gfp_mask & __GFP_NOFAIL)
  2643. return false;
  2644. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  2645. return false;
  2646. if (fail_page_alloc.ignore_gfp_reclaim &&
  2647. (gfp_mask & __GFP_DIRECT_RECLAIM))
  2648. return false;
  2649. return should_fail(&fail_page_alloc.attr, 1 << order);
  2650. }
  2651. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  2652. static int __init fail_page_alloc_debugfs(void)
  2653. {
  2654. umode_t mode = S_IFREG | 0600;
  2655. struct dentry *dir;
  2656. dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
  2657. &fail_page_alloc.attr);
  2658. if (IS_ERR(dir))
  2659. return PTR_ERR(dir);
  2660. if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
  2661. &fail_page_alloc.ignore_gfp_reclaim))
  2662. goto fail;
  2663. if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  2664. &fail_page_alloc.ignore_gfp_highmem))
  2665. goto fail;
  2666. if (!debugfs_create_u32("min-order", mode, dir,
  2667. &fail_page_alloc.min_order))
  2668. goto fail;
  2669. return 0;
  2670. fail:
  2671. debugfs_remove_recursive(dir);
  2672. return -ENOMEM;
  2673. }
  2674. late_initcall(fail_page_alloc_debugfs);
  2675. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  2676. #else /* CONFIG_FAIL_PAGE_ALLOC */
  2677. static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  2678. {
  2679. return false;
  2680. }
  2681. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  2682. /*
  2683. * Return true if free base pages are above 'mark'. For high-order checks it
  2684. * will return true of the order-0 watermark is reached and there is at least
  2685. * one free page of a suitable size. Checking now avoids taking the zone lock
  2686. * to check in the allocation paths if no pages are free.
  2687. */
  2688. bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
  2689. int classzone_idx, unsigned int alloc_flags,
  2690. long free_pages)
  2691. {
  2692. long min = mark;
  2693. int o;
  2694. const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
  2695. /* free_pages may go negative - that's OK */
  2696. free_pages -= (1 << order) - 1;
  2697. if (alloc_flags & ALLOC_HIGH)
  2698. min -= min / 2;
  2699. /*
  2700. * If the caller does not have rights to ALLOC_HARDER then subtract
  2701. * the high-atomic reserves. This will over-estimate the size of the
  2702. * atomic reserve but it avoids a search.
  2703. */
  2704. if (likely(!alloc_harder)) {
  2705. free_pages -= z->nr_reserved_highatomic;
  2706. } else {
  2707. /*
  2708. * OOM victims can try even harder than normal ALLOC_HARDER
  2709. * users on the grounds that it's definitely going to be in
  2710. * the exit path shortly and free memory. Any allocation it
  2711. * makes during the free path will be small and short-lived.
  2712. */
  2713. if (alloc_flags & ALLOC_OOM)
  2714. min -= min / 2;
  2715. else
  2716. min -= min / 4;
  2717. }
  2718. #ifdef CONFIG_CMA
  2719. /* If allocation can't use CMA areas don't use free CMA pages */
  2720. if (!(alloc_flags & ALLOC_CMA))
  2721. free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
  2722. #endif
  2723. /*
  2724. * Check watermarks for an order-0 allocation request. If these
  2725. * are not met, then a high-order request also cannot go ahead
  2726. * even if a suitable page happened to be free.
  2727. */
  2728. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  2729. return false;
  2730. /* If this is an order-0 request then the watermark is fine */
  2731. if (!order)
  2732. return true;
  2733. /* For a high-order request, check at least one suitable page is free */
  2734. for (o = order; o < MAX_ORDER; o++) {
  2735. struct free_area *area = &z->free_area[o];
  2736. int mt;
  2737. if (!area->nr_free)
  2738. continue;
  2739. for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
  2740. if (!list_empty(&area->free_list[mt]))
  2741. return true;
  2742. }
  2743. #ifdef CONFIG_CMA
  2744. if ((alloc_flags & ALLOC_CMA) &&
  2745. !list_empty(&area->free_list[MIGRATE_CMA])) {
  2746. return true;
  2747. }
  2748. #endif
  2749. if (alloc_harder &&
  2750. !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
  2751. return true;
  2752. }
  2753. return false;
  2754. }
  2755. bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
  2756. int classzone_idx, unsigned int alloc_flags)
  2757. {
  2758. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  2759. zone_page_state(z, NR_FREE_PAGES));
  2760. }
  2761. static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
  2762. unsigned long mark, int classzone_idx, unsigned int alloc_flags)
  2763. {
  2764. long free_pages = zone_page_state(z, NR_FREE_PAGES);
  2765. long cma_pages = 0;
  2766. #ifdef CONFIG_CMA
  2767. /* If allocation can't use CMA areas don't use free CMA pages */
  2768. if (!(alloc_flags & ALLOC_CMA))
  2769. cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
  2770. #endif
  2771. /*
  2772. * Fast check for order-0 only. If this fails then the reserves
  2773. * need to be calculated. There is a corner case where the check
  2774. * passes but only the high-order atomic reserve are free. If
  2775. * the caller is !atomic then it'll uselessly search the free
  2776. * list. That corner case is then slower but it is harmless.
  2777. */
  2778. if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
  2779. return true;
  2780. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  2781. free_pages);
  2782. }
  2783. bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
  2784. unsigned long mark, int classzone_idx)
  2785. {
  2786. long free_pages = zone_page_state(z, NR_FREE_PAGES);
  2787. if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
  2788. free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
  2789. return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
  2790. free_pages);
  2791. }
  2792. #ifdef CONFIG_NUMA
  2793. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  2794. {
  2795. return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
  2796. RECLAIM_DISTANCE;
  2797. }
  2798. #else /* CONFIG_NUMA */
  2799. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  2800. {
  2801. return true;
  2802. }
  2803. #endif /* CONFIG_NUMA */
  2804. /*
  2805. * get_page_from_freelist goes through the zonelist trying to allocate
  2806. * a page.
  2807. */
  2808. static struct page *
  2809. get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
  2810. const struct alloc_context *ac)
  2811. {
  2812. struct zoneref *z = ac->preferred_zoneref;
  2813. struct zone *zone;
  2814. struct pglist_data *last_pgdat_dirty_limit = NULL;
  2815. /*
  2816. * Scan zonelist, looking for a zone with enough free.
  2817. * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
  2818. */
  2819. for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
  2820. ac->nodemask) {
  2821. struct page *page;
  2822. unsigned long mark;
  2823. if (cpusets_enabled() &&
  2824. (alloc_flags & ALLOC_CPUSET) &&
  2825. !__cpuset_zone_allowed(zone, gfp_mask))
  2826. continue;
  2827. /*
  2828. * When allocating a page cache page for writing, we
  2829. * want to get it from a node that is within its dirty
  2830. * limit, such that no single node holds more than its
  2831. * proportional share of globally allowed dirty pages.
  2832. * The dirty limits take into account the node's
  2833. * lowmem reserves and high watermark so that kswapd
  2834. * should be able to balance it without having to
  2835. * write pages from its LRU list.
  2836. *
  2837. * XXX: For now, allow allocations to potentially
  2838. * exceed the per-node dirty limit in the slowpath
  2839. * (spread_dirty_pages unset) before going into reclaim,
  2840. * which is important when on a NUMA setup the allowed
  2841. * nodes are together not big enough to reach the
  2842. * global limit. The proper fix for these situations
  2843. * will require awareness of nodes in the
  2844. * dirty-throttling and the flusher threads.
  2845. */
  2846. if (ac->spread_dirty_pages) {
  2847. if (last_pgdat_dirty_limit == zone->zone_pgdat)
  2848. continue;
  2849. if (!node_dirty_ok(zone->zone_pgdat)) {
  2850. last_pgdat_dirty_limit = zone->zone_pgdat;
  2851. continue;
  2852. }
  2853. }
  2854. mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
  2855. if (!zone_watermark_fast(zone, order, mark,
  2856. ac_classzone_idx(ac), alloc_flags)) {
  2857. int ret;
  2858. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  2859. /*
  2860. * Watermark failed for this zone, but see if we can
  2861. * grow this zone if it contains deferred pages.
  2862. */
  2863. if (static_branch_unlikely(&deferred_pages)) {
  2864. if (_deferred_grow_zone(zone, order))
  2865. goto try_this_zone;
  2866. }
  2867. #endif
  2868. /* Checked here to keep the fast path fast */
  2869. BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
  2870. if (alloc_flags & ALLOC_NO_WATERMARKS)
  2871. goto try_this_zone;
  2872. if (node_reclaim_mode == 0 ||
  2873. !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
  2874. continue;
  2875. ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
  2876. switch (ret) {
  2877. case NODE_RECLAIM_NOSCAN:
  2878. /* did not scan */
  2879. continue;
  2880. case NODE_RECLAIM_FULL:
  2881. /* scanned but unreclaimable */
  2882. continue;
  2883. default:
  2884. /* did we reclaim enough */
  2885. if (zone_watermark_ok(zone, order, mark,
  2886. ac_classzone_idx(ac), alloc_flags))
  2887. goto try_this_zone;
  2888. continue;
  2889. }
  2890. }
  2891. try_this_zone:
  2892. page = rmqueue(ac->preferred_zoneref->zone, zone, order,
  2893. gfp_mask, alloc_flags, ac->migratetype);
  2894. if (page) {
  2895. prep_new_page(page, order, gfp_mask, alloc_flags);
  2896. /*
  2897. * If this is a high-order atomic allocation then check
  2898. * if the pageblock should be reserved for the future
  2899. */
  2900. if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
  2901. reserve_highatomic_pageblock(page, zone, order);
  2902. return page;
  2903. } else {
  2904. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  2905. /* Try again if zone has deferred pages */
  2906. if (static_branch_unlikely(&deferred_pages)) {
  2907. if (_deferred_grow_zone(zone, order))
  2908. goto try_this_zone;
  2909. }
  2910. #endif
  2911. }
  2912. }
  2913. return NULL;
  2914. }
  2915. static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
  2916. {
  2917. unsigned int filter = SHOW_MEM_FILTER_NODES;
  2918. static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
  2919. if (!__ratelimit(&show_mem_rs))
  2920. return;
  2921. /*
  2922. * This documents exceptions given to allocations in certain
  2923. * contexts that are allowed to allocate outside current's set
  2924. * of allowed nodes.
  2925. */
  2926. if (!(gfp_mask & __GFP_NOMEMALLOC))
  2927. if (tsk_is_oom_victim(current) ||
  2928. (current->flags & (PF_MEMALLOC | PF_EXITING)))
  2929. filter &= ~SHOW_MEM_FILTER_NODES;
  2930. if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
  2931. filter &= ~SHOW_MEM_FILTER_NODES;
  2932. show_mem(filter, nodemask);
  2933. }
  2934. void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
  2935. {
  2936. struct va_format vaf;
  2937. va_list args;
  2938. static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
  2939. DEFAULT_RATELIMIT_BURST);
  2940. if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
  2941. return;
  2942. va_start(args, fmt);
  2943. vaf.fmt = fmt;
  2944. vaf.va = &args;
  2945. pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
  2946. current->comm, &vaf, gfp_mask, &gfp_mask,
  2947. nodemask_pr_args(nodemask));
  2948. va_end(args);
  2949. cpuset_print_current_mems_allowed();
  2950. dump_stack();
  2951. warn_alloc_show_mem(gfp_mask, nodemask);
  2952. }
  2953. static inline struct page *
  2954. __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
  2955. unsigned int alloc_flags,
  2956. const struct alloc_context *ac)
  2957. {
  2958. struct page *page;
  2959. page = get_page_from_freelist(gfp_mask, order,
  2960. alloc_flags|ALLOC_CPUSET, ac);
  2961. /*
  2962. * fallback to ignore cpuset restriction if our nodes
  2963. * are depleted
  2964. */
  2965. if (!page)
  2966. page = get_page_from_freelist(gfp_mask, order,
  2967. alloc_flags, ac);
  2968. return page;
  2969. }
  2970. static inline struct page *
  2971. __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
  2972. const struct alloc_context *ac, unsigned long *did_some_progress)
  2973. {
  2974. struct oom_control oc = {
  2975. .zonelist = ac->zonelist,
  2976. .nodemask = ac->nodemask,
  2977. .memcg = NULL,
  2978. .gfp_mask = gfp_mask,
  2979. .order = order,
  2980. };
  2981. struct page *page;
  2982. *did_some_progress = 0;
  2983. /*
  2984. * Acquire the oom lock. If that fails, somebody else is
  2985. * making progress for us.
  2986. */
  2987. if (!mutex_trylock(&oom_lock)) {
  2988. *did_some_progress = 1;
  2989. schedule_timeout_uninterruptible(1);
  2990. return NULL;
  2991. }
  2992. /*
  2993. * Go through the zonelist yet one more time, keep very high watermark
  2994. * here, this is only to catch a parallel oom killing, we must fail if
  2995. * we're still under heavy pressure. But make sure that this reclaim
  2996. * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
  2997. * allocation which will never fail due to oom_lock already held.
  2998. */
  2999. page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
  3000. ~__GFP_DIRECT_RECLAIM, order,
  3001. ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
  3002. if (page)
  3003. goto out;
  3004. /* Coredumps can quickly deplete all memory reserves */
  3005. if (current->flags & PF_DUMPCORE)
  3006. goto out;
  3007. /* The OOM killer will not help higher order allocs */
  3008. if (order > PAGE_ALLOC_COSTLY_ORDER)
  3009. goto out;
  3010. /*
  3011. * We have already exhausted all our reclaim opportunities without any
  3012. * success so it is time to admit defeat. We will skip the OOM killer
  3013. * because it is very likely that the caller has a more reasonable
  3014. * fallback than shooting a random task.
  3015. */
  3016. if (gfp_mask & __GFP_RETRY_MAYFAIL)
  3017. goto out;
  3018. /* The OOM killer does not needlessly kill tasks for lowmem */
  3019. if (ac->high_zoneidx < ZONE_NORMAL)
  3020. goto out;
  3021. if (pm_suspended_storage())
  3022. goto out;
  3023. /*
  3024. * XXX: GFP_NOFS allocations should rather fail than rely on
  3025. * other request to make a forward progress.
  3026. * We are in an unfortunate situation where out_of_memory cannot
  3027. * do much for this context but let's try it to at least get
  3028. * access to memory reserved if the current task is killed (see
  3029. * out_of_memory). Once filesystems are ready to handle allocation
  3030. * failures more gracefully we should just bail out here.
  3031. */
  3032. /* The OOM killer may not free memory on a specific node */
  3033. if (gfp_mask & __GFP_THISNODE)
  3034. goto out;
  3035. /* Exhausted what can be done so it's blame time */
  3036. if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
  3037. *did_some_progress = 1;
  3038. /*
  3039. * Help non-failing allocations by giving them access to memory
  3040. * reserves
  3041. */
  3042. if (gfp_mask & __GFP_NOFAIL)
  3043. page = __alloc_pages_cpuset_fallback(gfp_mask, order,
  3044. ALLOC_NO_WATERMARKS, ac);
  3045. }
  3046. out:
  3047. mutex_unlock(&oom_lock);
  3048. return page;
  3049. }
  3050. /*
  3051. * Maximum number of compaction retries wit a progress before OOM
  3052. * killer is consider as the only way to move forward.
  3053. */
  3054. #define MAX_COMPACT_RETRIES 16
  3055. #ifdef CONFIG_COMPACTION
  3056. /* Try memory compaction for high-order allocations before reclaim */
  3057. static struct page *
  3058. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  3059. unsigned int alloc_flags, const struct alloc_context *ac,
  3060. enum compact_priority prio, enum compact_result *compact_result)
  3061. {
  3062. struct page *page;
  3063. unsigned long pflags;
  3064. unsigned int noreclaim_flag;
  3065. if (!order)
  3066. return NULL;
  3067. psi_memstall_enter(&pflags);
  3068. noreclaim_flag = memalloc_noreclaim_save();
  3069. *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
  3070. prio);
  3071. memalloc_noreclaim_restore(noreclaim_flag);
  3072. psi_memstall_leave(&pflags);
  3073. if (*compact_result <= COMPACT_INACTIVE)
  3074. return NULL;
  3075. /*
  3076. * At least in one zone compaction wasn't deferred or skipped, so let's
  3077. * count a compaction stall
  3078. */
  3079. count_vm_event(COMPACTSTALL);
  3080. page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
  3081. if (page) {
  3082. struct zone *zone = page_zone(page);
  3083. zone->compact_blockskip_flush = false;
  3084. compaction_defer_reset(zone, order, true);
  3085. count_vm_event(COMPACTSUCCESS);
  3086. return page;
  3087. }
  3088. /*
  3089. * It's bad if compaction run occurs and fails. The most likely reason
  3090. * is that pages exist, but not enough to satisfy watermarks.
  3091. */
  3092. count_vm_event(COMPACTFAIL);
  3093. cond_resched();
  3094. return NULL;
  3095. }
  3096. static inline bool
  3097. should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
  3098. enum compact_result compact_result,
  3099. enum compact_priority *compact_priority,
  3100. int *compaction_retries)
  3101. {
  3102. int max_retries = MAX_COMPACT_RETRIES;
  3103. int min_priority;
  3104. bool ret = false;
  3105. int retries = *compaction_retries;
  3106. enum compact_priority priority = *compact_priority;
  3107. if (!order)
  3108. return false;
  3109. if (compaction_made_progress(compact_result))
  3110. (*compaction_retries)++;
  3111. /*
  3112. * compaction considers all the zone as desperately out of memory
  3113. * so it doesn't really make much sense to retry except when the
  3114. * failure could be caused by insufficient priority
  3115. */
  3116. if (compaction_failed(compact_result))
  3117. goto check_priority;
  3118. /*
  3119. * make sure the compaction wasn't deferred or didn't bail out early
  3120. * due to locks contention before we declare that we should give up.
  3121. * But do not retry if the given zonelist is not suitable for
  3122. * compaction.
  3123. */
  3124. if (compaction_withdrawn(compact_result)) {
  3125. ret = compaction_zonelist_suitable(ac, order, alloc_flags);
  3126. goto out;
  3127. }
  3128. /*
  3129. * !costly requests are much more important than __GFP_RETRY_MAYFAIL
  3130. * costly ones because they are de facto nofail and invoke OOM
  3131. * killer to move on while costly can fail and users are ready
  3132. * to cope with that. 1/4 retries is rather arbitrary but we
  3133. * would need much more detailed feedback from compaction to
  3134. * make a better decision.
  3135. */
  3136. if (order > PAGE_ALLOC_COSTLY_ORDER)
  3137. max_retries /= 4;
  3138. if (*compaction_retries <= max_retries) {
  3139. ret = true;
  3140. goto out;
  3141. }
  3142. /*
  3143. * Make sure there are attempts at the highest priority if we exhausted
  3144. * all retries or failed at the lower priorities.
  3145. */
  3146. check_priority:
  3147. min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
  3148. MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
  3149. if (*compact_priority > min_priority) {
  3150. (*compact_priority)--;
  3151. *compaction_retries = 0;
  3152. ret = true;
  3153. }
  3154. out:
  3155. trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
  3156. return ret;
  3157. }
  3158. #else
  3159. static inline struct page *
  3160. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  3161. unsigned int alloc_flags, const struct alloc_context *ac,
  3162. enum compact_priority prio, enum compact_result *compact_result)
  3163. {
  3164. *compact_result = COMPACT_SKIPPED;
  3165. return NULL;
  3166. }
  3167. static inline bool
  3168. should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
  3169. enum compact_result compact_result,
  3170. enum compact_priority *compact_priority,
  3171. int *compaction_retries)
  3172. {
  3173. struct zone *zone;
  3174. struct zoneref *z;
  3175. if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
  3176. return false;
  3177. /*
  3178. * There are setups with compaction disabled which would prefer to loop
  3179. * inside the allocator rather than hit the oom killer prematurely.
  3180. * Let's give them a good hope and keep retrying while the order-0
  3181. * watermarks are OK.
  3182. */
  3183. for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
  3184. ac->nodemask) {
  3185. if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
  3186. ac_classzone_idx(ac), alloc_flags))
  3187. return true;
  3188. }
  3189. return false;
  3190. }
  3191. #endif /* CONFIG_COMPACTION */
  3192. #ifdef CONFIG_LOCKDEP
  3193. static struct lockdep_map __fs_reclaim_map =
  3194. STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
  3195. static bool __need_fs_reclaim(gfp_t gfp_mask)
  3196. {
  3197. gfp_mask = current_gfp_context(gfp_mask);
  3198. /* no reclaim without waiting on it */
  3199. if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
  3200. return false;
  3201. /* this guy won't enter reclaim */
  3202. if (current->flags & PF_MEMALLOC)
  3203. return false;
  3204. /* We're only interested __GFP_FS allocations for now */
  3205. if (!(gfp_mask & __GFP_FS))
  3206. return false;
  3207. if (gfp_mask & __GFP_NOLOCKDEP)
  3208. return false;
  3209. return true;
  3210. }
  3211. void __fs_reclaim_acquire(void)
  3212. {
  3213. lock_map_acquire(&__fs_reclaim_map);
  3214. }
  3215. void __fs_reclaim_release(void)
  3216. {
  3217. lock_map_release(&__fs_reclaim_map);
  3218. }
  3219. void fs_reclaim_acquire(gfp_t gfp_mask)
  3220. {
  3221. if (__need_fs_reclaim(gfp_mask))
  3222. __fs_reclaim_acquire();
  3223. }
  3224. EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
  3225. void fs_reclaim_release(gfp_t gfp_mask)
  3226. {
  3227. if (__need_fs_reclaim(gfp_mask))
  3228. __fs_reclaim_release();
  3229. }
  3230. EXPORT_SYMBOL_GPL(fs_reclaim_release);
  3231. #endif
  3232. /* Perform direct synchronous page reclaim */
  3233. static int
  3234. __perform_reclaim(gfp_t gfp_mask, unsigned int order,
  3235. const struct alloc_context *ac)
  3236. {
  3237. struct reclaim_state reclaim_state;
  3238. int progress;
  3239. unsigned int noreclaim_flag;
  3240. unsigned long pflags;
  3241. cond_resched();
  3242. /* We now go into synchronous reclaim */
  3243. cpuset_memory_pressure_bump();
  3244. psi_memstall_enter(&pflags);
  3245. fs_reclaim_acquire(gfp_mask);
  3246. noreclaim_flag = memalloc_noreclaim_save();
  3247. reclaim_state.reclaimed_slab = 0;
  3248. current->reclaim_state = &reclaim_state;
  3249. progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
  3250. ac->nodemask);
  3251. current->reclaim_state = NULL;
  3252. memalloc_noreclaim_restore(noreclaim_flag);
  3253. fs_reclaim_release(gfp_mask);
  3254. psi_memstall_leave(&pflags);
  3255. cond_resched();
  3256. return progress;
  3257. }
  3258. /* The really slow allocator path where we enter direct reclaim */
  3259. static inline struct page *
  3260. __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
  3261. unsigned int alloc_flags, const struct alloc_context *ac,
  3262. unsigned long *did_some_progress)
  3263. {
  3264. struct page *page = NULL;
  3265. bool drained = false;
  3266. *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
  3267. if (unlikely(!(*did_some_progress)))
  3268. return NULL;
  3269. retry:
  3270. page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
  3271. /*
  3272. * If an allocation failed after direct reclaim, it could be because
  3273. * pages are pinned on the per-cpu lists or in high alloc reserves.
  3274. * Shrink them them and try again
  3275. */
  3276. if (!page && !drained) {
  3277. unreserve_highatomic_pageblock(ac, false);
  3278. drain_all_pages(NULL);
  3279. drained = true;
  3280. goto retry;
  3281. }
  3282. return page;
  3283. }
  3284. static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
  3285. const struct alloc_context *ac)
  3286. {
  3287. struct zoneref *z;
  3288. struct zone *zone;
  3289. pg_data_t *last_pgdat = NULL;
  3290. enum zone_type high_zoneidx = ac->high_zoneidx;
  3291. for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
  3292. ac->nodemask) {
  3293. if (last_pgdat != zone->zone_pgdat)
  3294. wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
  3295. last_pgdat = zone->zone_pgdat;
  3296. }
  3297. }
  3298. static inline unsigned int
  3299. gfp_to_alloc_flags(gfp_t gfp_mask)
  3300. {
  3301. unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
  3302. /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
  3303. BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
  3304. /*
  3305. * The caller may dip into page reserves a bit more if the caller
  3306. * cannot run direct reclaim, or if the caller has realtime scheduling
  3307. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  3308. * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
  3309. */
  3310. alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
  3311. if (gfp_mask & __GFP_ATOMIC) {
  3312. /*
  3313. * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
  3314. * if it can't schedule.
  3315. */
  3316. if (!(gfp_mask & __GFP_NOMEMALLOC))
  3317. alloc_flags |= ALLOC_HARDER;
  3318. /*
  3319. * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
  3320. * comment for __cpuset_node_allowed().
  3321. */
  3322. alloc_flags &= ~ALLOC_CPUSET;
  3323. } else if (unlikely(rt_task(current)) && !in_interrupt())
  3324. alloc_flags |= ALLOC_HARDER;
  3325. #ifdef CONFIG_CMA
  3326. if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
  3327. alloc_flags |= ALLOC_CMA;
  3328. #endif
  3329. return alloc_flags;
  3330. }
  3331. static bool oom_reserves_allowed(struct task_struct *tsk)
  3332. {
  3333. if (!tsk_is_oom_victim(tsk))
  3334. return false;
  3335. /*
  3336. * !MMU doesn't have oom reaper so give access to memory reserves
  3337. * only to the thread with TIF_MEMDIE set
  3338. */
  3339. if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
  3340. return false;
  3341. return true;
  3342. }
  3343. /*
  3344. * Distinguish requests which really need access to full memory
  3345. * reserves from oom victims which can live with a portion of it
  3346. */
  3347. static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
  3348. {
  3349. if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
  3350. return 0;
  3351. if (gfp_mask & __GFP_MEMALLOC)
  3352. return ALLOC_NO_WATERMARKS;
  3353. if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
  3354. return ALLOC_NO_WATERMARKS;
  3355. if (!in_interrupt()) {
  3356. if (current->flags & PF_MEMALLOC)
  3357. return ALLOC_NO_WATERMARKS;
  3358. else if (oom_reserves_allowed(current))
  3359. return ALLOC_OOM;
  3360. }
  3361. return 0;
  3362. }
  3363. bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
  3364. {
  3365. return !!__gfp_pfmemalloc_flags(gfp_mask);
  3366. }
  3367. /*
  3368. * Checks whether it makes sense to retry the reclaim to make a forward progress
  3369. * for the given allocation request.
  3370. *
  3371. * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
  3372. * without success, or when we couldn't even meet the watermark if we
  3373. * reclaimed all remaining pages on the LRU lists.
  3374. *
  3375. * Returns true if a retry is viable or false to enter the oom path.
  3376. */
  3377. static inline bool
  3378. should_reclaim_retry(gfp_t gfp_mask, unsigned order,
  3379. struct alloc_context *ac, int alloc_flags,
  3380. bool did_some_progress, int *no_progress_loops)
  3381. {
  3382. struct zone *zone;
  3383. struct zoneref *z;
  3384. bool ret = false;
  3385. /*
  3386. * Costly allocations might have made a progress but this doesn't mean
  3387. * their order will become available due to high fragmentation so
  3388. * always increment the no progress counter for them
  3389. */
  3390. if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
  3391. *no_progress_loops = 0;
  3392. else
  3393. (*no_progress_loops)++;
  3394. /*
  3395. * Make sure we converge to OOM if we cannot make any progress
  3396. * several times in the row.
  3397. */
  3398. if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
  3399. /* Before OOM, exhaust highatomic_reserve */
  3400. return unreserve_highatomic_pageblock(ac, true);
  3401. }
  3402. /*
  3403. * Keep reclaiming pages while there is a chance this will lead
  3404. * somewhere. If none of the target zones can satisfy our allocation
  3405. * request even if all reclaimable pages are considered then we are
  3406. * screwed and have to go OOM.
  3407. */
  3408. for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
  3409. ac->nodemask) {
  3410. unsigned long available;
  3411. unsigned long reclaimable;
  3412. unsigned long min_wmark = min_wmark_pages(zone);
  3413. bool wmark;
  3414. available = reclaimable = zone_reclaimable_pages(zone);
  3415. available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
  3416. /*
  3417. * Would the allocation succeed if we reclaimed all
  3418. * reclaimable pages?
  3419. */
  3420. wmark = __zone_watermark_ok(zone, order, min_wmark,
  3421. ac_classzone_idx(ac), alloc_flags, available);
  3422. trace_reclaim_retry_zone(z, order, reclaimable,
  3423. available, min_wmark, *no_progress_loops, wmark);
  3424. if (wmark) {
  3425. /*
  3426. * If we didn't make any progress and have a lot of
  3427. * dirty + writeback pages then we should wait for
  3428. * an IO to complete to slow down the reclaim and
  3429. * prevent from pre mature OOM
  3430. */
  3431. if (!did_some_progress) {
  3432. unsigned long write_pending;
  3433. write_pending = zone_page_state_snapshot(zone,
  3434. NR_ZONE_WRITE_PENDING);
  3435. if (2 * write_pending > reclaimable) {
  3436. congestion_wait(BLK_RW_ASYNC, HZ/10);
  3437. return true;
  3438. }
  3439. }
  3440. ret = true;
  3441. goto out;
  3442. }
  3443. }
  3444. out:
  3445. /*
  3446. * Memory allocation/reclaim might be called from a WQ context and the
  3447. * current implementation of the WQ concurrency control doesn't
  3448. * recognize that a particular WQ is congested if the worker thread is
  3449. * looping without ever sleeping. Therefore we have to do a short sleep
  3450. * here rather than calling cond_resched().
  3451. */
  3452. if (current->flags & PF_WQ_WORKER)
  3453. schedule_timeout_uninterruptible(1);
  3454. else
  3455. cond_resched();
  3456. return ret;
  3457. }
  3458. static inline bool
  3459. check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
  3460. {
  3461. /*
  3462. * It's possible that cpuset's mems_allowed and the nodemask from
  3463. * mempolicy don't intersect. This should be normally dealt with by
  3464. * policy_nodemask(), but it's possible to race with cpuset update in
  3465. * such a way the check therein was true, and then it became false
  3466. * before we got our cpuset_mems_cookie here.
  3467. * This assumes that for all allocations, ac->nodemask can come only
  3468. * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
  3469. * when it does not intersect with the cpuset restrictions) or the
  3470. * caller can deal with a violated nodemask.
  3471. */
  3472. if (cpusets_enabled() && ac->nodemask &&
  3473. !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
  3474. ac->nodemask = NULL;
  3475. return true;
  3476. }
  3477. /*
  3478. * When updating a task's mems_allowed or mempolicy nodemask, it is
  3479. * possible to race with parallel threads in such a way that our
  3480. * allocation can fail while the mask is being updated. If we are about
  3481. * to fail, check if the cpuset changed during allocation and if so,
  3482. * retry.
  3483. */
  3484. if (read_mems_allowed_retry(cpuset_mems_cookie))
  3485. return true;
  3486. return false;
  3487. }
  3488. static inline struct page *
  3489. __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
  3490. struct alloc_context *ac)
  3491. {
  3492. bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
  3493. const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
  3494. struct page *page = NULL;
  3495. unsigned int alloc_flags;
  3496. unsigned long did_some_progress;
  3497. enum compact_priority compact_priority;
  3498. enum compact_result compact_result;
  3499. int compaction_retries;
  3500. int no_progress_loops;
  3501. unsigned int cpuset_mems_cookie;
  3502. int reserve_flags;
  3503. /*
  3504. * We also sanity check to catch abuse of atomic reserves being used by
  3505. * callers that are not in atomic context.
  3506. */
  3507. if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
  3508. (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
  3509. gfp_mask &= ~__GFP_ATOMIC;
  3510. retry_cpuset:
  3511. compaction_retries = 0;
  3512. no_progress_loops = 0;
  3513. compact_priority = DEF_COMPACT_PRIORITY;
  3514. cpuset_mems_cookie = read_mems_allowed_begin();
  3515. /*
  3516. * The fast path uses conservative alloc_flags to succeed only until
  3517. * kswapd needs to be woken up, and to avoid the cost of setting up
  3518. * alloc_flags precisely. So we do that now.
  3519. */
  3520. alloc_flags = gfp_to_alloc_flags(gfp_mask);
  3521. /*
  3522. * We need to recalculate the starting point for the zonelist iterator
  3523. * because we might have used different nodemask in the fast path, or
  3524. * there was a cpuset modification and we are retrying - otherwise we
  3525. * could end up iterating over non-eligible zones endlessly.
  3526. */
  3527. ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
  3528. ac->high_zoneidx, ac->nodemask);
  3529. if (!ac->preferred_zoneref->zone)
  3530. goto nopage;
  3531. if (gfp_mask & __GFP_KSWAPD_RECLAIM)
  3532. wake_all_kswapds(order, gfp_mask, ac);
  3533. /*
  3534. * The adjusted alloc_flags might result in immediate success, so try
  3535. * that first
  3536. */
  3537. page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
  3538. if (page)
  3539. goto got_pg;
  3540. /*
  3541. * For costly allocations, try direct compaction first, as it's likely
  3542. * that we have enough base pages and don't need to reclaim. For non-
  3543. * movable high-order allocations, do that as well, as compaction will
  3544. * try prevent permanent fragmentation by migrating from blocks of the
  3545. * same migratetype.
  3546. * Don't try this for allocations that are allowed to ignore
  3547. * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
  3548. */
  3549. if (can_direct_reclaim &&
  3550. (costly_order ||
  3551. (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
  3552. && !gfp_pfmemalloc_allowed(gfp_mask)) {
  3553. page = __alloc_pages_direct_compact(gfp_mask, order,
  3554. alloc_flags, ac,
  3555. INIT_COMPACT_PRIORITY,
  3556. &compact_result);
  3557. if (page)
  3558. goto got_pg;
  3559. /*
  3560. * Checks for costly allocations with __GFP_NORETRY, which
  3561. * includes THP page fault allocations
  3562. */
  3563. if (costly_order && (gfp_mask & __GFP_NORETRY)) {
  3564. /*
  3565. * If compaction is deferred for high-order allocations,
  3566. * it is because sync compaction recently failed. If
  3567. * this is the case and the caller requested a THP
  3568. * allocation, we do not want to heavily disrupt the
  3569. * system, so we fail the allocation instead of entering
  3570. * direct reclaim.
  3571. */
  3572. if (compact_result == COMPACT_DEFERRED)
  3573. goto nopage;
  3574. /*
  3575. * Looks like reclaim/compaction is worth trying, but
  3576. * sync compaction could be very expensive, so keep
  3577. * using async compaction.
  3578. */
  3579. compact_priority = INIT_COMPACT_PRIORITY;
  3580. }
  3581. }
  3582. retry:
  3583. /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
  3584. if (gfp_mask & __GFP_KSWAPD_RECLAIM)
  3585. wake_all_kswapds(order, gfp_mask, ac);
  3586. reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
  3587. if (reserve_flags)
  3588. alloc_flags = reserve_flags;
  3589. /*
  3590. * Reset the nodemask and zonelist iterators if memory policies can be
  3591. * ignored. These allocations are high priority and system rather than
  3592. * user oriented.
  3593. */
  3594. if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
  3595. ac->nodemask = NULL;
  3596. ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
  3597. ac->high_zoneidx, ac->nodemask);
  3598. }
  3599. /* Attempt with potentially adjusted zonelist and alloc_flags */
  3600. page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
  3601. if (page)
  3602. goto got_pg;
  3603. /* Caller is not willing to reclaim, we can't balance anything */
  3604. if (!can_direct_reclaim)
  3605. goto nopage;
  3606. /* Avoid recursion of direct reclaim */
  3607. if (current->flags & PF_MEMALLOC)
  3608. goto nopage;
  3609. /* Try direct reclaim and then allocating */
  3610. page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
  3611. &did_some_progress);
  3612. if (page)
  3613. goto got_pg;
  3614. /* Try direct compaction and then allocating */
  3615. page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
  3616. compact_priority, &compact_result);
  3617. if (page)
  3618. goto got_pg;
  3619. /* Do not loop if specifically requested */
  3620. if (gfp_mask & __GFP_NORETRY)
  3621. goto nopage;
  3622. /*
  3623. * Do not retry costly high order allocations unless they are
  3624. * __GFP_RETRY_MAYFAIL
  3625. */
  3626. if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
  3627. goto nopage;
  3628. if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
  3629. did_some_progress > 0, &no_progress_loops))
  3630. goto retry;
  3631. /*
  3632. * It doesn't make any sense to retry for the compaction if the order-0
  3633. * reclaim is not able to make any progress because the current
  3634. * implementation of the compaction depends on the sufficient amount
  3635. * of free memory (see __compaction_suitable)
  3636. */
  3637. if (did_some_progress > 0 &&
  3638. should_compact_retry(ac, order, alloc_flags,
  3639. compact_result, &compact_priority,
  3640. &compaction_retries))
  3641. goto retry;
  3642. /* Deal with possible cpuset update races before we start OOM killing */
  3643. if (check_retry_cpuset(cpuset_mems_cookie, ac))
  3644. goto retry_cpuset;
  3645. /* Reclaim has failed us, start killing things */
  3646. page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
  3647. if (page)
  3648. goto got_pg;
  3649. /* Avoid allocations with no watermarks from looping endlessly */
  3650. if (tsk_is_oom_victim(current) &&
  3651. (alloc_flags == ALLOC_OOM ||
  3652. (gfp_mask & __GFP_NOMEMALLOC)))
  3653. goto nopage;
  3654. /* Retry as long as the OOM killer is making progress */
  3655. if (did_some_progress) {
  3656. no_progress_loops = 0;
  3657. goto retry;
  3658. }
  3659. nopage:
  3660. /* Deal with possible cpuset update races before we fail */
  3661. if (check_retry_cpuset(cpuset_mems_cookie, ac))
  3662. goto retry_cpuset;
  3663. /*
  3664. * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
  3665. * we always retry
  3666. */
  3667. if (gfp_mask & __GFP_NOFAIL) {
  3668. /*
  3669. * All existing users of the __GFP_NOFAIL are blockable, so warn
  3670. * of any new users that actually require GFP_NOWAIT
  3671. */
  3672. if (WARN_ON_ONCE(!can_direct_reclaim))
  3673. goto fail;
  3674. /*
  3675. * PF_MEMALLOC request from this context is rather bizarre
  3676. * because we cannot reclaim anything and only can loop waiting
  3677. * for somebody to do a work for us
  3678. */
  3679. WARN_ON_ONCE(current->flags & PF_MEMALLOC);
  3680. /*
  3681. * non failing costly orders are a hard requirement which we
  3682. * are not prepared for much so let's warn about these users
  3683. * so that we can identify them and convert them to something
  3684. * else.
  3685. */
  3686. WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
  3687. /*
  3688. * Help non-failing allocations by giving them access to memory
  3689. * reserves but do not use ALLOC_NO_WATERMARKS because this
  3690. * could deplete whole memory reserves which would just make
  3691. * the situation worse
  3692. */
  3693. page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
  3694. if (page)
  3695. goto got_pg;
  3696. cond_resched();
  3697. goto retry;
  3698. }
  3699. fail:
  3700. warn_alloc(gfp_mask, ac->nodemask,
  3701. "page allocation failure: order:%u", order);
  3702. got_pg:
  3703. return page;
  3704. }
  3705. static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
  3706. int preferred_nid, nodemask_t *nodemask,
  3707. struct alloc_context *ac, gfp_t *alloc_mask,
  3708. unsigned int *alloc_flags)
  3709. {
  3710. ac->high_zoneidx = gfp_zone(gfp_mask);
  3711. ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
  3712. ac->nodemask = nodemask;
  3713. ac->migratetype = gfpflags_to_migratetype(gfp_mask);
  3714. if (cpusets_enabled()) {
  3715. *alloc_mask |= __GFP_HARDWALL;
  3716. if (!ac->nodemask)
  3717. ac->nodemask = &cpuset_current_mems_allowed;
  3718. else
  3719. *alloc_flags |= ALLOC_CPUSET;
  3720. }
  3721. fs_reclaim_acquire(gfp_mask);
  3722. fs_reclaim_release(gfp_mask);
  3723. might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
  3724. if (should_fail_alloc_page(gfp_mask, order))
  3725. return false;
  3726. if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
  3727. *alloc_flags |= ALLOC_CMA;
  3728. return true;
  3729. }
  3730. /* Determine whether to spread dirty pages and what the first usable zone */
  3731. static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
  3732. {
  3733. /* Dirty zone balancing only done in the fast path */
  3734. ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
  3735. /*
  3736. * The preferred zone is used for statistics but crucially it is
  3737. * also used as the starting point for the zonelist iterator. It
  3738. * may get reset for allocations that ignore memory policies.
  3739. */
  3740. ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
  3741. ac->high_zoneidx, ac->nodemask);
  3742. }
  3743. /*
  3744. * This is the 'heart' of the zoned buddy allocator.
  3745. */
  3746. struct page *
  3747. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
  3748. nodemask_t *nodemask)
  3749. {
  3750. struct page *page;
  3751. unsigned int alloc_flags = ALLOC_WMARK_LOW;
  3752. gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
  3753. struct alloc_context ac = { };
  3754. /*
  3755. * There are several places where we assume that the order value is sane
  3756. * so bail out early if the request is out of bound.
  3757. */
  3758. if (unlikely(order >= MAX_ORDER)) {
  3759. WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
  3760. return NULL;
  3761. }
  3762. gfp_mask &= gfp_allowed_mask;
  3763. alloc_mask = gfp_mask;
  3764. if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
  3765. return NULL;
  3766. finalise_ac(gfp_mask, &ac);
  3767. /* First allocation attempt */
  3768. page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
  3769. if (likely(page))
  3770. goto out;
  3771. /*
  3772. * Apply scoped allocation constraints. This is mainly about GFP_NOFS
  3773. * resp. GFP_NOIO which has to be inherited for all allocation requests
  3774. * from a particular context which has been marked by
  3775. * memalloc_no{fs,io}_{save,restore}.
  3776. */
  3777. alloc_mask = current_gfp_context(gfp_mask);
  3778. ac.spread_dirty_pages = false;
  3779. /*
  3780. * Restore the original nodemask if it was potentially replaced with
  3781. * &cpuset_current_mems_allowed to optimize the fast-path attempt.
  3782. */
  3783. if (unlikely(ac.nodemask != nodemask))
  3784. ac.nodemask = nodemask;
  3785. page = __alloc_pages_slowpath(alloc_mask, order, &ac);
  3786. out:
  3787. if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
  3788. unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
  3789. __free_pages(page, order);
  3790. page = NULL;
  3791. }
  3792. trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
  3793. return page;
  3794. }
  3795. EXPORT_SYMBOL(__alloc_pages_nodemask);
  3796. /*
  3797. * Common helper functions. Never use with __GFP_HIGHMEM because the returned
  3798. * address cannot represent highmem pages. Use alloc_pages and then kmap if
  3799. * you need to access high mem.
  3800. */
  3801. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  3802. {
  3803. struct page *page;
  3804. page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
  3805. if (!page)
  3806. return 0;
  3807. return (unsigned long) page_address(page);
  3808. }
  3809. EXPORT_SYMBOL(__get_free_pages);
  3810. unsigned long get_zeroed_page(gfp_t gfp_mask)
  3811. {
  3812. return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
  3813. }
  3814. EXPORT_SYMBOL(get_zeroed_page);
  3815. void __free_pages(struct page *page, unsigned int order)
  3816. {
  3817. if (put_page_testzero(page)) {
  3818. if (order == 0)
  3819. free_unref_page(page);
  3820. else
  3821. __free_pages_ok(page, order);
  3822. }
  3823. }
  3824. EXPORT_SYMBOL(__free_pages);
  3825. void free_pages(unsigned long addr, unsigned int order)
  3826. {
  3827. if (addr != 0) {
  3828. VM_BUG_ON(!virt_addr_valid((void *)addr));
  3829. __free_pages(virt_to_page((void *)addr), order);
  3830. }
  3831. }
  3832. EXPORT_SYMBOL(free_pages);
  3833. /*
  3834. * Page Fragment:
  3835. * An arbitrary-length arbitrary-offset area of memory which resides
  3836. * within a 0 or higher order page. Multiple fragments within that page
  3837. * are individually refcounted, in the page's reference counter.
  3838. *
  3839. * The page_frag functions below provide a simple allocation framework for
  3840. * page fragments. This is used by the network stack and network device
  3841. * drivers to provide a backing region of memory for use as either an
  3842. * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
  3843. */
  3844. static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
  3845. gfp_t gfp_mask)
  3846. {
  3847. struct page *page = NULL;
  3848. gfp_t gfp = gfp_mask;
  3849. #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
  3850. gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
  3851. __GFP_NOMEMALLOC;
  3852. page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
  3853. PAGE_FRAG_CACHE_MAX_ORDER);
  3854. nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
  3855. #endif
  3856. if (unlikely(!page))
  3857. page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
  3858. nc->va = page ? page_address(page) : NULL;
  3859. return page;
  3860. }
  3861. void __page_frag_cache_drain(struct page *page, unsigned int count)
  3862. {
  3863. VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
  3864. if (page_ref_sub_and_test(page, count)) {
  3865. unsigned int order = compound_order(page);
  3866. if (order == 0)
  3867. free_unref_page(page);
  3868. else
  3869. __free_pages_ok(page, order);
  3870. }
  3871. }
  3872. EXPORT_SYMBOL(__page_frag_cache_drain);
  3873. void *page_frag_alloc(struct page_frag_cache *nc,
  3874. unsigned int fragsz, gfp_t gfp_mask)
  3875. {
  3876. unsigned int size = PAGE_SIZE;
  3877. struct page *page;
  3878. int offset;
  3879. if (unlikely(!nc->va)) {
  3880. refill:
  3881. page = __page_frag_cache_refill(nc, gfp_mask);
  3882. if (!page)
  3883. return NULL;
  3884. #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
  3885. /* if size can vary use size else just use PAGE_SIZE */
  3886. size = nc->size;
  3887. #endif
  3888. /* Even if we own the page, we do not use atomic_set().
  3889. * This would break get_page_unless_zero() users.
  3890. */
  3891. page_ref_add(page, size - 1);
  3892. /* reset page count bias and offset to start of new frag */
  3893. nc->pfmemalloc = page_is_pfmemalloc(page);
  3894. nc->pagecnt_bias = size;
  3895. nc->offset = size;
  3896. }
  3897. offset = nc->offset - fragsz;
  3898. if (unlikely(offset < 0)) {
  3899. page = virt_to_page(nc->va);
  3900. if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
  3901. goto refill;
  3902. #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
  3903. /* if size can vary use size else just use PAGE_SIZE */
  3904. size = nc->size;
  3905. #endif
  3906. /* OK, page count is 0, we can safely set it */
  3907. set_page_count(page, size);
  3908. /* reset page count bias and offset to start of new frag */
  3909. nc->pagecnt_bias = size;
  3910. offset = size - fragsz;
  3911. }
  3912. nc->pagecnt_bias--;
  3913. nc->offset = offset;
  3914. return nc->va + offset;
  3915. }
  3916. EXPORT_SYMBOL(page_frag_alloc);
  3917. /*
  3918. * Frees a page fragment allocated out of either a compound or order 0 page.
  3919. */
  3920. void page_frag_free(void *addr)
  3921. {
  3922. struct page *page = virt_to_head_page(addr);
  3923. if (unlikely(put_page_testzero(page)))
  3924. __free_pages_ok(page, compound_order(page));
  3925. }
  3926. EXPORT_SYMBOL(page_frag_free);
  3927. static void *make_alloc_exact(unsigned long addr, unsigned int order,
  3928. size_t size)
  3929. {
  3930. if (addr) {
  3931. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  3932. unsigned long used = addr + PAGE_ALIGN(size);
  3933. split_page(virt_to_page((void *)addr), order);
  3934. while (used < alloc_end) {
  3935. free_page(used);
  3936. used += PAGE_SIZE;
  3937. }
  3938. }
  3939. return (void *)addr;
  3940. }
  3941. /**
  3942. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  3943. * @size: the number of bytes to allocate
  3944. * @gfp_mask: GFP flags for the allocation
  3945. *
  3946. * This function is similar to alloc_pages(), except that it allocates the
  3947. * minimum number of pages to satisfy the request. alloc_pages() can only
  3948. * allocate memory in power-of-two pages.
  3949. *
  3950. * This function is also limited by MAX_ORDER.
  3951. *
  3952. * Memory allocated by this function must be released by free_pages_exact().
  3953. */
  3954. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  3955. {
  3956. unsigned int order = get_order(size);
  3957. unsigned long addr;
  3958. addr = __get_free_pages(gfp_mask, order);
  3959. return make_alloc_exact(addr, order, size);
  3960. }
  3961. EXPORT_SYMBOL(alloc_pages_exact);
  3962. /**
  3963. * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
  3964. * pages on a node.
  3965. * @nid: the preferred node ID where memory should be allocated
  3966. * @size: the number of bytes to allocate
  3967. * @gfp_mask: GFP flags for the allocation
  3968. *
  3969. * Like alloc_pages_exact(), but try to allocate on node nid first before falling
  3970. * back.
  3971. */
  3972. void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
  3973. {
  3974. unsigned int order = get_order(size);
  3975. struct page *p = alloc_pages_node(nid, gfp_mask, order);
  3976. if (!p)
  3977. return NULL;
  3978. return make_alloc_exact((unsigned long)page_address(p), order, size);
  3979. }
  3980. /**
  3981. * free_pages_exact - release memory allocated via alloc_pages_exact()
  3982. * @virt: the value returned by alloc_pages_exact.
  3983. * @size: size of allocation, same value as passed to alloc_pages_exact().
  3984. *
  3985. * Release the memory allocated by a previous call to alloc_pages_exact.
  3986. */
  3987. void free_pages_exact(void *virt, size_t size)
  3988. {
  3989. unsigned long addr = (unsigned long)virt;
  3990. unsigned long end = addr + PAGE_ALIGN(size);
  3991. while (addr < end) {
  3992. free_page(addr);
  3993. addr += PAGE_SIZE;
  3994. }
  3995. }
  3996. EXPORT_SYMBOL(free_pages_exact);
  3997. /**
  3998. * nr_free_zone_pages - count number of pages beyond high watermark
  3999. * @offset: The zone index of the highest zone
  4000. *
  4001. * nr_free_zone_pages() counts the number of counts pages which are beyond the
  4002. * high watermark within all zones at or below a given zone index. For each
  4003. * zone, the number of pages is calculated as:
  4004. *
  4005. * nr_free_zone_pages = managed_pages - high_pages
  4006. */
  4007. static unsigned long nr_free_zone_pages(int offset)
  4008. {
  4009. struct zoneref *z;
  4010. struct zone *zone;
  4011. /* Just pick one node, since fallback list is circular */
  4012. unsigned long sum = 0;
  4013. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  4014. for_each_zone_zonelist(zone, z, zonelist, offset) {
  4015. unsigned long size = zone->managed_pages;
  4016. unsigned long high = high_wmark_pages(zone);
  4017. if (size > high)
  4018. sum += size - high;
  4019. }
  4020. return sum;
  4021. }
  4022. /**
  4023. * nr_free_buffer_pages - count number of pages beyond high watermark
  4024. *
  4025. * nr_free_buffer_pages() counts the number of pages which are beyond the high
  4026. * watermark within ZONE_DMA and ZONE_NORMAL.
  4027. */
  4028. unsigned long nr_free_buffer_pages(void)
  4029. {
  4030. return nr_free_zone_pages(gfp_zone(GFP_USER));
  4031. }
  4032. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  4033. /**
  4034. * nr_free_pagecache_pages - count number of pages beyond high watermark
  4035. *
  4036. * nr_free_pagecache_pages() counts the number of pages which are beyond the
  4037. * high watermark within all zones.
  4038. */
  4039. unsigned long nr_free_pagecache_pages(void)
  4040. {
  4041. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  4042. }
  4043. static inline void show_node(struct zone *zone)
  4044. {
  4045. if (IS_ENABLED(CONFIG_NUMA))
  4046. printk("Node %d ", zone_to_nid(zone));
  4047. }
  4048. long si_mem_available(void)
  4049. {
  4050. long available;
  4051. unsigned long pagecache;
  4052. unsigned long wmark_low = 0;
  4053. unsigned long pages[NR_LRU_LISTS];
  4054. unsigned long reclaimable;
  4055. struct zone *zone;
  4056. int lru;
  4057. for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
  4058. pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
  4059. for_each_zone(zone)
  4060. wmark_low += zone->watermark[WMARK_LOW];
  4061. /*
  4062. * Estimate the amount of memory available for userspace allocations,
  4063. * without causing swapping.
  4064. */
  4065. available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
  4066. /*
  4067. * Not all the page cache can be freed, otherwise the system will
  4068. * start swapping. Assume at least half of the page cache, or the
  4069. * low watermark worth of cache, needs to stay.
  4070. */
  4071. pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
  4072. pagecache -= min(pagecache / 2, wmark_low);
  4073. available += pagecache;
  4074. /*
  4075. * Part of the reclaimable slab and other kernel memory consists of
  4076. * items that are in use, and cannot be freed. Cap this estimate at the
  4077. * low watermark.
  4078. */
  4079. reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
  4080. global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
  4081. available += reclaimable - min(reclaimable / 2, wmark_low);
  4082. if (available < 0)
  4083. available = 0;
  4084. return available;
  4085. }
  4086. EXPORT_SYMBOL_GPL(si_mem_available);
  4087. void si_meminfo(struct sysinfo *val)
  4088. {
  4089. val->totalram = totalram_pages;
  4090. val->sharedram = global_node_page_state(NR_SHMEM);
  4091. val->freeram = global_zone_page_state(NR_FREE_PAGES);
  4092. val->bufferram = nr_blockdev_pages();
  4093. val->totalhigh = totalhigh_pages;
  4094. val->freehigh = nr_free_highpages();
  4095. val->mem_unit = PAGE_SIZE;
  4096. }
  4097. EXPORT_SYMBOL(si_meminfo);
  4098. #ifdef CONFIG_NUMA
  4099. void si_meminfo_node(struct sysinfo *val, int nid)
  4100. {
  4101. int zone_type; /* needs to be signed */
  4102. unsigned long managed_pages = 0;
  4103. unsigned long managed_highpages = 0;
  4104. unsigned long free_highpages = 0;
  4105. pg_data_t *pgdat = NODE_DATA(nid);
  4106. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
  4107. managed_pages += pgdat->node_zones[zone_type].managed_pages;
  4108. val->totalram = managed_pages;
  4109. val->sharedram = node_page_state(pgdat, NR_SHMEM);
  4110. val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
  4111. #ifdef CONFIG_HIGHMEM
  4112. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  4113. struct zone *zone = &pgdat->node_zones[zone_type];
  4114. if (is_highmem(zone)) {
  4115. managed_highpages += zone->managed_pages;
  4116. free_highpages += zone_page_state(zone, NR_FREE_PAGES);
  4117. }
  4118. }
  4119. val->totalhigh = managed_highpages;
  4120. val->freehigh = free_highpages;
  4121. #else
  4122. val->totalhigh = managed_highpages;
  4123. val->freehigh = free_highpages;
  4124. #endif
  4125. val->mem_unit = PAGE_SIZE;
  4126. }
  4127. #endif
  4128. /*
  4129. * Determine whether the node should be displayed or not, depending on whether
  4130. * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
  4131. */
  4132. static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
  4133. {
  4134. if (!(flags & SHOW_MEM_FILTER_NODES))
  4135. return false;
  4136. /*
  4137. * no node mask - aka implicit memory numa policy. Do not bother with
  4138. * the synchronization - read_mems_allowed_begin - because we do not
  4139. * have to be precise here.
  4140. */
  4141. if (!nodemask)
  4142. nodemask = &cpuset_current_mems_allowed;
  4143. return !node_isset(nid, *nodemask);
  4144. }
  4145. #define K(x) ((x) << (PAGE_SHIFT-10))
  4146. static void show_migration_types(unsigned char type)
  4147. {
  4148. static const char types[MIGRATE_TYPES] = {
  4149. [MIGRATE_UNMOVABLE] = 'U',
  4150. [MIGRATE_MOVABLE] = 'M',
  4151. [MIGRATE_RECLAIMABLE] = 'E',
  4152. [MIGRATE_HIGHATOMIC] = 'H',
  4153. #ifdef CONFIG_CMA
  4154. [MIGRATE_CMA] = 'C',
  4155. #endif
  4156. #ifdef CONFIG_MEMORY_ISOLATION
  4157. [MIGRATE_ISOLATE] = 'I',
  4158. #endif
  4159. };
  4160. char tmp[MIGRATE_TYPES + 1];
  4161. char *p = tmp;
  4162. int i;
  4163. for (i = 0; i < MIGRATE_TYPES; i++) {
  4164. if (type & (1 << i))
  4165. *p++ = types[i];
  4166. }
  4167. *p = '\0';
  4168. printk(KERN_CONT "(%s) ", tmp);
  4169. }
  4170. /*
  4171. * Show free area list (used inside shift_scroll-lock stuff)
  4172. * We also calculate the percentage fragmentation. We do this by counting the
  4173. * memory on each free list with the exception of the first item on the list.
  4174. *
  4175. * Bits in @filter:
  4176. * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
  4177. * cpuset.
  4178. */
  4179. void show_free_areas(unsigned int filter, nodemask_t *nodemask)
  4180. {
  4181. unsigned long free_pcp = 0;
  4182. int cpu;
  4183. struct zone *zone;
  4184. pg_data_t *pgdat;
  4185. for_each_populated_zone(zone) {
  4186. if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
  4187. continue;
  4188. for_each_online_cpu(cpu)
  4189. free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
  4190. }
  4191. printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
  4192. " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
  4193. " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
  4194. " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
  4195. " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
  4196. " free:%lu free_pcp:%lu free_cma:%lu\n",
  4197. global_node_page_state(NR_ACTIVE_ANON),
  4198. global_node_page_state(NR_INACTIVE_ANON),
  4199. global_node_page_state(NR_ISOLATED_ANON),
  4200. global_node_page_state(NR_ACTIVE_FILE),
  4201. global_node_page_state(NR_INACTIVE_FILE),
  4202. global_node_page_state(NR_ISOLATED_FILE),
  4203. global_node_page_state(NR_UNEVICTABLE),
  4204. global_node_page_state(NR_FILE_DIRTY),
  4205. global_node_page_state(NR_WRITEBACK),
  4206. global_node_page_state(NR_UNSTABLE_NFS),
  4207. global_node_page_state(NR_SLAB_RECLAIMABLE),
  4208. global_node_page_state(NR_SLAB_UNRECLAIMABLE),
  4209. global_node_page_state(NR_FILE_MAPPED),
  4210. global_node_page_state(NR_SHMEM),
  4211. global_zone_page_state(NR_PAGETABLE),
  4212. global_zone_page_state(NR_BOUNCE),
  4213. global_zone_page_state(NR_FREE_PAGES),
  4214. free_pcp,
  4215. global_zone_page_state(NR_FREE_CMA_PAGES));
  4216. for_each_online_pgdat(pgdat) {
  4217. if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
  4218. continue;
  4219. printk("Node %d"
  4220. " active_anon:%lukB"
  4221. " inactive_anon:%lukB"
  4222. " active_file:%lukB"
  4223. " inactive_file:%lukB"
  4224. " unevictable:%lukB"
  4225. " isolated(anon):%lukB"
  4226. " isolated(file):%lukB"
  4227. " mapped:%lukB"
  4228. " dirty:%lukB"
  4229. " writeback:%lukB"
  4230. " shmem:%lukB"
  4231. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  4232. " shmem_thp: %lukB"
  4233. " shmem_pmdmapped: %lukB"
  4234. " anon_thp: %lukB"
  4235. #endif
  4236. " writeback_tmp:%lukB"
  4237. " unstable:%lukB"
  4238. " all_unreclaimable? %s"
  4239. "\n",
  4240. pgdat->node_id,
  4241. K(node_page_state(pgdat, NR_ACTIVE_ANON)),
  4242. K(node_page_state(pgdat, NR_INACTIVE_ANON)),
  4243. K(node_page_state(pgdat, NR_ACTIVE_FILE)),
  4244. K(node_page_state(pgdat, NR_INACTIVE_FILE)),
  4245. K(node_page_state(pgdat, NR_UNEVICTABLE)),
  4246. K(node_page_state(pgdat, NR_ISOLATED_ANON)),
  4247. K(node_page_state(pgdat, NR_ISOLATED_FILE)),
  4248. K(node_page_state(pgdat, NR_FILE_MAPPED)),
  4249. K(node_page_state(pgdat, NR_FILE_DIRTY)),
  4250. K(node_page_state(pgdat, NR_WRITEBACK)),
  4251. K(node_page_state(pgdat, NR_SHMEM)),
  4252. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  4253. K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
  4254. K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
  4255. * HPAGE_PMD_NR),
  4256. K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
  4257. #endif
  4258. K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
  4259. K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
  4260. pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
  4261. "yes" : "no");
  4262. }
  4263. for_each_populated_zone(zone) {
  4264. int i;
  4265. if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
  4266. continue;
  4267. free_pcp = 0;
  4268. for_each_online_cpu(cpu)
  4269. free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
  4270. show_node(zone);
  4271. printk(KERN_CONT
  4272. "%s"
  4273. " free:%lukB"
  4274. " min:%lukB"
  4275. " low:%lukB"
  4276. " high:%lukB"
  4277. " active_anon:%lukB"
  4278. " inactive_anon:%lukB"
  4279. " active_file:%lukB"
  4280. " inactive_file:%lukB"
  4281. " unevictable:%lukB"
  4282. " writepending:%lukB"
  4283. " present:%lukB"
  4284. " managed:%lukB"
  4285. " mlocked:%lukB"
  4286. " kernel_stack:%lukB"
  4287. " pagetables:%lukB"
  4288. " bounce:%lukB"
  4289. " free_pcp:%lukB"
  4290. " local_pcp:%ukB"
  4291. " free_cma:%lukB"
  4292. "\n",
  4293. zone->name,
  4294. K(zone_page_state(zone, NR_FREE_PAGES)),
  4295. K(min_wmark_pages(zone)),
  4296. K(low_wmark_pages(zone)),
  4297. K(high_wmark_pages(zone)),
  4298. K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
  4299. K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
  4300. K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
  4301. K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
  4302. K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
  4303. K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
  4304. K(zone->present_pages),
  4305. K(zone->managed_pages),
  4306. K(zone_page_state(zone, NR_MLOCK)),
  4307. zone_page_state(zone, NR_KERNEL_STACK_KB),
  4308. K(zone_page_state(zone, NR_PAGETABLE)),
  4309. K(zone_page_state(zone, NR_BOUNCE)),
  4310. K(free_pcp),
  4311. K(this_cpu_read(zone->pageset->pcp.count)),
  4312. K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
  4313. printk("lowmem_reserve[]:");
  4314. for (i = 0; i < MAX_NR_ZONES; i++)
  4315. printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
  4316. printk(KERN_CONT "\n");
  4317. }
  4318. for_each_populated_zone(zone) {
  4319. unsigned int order;
  4320. unsigned long nr[MAX_ORDER], flags, total = 0;
  4321. unsigned char types[MAX_ORDER];
  4322. if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
  4323. continue;
  4324. show_node(zone);
  4325. printk(KERN_CONT "%s: ", zone->name);
  4326. spin_lock_irqsave(&zone->lock, flags);
  4327. for (order = 0; order < MAX_ORDER; order++) {
  4328. struct free_area *area = &zone->free_area[order];
  4329. int type;
  4330. nr[order] = area->nr_free;
  4331. total += nr[order] << order;
  4332. types[order] = 0;
  4333. for (type = 0; type < MIGRATE_TYPES; type++) {
  4334. if (!list_empty(&area->free_list[type]))
  4335. types[order] |= 1 << type;
  4336. }
  4337. }
  4338. spin_unlock_irqrestore(&zone->lock, flags);
  4339. for (order = 0; order < MAX_ORDER; order++) {
  4340. printk(KERN_CONT "%lu*%lukB ",
  4341. nr[order], K(1UL) << order);
  4342. if (nr[order])
  4343. show_migration_types(types[order]);
  4344. }
  4345. printk(KERN_CONT "= %lukB\n", K(total));
  4346. }
  4347. hugetlb_show_meminfo();
  4348. printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
  4349. show_swap_cache_info();
  4350. }
  4351. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  4352. {
  4353. zoneref->zone = zone;
  4354. zoneref->zone_idx = zone_idx(zone);
  4355. }
  4356. /*
  4357. * Builds allocation fallback zone lists.
  4358. *
  4359. * Add all populated zones of a node to the zonelist.
  4360. */
  4361. static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
  4362. {
  4363. struct zone *zone;
  4364. enum zone_type zone_type = MAX_NR_ZONES;
  4365. int nr_zones = 0;
  4366. do {
  4367. zone_type--;
  4368. zone = pgdat->node_zones + zone_type;
  4369. if (managed_zone(zone)) {
  4370. zoneref_set_zone(zone, &zonerefs[nr_zones++]);
  4371. check_highest_zone(zone_type);
  4372. }
  4373. } while (zone_type);
  4374. return nr_zones;
  4375. }
  4376. #ifdef CONFIG_NUMA
  4377. static int __parse_numa_zonelist_order(char *s)
  4378. {
  4379. /*
  4380. * We used to support different zonlists modes but they turned
  4381. * out to be just not useful. Let's keep the warning in place
  4382. * if somebody still use the cmd line parameter so that we do
  4383. * not fail it silently
  4384. */
  4385. if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
  4386. pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
  4387. return -EINVAL;
  4388. }
  4389. return 0;
  4390. }
  4391. static __init int setup_numa_zonelist_order(char *s)
  4392. {
  4393. if (!s)
  4394. return 0;
  4395. return __parse_numa_zonelist_order(s);
  4396. }
  4397. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  4398. char numa_zonelist_order[] = "Node";
  4399. /*
  4400. * sysctl handler for numa_zonelist_order
  4401. */
  4402. int numa_zonelist_order_handler(struct ctl_table *table, int write,
  4403. void __user *buffer, size_t *length,
  4404. loff_t *ppos)
  4405. {
  4406. char *str;
  4407. int ret;
  4408. if (!write)
  4409. return proc_dostring(table, write, buffer, length, ppos);
  4410. str = memdup_user_nul(buffer, 16);
  4411. if (IS_ERR(str))
  4412. return PTR_ERR(str);
  4413. ret = __parse_numa_zonelist_order(str);
  4414. kfree(str);
  4415. return ret;
  4416. }
  4417. #define MAX_NODE_LOAD (nr_online_nodes)
  4418. static int node_load[MAX_NUMNODES];
  4419. /**
  4420. * find_next_best_node - find the next node that should appear in a given node's fallback list
  4421. * @node: node whose fallback list we're appending
  4422. * @used_node_mask: nodemask_t of already used nodes
  4423. *
  4424. * We use a number of factors to determine which is the next node that should
  4425. * appear on a given node's fallback list. The node should not have appeared
  4426. * already in @node's fallback list, and it should be the next closest node
  4427. * according to the distance array (which contains arbitrary distance values
  4428. * from each node to each node in the system), and should also prefer nodes
  4429. * with no CPUs, since presumably they'll have very little allocation pressure
  4430. * on them otherwise.
  4431. * It returns -1 if no node is found.
  4432. */
  4433. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  4434. {
  4435. int n, val;
  4436. int min_val = INT_MAX;
  4437. int best_node = NUMA_NO_NODE;
  4438. const struct cpumask *tmp = cpumask_of_node(0);
  4439. /* Use the local node if we haven't already */
  4440. if (!node_isset(node, *used_node_mask)) {
  4441. node_set(node, *used_node_mask);
  4442. return node;
  4443. }
  4444. for_each_node_state(n, N_MEMORY) {
  4445. /* Don't want a node to appear more than once */
  4446. if (node_isset(n, *used_node_mask))
  4447. continue;
  4448. /* Use the distance array to find the distance */
  4449. val = node_distance(node, n);
  4450. /* Penalize nodes under us ("prefer the next node") */
  4451. val += (n < node);
  4452. /* Give preference to headless and unused nodes */
  4453. tmp = cpumask_of_node(n);
  4454. if (!cpumask_empty(tmp))
  4455. val += PENALTY_FOR_NODE_WITH_CPUS;
  4456. /* Slight preference for less loaded node */
  4457. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  4458. val += node_load[n];
  4459. if (val < min_val) {
  4460. min_val = val;
  4461. best_node = n;
  4462. }
  4463. }
  4464. if (best_node >= 0)
  4465. node_set(best_node, *used_node_mask);
  4466. return best_node;
  4467. }
  4468. /*
  4469. * Build zonelists ordered by node and zones within node.
  4470. * This results in maximum locality--normal zone overflows into local
  4471. * DMA zone, if any--but risks exhausting DMA zone.
  4472. */
  4473. static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
  4474. unsigned nr_nodes)
  4475. {
  4476. struct zoneref *zonerefs;
  4477. int i;
  4478. zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
  4479. for (i = 0; i < nr_nodes; i++) {
  4480. int nr_zones;
  4481. pg_data_t *node = NODE_DATA(node_order[i]);
  4482. nr_zones = build_zonerefs_node(node, zonerefs);
  4483. zonerefs += nr_zones;
  4484. }
  4485. zonerefs->zone = NULL;
  4486. zonerefs->zone_idx = 0;
  4487. }
  4488. /*
  4489. * Build gfp_thisnode zonelists
  4490. */
  4491. static void build_thisnode_zonelists(pg_data_t *pgdat)
  4492. {
  4493. struct zoneref *zonerefs;
  4494. int nr_zones;
  4495. zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
  4496. nr_zones = build_zonerefs_node(pgdat, zonerefs);
  4497. zonerefs += nr_zones;
  4498. zonerefs->zone = NULL;
  4499. zonerefs->zone_idx = 0;
  4500. }
  4501. /*
  4502. * Build zonelists ordered by zone and nodes within zones.
  4503. * This results in conserving DMA zone[s] until all Normal memory is
  4504. * exhausted, but results in overflowing to remote node while memory
  4505. * may still exist in local DMA zone.
  4506. */
  4507. static void build_zonelists(pg_data_t *pgdat)
  4508. {
  4509. static int node_order[MAX_NUMNODES];
  4510. int node, load, nr_nodes = 0;
  4511. nodemask_t used_mask;
  4512. int local_node, prev_node;
  4513. /* NUMA-aware ordering of nodes */
  4514. local_node = pgdat->node_id;
  4515. load = nr_online_nodes;
  4516. prev_node = local_node;
  4517. nodes_clear(used_mask);
  4518. memset(node_order, 0, sizeof(node_order));
  4519. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  4520. /*
  4521. * We don't want to pressure a particular node.
  4522. * So adding penalty to the first node in same
  4523. * distance group to make it round-robin.
  4524. */
  4525. if (node_distance(local_node, node) !=
  4526. node_distance(local_node, prev_node))
  4527. node_load[node] = load;
  4528. node_order[nr_nodes++] = node;
  4529. prev_node = node;
  4530. load--;
  4531. }
  4532. build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
  4533. build_thisnode_zonelists(pgdat);
  4534. }
  4535. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  4536. /*
  4537. * Return node id of node used for "local" allocations.
  4538. * I.e., first node id of first zone in arg node's generic zonelist.
  4539. * Used for initializing percpu 'numa_mem', which is used primarily
  4540. * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
  4541. */
  4542. int local_memory_node(int node)
  4543. {
  4544. struct zoneref *z;
  4545. z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
  4546. gfp_zone(GFP_KERNEL),
  4547. NULL);
  4548. return zone_to_nid(z->zone);
  4549. }
  4550. #endif
  4551. static void setup_min_unmapped_ratio(void);
  4552. static void setup_min_slab_ratio(void);
  4553. #else /* CONFIG_NUMA */
  4554. static void build_zonelists(pg_data_t *pgdat)
  4555. {
  4556. int node, local_node;
  4557. struct zoneref *zonerefs;
  4558. int nr_zones;
  4559. local_node = pgdat->node_id;
  4560. zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
  4561. nr_zones = build_zonerefs_node(pgdat, zonerefs);
  4562. zonerefs += nr_zones;
  4563. /*
  4564. * Now we build the zonelist so that it contains the zones
  4565. * of all the other nodes.
  4566. * We don't want to pressure a particular node, so when
  4567. * building the zones for node N, we make sure that the
  4568. * zones coming right after the local ones are those from
  4569. * node N+1 (modulo N)
  4570. */
  4571. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  4572. if (!node_online(node))
  4573. continue;
  4574. nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
  4575. zonerefs += nr_zones;
  4576. }
  4577. for (node = 0; node < local_node; node++) {
  4578. if (!node_online(node))
  4579. continue;
  4580. nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
  4581. zonerefs += nr_zones;
  4582. }
  4583. zonerefs->zone = NULL;
  4584. zonerefs->zone_idx = 0;
  4585. }
  4586. #endif /* CONFIG_NUMA */
  4587. /*
  4588. * Boot pageset table. One per cpu which is going to be used for all
  4589. * zones and all nodes. The parameters will be set in such a way
  4590. * that an item put on a list will immediately be handed over to
  4591. * the buddy list. This is safe since pageset manipulation is done
  4592. * with interrupts disabled.
  4593. *
  4594. * The boot_pagesets must be kept even after bootup is complete for
  4595. * unused processors and/or zones. They do play a role for bootstrapping
  4596. * hotplugged processors.
  4597. *
  4598. * zoneinfo_show() and maybe other functions do
  4599. * not check if the processor is online before following the pageset pointer.
  4600. * Other parts of the kernel may not check if the zone is available.
  4601. */
  4602. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
  4603. static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
  4604. static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
  4605. static void __build_all_zonelists(void *data)
  4606. {
  4607. int nid;
  4608. int __maybe_unused cpu;
  4609. pg_data_t *self = data;
  4610. static DEFINE_SPINLOCK(lock);
  4611. spin_lock(&lock);
  4612. #ifdef CONFIG_NUMA
  4613. memset(node_load, 0, sizeof(node_load));
  4614. #endif
  4615. /*
  4616. * This node is hotadded and no memory is yet present. So just
  4617. * building zonelists is fine - no need to touch other nodes.
  4618. */
  4619. if (self && !node_online(self->node_id)) {
  4620. build_zonelists(self);
  4621. } else {
  4622. for_each_online_node(nid) {
  4623. pg_data_t *pgdat = NODE_DATA(nid);
  4624. build_zonelists(pgdat);
  4625. }
  4626. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  4627. /*
  4628. * We now know the "local memory node" for each node--
  4629. * i.e., the node of the first zone in the generic zonelist.
  4630. * Set up numa_mem percpu variable for on-line cpus. During
  4631. * boot, only the boot cpu should be on-line; we'll init the
  4632. * secondary cpus' numa_mem as they come on-line. During
  4633. * node/memory hotplug, we'll fixup all on-line cpus.
  4634. */
  4635. for_each_online_cpu(cpu)
  4636. set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
  4637. #endif
  4638. }
  4639. spin_unlock(&lock);
  4640. }
  4641. static noinline void __init
  4642. build_all_zonelists_init(void)
  4643. {
  4644. int cpu;
  4645. __build_all_zonelists(NULL);
  4646. /*
  4647. * Initialize the boot_pagesets that are going to be used
  4648. * for bootstrapping processors. The real pagesets for
  4649. * each zone will be allocated later when the per cpu
  4650. * allocator is available.
  4651. *
  4652. * boot_pagesets are used also for bootstrapping offline
  4653. * cpus if the system is already booted because the pagesets
  4654. * are needed to initialize allocators on a specific cpu too.
  4655. * F.e. the percpu allocator needs the page allocator which
  4656. * needs the percpu allocator in order to allocate its pagesets
  4657. * (a chicken-egg dilemma).
  4658. */
  4659. for_each_possible_cpu(cpu)
  4660. setup_pageset(&per_cpu(boot_pageset, cpu), 0);
  4661. mminit_verify_zonelist();
  4662. cpuset_init_current_mems_allowed();
  4663. }
  4664. /*
  4665. * unless system_state == SYSTEM_BOOTING.
  4666. *
  4667. * __ref due to call of __init annotated helper build_all_zonelists_init
  4668. * [protected by SYSTEM_BOOTING].
  4669. */
  4670. void __ref build_all_zonelists(pg_data_t *pgdat)
  4671. {
  4672. if (system_state == SYSTEM_BOOTING) {
  4673. build_all_zonelists_init();
  4674. } else {
  4675. __build_all_zonelists(pgdat);
  4676. /* cpuset refresh routine should be here */
  4677. }
  4678. vm_total_pages = nr_free_pagecache_pages();
  4679. /*
  4680. * Disable grouping by mobility if the number of pages in the
  4681. * system is too low to allow the mechanism to work. It would be
  4682. * more accurate, but expensive to check per-zone. This check is
  4683. * made on memory-hotadd so a system can start with mobility
  4684. * disabled and enable it later
  4685. */
  4686. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  4687. page_group_by_mobility_disabled = 1;
  4688. else
  4689. page_group_by_mobility_disabled = 0;
  4690. pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n",
  4691. nr_online_nodes,
  4692. page_group_by_mobility_disabled ? "off" : "on",
  4693. vm_total_pages);
  4694. #ifdef CONFIG_NUMA
  4695. pr_info("Policy zone: %s\n", zone_names[policy_zone]);
  4696. #endif
  4697. }
  4698. /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
  4699. static bool __meminit
  4700. overlap_memmap_init(unsigned long zone, unsigned long *pfn)
  4701. {
  4702. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4703. static struct memblock_region *r;
  4704. if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
  4705. if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
  4706. for_each_memblock(memory, r) {
  4707. if (*pfn < memblock_region_memory_end_pfn(r))
  4708. break;
  4709. }
  4710. }
  4711. if (*pfn >= memblock_region_memory_base_pfn(r) &&
  4712. memblock_is_mirror(r)) {
  4713. *pfn = memblock_region_memory_end_pfn(r);
  4714. return true;
  4715. }
  4716. }
  4717. #endif
  4718. return false;
  4719. }
  4720. /*
  4721. * Initially all pages are reserved - free ones are freed
  4722. * up by memblock_free_all() once the early boot process is
  4723. * done. Non-atomic initialization, single-pass.
  4724. */
  4725. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  4726. unsigned long start_pfn, enum memmap_context context,
  4727. struct vmem_altmap *altmap)
  4728. {
  4729. unsigned long pfn, end_pfn = start_pfn + size;
  4730. struct page *page;
  4731. if (highest_memmap_pfn < end_pfn - 1)
  4732. highest_memmap_pfn = end_pfn - 1;
  4733. #ifdef CONFIG_ZONE_DEVICE
  4734. /*
  4735. * Honor reservation requested by the driver for this ZONE_DEVICE
  4736. * memory. We limit the total number of pages to initialize to just
  4737. * those that might contain the memory mapping. We will defer the
  4738. * ZONE_DEVICE page initialization until after we have released
  4739. * the hotplug lock.
  4740. */
  4741. if (zone == ZONE_DEVICE) {
  4742. if (!altmap)
  4743. return;
  4744. if (start_pfn == altmap->base_pfn)
  4745. start_pfn += altmap->reserve;
  4746. end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
  4747. }
  4748. #endif
  4749. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  4750. /*
  4751. * There can be holes in boot-time mem_map[]s handed to this
  4752. * function. They do not exist on hotplugged memory.
  4753. */
  4754. if (context == MEMMAP_EARLY) {
  4755. if (!early_pfn_valid(pfn))
  4756. continue;
  4757. if (!early_pfn_in_nid(pfn, nid))
  4758. continue;
  4759. if (overlap_memmap_init(zone, &pfn))
  4760. continue;
  4761. if (defer_init(nid, pfn, end_pfn))
  4762. break;
  4763. }
  4764. page = pfn_to_page(pfn);
  4765. __init_single_page(page, pfn, zone, nid);
  4766. if (context == MEMMAP_HOTPLUG)
  4767. __SetPageReserved(page);
  4768. /*
  4769. * Mark the block movable so that blocks are reserved for
  4770. * movable at startup. This will force kernel allocations
  4771. * to reserve their blocks rather than leaking throughout
  4772. * the address space during boot when many long-lived
  4773. * kernel allocations are made.
  4774. *
  4775. * bitmap is created for zone's valid pfn range. but memmap
  4776. * can be created for invalid pages (for alignment)
  4777. * check here not to call set_pageblock_migratetype() against
  4778. * pfn out of zone.
  4779. */
  4780. if (!(pfn & (pageblock_nr_pages - 1))) {
  4781. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  4782. cond_resched();
  4783. }
  4784. }
  4785. }
  4786. #ifdef CONFIG_ZONE_DEVICE
  4787. void __ref memmap_init_zone_device(struct zone *zone,
  4788. unsigned long start_pfn,
  4789. unsigned long size,
  4790. struct dev_pagemap *pgmap)
  4791. {
  4792. unsigned long pfn, end_pfn = start_pfn + size;
  4793. struct pglist_data *pgdat = zone->zone_pgdat;
  4794. unsigned long zone_idx = zone_idx(zone);
  4795. unsigned long start = jiffies;
  4796. int nid = pgdat->node_id;
  4797. if (WARN_ON_ONCE(!pgmap || !is_dev_zone(zone)))
  4798. return;
  4799. /*
  4800. * The call to memmap_init_zone should have already taken care
  4801. * of the pages reserved for the memmap, so we can just jump to
  4802. * the end of that region and start processing the device pages.
  4803. */
  4804. if (pgmap->altmap_valid) {
  4805. struct vmem_altmap *altmap = &pgmap->altmap;
  4806. start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
  4807. size = end_pfn - start_pfn;
  4808. }
  4809. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  4810. struct page *page = pfn_to_page(pfn);
  4811. __init_single_page(page, pfn, zone_idx, nid);
  4812. /*
  4813. * Mark page reserved as it will need to wait for onlining
  4814. * phase for it to be fully associated with a zone.
  4815. *
  4816. * We can use the non-atomic __set_bit operation for setting
  4817. * the flag as we are still initializing the pages.
  4818. */
  4819. __SetPageReserved(page);
  4820. /*
  4821. * ZONE_DEVICE pages union ->lru with a ->pgmap back
  4822. * pointer and hmm_data. It is a bug if a ZONE_DEVICE
  4823. * page is ever freed or placed on a driver-private list.
  4824. */
  4825. page->pgmap = pgmap;
  4826. page->hmm_data = 0;
  4827. /*
  4828. * Mark the block movable so that blocks are reserved for
  4829. * movable at startup. This will force kernel allocations
  4830. * to reserve their blocks rather than leaking throughout
  4831. * the address space during boot when many long-lived
  4832. * kernel allocations are made.
  4833. *
  4834. * bitmap is created for zone's valid pfn range. but memmap
  4835. * can be created for invalid pages (for alignment)
  4836. * check here not to call set_pageblock_migratetype() against
  4837. * pfn out of zone.
  4838. *
  4839. * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
  4840. * because this is done early in sparse_add_one_section
  4841. */
  4842. if (!(pfn & (pageblock_nr_pages - 1))) {
  4843. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  4844. cond_resched();
  4845. }
  4846. }
  4847. pr_info("%s initialised, %lu pages in %ums\n", dev_name(pgmap->dev),
  4848. size, jiffies_to_msecs(jiffies - start));
  4849. }
  4850. #endif
  4851. static void __meminit zone_init_free_lists(struct zone *zone)
  4852. {
  4853. unsigned int order, t;
  4854. for_each_migratetype_order(order, t) {
  4855. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  4856. zone->free_area[order].nr_free = 0;
  4857. }
  4858. }
  4859. void __meminit __weak memmap_init(unsigned long size, int nid,
  4860. unsigned long zone, unsigned long start_pfn)
  4861. {
  4862. memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
  4863. }
  4864. static int zone_batchsize(struct zone *zone)
  4865. {
  4866. #ifdef CONFIG_MMU
  4867. int batch;
  4868. /*
  4869. * The per-cpu-pages pools are set to around 1000th of the
  4870. * size of the zone.
  4871. */
  4872. batch = zone->managed_pages / 1024;
  4873. /* But no more than a meg. */
  4874. if (batch * PAGE_SIZE > 1024 * 1024)
  4875. batch = (1024 * 1024) / PAGE_SIZE;
  4876. batch /= 4; /* We effectively *= 4 below */
  4877. if (batch < 1)
  4878. batch = 1;
  4879. /*
  4880. * Clamp the batch to a 2^n - 1 value. Having a power
  4881. * of 2 value was found to be more likely to have
  4882. * suboptimal cache aliasing properties in some cases.
  4883. *
  4884. * For example if 2 tasks are alternately allocating
  4885. * batches of pages, one task can end up with a lot
  4886. * of pages of one half of the possible page colors
  4887. * and the other with pages of the other colors.
  4888. */
  4889. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  4890. return batch;
  4891. #else
  4892. /* The deferral and batching of frees should be suppressed under NOMMU
  4893. * conditions.
  4894. *
  4895. * The problem is that NOMMU needs to be able to allocate large chunks
  4896. * of contiguous memory as there's no hardware page translation to
  4897. * assemble apparent contiguous memory from discontiguous pages.
  4898. *
  4899. * Queueing large contiguous runs of pages for batching, however,
  4900. * causes the pages to actually be freed in smaller chunks. As there
  4901. * can be a significant delay between the individual batches being
  4902. * recycled, this leads to the once large chunks of space being
  4903. * fragmented and becoming unavailable for high-order allocations.
  4904. */
  4905. return 0;
  4906. #endif
  4907. }
  4908. /*
  4909. * pcp->high and pcp->batch values are related and dependent on one another:
  4910. * ->batch must never be higher then ->high.
  4911. * The following function updates them in a safe manner without read side
  4912. * locking.
  4913. *
  4914. * Any new users of pcp->batch and pcp->high should ensure they can cope with
  4915. * those fields changing asynchronously (acording the the above rule).
  4916. *
  4917. * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
  4918. * outside of boot time (or some other assurance that no concurrent updaters
  4919. * exist).
  4920. */
  4921. static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
  4922. unsigned long batch)
  4923. {
  4924. /* start with a fail safe value for batch */
  4925. pcp->batch = 1;
  4926. smp_wmb();
  4927. /* Update high, then batch, in order */
  4928. pcp->high = high;
  4929. smp_wmb();
  4930. pcp->batch = batch;
  4931. }
  4932. /* a companion to pageset_set_high() */
  4933. static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
  4934. {
  4935. pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
  4936. }
  4937. static void pageset_init(struct per_cpu_pageset *p)
  4938. {
  4939. struct per_cpu_pages *pcp;
  4940. int migratetype;
  4941. memset(p, 0, sizeof(*p));
  4942. pcp = &p->pcp;
  4943. pcp->count = 0;
  4944. for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
  4945. INIT_LIST_HEAD(&pcp->lists[migratetype]);
  4946. }
  4947. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  4948. {
  4949. pageset_init(p);
  4950. pageset_set_batch(p, batch);
  4951. }
  4952. /*
  4953. * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
  4954. * to the value high for the pageset p.
  4955. */
  4956. static void pageset_set_high(struct per_cpu_pageset *p,
  4957. unsigned long high)
  4958. {
  4959. unsigned long batch = max(1UL, high / 4);
  4960. if ((high / 4) > (PAGE_SHIFT * 8))
  4961. batch = PAGE_SHIFT * 8;
  4962. pageset_update(&p->pcp, high, batch);
  4963. }
  4964. static void pageset_set_high_and_batch(struct zone *zone,
  4965. struct per_cpu_pageset *pcp)
  4966. {
  4967. if (percpu_pagelist_fraction)
  4968. pageset_set_high(pcp,
  4969. (zone->managed_pages /
  4970. percpu_pagelist_fraction));
  4971. else
  4972. pageset_set_batch(pcp, zone_batchsize(zone));
  4973. }
  4974. static void __meminit zone_pageset_init(struct zone *zone, int cpu)
  4975. {
  4976. struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
  4977. pageset_init(pcp);
  4978. pageset_set_high_and_batch(zone, pcp);
  4979. }
  4980. void __meminit setup_zone_pageset(struct zone *zone)
  4981. {
  4982. int cpu;
  4983. zone->pageset = alloc_percpu(struct per_cpu_pageset);
  4984. for_each_possible_cpu(cpu)
  4985. zone_pageset_init(zone, cpu);
  4986. }
  4987. /*
  4988. * Allocate per cpu pagesets and initialize them.
  4989. * Before this call only boot pagesets were available.
  4990. */
  4991. void __init setup_per_cpu_pageset(void)
  4992. {
  4993. struct pglist_data *pgdat;
  4994. struct zone *zone;
  4995. for_each_populated_zone(zone)
  4996. setup_zone_pageset(zone);
  4997. for_each_online_pgdat(pgdat)
  4998. pgdat->per_cpu_nodestats =
  4999. alloc_percpu(struct per_cpu_nodestat);
  5000. }
  5001. static __meminit void zone_pcp_init(struct zone *zone)
  5002. {
  5003. /*
  5004. * per cpu subsystem is not up at this point. The following code
  5005. * relies on the ability of the linker to provide the
  5006. * offset of a (static) per cpu variable into the per cpu area.
  5007. */
  5008. zone->pageset = &boot_pageset;
  5009. if (populated_zone(zone))
  5010. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
  5011. zone->name, zone->present_pages,
  5012. zone_batchsize(zone));
  5013. }
  5014. void __meminit init_currently_empty_zone(struct zone *zone,
  5015. unsigned long zone_start_pfn,
  5016. unsigned long size)
  5017. {
  5018. struct pglist_data *pgdat = zone->zone_pgdat;
  5019. int zone_idx = zone_idx(zone) + 1;
  5020. if (zone_idx > pgdat->nr_zones)
  5021. pgdat->nr_zones = zone_idx;
  5022. zone->zone_start_pfn = zone_start_pfn;
  5023. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  5024. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  5025. pgdat->node_id,
  5026. (unsigned long)zone_idx(zone),
  5027. zone_start_pfn, (zone_start_pfn + size));
  5028. zone_init_free_lists(zone);
  5029. zone->initialized = 1;
  5030. }
  5031. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  5032. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  5033. /*
  5034. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  5035. */
  5036. int __meminit __early_pfn_to_nid(unsigned long pfn,
  5037. struct mminit_pfnnid_cache *state)
  5038. {
  5039. unsigned long start_pfn, end_pfn;
  5040. int nid;
  5041. if (state->last_start <= pfn && pfn < state->last_end)
  5042. return state->last_nid;
  5043. nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
  5044. if (nid != -1) {
  5045. state->last_start = start_pfn;
  5046. state->last_end = end_pfn;
  5047. state->last_nid = nid;
  5048. }
  5049. return nid;
  5050. }
  5051. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  5052. /**
  5053. * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
  5054. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  5055. * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
  5056. *
  5057. * If an architecture guarantees that all ranges registered contain no holes
  5058. * and may be freed, this this function may be used instead of calling
  5059. * memblock_free_early_nid() manually.
  5060. */
  5061. void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
  5062. {
  5063. unsigned long start_pfn, end_pfn;
  5064. int i, this_nid;
  5065. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
  5066. start_pfn = min(start_pfn, max_low_pfn);
  5067. end_pfn = min(end_pfn, max_low_pfn);
  5068. if (start_pfn < end_pfn)
  5069. memblock_free_early_nid(PFN_PHYS(start_pfn),
  5070. (end_pfn - start_pfn) << PAGE_SHIFT,
  5071. this_nid);
  5072. }
  5073. }
  5074. /**
  5075. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  5076. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  5077. *
  5078. * If an architecture guarantees that all ranges registered contain no holes and may
  5079. * be freed, this function may be used instead of calling memory_present() manually.
  5080. */
  5081. void __init sparse_memory_present_with_active_regions(int nid)
  5082. {
  5083. unsigned long start_pfn, end_pfn;
  5084. int i, this_nid;
  5085. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
  5086. memory_present(this_nid, start_pfn, end_pfn);
  5087. }
  5088. /**
  5089. * get_pfn_range_for_nid - Return the start and end page frames for a node
  5090. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  5091. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  5092. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  5093. *
  5094. * It returns the start and end page frame of a node based on information
  5095. * provided by memblock_set_node(). If called for a node
  5096. * with no available memory, a warning is printed and the start and end
  5097. * PFNs will be 0.
  5098. */
  5099. void __meminit get_pfn_range_for_nid(unsigned int nid,
  5100. unsigned long *start_pfn, unsigned long *end_pfn)
  5101. {
  5102. unsigned long this_start_pfn, this_end_pfn;
  5103. int i;
  5104. *start_pfn = -1UL;
  5105. *end_pfn = 0;
  5106. for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
  5107. *start_pfn = min(*start_pfn, this_start_pfn);
  5108. *end_pfn = max(*end_pfn, this_end_pfn);
  5109. }
  5110. if (*start_pfn == -1UL)
  5111. *start_pfn = 0;
  5112. }
  5113. /*
  5114. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  5115. * assumption is made that zones within a node are ordered in monotonic
  5116. * increasing memory addresses so that the "highest" populated zone is used
  5117. */
  5118. static void __init find_usable_zone_for_movable(void)
  5119. {
  5120. int zone_index;
  5121. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  5122. if (zone_index == ZONE_MOVABLE)
  5123. continue;
  5124. if (arch_zone_highest_possible_pfn[zone_index] >
  5125. arch_zone_lowest_possible_pfn[zone_index])
  5126. break;
  5127. }
  5128. VM_BUG_ON(zone_index == -1);
  5129. movable_zone = zone_index;
  5130. }
  5131. /*
  5132. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  5133. * because it is sized independent of architecture. Unlike the other zones,
  5134. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  5135. * in each node depending on the size of each node and how evenly kernelcore
  5136. * is distributed. This helper function adjusts the zone ranges
  5137. * provided by the architecture for a given node by using the end of the
  5138. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  5139. * zones within a node are in order of monotonic increases memory addresses
  5140. */
  5141. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  5142. unsigned long zone_type,
  5143. unsigned long node_start_pfn,
  5144. unsigned long node_end_pfn,
  5145. unsigned long *zone_start_pfn,
  5146. unsigned long *zone_end_pfn)
  5147. {
  5148. /* Only adjust if ZONE_MOVABLE is on this node */
  5149. if (zone_movable_pfn[nid]) {
  5150. /* Size ZONE_MOVABLE */
  5151. if (zone_type == ZONE_MOVABLE) {
  5152. *zone_start_pfn = zone_movable_pfn[nid];
  5153. *zone_end_pfn = min(node_end_pfn,
  5154. arch_zone_highest_possible_pfn[movable_zone]);
  5155. /* Adjust for ZONE_MOVABLE starting within this range */
  5156. } else if (!mirrored_kernelcore &&
  5157. *zone_start_pfn < zone_movable_pfn[nid] &&
  5158. *zone_end_pfn > zone_movable_pfn[nid]) {
  5159. *zone_end_pfn = zone_movable_pfn[nid];
  5160. /* Check if this whole range is within ZONE_MOVABLE */
  5161. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  5162. *zone_start_pfn = *zone_end_pfn;
  5163. }
  5164. }
  5165. /*
  5166. * Return the number of pages a zone spans in a node, including holes
  5167. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  5168. */
  5169. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  5170. unsigned long zone_type,
  5171. unsigned long node_start_pfn,
  5172. unsigned long node_end_pfn,
  5173. unsigned long *zone_start_pfn,
  5174. unsigned long *zone_end_pfn,
  5175. unsigned long *ignored)
  5176. {
  5177. /* When hotadd a new node from cpu_up(), the node should be empty */
  5178. if (!node_start_pfn && !node_end_pfn)
  5179. return 0;
  5180. /* Get the start and end of the zone */
  5181. *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  5182. *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  5183. adjust_zone_range_for_zone_movable(nid, zone_type,
  5184. node_start_pfn, node_end_pfn,
  5185. zone_start_pfn, zone_end_pfn);
  5186. /* Check that this node has pages within the zone's required range */
  5187. if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
  5188. return 0;
  5189. /* Move the zone boundaries inside the node if necessary */
  5190. *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
  5191. *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
  5192. /* Return the spanned pages */
  5193. return *zone_end_pfn - *zone_start_pfn;
  5194. }
  5195. /*
  5196. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  5197. * then all holes in the requested range will be accounted for.
  5198. */
  5199. unsigned long __meminit __absent_pages_in_range(int nid,
  5200. unsigned long range_start_pfn,
  5201. unsigned long range_end_pfn)
  5202. {
  5203. unsigned long nr_absent = range_end_pfn - range_start_pfn;
  5204. unsigned long start_pfn, end_pfn;
  5205. int i;
  5206. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  5207. start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
  5208. end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
  5209. nr_absent -= end_pfn - start_pfn;
  5210. }
  5211. return nr_absent;
  5212. }
  5213. /**
  5214. * absent_pages_in_range - Return number of page frames in holes within a range
  5215. * @start_pfn: The start PFN to start searching for holes
  5216. * @end_pfn: The end PFN to stop searching for holes
  5217. *
  5218. * It returns the number of pages frames in memory holes within a range.
  5219. */
  5220. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  5221. unsigned long end_pfn)
  5222. {
  5223. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  5224. }
  5225. /* Return the number of page frames in holes in a zone on a node */
  5226. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  5227. unsigned long zone_type,
  5228. unsigned long node_start_pfn,
  5229. unsigned long node_end_pfn,
  5230. unsigned long *ignored)
  5231. {
  5232. unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
  5233. unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
  5234. unsigned long zone_start_pfn, zone_end_pfn;
  5235. unsigned long nr_absent;
  5236. /* When hotadd a new node from cpu_up(), the node should be empty */
  5237. if (!node_start_pfn && !node_end_pfn)
  5238. return 0;
  5239. zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
  5240. zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
  5241. adjust_zone_range_for_zone_movable(nid, zone_type,
  5242. node_start_pfn, node_end_pfn,
  5243. &zone_start_pfn, &zone_end_pfn);
  5244. nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  5245. /*
  5246. * ZONE_MOVABLE handling.
  5247. * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
  5248. * and vice versa.
  5249. */
  5250. if (mirrored_kernelcore && zone_movable_pfn[nid]) {
  5251. unsigned long start_pfn, end_pfn;
  5252. struct memblock_region *r;
  5253. for_each_memblock(memory, r) {
  5254. start_pfn = clamp(memblock_region_memory_base_pfn(r),
  5255. zone_start_pfn, zone_end_pfn);
  5256. end_pfn = clamp(memblock_region_memory_end_pfn(r),
  5257. zone_start_pfn, zone_end_pfn);
  5258. if (zone_type == ZONE_MOVABLE &&
  5259. memblock_is_mirror(r))
  5260. nr_absent += end_pfn - start_pfn;
  5261. if (zone_type == ZONE_NORMAL &&
  5262. !memblock_is_mirror(r))
  5263. nr_absent += end_pfn - start_pfn;
  5264. }
  5265. }
  5266. return nr_absent;
  5267. }
  5268. #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  5269. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  5270. unsigned long zone_type,
  5271. unsigned long node_start_pfn,
  5272. unsigned long node_end_pfn,
  5273. unsigned long *zone_start_pfn,
  5274. unsigned long *zone_end_pfn,
  5275. unsigned long *zones_size)
  5276. {
  5277. unsigned int zone;
  5278. *zone_start_pfn = node_start_pfn;
  5279. for (zone = 0; zone < zone_type; zone++)
  5280. *zone_start_pfn += zones_size[zone];
  5281. *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
  5282. return zones_size[zone_type];
  5283. }
  5284. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  5285. unsigned long zone_type,
  5286. unsigned long node_start_pfn,
  5287. unsigned long node_end_pfn,
  5288. unsigned long *zholes_size)
  5289. {
  5290. if (!zholes_size)
  5291. return 0;
  5292. return zholes_size[zone_type];
  5293. }
  5294. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  5295. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  5296. unsigned long node_start_pfn,
  5297. unsigned long node_end_pfn,
  5298. unsigned long *zones_size,
  5299. unsigned long *zholes_size)
  5300. {
  5301. unsigned long realtotalpages = 0, totalpages = 0;
  5302. enum zone_type i;
  5303. for (i = 0; i < MAX_NR_ZONES; i++) {
  5304. struct zone *zone = pgdat->node_zones + i;
  5305. unsigned long zone_start_pfn, zone_end_pfn;
  5306. unsigned long size, real_size;
  5307. size = zone_spanned_pages_in_node(pgdat->node_id, i,
  5308. node_start_pfn,
  5309. node_end_pfn,
  5310. &zone_start_pfn,
  5311. &zone_end_pfn,
  5312. zones_size);
  5313. real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
  5314. node_start_pfn, node_end_pfn,
  5315. zholes_size);
  5316. if (size)
  5317. zone->zone_start_pfn = zone_start_pfn;
  5318. else
  5319. zone->zone_start_pfn = 0;
  5320. zone->spanned_pages = size;
  5321. zone->present_pages = real_size;
  5322. totalpages += size;
  5323. realtotalpages += real_size;
  5324. }
  5325. pgdat->node_spanned_pages = totalpages;
  5326. pgdat->node_present_pages = realtotalpages;
  5327. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  5328. realtotalpages);
  5329. }
  5330. #ifndef CONFIG_SPARSEMEM
  5331. /*
  5332. * Calculate the size of the zone->blockflags rounded to an unsigned long
  5333. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  5334. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  5335. * round what is now in bits to nearest long in bits, then return it in
  5336. * bytes.
  5337. */
  5338. static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
  5339. {
  5340. unsigned long usemapsize;
  5341. zonesize += zone_start_pfn & (pageblock_nr_pages-1);
  5342. usemapsize = roundup(zonesize, pageblock_nr_pages);
  5343. usemapsize = usemapsize >> pageblock_order;
  5344. usemapsize *= NR_PAGEBLOCK_BITS;
  5345. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  5346. return usemapsize / 8;
  5347. }
  5348. static void __ref setup_usemap(struct pglist_data *pgdat,
  5349. struct zone *zone,
  5350. unsigned long zone_start_pfn,
  5351. unsigned long zonesize)
  5352. {
  5353. unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
  5354. zone->pageblock_flags = NULL;
  5355. if (usemapsize)
  5356. zone->pageblock_flags =
  5357. memblock_alloc_node_nopanic(usemapsize,
  5358. pgdat->node_id);
  5359. }
  5360. #else
  5361. static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
  5362. unsigned long zone_start_pfn, unsigned long zonesize) {}
  5363. #endif /* CONFIG_SPARSEMEM */
  5364. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  5365. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  5366. void __init set_pageblock_order(void)
  5367. {
  5368. unsigned int order;
  5369. /* Check that pageblock_nr_pages has not already been setup */
  5370. if (pageblock_order)
  5371. return;
  5372. if (HPAGE_SHIFT > PAGE_SHIFT)
  5373. order = HUGETLB_PAGE_ORDER;
  5374. else
  5375. order = MAX_ORDER - 1;
  5376. /*
  5377. * Assume the largest contiguous order of interest is a huge page.
  5378. * This value may be variable depending on boot parameters on IA64 and
  5379. * powerpc.
  5380. */
  5381. pageblock_order = order;
  5382. }
  5383. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  5384. /*
  5385. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  5386. * is unused as pageblock_order is set at compile-time. See
  5387. * include/linux/pageblock-flags.h for the values of pageblock_order based on
  5388. * the kernel config
  5389. */
  5390. void __init set_pageblock_order(void)
  5391. {
  5392. }
  5393. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  5394. static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
  5395. unsigned long present_pages)
  5396. {
  5397. unsigned long pages = spanned_pages;
  5398. /*
  5399. * Provide a more accurate estimation if there are holes within
  5400. * the zone and SPARSEMEM is in use. If there are holes within the
  5401. * zone, each populated memory region may cost us one or two extra
  5402. * memmap pages due to alignment because memmap pages for each
  5403. * populated regions may not be naturally aligned on page boundary.
  5404. * So the (present_pages >> 4) heuristic is a tradeoff for that.
  5405. */
  5406. if (spanned_pages > present_pages + (present_pages >> 4) &&
  5407. IS_ENABLED(CONFIG_SPARSEMEM))
  5408. pages = present_pages;
  5409. return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
  5410. }
  5411. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  5412. static void pgdat_init_split_queue(struct pglist_data *pgdat)
  5413. {
  5414. spin_lock_init(&pgdat->split_queue_lock);
  5415. INIT_LIST_HEAD(&pgdat->split_queue);
  5416. pgdat->split_queue_len = 0;
  5417. }
  5418. #else
  5419. static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
  5420. #endif
  5421. #ifdef CONFIG_COMPACTION
  5422. static void pgdat_init_kcompactd(struct pglist_data *pgdat)
  5423. {
  5424. init_waitqueue_head(&pgdat->kcompactd_wait);
  5425. }
  5426. #else
  5427. static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
  5428. #endif
  5429. static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
  5430. {
  5431. pgdat_resize_init(pgdat);
  5432. pgdat_init_split_queue(pgdat);
  5433. pgdat_init_kcompactd(pgdat);
  5434. init_waitqueue_head(&pgdat->kswapd_wait);
  5435. init_waitqueue_head(&pgdat->pfmemalloc_wait);
  5436. pgdat_page_ext_init(pgdat);
  5437. spin_lock_init(&pgdat->lru_lock);
  5438. lruvec_init(node_lruvec(pgdat));
  5439. }
  5440. static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
  5441. unsigned long remaining_pages)
  5442. {
  5443. zone->managed_pages = remaining_pages;
  5444. zone_set_nid(zone, nid);
  5445. zone->name = zone_names[idx];
  5446. zone->zone_pgdat = NODE_DATA(nid);
  5447. spin_lock_init(&zone->lock);
  5448. zone_seqlock_init(zone);
  5449. zone_pcp_init(zone);
  5450. }
  5451. /*
  5452. * Set up the zone data structures
  5453. * - init pgdat internals
  5454. * - init all zones belonging to this node
  5455. *
  5456. * NOTE: this function is only called during memory hotplug
  5457. */
  5458. #ifdef CONFIG_MEMORY_HOTPLUG
  5459. void __ref free_area_init_core_hotplug(int nid)
  5460. {
  5461. enum zone_type z;
  5462. pg_data_t *pgdat = NODE_DATA(nid);
  5463. pgdat_init_internals(pgdat);
  5464. for (z = 0; z < MAX_NR_ZONES; z++)
  5465. zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
  5466. }
  5467. #endif
  5468. /*
  5469. * Set up the zone data structures:
  5470. * - mark all pages reserved
  5471. * - mark all memory queues empty
  5472. * - clear the memory bitmaps
  5473. *
  5474. * NOTE: pgdat should get zeroed by caller.
  5475. * NOTE: this function is only called during early init.
  5476. */
  5477. static void __init free_area_init_core(struct pglist_data *pgdat)
  5478. {
  5479. enum zone_type j;
  5480. int nid = pgdat->node_id;
  5481. pgdat_init_internals(pgdat);
  5482. pgdat->per_cpu_nodestats = &boot_nodestats;
  5483. for (j = 0; j < MAX_NR_ZONES; j++) {
  5484. struct zone *zone = pgdat->node_zones + j;
  5485. unsigned long size, freesize, memmap_pages;
  5486. unsigned long zone_start_pfn = zone->zone_start_pfn;
  5487. size = zone->spanned_pages;
  5488. freesize = zone->present_pages;
  5489. /*
  5490. * Adjust freesize so that it accounts for how much memory
  5491. * is used by this zone for memmap. This affects the watermark
  5492. * and per-cpu initialisations
  5493. */
  5494. memmap_pages = calc_memmap_size(size, freesize);
  5495. if (!is_highmem_idx(j)) {
  5496. if (freesize >= memmap_pages) {
  5497. freesize -= memmap_pages;
  5498. if (memmap_pages)
  5499. printk(KERN_DEBUG
  5500. " %s zone: %lu pages used for memmap\n",
  5501. zone_names[j], memmap_pages);
  5502. } else
  5503. pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
  5504. zone_names[j], memmap_pages, freesize);
  5505. }
  5506. /* Account for reserved pages */
  5507. if (j == 0 && freesize > dma_reserve) {
  5508. freesize -= dma_reserve;
  5509. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  5510. zone_names[0], dma_reserve);
  5511. }
  5512. if (!is_highmem_idx(j))
  5513. nr_kernel_pages += freesize;
  5514. /* Charge for highmem memmap if there are enough kernel pages */
  5515. else if (nr_kernel_pages > memmap_pages * 2)
  5516. nr_kernel_pages -= memmap_pages;
  5517. nr_all_pages += freesize;
  5518. /*
  5519. * Set an approximate value for lowmem here, it will be adjusted
  5520. * when the bootmem allocator frees pages into the buddy system.
  5521. * And all highmem pages will be managed by the buddy system.
  5522. */
  5523. zone_init_internals(zone, j, nid, freesize);
  5524. if (!size)
  5525. continue;
  5526. set_pageblock_order();
  5527. setup_usemap(pgdat, zone, zone_start_pfn, size);
  5528. init_currently_empty_zone(zone, zone_start_pfn, size);
  5529. memmap_init(size, nid, j, zone_start_pfn);
  5530. }
  5531. }
  5532. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  5533. static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
  5534. {
  5535. unsigned long __maybe_unused start = 0;
  5536. unsigned long __maybe_unused offset = 0;
  5537. /* Skip empty nodes */
  5538. if (!pgdat->node_spanned_pages)
  5539. return;
  5540. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  5541. offset = pgdat->node_start_pfn - start;
  5542. /* ia64 gets its own node_mem_map, before this, without bootmem */
  5543. if (!pgdat->node_mem_map) {
  5544. unsigned long size, end;
  5545. struct page *map;
  5546. /*
  5547. * The zone's endpoints aren't required to be MAX_ORDER
  5548. * aligned but the node_mem_map endpoints must be in order
  5549. * for the buddy allocator to function correctly.
  5550. */
  5551. end = pgdat_end_pfn(pgdat);
  5552. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  5553. size = (end - start) * sizeof(struct page);
  5554. map = memblock_alloc_node_nopanic(size, pgdat->node_id);
  5555. pgdat->node_mem_map = map + offset;
  5556. }
  5557. pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
  5558. __func__, pgdat->node_id, (unsigned long)pgdat,
  5559. (unsigned long)pgdat->node_mem_map);
  5560. #ifndef CONFIG_NEED_MULTIPLE_NODES
  5561. /*
  5562. * With no DISCONTIG, the global mem_map is just set as node 0's
  5563. */
  5564. if (pgdat == NODE_DATA(0)) {
  5565. mem_map = NODE_DATA(0)->node_mem_map;
  5566. #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
  5567. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  5568. mem_map -= offset;
  5569. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  5570. }
  5571. #endif
  5572. }
  5573. #else
  5574. static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
  5575. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  5576. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  5577. static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
  5578. {
  5579. /*
  5580. * We start only with one section of pages, more pages are added as
  5581. * needed until the rest of deferred pages are initialized.
  5582. */
  5583. pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION,
  5584. pgdat->node_spanned_pages);
  5585. pgdat->first_deferred_pfn = ULONG_MAX;
  5586. }
  5587. #else
  5588. static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
  5589. #endif
  5590. void __init free_area_init_node(int nid, unsigned long *zones_size,
  5591. unsigned long node_start_pfn,
  5592. unsigned long *zholes_size)
  5593. {
  5594. pg_data_t *pgdat = NODE_DATA(nid);
  5595. unsigned long start_pfn = 0;
  5596. unsigned long end_pfn = 0;
  5597. /* pg_data_t should be reset to zero when it's allocated */
  5598. WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
  5599. pgdat->node_id = nid;
  5600. pgdat->node_start_pfn = node_start_pfn;
  5601. pgdat->per_cpu_nodestats = NULL;
  5602. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  5603. get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
  5604. pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
  5605. (u64)start_pfn << PAGE_SHIFT,
  5606. end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
  5607. #else
  5608. start_pfn = node_start_pfn;
  5609. #endif
  5610. calculate_node_totalpages(pgdat, start_pfn, end_pfn,
  5611. zones_size, zholes_size);
  5612. alloc_node_mem_map(pgdat);
  5613. pgdat_set_deferred_range(pgdat);
  5614. free_area_init_core(pgdat);
  5615. }
  5616. #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
  5617. /*
  5618. * Zero all valid struct pages in range [spfn, epfn), return number of struct
  5619. * pages zeroed
  5620. */
  5621. static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
  5622. {
  5623. unsigned long pfn;
  5624. u64 pgcnt = 0;
  5625. for (pfn = spfn; pfn < epfn; pfn++) {
  5626. if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
  5627. pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
  5628. + pageblock_nr_pages - 1;
  5629. continue;
  5630. }
  5631. mm_zero_struct_page(pfn_to_page(pfn));
  5632. pgcnt++;
  5633. }
  5634. return pgcnt;
  5635. }
  5636. /*
  5637. * Only struct pages that are backed by physical memory are zeroed and
  5638. * initialized by going through __init_single_page(). But, there are some
  5639. * struct pages which are reserved in memblock allocator and their fields
  5640. * may be accessed (for example page_to_pfn() on some configuration accesses
  5641. * flags). We must explicitly zero those struct pages.
  5642. *
  5643. * This function also addresses a similar issue where struct pages are left
  5644. * uninitialized because the physical address range is not covered by
  5645. * memblock.memory or memblock.reserved. That could happen when memblock
  5646. * layout is manually configured via memmap=.
  5647. */
  5648. void __init zero_resv_unavail(void)
  5649. {
  5650. phys_addr_t start, end;
  5651. u64 i, pgcnt;
  5652. phys_addr_t next = 0;
  5653. /*
  5654. * Loop through unavailable ranges not covered by memblock.memory.
  5655. */
  5656. pgcnt = 0;
  5657. for_each_mem_range(i, &memblock.memory, NULL,
  5658. NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
  5659. if (next < start)
  5660. pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
  5661. next = end;
  5662. }
  5663. pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
  5664. /*
  5665. * Struct pages that do not have backing memory. This could be because
  5666. * firmware is using some of this memory, or for some other reasons.
  5667. */
  5668. if (pgcnt)
  5669. pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
  5670. }
  5671. #endif /* !CONFIG_FLAT_NODE_MEM_MAP */
  5672. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  5673. #if MAX_NUMNODES > 1
  5674. /*
  5675. * Figure out the number of possible node ids.
  5676. */
  5677. void __init setup_nr_node_ids(void)
  5678. {
  5679. unsigned int highest;
  5680. highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
  5681. nr_node_ids = highest + 1;
  5682. }
  5683. #endif
  5684. /**
  5685. * node_map_pfn_alignment - determine the maximum internode alignment
  5686. *
  5687. * This function should be called after node map is populated and sorted.
  5688. * It calculates the maximum power of two alignment which can distinguish
  5689. * all the nodes.
  5690. *
  5691. * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
  5692. * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
  5693. * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
  5694. * shifted, 1GiB is enough and this function will indicate so.
  5695. *
  5696. * This is used to test whether pfn -> nid mapping of the chosen memory
  5697. * model has fine enough granularity to avoid incorrect mapping for the
  5698. * populated node map.
  5699. *
  5700. * Returns the determined alignment in pfn's. 0 if there is no alignment
  5701. * requirement (single node).
  5702. */
  5703. unsigned long __init node_map_pfn_alignment(void)
  5704. {
  5705. unsigned long accl_mask = 0, last_end = 0;
  5706. unsigned long start, end, mask;
  5707. int last_nid = -1;
  5708. int i, nid;
  5709. for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
  5710. if (!start || last_nid < 0 || last_nid == nid) {
  5711. last_nid = nid;
  5712. last_end = end;
  5713. continue;
  5714. }
  5715. /*
  5716. * Start with a mask granular enough to pin-point to the
  5717. * start pfn and tick off bits one-by-one until it becomes
  5718. * too coarse to separate the current node from the last.
  5719. */
  5720. mask = ~((1 << __ffs(start)) - 1);
  5721. while (mask && last_end <= (start & (mask << 1)))
  5722. mask <<= 1;
  5723. /* accumulate all internode masks */
  5724. accl_mask |= mask;
  5725. }
  5726. /* convert mask to number of pages */
  5727. return ~accl_mask + 1;
  5728. }
  5729. /* Find the lowest pfn for a node */
  5730. static unsigned long __init find_min_pfn_for_node(int nid)
  5731. {
  5732. unsigned long min_pfn = ULONG_MAX;
  5733. unsigned long start_pfn;
  5734. int i;
  5735. for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
  5736. min_pfn = min(min_pfn, start_pfn);
  5737. if (min_pfn == ULONG_MAX) {
  5738. pr_warn("Could not find start_pfn for node %d\n", nid);
  5739. return 0;
  5740. }
  5741. return min_pfn;
  5742. }
  5743. /**
  5744. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  5745. *
  5746. * It returns the minimum PFN based on information provided via
  5747. * memblock_set_node().
  5748. */
  5749. unsigned long __init find_min_pfn_with_active_regions(void)
  5750. {
  5751. return find_min_pfn_for_node(MAX_NUMNODES);
  5752. }
  5753. /*
  5754. * early_calculate_totalpages()
  5755. * Sum pages in active regions for movable zone.
  5756. * Populate N_MEMORY for calculating usable_nodes.
  5757. */
  5758. static unsigned long __init early_calculate_totalpages(void)
  5759. {
  5760. unsigned long totalpages = 0;
  5761. unsigned long start_pfn, end_pfn;
  5762. int i, nid;
  5763. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
  5764. unsigned long pages = end_pfn - start_pfn;
  5765. totalpages += pages;
  5766. if (pages)
  5767. node_set_state(nid, N_MEMORY);
  5768. }
  5769. return totalpages;
  5770. }
  5771. /*
  5772. * Find the PFN the Movable zone begins in each node. Kernel memory
  5773. * is spread evenly between nodes as long as the nodes have enough
  5774. * memory. When they don't, some nodes will have more kernelcore than
  5775. * others
  5776. */
  5777. static void __init find_zone_movable_pfns_for_nodes(void)
  5778. {
  5779. int i, nid;
  5780. unsigned long usable_startpfn;
  5781. unsigned long kernelcore_node, kernelcore_remaining;
  5782. /* save the state before borrow the nodemask */
  5783. nodemask_t saved_node_state = node_states[N_MEMORY];
  5784. unsigned long totalpages = early_calculate_totalpages();
  5785. int usable_nodes = nodes_weight(node_states[N_MEMORY]);
  5786. struct memblock_region *r;
  5787. /* Need to find movable_zone earlier when movable_node is specified. */
  5788. find_usable_zone_for_movable();
  5789. /*
  5790. * If movable_node is specified, ignore kernelcore and movablecore
  5791. * options.
  5792. */
  5793. if (movable_node_is_enabled()) {
  5794. for_each_memblock(memory, r) {
  5795. if (!memblock_is_hotpluggable(r))
  5796. continue;
  5797. nid = r->nid;
  5798. usable_startpfn = PFN_DOWN(r->base);
  5799. zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
  5800. min(usable_startpfn, zone_movable_pfn[nid]) :
  5801. usable_startpfn;
  5802. }
  5803. goto out2;
  5804. }
  5805. /*
  5806. * If kernelcore=mirror is specified, ignore movablecore option
  5807. */
  5808. if (mirrored_kernelcore) {
  5809. bool mem_below_4gb_not_mirrored = false;
  5810. for_each_memblock(memory, r) {
  5811. if (memblock_is_mirror(r))
  5812. continue;
  5813. nid = r->nid;
  5814. usable_startpfn = memblock_region_memory_base_pfn(r);
  5815. if (usable_startpfn < 0x100000) {
  5816. mem_below_4gb_not_mirrored = true;
  5817. continue;
  5818. }
  5819. zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
  5820. min(usable_startpfn, zone_movable_pfn[nid]) :
  5821. usable_startpfn;
  5822. }
  5823. if (mem_below_4gb_not_mirrored)
  5824. pr_warn("This configuration results in unmirrored kernel memory.");
  5825. goto out2;
  5826. }
  5827. /*
  5828. * If kernelcore=nn% or movablecore=nn% was specified, calculate the
  5829. * amount of necessary memory.
  5830. */
  5831. if (required_kernelcore_percent)
  5832. required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
  5833. 10000UL;
  5834. if (required_movablecore_percent)
  5835. required_movablecore = (totalpages * 100 * required_movablecore_percent) /
  5836. 10000UL;
  5837. /*
  5838. * If movablecore= was specified, calculate what size of
  5839. * kernelcore that corresponds so that memory usable for
  5840. * any allocation type is evenly spread. If both kernelcore
  5841. * and movablecore are specified, then the value of kernelcore
  5842. * will be used for required_kernelcore if it's greater than
  5843. * what movablecore would have allowed.
  5844. */
  5845. if (required_movablecore) {
  5846. unsigned long corepages;
  5847. /*
  5848. * Round-up so that ZONE_MOVABLE is at least as large as what
  5849. * was requested by the user
  5850. */
  5851. required_movablecore =
  5852. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  5853. required_movablecore = min(totalpages, required_movablecore);
  5854. corepages = totalpages - required_movablecore;
  5855. required_kernelcore = max(required_kernelcore, corepages);
  5856. }
  5857. /*
  5858. * If kernelcore was not specified or kernelcore size is larger
  5859. * than totalpages, there is no ZONE_MOVABLE.
  5860. */
  5861. if (!required_kernelcore || required_kernelcore >= totalpages)
  5862. goto out;
  5863. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  5864. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  5865. restart:
  5866. /* Spread kernelcore memory as evenly as possible throughout nodes */
  5867. kernelcore_node = required_kernelcore / usable_nodes;
  5868. for_each_node_state(nid, N_MEMORY) {
  5869. unsigned long start_pfn, end_pfn;
  5870. /*
  5871. * Recalculate kernelcore_node if the division per node
  5872. * now exceeds what is necessary to satisfy the requested
  5873. * amount of memory for the kernel
  5874. */
  5875. if (required_kernelcore < kernelcore_node)
  5876. kernelcore_node = required_kernelcore / usable_nodes;
  5877. /*
  5878. * As the map is walked, we track how much memory is usable
  5879. * by the kernel using kernelcore_remaining. When it is
  5880. * 0, the rest of the node is usable by ZONE_MOVABLE
  5881. */
  5882. kernelcore_remaining = kernelcore_node;
  5883. /* Go through each range of PFNs within this node */
  5884. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  5885. unsigned long size_pages;
  5886. start_pfn = max(start_pfn, zone_movable_pfn[nid]);
  5887. if (start_pfn >= end_pfn)
  5888. continue;
  5889. /* Account for what is only usable for kernelcore */
  5890. if (start_pfn < usable_startpfn) {
  5891. unsigned long kernel_pages;
  5892. kernel_pages = min(end_pfn, usable_startpfn)
  5893. - start_pfn;
  5894. kernelcore_remaining -= min(kernel_pages,
  5895. kernelcore_remaining);
  5896. required_kernelcore -= min(kernel_pages,
  5897. required_kernelcore);
  5898. /* Continue if range is now fully accounted */
  5899. if (end_pfn <= usable_startpfn) {
  5900. /*
  5901. * Push zone_movable_pfn to the end so
  5902. * that if we have to rebalance
  5903. * kernelcore across nodes, we will
  5904. * not double account here
  5905. */
  5906. zone_movable_pfn[nid] = end_pfn;
  5907. continue;
  5908. }
  5909. start_pfn = usable_startpfn;
  5910. }
  5911. /*
  5912. * The usable PFN range for ZONE_MOVABLE is from
  5913. * start_pfn->end_pfn. Calculate size_pages as the
  5914. * number of pages used as kernelcore
  5915. */
  5916. size_pages = end_pfn - start_pfn;
  5917. if (size_pages > kernelcore_remaining)
  5918. size_pages = kernelcore_remaining;
  5919. zone_movable_pfn[nid] = start_pfn + size_pages;
  5920. /*
  5921. * Some kernelcore has been met, update counts and
  5922. * break if the kernelcore for this node has been
  5923. * satisfied
  5924. */
  5925. required_kernelcore -= min(required_kernelcore,
  5926. size_pages);
  5927. kernelcore_remaining -= size_pages;
  5928. if (!kernelcore_remaining)
  5929. break;
  5930. }
  5931. }
  5932. /*
  5933. * If there is still required_kernelcore, we do another pass with one
  5934. * less node in the count. This will push zone_movable_pfn[nid] further
  5935. * along on the nodes that still have memory until kernelcore is
  5936. * satisfied
  5937. */
  5938. usable_nodes--;
  5939. if (usable_nodes && required_kernelcore > usable_nodes)
  5940. goto restart;
  5941. out2:
  5942. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  5943. for (nid = 0; nid < MAX_NUMNODES; nid++)
  5944. zone_movable_pfn[nid] =
  5945. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  5946. out:
  5947. /* restore the node_state */
  5948. node_states[N_MEMORY] = saved_node_state;
  5949. }
  5950. /* Any regular or high memory on that node ? */
  5951. static void check_for_memory(pg_data_t *pgdat, int nid)
  5952. {
  5953. enum zone_type zone_type;
  5954. for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
  5955. struct zone *zone = &pgdat->node_zones[zone_type];
  5956. if (populated_zone(zone)) {
  5957. if (IS_ENABLED(CONFIG_HIGHMEM))
  5958. node_set_state(nid, N_HIGH_MEMORY);
  5959. if (zone_type <= ZONE_NORMAL)
  5960. node_set_state(nid, N_NORMAL_MEMORY);
  5961. break;
  5962. }
  5963. }
  5964. }
  5965. /**
  5966. * free_area_init_nodes - Initialise all pg_data_t and zone data
  5967. * @max_zone_pfn: an array of max PFNs for each zone
  5968. *
  5969. * This will call free_area_init_node() for each active node in the system.
  5970. * Using the page ranges provided by memblock_set_node(), the size of each
  5971. * zone in each node and their holes is calculated. If the maximum PFN
  5972. * between two adjacent zones match, it is assumed that the zone is empty.
  5973. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  5974. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  5975. * starts where the previous one ended. For example, ZONE_DMA32 starts
  5976. * at arch_max_dma_pfn.
  5977. */
  5978. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  5979. {
  5980. unsigned long start_pfn, end_pfn;
  5981. int i, nid;
  5982. /* Record where the zone boundaries are */
  5983. memset(arch_zone_lowest_possible_pfn, 0,
  5984. sizeof(arch_zone_lowest_possible_pfn));
  5985. memset(arch_zone_highest_possible_pfn, 0,
  5986. sizeof(arch_zone_highest_possible_pfn));
  5987. start_pfn = find_min_pfn_with_active_regions();
  5988. for (i = 0; i < MAX_NR_ZONES; i++) {
  5989. if (i == ZONE_MOVABLE)
  5990. continue;
  5991. end_pfn = max(max_zone_pfn[i], start_pfn);
  5992. arch_zone_lowest_possible_pfn[i] = start_pfn;
  5993. arch_zone_highest_possible_pfn[i] = end_pfn;
  5994. start_pfn = end_pfn;
  5995. }
  5996. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  5997. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  5998. find_zone_movable_pfns_for_nodes();
  5999. /* Print out the zone ranges */
  6000. pr_info("Zone ranges:\n");
  6001. for (i = 0; i < MAX_NR_ZONES; i++) {
  6002. if (i == ZONE_MOVABLE)
  6003. continue;
  6004. pr_info(" %-8s ", zone_names[i]);
  6005. if (arch_zone_lowest_possible_pfn[i] ==
  6006. arch_zone_highest_possible_pfn[i])
  6007. pr_cont("empty\n");
  6008. else
  6009. pr_cont("[mem %#018Lx-%#018Lx]\n",
  6010. (u64)arch_zone_lowest_possible_pfn[i]
  6011. << PAGE_SHIFT,
  6012. ((u64)arch_zone_highest_possible_pfn[i]
  6013. << PAGE_SHIFT) - 1);
  6014. }
  6015. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  6016. pr_info("Movable zone start for each node\n");
  6017. for (i = 0; i < MAX_NUMNODES; i++) {
  6018. if (zone_movable_pfn[i])
  6019. pr_info(" Node %d: %#018Lx\n", i,
  6020. (u64)zone_movable_pfn[i] << PAGE_SHIFT);
  6021. }
  6022. /* Print out the early node map */
  6023. pr_info("Early memory node ranges\n");
  6024. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
  6025. pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
  6026. (u64)start_pfn << PAGE_SHIFT,
  6027. ((u64)end_pfn << PAGE_SHIFT) - 1);
  6028. /* Initialise every node */
  6029. mminit_verify_pageflags_layout();
  6030. setup_nr_node_ids();
  6031. zero_resv_unavail();
  6032. for_each_online_node(nid) {
  6033. pg_data_t *pgdat = NODE_DATA(nid);
  6034. free_area_init_node(nid, NULL,
  6035. find_min_pfn_for_node(nid), NULL);
  6036. /* Any memory on that node */
  6037. if (pgdat->node_present_pages)
  6038. node_set_state(nid, N_MEMORY);
  6039. check_for_memory(pgdat, nid);
  6040. }
  6041. }
  6042. static int __init cmdline_parse_core(char *p, unsigned long *core,
  6043. unsigned long *percent)
  6044. {
  6045. unsigned long long coremem;
  6046. char *endptr;
  6047. if (!p)
  6048. return -EINVAL;
  6049. /* Value may be a percentage of total memory, otherwise bytes */
  6050. coremem = simple_strtoull(p, &endptr, 0);
  6051. if (*endptr == '%') {
  6052. /* Paranoid check for percent values greater than 100 */
  6053. WARN_ON(coremem > 100);
  6054. *percent = coremem;
  6055. } else {
  6056. coremem = memparse(p, &p);
  6057. /* Paranoid check that UL is enough for the coremem value */
  6058. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  6059. *core = coremem >> PAGE_SHIFT;
  6060. *percent = 0UL;
  6061. }
  6062. return 0;
  6063. }
  6064. /*
  6065. * kernelcore=size sets the amount of memory for use for allocations that
  6066. * cannot be reclaimed or migrated.
  6067. */
  6068. static int __init cmdline_parse_kernelcore(char *p)
  6069. {
  6070. /* parse kernelcore=mirror */
  6071. if (parse_option_str(p, "mirror")) {
  6072. mirrored_kernelcore = true;
  6073. return 0;
  6074. }
  6075. return cmdline_parse_core(p, &required_kernelcore,
  6076. &required_kernelcore_percent);
  6077. }
  6078. /*
  6079. * movablecore=size sets the amount of memory for use for allocations that
  6080. * can be reclaimed or migrated.
  6081. */
  6082. static int __init cmdline_parse_movablecore(char *p)
  6083. {
  6084. return cmdline_parse_core(p, &required_movablecore,
  6085. &required_movablecore_percent);
  6086. }
  6087. early_param("kernelcore", cmdline_parse_kernelcore);
  6088. early_param("movablecore", cmdline_parse_movablecore);
  6089. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  6090. void adjust_managed_page_count(struct page *page, long count)
  6091. {
  6092. spin_lock(&managed_page_count_lock);
  6093. page_zone(page)->managed_pages += count;
  6094. totalram_pages += count;
  6095. #ifdef CONFIG_HIGHMEM
  6096. if (PageHighMem(page))
  6097. totalhigh_pages += count;
  6098. #endif
  6099. spin_unlock(&managed_page_count_lock);
  6100. }
  6101. EXPORT_SYMBOL(adjust_managed_page_count);
  6102. unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
  6103. {
  6104. void *pos;
  6105. unsigned long pages = 0;
  6106. start = (void *)PAGE_ALIGN((unsigned long)start);
  6107. end = (void *)((unsigned long)end & PAGE_MASK);
  6108. for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
  6109. struct page *page = virt_to_page(pos);
  6110. void *direct_map_addr;
  6111. /*
  6112. * 'direct_map_addr' might be different from 'pos'
  6113. * because some architectures' virt_to_page()
  6114. * work with aliases. Getting the direct map
  6115. * address ensures that we get a _writeable_
  6116. * alias for the memset().
  6117. */
  6118. direct_map_addr = page_address(page);
  6119. if ((unsigned int)poison <= 0xFF)
  6120. memset(direct_map_addr, poison, PAGE_SIZE);
  6121. free_reserved_page(page);
  6122. }
  6123. if (pages && s)
  6124. pr_info("Freeing %s memory: %ldK\n",
  6125. s, pages << (PAGE_SHIFT - 10));
  6126. return pages;
  6127. }
  6128. EXPORT_SYMBOL(free_reserved_area);
  6129. #ifdef CONFIG_HIGHMEM
  6130. void free_highmem_page(struct page *page)
  6131. {
  6132. __free_reserved_page(page);
  6133. totalram_pages++;
  6134. page_zone(page)->managed_pages++;
  6135. totalhigh_pages++;
  6136. }
  6137. #endif
  6138. void __init mem_init_print_info(const char *str)
  6139. {
  6140. unsigned long physpages, codesize, datasize, rosize, bss_size;
  6141. unsigned long init_code_size, init_data_size;
  6142. physpages = get_num_physpages();
  6143. codesize = _etext - _stext;
  6144. datasize = _edata - _sdata;
  6145. rosize = __end_rodata - __start_rodata;
  6146. bss_size = __bss_stop - __bss_start;
  6147. init_data_size = __init_end - __init_begin;
  6148. init_code_size = _einittext - _sinittext;
  6149. /*
  6150. * Detect special cases and adjust section sizes accordingly:
  6151. * 1) .init.* may be embedded into .data sections
  6152. * 2) .init.text.* may be out of [__init_begin, __init_end],
  6153. * please refer to arch/tile/kernel/vmlinux.lds.S.
  6154. * 3) .rodata.* may be embedded into .text or .data sections.
  6155. */
  6156. #define adj_init_size(start, end, size, pos, adj) \
  6157. do { \
  6158. if (start <= pos && pos < end && size > adj) \
  6159. size -= adj; \
  6160. } while (0)
  6161. adj_init_size(__init_begin, __init_end, init_data_size,
  6162. _sinittext, init_code_size);
  6163. adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
  6164. adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
  6165. adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
  6166. adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
  6167. #undef adj_init_size
  6168. pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
  6169. #ifdef CONFIG_HIGHMEM
  6170. ", %luK highmem"
  6171. #endif
  6172. "%s%s)\n",
  6173. nr_free_pages() << (PAGE_SHIFT - 10),
  6174. physpages << (PAGE_SHIFT - 10),
  6175. codesize >> 10, datasize >> 10, rosize >> 10,
  6176. (init_data_size + init_code_size) >> 10, bss_size >> 10,
  6177. (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
  6178. totalcma_pages << (PAGE_SHIFT - 10),
  6179. #ifdef CONFIG_HIGHMEM
  6180. totalhigh_pages << (PAGE_SHIFT - 10),
  6181. #endif
  6182. str ? ", " : "", str ? str : "");
  6183. }
  6184. /**
  6185. * set_dma_reserve - set the specified number of pages reserved in the first zone
  6186. * @new_dma_reserve: The number of pages to mark reserved
  6187. *
  6188. * The per-cpu batchsize and zone watermarks are determined by managed_pages.
  6189. * In the DMA zone, a significant percentage may be consumed by kernel image
  6190. * and other unfreeable allocations which can skew the watermarks badly. This
  6191. * function may optionally be used to account for unfreeable pages in the
  6192. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  6193. * smaller per-cpu batchsize.
  6194. */
  6195. void __init set_dma_reserve(unsigned long new_dma_reserve)
  6196. {
  6197. dma_reserve = new_dma_reserve;
  6198. }
  6199. void __init free_area_init(unsigned long *zones_size)
  6200. {
  6201. zero_resv_unavail();
  6202. free_area_init_node(0, zones_size,
  6203. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  6204. }
  6205. static int page_alloc_cpu_dead(unsigned int cpu)
  6206. {
  6207. lru_add_drain_cpu(cpu);
  6208. drain_pages(cpu);
  6209. /*
  6210. * Spill the event counters of the dead processor
  6211. * into the current processors event counters.
  6212. * This artificially elevates the count of the current
  6213. * processor.
  6214. */
  6215. vm_events_fold_cpu(cpu);
  6216. /*
  6217. * Zero the differential counters of the dead processor
  6218. * so that the vm statistics are consistent.
  6219. *
  6220. * This is only okay since the processor is dead and cannot
  6221. * race with what we are doing.
  6222. */
  6223. cpu_vm_stats_fold(cpu);
  6224. return 0;
  6225. }
  6226. void __init page_alloc_init(void)
  6227. {
  6228. int ret;
  6229. ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
  6230. "mm/page_alloc:dead", NULL,
  6231. page_alloc_cpu_dead);
  6232. WARN_ON(ret < 0);
  6233. }
  6234. /*
  6235. * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
  6236. * or min_free_kbytes changes.
  6237. */
  6238. static void calculate_totalreserve_pages(void)
  6239. {
  6240. struct pglist_data *pgdat;
  6241. unsigned long reserve_pages = 0;
  6242. enum zone_type i, j;
  6243. for_each_online_pgdat(pgdat) {
  6244. pgdat->totalreserve_pages = 0;
  6245. for (i = 0; i < MAX_NR_ZONES; i++) {
  6246. struct zone *zone = pgdat->node_zones + i;
  6247. long max = 0;
  6248. /* Find valid and maximum lowmem_reserve in the zone */
  6249. for (j = i; j < MAX_NR_ZONES; j++) {
  6250. if (zone->lowmem_reserve[j] > max)
  6251. max = zone->lowmem_reserve[j];
  6252. }
  6253. /* we treat the high watermark as reserved pages. */
  6254. max += high_wmark_pages(zone);
  6255. if (max > zone->managed_pages)
  6256. max = zone->managed_pages;
  6257. pgdat->totalreserve_pages += max;
  6258. reserve_pages += max;
  6259. }
  6260. }
  6261. totalreserve_pages = reserve_pages;
  6262. }
  6263. /*
  6264. * setup_per_zone_lowmem_reserve - called whenever
  6265. * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
  6266. * has a correct pages reserved value, so an adequate number of
  6267. * pages are left in the zone after a successful __alloc_pages().
  6268. */
  6269. static void setup_per_zone_lowmem_reserve(void)
  6270. {
  6271. struct pglist_data *pgdat;
  6272. enum zone_type j, idx;
  6273. for_each_online_pgdat(pgdat) {
  6274. for (j = 0; j < MAX_NR_ZONES; j++) {
  6275. struct zone *zone = pgdat->node_zones + j;
  6276. unsigned long managed_pages = zone->managed_pages;
  6277. zone->lowmem_reserve[j] = 0;
  6278. idx = j;
  6279. while (idx) {
  6280. struct zone *lower_zone;
  6281. idx--;
  6282. lower_zone = pgdat->node_zones + idx;
  6283. if (sysctl_lowmem_reserve_ratio[idx] < 1) {
  6284. sysctl_lowmem_reserve_ratio[idx] = 0;
  6285. lower_zone->lowmem_reserve[j] = 0;
  6286. } else {
  6287. lower_zone->lowmem_reserve[j] =
  6288. managed_pages / sysctl_lowmem_reserve_ratio[idx];
  6289. }
  6290. managed_pages += lower_zone->managed_pages;
  6291. }
  6292. }
  6293. }
  6294. /* update totalreserve_pages */
  6295. calculate_totalreserve_pages();
  6296. }
  6297. static void __setup_per_zone_wmarks(void)
  6298. {
  6299. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  6300. unsigned long lowmem_pages = 0;
  6301. struct zone *zone;
  6302. unsigned long flags;
  6303. /* Calculate total number of !ZONE_HIGHMEM pages */
  6304. for_each_zone(zone) {
  6305. if (!is_highmem(zone))
  6306. lowmem_pages += zone->managed_pages;
  6307. }
  6308. for_each_zone(zone) {
  6309. u64 tmp;
  6310. spin_lock_irqsave(&zone->lock, flags);
  6311. tmp = (u64)pages_min * zone->managed_pages;
  6312. do_div(tmp, lowmem_pages);
  6313. if (is_highmem(zone)) {
  6314. /*
  6315. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  6316. * need highmem pages, so cap pages_min to a small
  6317. * value here.
  6318. *
  6319. * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
  6320. * deltas control asynch page reclaim, and so should
  6321. * not be capped for highmem.
  6322. */
  6323. unsigned long min_pages;
  6324. min_pages = zone->managed_pages / 1024;
  6325. min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
  6326. zone->watermark[WMARK_MIN] = min_pages;
  6327. } else {
  6328. /*
  6329. * If it's a lowmem zone, reserve a number of pages
  6330. * proportionate to the zone's size.
  6331. */
  6332. zone->watermark[WMARK_MIN] = tmp;
  6333. }
  6334. /*
  6335. * Set the kswapd watermarks distance according to the
  6336. * scale factor in proportion to available memory, but
  6337. * ensure a minimum size on small systems.
  6338. */
  6339. tmp = max_t(u64, tmp >> 2,
  6340. mult_frac(zone->managed_pages,
  6341. watermark_scale_factor, 10000));
  6342. zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
  6343. zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
  6344. spin_unlock_irqrestore(&zone->lock, flags);
  6345. }
  6346. /* update totalreserve_pages */
  6347. calculate_totalreserve_pages();
  6348. }
  6349. /**
  6350. * setup_per_zone_wmarks - called when min_free_kbytes changes
  6351. * or when memory is hot-{added|removed}
  6352. *
  6353. * Ensures that the watermark[min,low,high] values for each zone are set
  6354. * correctly with respect to min_free_kbytes.
  6355. */
  6356. void setup_per_zone_wmarks(void)
  6357. {
  6358. static DEFINE_SPINLOCK(lock);
  6359. spin_lock(&lock);
  6360. __setup_per_zone_wmarks();
  6361. spin_unlock(&lock);
  6362. }
  6363. /*
  6364. * Initialise min_free_kbytes.
  6365. *
  6366. * For small machines we want it small (128k min). For large machines
  6367. * we want it large (64MB max). But it is not linear, because network
  6368. * bandwidth does not increase linearly with machine size. We use
  6369. *
  6370. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  6371. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  6372. *
  6373. * which yields
  6374. *
  6375. * 16MB: 512k
  6376. * 32MB: 724k
  6377. * 64MB: 1024k
  6378. * 128MB: 1448k
  6379. * 256MB: 2048k
  6380. * 512MB: 2896k
  6381. * 1024MB: 4096k
  6382. * 2048MB: 5792k
  6383. * 4096MB: 8192k
  6384. * 8192MB: 11584k
  6385. * 16384MB: 16384k
  6386. */
  6387. int __meminit init_per_zone_wmark_min(void)
  6388. {
  6389. unsigned long lowmem_kbytes;
  6390. int new_min_free_kbytes;
  6391. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  6392. new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  6393. if (new_min_free_kbytes > user_min_free_kbytes) {
  6394. min_free_kbytes = new_min_free_kbytes;
  6395. if (min_free_kbytes < 128)
  6396. min_free_kbytes = 128;
  6397. if (min_free_kbytes > 65536)
  6398. min_free_kbytes = 65536;
  6399. } else {
  6400. pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
  6401. new_min_free_kbytes, user_min_free_kbytes);
  6402. }
  6403. setup_per_zone_wmarks();
  6404. refresh_zone_stat_thresholds();
  6405. setup_per_zone_lowmem_reserve();
  6406. #ifdef CONFIG_NUMA
  6407. setup_min_unmapped_ratio();
  6408. setup_min_slab_ratio();
  6409. #endif
  6410. return 0;
  6411. }
  6412. core_initcall(init_per_zone_wmark_min)
  6413. /*
  6414. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  6415. * that we can call two helper functions whenever min_free_kbytes
  6416. * changes.
  6417. */
  6418. int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
  6419. void __user *buffer, size_t *length, loff_t *ppos)
  6420. {
  6421. int rc;
  6422. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  6423. if (rc)
  6424. return rc;
  6425. if (write) {
  6426. user_min_free_kbytes = min_free_kbytes;
  6427. setup_per_zone_wmarks();
  6428. }
  6429. return 0;
  6430. }
  6431. int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
  6432. void __user *buffer, size_t *length, loff_t *ppos)
  6433. {
  6434. int rc;
  6435. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  6436. if (rc)
  6437. return rc;
  6438. if (write)
  6439. setup_per_zone_wmarks();
  6440. return 0;
  6441. }
  6442. #ifdef CONFIG_NUMA
  6443. static void setup_min_unmapped_ratio(void)
  6444. {
  6445. pg_data_t *pgdat;
  6446. struct zone *zone;
  6447. for_each_online_pgdat(pgdat)
  6448. pgdat->min_unmapped_pages = 0;
  6449. for_each_zone(zone)
  6450. zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
  6451. sysctl_min_unmapped_ratio) / 100;
  6452. }
  6453. int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
  6454. void __user *buffer, size_t *length, loff_t *ppos)
  6455. {
  6456. int rc;
  6457. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  6458. if (rc)
  6459. return rc;
  6460. setup_min_unmapped_ratio();
  6461. return 0;
  6462. }
  6463. static void setup_min_slab_ratio(void)
  6464. {
  6465. pg_data_t *pgdat;
  6466. struct zone *zone;
  6467. for_each_online_pgdat(pgdat)
  6468. pgdat->min_slab_pages = 0;
  6469. for_each_zone(zone)
  6470. zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
  6471. sysctl_min_slab_ratio) / 100;
  6472. }
  6473. int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
  6474. void __user *buffer, size_t *length, loff_t *ppos)
  6475. {
  6476. int rc;
  6477. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  6478. if (rc)
  6479. return rc;
  6480. setup_min_slab_ratio();
  6481. return 0;
  6482. }
  6483. #endif
  6484. /*
  6485. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  6486. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  6487. * whenever sysctl_lowmem_reserve_ratio changes.
  6488. *
  6489. * The reserve ratio obviously has absolutely no relation with the
  6490. * minimum watermarks. The lowmem reserve ratio can only make sense
  6491. * if in function of the boot time zone sizes.
  6492. */
  6493. int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
  6494. void __user *buffer, size_t *length, loff_t *ppos)
  6495. {
  6496. proc_dointvec_minmax(table, write, buffer, length, ppos);
  6497. setup_per_zone_lowmem_reserve();
  6498. return 0;
  6499. }
  6500. /*
  6501. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  6502. * cpu. It is the fraction of total pages in each zone that a hot per cpu
  6503. * pagelist can have before it gets flushed back to buddy allocator.
  6504. */
  6505. int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
  6506. void __user *buffer, size_t *length, loff_t *ppos)
  6507. {
  6508. struct zone *zone;
  6509. int old_percpu_pagelist_fraction;
  6510. int ret;
  6511. mutex_lock(&pcp_batch_high_lock);
  6512. old_percpu_pagelist_fraction = percpu_pagelist_fraction;
  6513. ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
  6514. if (!write || ret < 0)
  6515. goto out;
  6516. /* Sanity checking to avoid pcp imbalance */
  6517. if (percpu_pagelist_fraction &&
  6518. percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
  6519. percpu_pagelist_fraction = old_percpu_pagelist_fraction;
  6520. ret = -EINVAL;
  6521. goto out;
  6522. }
  6523. /* No change? */
  6524. if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
  6525. goto out;
  6526. for_each_populated_zone(zone) {
  6527. unsigned int cpu;
  6528. for_each_possible_cpu(cpu)
  6529. pageset_set_high_and_batch(zone,
  6530. per_cpu_ptr(zone->pageset, cpu));
  6531. }
  6532. out:
  6533. mutex_unlock(&pcp_batch_high_lock);
  6534. return ret;
  6535. }
  6536. #ifdef CONFIG_NUMA
  6537. int hashdist = HASHDIST_DEFAULT;
  6538. static int __init set_hashdist(char *str)
  6539. {
  6540. if (!str)
  6541. return 0;
  6542. hashdist = simple_strtoul(str, &str, 0);
  6543. return 1;
  6544. }
  6545. __setup("hashdist=", set_hashdist);
  6546. #endif
  6547. #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
  6548. /*
  6549. * Returns the number of pages that arch has reserved but
  6550. * is not known to alloc_large_system_hash().
  6551. */
  6552. static unsigned long __init arch_reserved_kernel_pages(void)
  6553. {
  6554. return 0;
  6555. }
  6556. #endif
  6557. /*
  6558. * Adaptive scale is meant to reduce sizes of hash tables on large memory
  6559. * machines. As memory size is increased the scale is also increased but at
  6560. * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
  6561. * quadruples the scale is increased by one, which means the size of hash table
  6562. * only doubles, instead of quadrupling as well.
  6563. * Because 32-bit systems cannot have large physical memory, where this scaling
  6564. * makes sense, it is disabled on such platforms.
  6565. */
  6566. #if __BITS_PER_LONG > 32
  6567. #define ADAPT_SCALE_BASE (64ul << 30)
  6568. #define ADAPT_SCALE_SHIFT 2
  6569. #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
  6570. #endif
  6571. /*
  6572. * allocate a large system hash table from bootmem
  6573. * - it is assumed that the hash table must contain an exact power-of-2
  6574. * quantity of entries
  6575. * - limit is the number of hash buckets, not the total allocation size
  6576. */
  6577. void *__init alloc_large_system_hash(const char *tablename,
  6578. unsigned long bucketsize,
  6579. unsigned long numentries,
  6580. int scale,
  6581. int flags,
  6582. unsigned int *_hash_shift,
  6583. unsigned int *_hash_mask,
  6584. unsigned long low_limit,
  6585. unsigned long high_limit)
  6586. {
  6587. unsigned long long max = high_limit;
  6588. unsigned long log2qty, size;
  6589. void *table = NULL;
  6590. gfp_t gfp_flags;
  6591. /* allow the kernel cmdline to have a say */
  6592. if (!numentries) {
  6593. /* round applicable memory size up to nearest megabyte */
  6594. numentries = nr_kernel_pages;
  6595. numentries -= arch_reserved_kernel_pages();
  6596. /* It isn't necessary when PAGE_SIZE >= 1MB */
  6597. if (PAGE_SHIFT < 20)
  6598. numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
  6599. #if __BITS_PER_LONG > 32
  6600. if (!high_limit) {
  6601. unsigned long adapt;
  6602. for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
  6603. adapt <<= ADAPT_SCALE_SHIFT)
  6604. scale++;
  6605. }
  6606. #endif
  6607. /* limit to 1 bucket per 2^scale bytes of low memory */
  6608. if (scale > PAGE_SHIFT)
  6609. numentries >>= (scale - PAGE_SHIFT);
  6610. else
  6611. numentries <<= (PAGE_SHIFT - scale);
  6612. /* Make sure we've got at least a 0-order allocation.. */
  6613. if (unlikely(flags & HASH_SMALL)) {
  6614. /* Makes no sense without HASH_EARLY */
  6615. WARN_ON(!(flags & HASH_EARLY));
  6616. if (!(numentries >> *_hash_shift)) {
  6617. numentries = 1UL << *_hash_shift;
  6618. BUG_ON(!numentries);
  6619. }
  6620. } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  6621. numentries = PAGE_SIZE / bucketsize;
  6622. }
  6623. numentries = roundup_pow_of_two(numentries);
  6624. /* limit allocation size to 1/16 total memory by default */
  6625. if (max == 0) {
  6626. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  6627. do_div(max, bucketsize);
  6628. }
  6629. max = min(max, 0x80000000ULL);
  6630. if (numentries < low_limit)
  6631. numentries = low_limit;
  6632. if (numentries > max)
  6633. numentries = max;
  6634. log2qty = ilog2(numentries);
  6635. gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
  6636. do {
  6637. size = bucketsize << log2qty;
  6638. if (flags & HASH_EARLY) {
  6639. if (flags & HASH_ZERO)
  6640. table = memblock_alloc_nopanic(size,
  6641. SMP_CACHE_BYTES);
  6642. else
  6643. table = memblock_alloc_raw(size,
  6644. SMP_CACHE_BYTES);
  6645. } else if (hashdist) {
  6646. table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
  6647. } else {
  6648. /*
  6649. * If bucketsize is not a power-of-two, we may free
  6650. * some pages at the end of hash table which
  6651. * alloc_pages_exact() automatically does
  6652. */
  6653. if (get_order(size) < MAX_ORDER) {
  6654. table = alloc_pages_exact(size, gfp_flags);
  6655. kmemleak_alloc(table, size, 1, gfp_flags);
  6656. }
  6657. }
  6658. } while (!table && size > PAGE_SIZE && --log2qty);
  6659. if (!table)
  6660. panic("Failed to allocate %s hash table\n", tablename);
  6661. pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
  6662. tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
  6663. if (_hash_shift)
  6664. *_hash_shift = log2qty;
  6665. if (_hash_mask)
  6666. *_hash_mask = (1 << log2qty) - 1;
  6667. return table;
  6668. }
  6669. /*
  6670. * This function checks whether pageblock includes unmovable pages or not.
  6671. * If @count is not zero, it is okay to include less @count unmovable pages
  6672. *
  6673. * PageLRU check without isolation or lru_lock could race so that
  6674. * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
  6675. * check without lock_page also may miss some movable non-lru pages at
  6676. * race condition. So you can't expect this function should be exact.
  6677. */
  6678. bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
  6679. int migratetype,
  6680. bool skip_hwpoisoned_pages)
  6681. {
  6682. unsigned long pfn, iter, found;
  6683. /*
  6684. * TODO we could make this much more efficient by not checking every
  6685. * page in the range if we know all of them are in MOVABLE_ZONE and
  6686. * that the movable zone guarantees that pages are migratable but
  6687. * the later is not the case right now unfortunatelly. E.g. movablecore
  6688. * can still lead to having bootmem allocations in zone_movable.
  6689. */
  6690. /*
  6691. * CMA allocations (alloc_contig_range) really need to mark isolate
  6692. * CMA pageblocks even when they are not movable in fact so consider
  6693. * them movable here.
  6694. */
  6695. if (is_migrate_cma(migratetype) &&
  6696. is_migrate_cma(get_pageblock_migratetype(page)))
  6697. return false;
  6698. pfn = page_to_pfn(page);
  6699. for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
  6700. unsigned long check = pfn + iter;
  6701. if (!pfn_valid_within(check))
  6702. continue;
  6703. page = pfn_to_page(check);
  6704. if (PageReserved(page))
  6705. goto unmovable;
  6706. /*
  6707. * If the zone is movable and we have ruled out all reserved
  6708. * pages then it should be reasonably safe to assume the rest
  6709. * is movable.
  6710. */
  6711. if (zone_idx(zone) == ZONE_MOVABLE)
  6712. continue;
  6713. /*
  6714. * Hugepages are not in LRU lists, but they're movable.
  6715. * We need not scan over tail pages bacause we don't
  6716. * handle each tail page individually in migration.
  6717. */
  6718. if (PageHuge(page)) {
  6719. if (!hugepage_migration_supported(page_hstate(page)))
  6720. goto unmovable;
  6721. iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
  6722. continue;
  6723. }
  6724. /*
  6725. * We can't use page_count without pin a page
  6726. * because another CPU can free compound page.
  6727. * This check already skips compound tails of THP
  6728. * because their page->_refcount is zero at all time.
  6729. */
  6730. if (!page_ref_count(page)) {
  6731. if (PageBuddy(page))
  6732. iter += (1 << page_order(page)) - 1;
  6733. continue;
  6734. }
  6735. /*
  6736. * The HWPoisoned page may be not in buddy system, and
  6737. * page_count() is not 0.
  6738. */
  6739. if (skip_hwpoisoned_pages && PageHWPoison(page))
  6740. continue;
  6741. if (__PageMovable(page))
  6742. continue;
  6743. if (!PageLRU(page))
  6744. found++;
  6745. /*
  6746. * If there are RECLAIMABLE pages, we need to check
  6747. * it. But now, memory offline itself doesn't call
  6748. * shrink_node_slabs() and it still to be fixed.
  6749. */
  6750. /*
  6751. * If the page is not RAM, page_count()should be 0.
  6752. * we don't need more check. This is an _used_ not-movable page.
  6753. *
  6754. * The problematic thing here is PG_reserved pages. PG_reserved
  6755. * is set to both of a memory hole page and a _used_ kernel
  6756. * page at boot.
  6757. */
  6758. if (found > count)
  6759. goto unmovable;
  6760. }
  6761. return false;
  6762. unmovable:
  6763. WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
  6764. return true;
  6765. }
  6766. #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
  6767. static unsigned long pfn_max_align_down(unsigned long pfn)
  6768. {
  6769. return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
  6770. pageblock_nr_pages) - 1);
  6771. }
  6772. static unsigned long pfn_max_align_up(unsigned long pfn)
  6773. {
  6774. return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
  6775. pageblock_nr_pages));
  6776. }
  6777. /* [start, end) must belong to a single zone. */
  6778. static int __alloc_contig_migrate_range(struct compact_control *cc,
  6779. unsigned long start, unsigned long end)
  6780. {
  6781. /* This function is based on compact_zone() from compaction.c. */
  6782. unsigned long nr_reclaimed;
  6783. unsigned long pfn = start;
  6784. unsigned int tries = 0;
  6785. int ret = 0;
  6786. migrate_prep();
  6787. while (pfn < end || !list_empty(&cc->migratepages)) {
  6788. if (fatal_signal_pending(current)) {
  6789. ret = -EINTR;
  6790. break;
  6791. }
  6792. if (list_empty(&cc->migratepages)) {
  6793. cc->nr_migratepages = 0;
  6794. pfn = isolate_migratepages_range(cc, pfn, end);
  6795. if (!pfn) {
  6796. ret = -EINTR;
  6797. break;
  6798. }
  6799. tries = 0;
  6800. } else if (++tries == 5) {
  6801. ret = ret < 0 ? ret : -EBUSY;
  6802. break;
  6803. }
  6804. nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
  6805. &cc->migratepages);
  6806. cc->nr_migratepages -= nr_reclaimed;
  6807. ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
  6808. NULL, 0, cc->mode, MR_CONTIG_RANGE);
  6809. }
  6810. if (ret < 0) {
  6811. putback_movable_pages(&cc->migratepages);
  6812. return ret;
  6813. }
  6814. return 0;
  6815. }
  6816. /**
  6817. * alloc_contig_range() -- tries to allocate given range of pages
  6818. * @start: start PFN to allocate
  6819. * @end: one-past-the-last PFN to allocate
  6820. * @migratetype: migratetype of the underlaying pageblocks (either
  6821. * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
  6822. * in range must have the same migratetype and it must
  6823. * be either of the two.
  6824. * @gfp_mask: GFP mask to use during compaction
  6825. *
  6826. * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
  6827. * aligned. The PFN range must belong to a single zone.
  6828. *
  6829. * The first thing this routine does is attempt to MIGRATE_ISOLATE all
  6830. * pageblocks in the range. Once isolated, the pageblocks should not
  6831. * be modified by others.
  6832. *
  6833. * Returns zero on success or negative error code. On success all
  6834. * pages which PFN is in [start, end) are allocated for the caller and
  6835. * need to be freed with free_contig_range().
  6836. */
  6837. int alloc_contig_range(unsigned long start, unsigned long end,
  6838. unsigned migratetype, gfp_t gfp_mask)
  6839. {
  6840. unsigned long outer_start, outer_end;
  6841. unsigned int order;
  6842. int ret = 0;
  6843. struct compact_control cc = {
  6844. .nr_migratepages = 0,
  6845. .order = -1,
  6846. .zone = page_zone(pfn_to_page(start)),
  6847. .mode = MIGRATE_SYNC,
  6848. .ignore_skip_hint = true,
  6849. .no_set_skip_hint = true,
  6850. .gfp_mask = current_gfp_context(gfp_mask),
  6851. };
  6852. INIT_LIST_HEAD(&cc.migratepages);
  6853. /*
  6854. * What we do here is we mark all pageblocks in range as
  6855. * MIGRATE_ISOLATE. Because pageblock and max order pages may
  6856. * have different sizes, and due to the way page allocator
  6857. * work, we align the range to biggest of the two pages so
  6858. * that page allocator won't try to merge buddies from
  6859. * different pageblocks and change MIGRATE_ISOLATE to some
  6860. * other migration type.
  6861. *
  6862. * Once the pageblocks are marked as MIGRATE_ISOLATE, we
  6863. * migrate the pages from an unaligned range (ie. pages that
  6864. * we are interested in). This will put all the pages in
  6865. * range back to page allocator as MIGRATE_ISOLATE.
  6866. *
  6867. * When this is done, we take the pages in range from page
  6868. * allocator removing them from the buddy system. This way
  6869. * page allocator will never consider using them.
  6870. *
  6871. * This lets us mark the pageblocks back as
  6872. * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
  6873. * aligned range but not in the unaligned, original range are
  6874. * put back to page allocator so that buddy can use them.
  6875. */
  6876. ret = start_isolate_page_range(pfn_max_align_down(start),
  6877. pfn_max_align_up(end), migratetype,
  6878. false);
  6879. if (ret)
  6880. return ret;
  6881. /*
  6882. * In case of -EBUSY, we'd like to know which page causes problem.
  6883. * So, just fall through. test_pages_isolated() has a tracepoint
  6884. * which will report the busy page.
  6885. *
  6886. * It is possible that busy pages could become available before
  6887. * the call to test_pages_isolated, and the range will actually be
  6888. * allocated. So, if we fall through be sure to clear ret so that
  6889. * -EBUSY is not accidentally used or returned to caller.
  6890. */
  6891. ret = __alloc_contig_migrate_range(&cc, start, end);
  6892. if (ret && ret != -EBUSY)
  6893. goto done;
  6894. ret =0;
  6895. /*
  6896. * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
  6897. * aligned blocks that are marked as MIGRATE_ISOLATE. What's
  6898. * more, all pages in [start, end) are free in page allocator.
  6899. * What we are going to do is to allocate all pages from
  6900. * [start, end) (that is remove them from page allocator).
  6901. *
  6902. * The only problem is that pages at the beginning and at the
  6903. * end of interesting range may be not aligned with pages that
  6904. * page allocator holds, ie. they can be part of higher order
  6905. * pages. Because of this, we reserve the bigger range and
  6906. * once this is done free the pages we are not interested in.
  6907. *
  6908. * We don't have to hold zone->lock here because the pages are
  6909. * isolated thus they won't get removed from buddy.
  6910. */
  6911. lru_add_drain_all();
  6912. drain_all_pages(cc.zone);
  6913. order = 0;
  6914. outer_start = start;
  6915. while (!PageBuddy(pfn_to_page(outer_start))) {
  6916. if (++order >= MAX_ORDER) {
  6917. outer_start = start;
  6918. break;
  6919. }
  6920. outer_start &= ~0UL << order;
  6921. }
  6922. if (outer_start != start) {
  6923. order = page_order(pfn_to_page(outer_start));
  6924. /*
  6925. * outer_start page could be small order buddy page and
  6926. * it doesn't include start page. Adjust outer_start
  6927. * in this case to report failed page properly
  6928. * on tracepoint in test_pages_isolated()
  6929. */
  6930. if (outer_start + (1UL << order) <= start)
  6931. outer_start = start;
  6932. }
  6933. /* Make sure the range is really isolated. */
  6934. if (test_pages_isolated(outer_start, end, false)) {
  6935. pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
  6936. __func__, outer_start, end);
  6937. ret = -EBUSY;
  6938. goto done;
  6939. }
  6940. /* Grab isolated pages from freelists. */
  6941. outer_end = isolate_freepages_range(&cc, outer_start, end);
  6942. if (!outer_end) {
  6943. ret = -EBUSY;
  6944. goto done;
  6945. }
  6946. /* Free head and tail (if any) */
  6947. if (start != outer_start)
  6948. free_contig_range(outer_start, start - outer_start);
  6949. if (end != outer_end)
  6950. free_contig_range(end, outer_end - end);
  6951. done:
  6952. undo_isolate_page_range(pfn_max_align_down(start),
  6953. pfn_max_align_up(end), migratetype);
  6954. return ret;
  6955. }
  6956. void free_contig_range(unsigned long pfn, unsigned nr_pages)
  6957. {
  6958. unsigned int count = 0;
  6959. for (; nr_pages--; pfn++) {
  6960. struct page *page = pfn_to_page(pfn);
  6961. count += page_count(page) != 1;
  6962. __free_page(page);
  6963. }
  6964. WARN(count != 0, "%d pages are still in use!\n", count);
  6965. }
  6966. #endif
  6967. #ifdef CONFIG_MEMORY_HOTPLUG
  6968. /*
  6969. * The zone indicated has a new number of managed_pages; batch sizes and percpu
  6970. * page high values need to be recalulated.
  6971. */
  6972. void __meminit zone_pcp_update(struct zone *zone)
  6973. {
  6974. unsigned cpu;
  6975. mutex_lock(&pcp_batch_high_lock);
  6976. for_each_possible_cpu(cpu)
  6977. pageset_set_high_and_batch(zone,
  6978. per_cpu_ptr(zone->pageset, cpu));
  6979. mutex_unlock(&pcp_batch_high_lock);
  6980. }
  6981. #endif
  6982. void zone_pcp_reset(struct zone *zone)
  6983. {
  6984. unsigned long flags;
  6985. int cpu;
  6986. struct per_cpu_pageset *pset;
  6987. /* avoid races with drain_pages() */
  6988. local_irq_save(flags);
  6989. if (zone->pageset != &boot_pageset) {
  6990. for_each_online_cpu(cpu) {
  6991. pset = per_cpu_ptr(zone->pageset, cpu);
  6992. drain_zonestat(zone, pset);
  6993. }
  6994. free_percpu(zone->pageset);
  6995. zone->pageset = &boot_pageset;
  6996. }
  6997. local_irq_restore(flags);
  6998. }
  6999. #ifdef CONFIG_MEMORY_HOTREMOVE
  7000. /*
  7001. * All pages in the range must be in a single zone and isolated
  7002. * before calling this.
  7003. */
  7004. void
  7005. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  7006. {
  7007. struct page *page;
  7008. struct zone *zone;
  7009. unsigned int order, i;
  7010. unsigned long pfn;
  7011. unsigned long flags;
  7012. /* find the first valid pfn */
  7013. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  7014. if (pfn_valid(pfn))
  7015. break;
  7016. if (pfn == end_pfn)
  7017. return;
  7018. offline_mem_sections(pfn, end_pfn);
  7019. zone = page_zone(pfn_to_page(pfn));
  7020. spin_lock_irqsave(&zone->lock, flags);
  7021. pfn = start_pfn;
  7022. while (pfn < end_pfn) {
  7023. if (!pfn_valid(pfn)) {
  7024. pfn++;
  7025. continue;
  7026. }
  7027. page = pfn_to_page(pfn);
  7028. /*
  7029. * The HWPoisoned page may be not in buddy system, and
  7030. * page_count() is not 0.
  7031. */
  7032. if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
  7033. pfn++;
  7034. SetPageReserved(page);
  7035. continue;
  7036. }
  7037. BUG_ON(page_count(page));
  7038. BUG_ON(!PageBuddy(page));
  7039. order = page_order(page);
  7040. #ifdef CONFIG_DEBUG_VM
  7041. pr_info("remove from free list %lx %d %lx\n",
  7042. pfn, 1 << order, end_pfn);
  7043. #endif
  7044. list_del(&page->lru);
  7045. rmv_page_order(page);
  7046. zone->free_area[order].nr_free--;
  7047. for (i = 0; i < (1 << order); i++)
  7048. SetPageReserved((page+i));
  7049. pfn += (1 << order);
  7050. }
  7051. spin_unlock_irqrestore(&zone->lock, flags);
  7052. }
  7053. #endif
  7054. bool is_free_buddy_page(struct page *page)
  7055. {
  7056. struct zone *zone = page_zone(page);
  7057. unsigned long pfn = page_to_pfn(page);
  7058. unsigned long flags;
  7059. unsigned int order;
  7060. spin_lock_irqsave(&zone->lock, flags);
  7061. for (order = 0; order < MAX_ORDER; order++) {
  7062. struct page *page_head = page - (pfn & ((1 << order) - 1));
  7063. if (PageBuddy(page_head) && page_order(page_head) >= order)
  7064. break;
  7065. }
  7066. spin_unlock_irqrestore(&zone->lock, flags);
  7067. return order < MAX_ORDER;
  7068. }
  7069. #ifdef CONFIG_MEMORY_FAILURE
  7070. /*
  7071. * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
  7072. * test is performed under the zone lock to prevent a race against page
  7073. * allocation.
  7074. */
  7075. bool set_hwpoison_free_buddy_page(struct page *page)
  7076. {
  7077. struct zone *zone = page_zone(page);
  7078. unsigned long pfn = page_to_pfn(page);
  7079. unsigned long flags;
  7080. unsigned int order;
  7081. bool hwpoisoned = false;
  7082. spin_lock_irqsave(&zone->lock, flags);
  7083. for (order = 0; order < MAX_ORDER; order++) {
  7084. struct page *page_head = page - (pfn & ((1 << order) - 1));
  7085. if (PageBuddy(page_head) && page_order(page_head) >= order) {
  7086. if (!TestSetPageHWPoison(page))
  7087. hwpoisoned = true;
  7088. break;
  7089. }
  7090. }
  7091. spin_unlock_irqrestore(&zone->lock, flags);
  7092. return hwpoisoned;
  7093. }
  7094. #endif