verifier.c 63 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305
  1. /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
  2. *
  3. * This program is free software; you can redistribute it and/or
  4. * modify it under the terms of version 2 of the GNU General Public
  5. * License as published by the Free Software Foundation.
  6. *
  7. * This program is distributed in the hope that it will be useful, but
  8. * WITHOUT ANY WARRANTY; without even the implied warranty of
  9. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  10. * General Public License for more details.
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/types.h>
  14. #include <linux/slab.h>
  15. #include <linux/bpf.h>
  16. #include <linux/filter.h>
  17. #include <net/netlink.h>
  18. #include <linux/file.h>
  19. #include <linux/vmalloc.h>
  20. /* bpf_check() is a static code analyzer that walks eBPF program
  21. * instruction by instruction and updates register/stack state.
  22. * All paths of conditional branches are analyzed until 'bpf_exit' insn.
  23. *
  24. * The first pass is depth-first-search to check that the program is a DAG.
  25. * It rejects the following programs:
  26. * - larger than BPF_MAXINSNS insns
  27. * - if loop is present (detected via back-edge)
  28. * - unreachable insns exist (shouldn't be a forest. program = one function)
  29. * - out of bounds or malformed jumps
  30. * The second pass is all possible path descent from the 1st insn.
  31. * Since it's analyzing all pathes through the program, the length of the
  32. * analysis is limited to 32k insn, which may be hit even if total number of
  33. * insn is less then 4K, but there are too many branches that change stack/regs.
  34. * Number of 'branches to be analyzed' is limited to 1k
  35. *
  36. * On entry to each instruction, each register has a type, and the instruction
  37. * changes the types of the registers depending on instruction semantics.
  38. * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
  39. * copied to R1.
  40. *
  41. * All registers are 64-bit.
  42. * R0 - return register
  43. * R1-R5 argument passing registers
  44. * R6-R9 callee saved registers
  45. * R10 - frame pointer read-only
  46. *
  47. * At the start of BPF program the register R1 contains a pointer to bpf_context
  48. * and has type PTR_TO_CTX.
  49. *
  50. * Verifier tracks arithmetic operations on pointers in case:
  51. * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  52. * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
  53. * 1st insn copies R10 (which has FRAME_PTR) type into R1
  54. * and 2nd arithmetic instruction is pattern matched to recognize
  55. * that it wants to construct a pointer to some element within stack.
  56. * So after 2nd insn, the register R1 has type PTR_TO_STACK
  57. * (and -20 constant is saved for further stack bounds checking).
  58. * Meaning that this reg is a pointer to stack plus known immediate constant.
  59. *
  60. * Most of the time the registers have UNKNOWN_VALUE type, which
  61. * means the register has some value, but it's not a valid pointer.
  62. * (like pointer plus pointer becomes UNKNOWN_VALUE type)
  63. *
  64. * When verifier sees load or store instructions the type of base register
  65. * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, FRAME_PTR. These are three pointer
  66. * types recognized by check_mem_access() function.
  67. *
  68. * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
  69. * and the range of [ptr, ptr + map's value_size) is accessible.
  70. *
  71. * registers used to pass values to function calls are checked against
  72. * function argument constraints.
  73. *
  74. * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
  75. * It means that the register type passed to this function must be
  76. * PTR_TO_STACK and it will be used inside the function as
  77. * 'pointer to map element key'
  78. *
  79. * For example the argument constraints for bpf_map_lookup_elem():
  80. * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
  81. * .arg1_type = ARG_CONST_MAP_PTR,
  82. * .arg2_type = ARG_PTR_TO_MAP_KEY,
  83. *
  84. * ret_type says that this function returns 'pointer to map elem value or null'
  85. * function expects 1st argument to be a const pointer to 'struct bpf_map' and
  86. * 2nd argument should be a pointer to stack, which will be used inside
  87. * the helper function as a pointer to map element key.
  88. *
  89. * On the kernel side the helper function looks like:
  90. * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
  91. * {
  92. * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
  93. * void *key = (void *) (unsigned long) r2;
  94. * void *value;
  95. *
  96. * here kernel can access 'key' and 'map' pointers safely, knowing that
  97. * [key, key + map->key_size) bytes are valid and were initialized on
  98. * the stack of eBPF program.
  99. * }
  100. *
  101. * Corresponding eBPF program may look like:
  102. * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
  103. * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
  104. * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
  105. * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
  106. * here verifier looks at prototype of map_lookup_elem() and sees:
  107. * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
  108. * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
  109. *
  110. * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
  111. * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
  112. * and were initialized prior to this call.
  113. * If it's ok, then verifier allows this BPF_CALL insn and looks at
  114. * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
  115. * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
  116. * returns ether pointer to map value or NULL.
  117. *
  118. * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
  119. * insn, the register holding that pointer in the true branch changes state to
  120. * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
  121. * branch. See check_cond_jmp_op().
  122. *
  123. * After the call R0 is set to return type of the function and registers R1-R5
  124. * are set to NOT_INIT to indicate that they are no longer readable.
  125. */
  126. /* types of values stored in eBPF registers */
  127. enum bpf_reg_type {
  128. NOT_INIT = 0, /* nothing was written into register */
  129. UNKNOWN_VALUE, /* reg doesn't contain a valid pointer */
  130. PTR_TO_CTX, /* reg points to bpf_context */
  131. CONST_PTR_TO_MAP, /* reg points to struct bpf_map */
  132. PTR_TO_MAP_VALUE, /* reg points to map element value */
  133. PTR_TO_MAP_VALUE_OR_NULL,/* points to map elem value or NULL */
  134. FRAME_PTR, /* reg == frame_pointer */
  135. PTR_TO_STACK, /* reg == frame_pointer + imm */
  136. CONST_IMM, /* constant integer value */
  137. };
  138. struct reg_state {
  139. enum bpf_reg_type type;
  140. union {
  141. /* valid when type == CONST_IMM | PTR_TO_STACK */
  142. int imm;
  143. /* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE |
  144. * PTR_TO_MAP_VALUE_OR_NULL
  145. */
  146. struct bpf_map *map_ptr;
  147. };
  148. };
  149. enum bpf_stack_slot_type {
  150. STACK_INVALID, /* nothing was stored in this stack slot */
  151. STACK_SPILL, /* register spilled into stack */
  152. STACK_MISC /* BPF program wrote some data into this slot */
  153. };
  154. #define BPF_REG_SIZE 8 /* size of eBPF register in bytes */
  155. /* state of the program:
  156. * type of all registers and stack info
  157. */
  158. struct verifier_state {
  159. struct reg_state regs[MAX_BPF_REG];
  160. u8 stack_slot_type[MAX_BPF_STACK];
  161. struct reg_state spilled_regs[MAX_BPF_STACK / BPF_REG_SIZE];
  162. };
  163. /* linked list of verifier states used to prune search */
  164. struct verifier_state_list {
  165. struct verifier_state state;
  166. struct verifier_state_list *next;
  167. };
  168. /* verifier_state + insn_idx are pushed to stack when branch is encountered */
  169. struct verifier_stack_elem {
  170. /* verifer state is 'st'
  171. * before processing instruction 'insn_idx'
  172. * and after processing instruction 'prev_insn_idx'
  173. */
  174. struct verifier_state st;
  175. int insn_idx;
  176. int prev_insn_idx;
  177. struct verifier_stack_elem *next;
  178. };
  179. #define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */
  180. /* single container for all structs
  181. * one verifier_env per bpf_check() call
  182. */
  183. struct verifier_env {
  184. struct bpf_prog *prog; /* eBPF program being verified */
  185. struct verifier_stack_elem *head; /* stack of verifier states to be processed */
  186. int stack_size; /* number of states to be processed */
  187. struct verifier_state cur_state; /* current verifier state */
  188. struct verifier_state_list **explored_states; /* search pruning optimization */
  189. struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */
  190. u32 used_map_cnt; /* number of used maps */
  191. bool allow_ptr_leaks;
  192. };
  193. /* verbose verifier prints what it's seeing
  194. * bpf_check() is called under lock, so no race to access these global vars
  195. */
  196. static u32 log_level, log_size, log_len;
  197. static char *log_buf;
  198. static DEFINE_MUTEX(bpf_verifier_lock);
  199. /* log_level controls verbosity level of eBPF verifier.
  200. * verbose() is used to dump the verification trace to the log, so the user
  201. * can figure out what's wrong with the program
  202. */
  203. static __printf(1, 2) void verbose(const char *fmt, ...)
  204. {
  205. va_list args;
  206. if (log_level == 0 || log_len >= log_size - 1)
  207. return;
  208. va_start(args, fmt);
  209. log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args);
  210. va_end(args);
  211. }
  212. /* string representation of 'enum bpf_reg_type' */
  213. static const char * const reg_type_str[] = {
  214. [NOT_INIT] = "?",
  215. [UNKNOWN_VALUE] = "inv",
  216. [PTR_TO_CTX] = "ctx",
  217. [CONST_PTR_TO_MAP] = "map_ptr",
  218. [PTR_TO_MAP_VALUE] = "map_value",
  219. [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
  220. [FRAME_PTR] = "fp",
  221. [PTR_TO_STACK] = "fp",
  222. [CONST_IMM] = "imm",
  223. };
  224. static const struct {
  225. int map_type;
  226. int func_id;
  227. } func_limit[] = {
  228. {BPF_MAP_TYPE_PROG_ARRAY, BPF_FUNC_tail_call},
  229. {BPF_MAP_TYPE_PERF_EVENT_ARRAY, BPF_FUNC_perf_event_read},
  230. {BPF_MAP_TYPE_PERF_EVENT_ARRAY, BPF_FUNC_perf_event_output},
  231. {BPF_MAP_TYPE_STACK_TRACE, BPF_FUNC_get_stackid},
  232. };
  233. static void print_verifier_state(struct verifier_env *env)
  234. {
  235. enum bpf_reg_type t;
  236. int i;
  237. for (i = 0; i < MAX_BPF_REG; i++) {
  238. t = env->cur_state.regs[i].type;
  239. if (t == NOT_INIT)
  240. continue;
  241. verbose(" R%d=%s", i, reg_type_str[t]);
  242. if (t == CONST_IMM || t == PTR_TO_STACK)
  243. verbose("%d", env->cur_state.regs[i].imm);
  244. else if (t == CONST_PTR_TO_MAP || t == PTR_TO_MAP_VALUE ||
  245. t == PTR_TO_MAP_VALUE_OR_NULL)
  246. verbose("(ks=%d,vs=%d)",
  247. env->cur_state.regs[i].map_ptr->key_size,
  248. env->cur_state.regs[i].map_ptr->value_size);
  249. }
  250. for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
  251. if (env->cur_state.stack_slot_type[i] == STACK_SPILL)
  252. verbose(" fp%d=%s", -MAX_BPF_STACK + i,
  253. reg_type_str[env->cur_state.spilled_regs[i / BPF_REG_SIZE].type]);
  254. }
  255. verbose("\n");
  256. }
  257. static const char *const bpf_class_string[] = {
  258. [BPF_LD] = "ld",
  259. [BPF_LDX] = "ldx",
  260. [BPF_ST] = "st",
  261. [BPF_STX] = "stx",
  262. [BPF_ALU] = "alu",
  263. [BPF_JMP] = "jmp",
  264. [BPF_RET] = "BUG",
  265. [BPF_ALU64] = "alu64",
  266. };
  267. static const char *const bpf_alu_string[16] = {
  268. [BPF_ADD >> 4] = "+=",
  269. [BPF_SUB >> 4] = "-=",
  270. [BPF_MUL >> 4] = "*=",
  271. [BPF_DIV >> 4] = "/=",
  272. [BPF_OR >> 4] = "|=",
  273. [BPF_AND >> 4] = "&=",
  274. [BPF_LSH >> 4] = "<<=",
  275. [BPF_RSH >> 4] = ">>=",
  276. [BPF_NEG >> 4] = "neg",
  277. [BPF_MOD >> 4] = "%=",
  278. [BPF_XOR >> 4] = "^=",
  279. [BPF_MOV >> 4] = "=",
  280. [BPF_ARSH >> 4] = "s>>=",
  281. [BPF_END >> 4] = "endian",
  282. };
  283. static const char *const bpf_ldst_string[] = {
  284. [BPF_W >> 3] = "u32",
  285. [BPF_H >> 3] = "u16",
  286. [BPF_B >> 3] = "u8",
  287. [BPF_DW >> 3] = "u64",
  288. };
  289. static const char *const bpf_jmp_string[16] = {
  290. [BPF_JA >> 4] = "jmp",
  291. [BPF_JEQ >> 4] = "==",
  292. [BPF_JGT >> 4] = ">",
  293. [BPF_JGE >> 4] = ">=",
  294. [BPF_JSET >> 4] = "&",
  295. [BPF_JNE >> 4] = "!=",
  296. [BPF_JSGT >> 4] = "s>",
  297. [BPF_JSGE >> 4] = "s>=",
  298. [BPF_CALL >> 4] = "call",
  299. [BPF_EXIT >> 4] = "exit",
  300. };
  301. static void print_bpf_insn(struct bpf_insn *insn)
  302. {
  303. u8 class = BPF_CLASS(insn->code);
  304. if (class == BPF_ALU || class == BPF_ALU64) {
  305. if (BPF_SRC(insn->code) == BPF_X)
  306. verbose("(%02x) %sr%d %s %sr%d\n",
  307. insn->code, class == BPF_ALU ? "(u32) " : "",
  308. insn->dst_reg,
  309. bpf_alu_string[BPF_OP(insn->code) >> 4],
  310. class == BPF_ALU ? "(u32) " : "",
  311. insn->src_reg);
  312. else
  313. verbose("(%02x) %sr%d %s %s%d\n",
  314. insn->code, class == BPF_ALU ? "(u32) " : "",
  315. insn->dst_reg,
  316. bpf_alu_string[BPF_OP(insn->code) >> 4],
  317. class == BPF_ALU ? "(u32) " : "",
  318. insn->imm);
  319. } else if (class == BPF_STX) {
  320. if (BPF_MODE(insn->code) == BPF_MEM)
  321. verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
  322. insn->code,
  323. bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
  324. insn->dst_reg,
  325. insn->off, insn->src_reg);
  326. else if (BPF_MODE(insn->code) == BPF_XADD)
  327. verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
  328. insn->code,
  329. bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
  330. insn->dst_reg, insn->off,
  331. insn->src_reg);
  332. else
  333. verbose("BUG_%02x\n", insn->code);
  334. } else if (class == BPF_ST) {
  335. if (BPF_MODE(insn->code) != BPF_MEM) {
  336. verbose("BUG_st_%02x\n", insn->code);
  337. return;
  338. }
  339. verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
  340. insn->code,
  341. bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
  342. insn->dst_reg,
  343. insn->off, insn->imm);
  344. } else if (class == BPF_LDX) {
  345. if (BPF_MODE(insn->code) != BPF_MEM) {
  346. verbose("BUG_ldx_%02x\n", insn->code);
  347. return;
  348. }
  349. verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
  350. insn->code, insn->dst_reg,
  351. bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
  352. insn->src_reg, insn->off);
  353. } else if (class == BPF_LD) {
  354. if (BPF_MODE(insn->code) == BPF_ABS) {
  355. verbose("(%02x) r0 = *(%s *)skb[%d]\n",
  356. insn->code,
  357. bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
  358. insn->imm);
  359. } else if (BPF_MODE(insn->code) == BPF_IND) {
  360. verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
  361. insn->code,
  362. bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
  363. insn->src_reg, insn->imm);
  364. } else if (BPF_MODE(insn->code) == BPF_IMM) {
  365. verbose("(%02x) r%d = 0x%x\n",
  366. insn->code, insn->dst_reg, insn->imm);
  367. } else {
  368. verbose("BUG_ld_%02x\n", insn->code);
  369. return;
  370. }
  371. } else if (class == BPF_JMP) {
  372. u8 opcode = BPF_OP(insn->code);
  373. if (opcode == BPF_CALL) {
  374. verbose("(%02x) call %d\n", insn->code, insn->imm);
  375. } else if (insn->code == (BPF_JMP | BPF_JA)) {
  376. verbose("(%02x) goto pc%+d\n",
  377. insn->code, insn->off);
  378. } else if (insn->code == (BPF_JMP | BPF_EXIT)) {
  379. verbose("(%02x) exit\n", insn->code);
  380. } else if (BPF_SRC(insn->code) == BPF_X) {
  381. verbose("(%02x) if r%d %s r%d goto pc%+d\n",
  382. insn->code, insn->dst_reg,
  383. bpf_jmp_string[BPF_OP(insn->code) >> 4],
  384. insn->src_reg, insn->off);
  385. } else {
  386. verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
  387. insn->code, insn->dst_reg,
  388. bpf_jmp_string[BPF_OP(insn->code) >> 4],
  389. insn->imm, insn->off);
  390. }
  391. } else {
  392. verbose("(%02x) %s\n", insn->code, bpf_class_string[class]);
  393. }
  394. }
  395. static int pop_stack(struct verifier_env *env, int *prev_insn_idx)
  396. {
  397. struct verifier_stack_elem *elem;
  398. int insn_idx;
  399. if (env->head == NULL)
  400. return -1;
  401. memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
  402. insn_idx = env->head->insn_idx;
  403. if (prev_insn_idx)
  404. *prev_insn_idx = env->head->prev_insn_idx;
  405. elem = env->head->next;
  406. kfree(env->head);
  407. env->head = elem;
  408. env->stack_size--;
  409. return insn_idx;
  410. }
  411. static struct verifier_state *push_stack(struct verifier_env *env, int insn_idx,
  412. int prev_insn_idx)
  413. {
  414. struct verifier_stack_elem *elem;
  415. elem = kmalloc(sizeof(struct verifier_stack_elem), GFP_KERNEL);
  416. if (!elem)
  417. goto err;
  418. memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
  419. elem->insn_idx = insn_idx;
  420. elem->prev_insn_idx = prev_insn_idx;
  421. elem->next = env->head;
  422. env->head = elem;
  423. env->stack_size++;
  424. if (env->stack_size > 1024) {
  425. verbose("BPF program is too complex\n");
  426. goto err;
  427. }
  428. return &elem->st;
  429. err:
  430. /* pop all elements and return */
  431. while (pop_stack(env, NULL) >= 0);
  432. return NULL;
  433. }
  434. #define CALLER_SAVED_REGS 6
  435. static const int caller_saved[CALLER_SAVED_REGS] = {
  436. BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
  437. };
  438. static void init_reg_state(struct reg_state *regs)
  439. {
  440. int i;
  441. for (i = 0; i < MAX_BPF_REG; i++) {
  442. regs[i].type = NOT_INIT;
  443. regs[i].imm = 0;
  444. regs[i].map_ptr = NULL;
  445. }
  446. /* frame pointer */
  447. regs[BPF_REG_FP].type = FRAME_PTR;
  448. /* 1st arg to a function */
  449. regs[BPF_REG_1].type = PTR_TO_CTX;
  450. }
  451. static void mark_reg_unknown_value(struct reg_state *regs, u32 regno)
  452. {
  453. BUG_ON(regno >= MAX_BPF_REG);
  454. regs[regno].type = UNKNOWN_VALUE;
  455. regs[regno].imm = 0;
  456. regs[regno].map_ptr = NULL;
  457. }
  458. enum reg_arg_type {
  459. SRC_OP, /* register is used as source operand */
  460. DST_OP, /* register is used as destination operand */
  461. DST_OP_NO_MARK /* same as above, check only, don't mark */
  462. };
  463. static int check_reg_arg(struct reg_state *regs, u32 regno,
  464. enum reg_arg_type t)
  465. {
  466. if (regno >= MAX_BPF_REG) {
  467. verbose("R%d is invalid\n", regno);
  468. return -EINVAL;
  469. }
  470. if (t == SRC_OP) {
  471. /* check whether register used as source operand can be read */
  472. if (regs[regno].type == NOT_INIT) {
  473. verbose("R%d !read_ok\n", regno);
  474. return -EACCES;
  475. }
  476. } else {
  477. /* check whether register used as dest operand can be written to */
  478. if (regno == BPF_REG_FP) {
  479. verbose("frame pointer is read only\n");
  480. return -EACCES;
  481. }
  482. if (t == DST_OP)
  483. mark_reg_unknown_value(regs, regno);
  484. }
  485. return 0;
  486. }
  487. static int bpf_size_to_bytes(int bpf_size)
  488. {
  489. if (bpf_size == BPF_W)
  490. return 4;
  491. else if (bpf_size == BPF_H)
  492. return 2;
  493. else if (bpf_size == BPF_B)
  494. return 1;
  495. else if (bpf_size == BPF_DW)
  496. return 8;
  497. else
  498. return -EINVAL;
  499. }
  500. static bool is_spillable_regtype(enum bpf_reg_type type)
  501. {
  502. switch (type) {
  503. case PTR_TO_MAP_VALUE:
  504. case PTR_TO_MAP_VALUE_OR_NULL:
  505. case PTR_TO_STACK:
  506. case PTR_TO_CTX:
  507. case FRAME_PTR:
  508. case CONST_PTR_TO_MAP:
  509. return true;
  510. default:
  511. return false;
  512. }
  513. }
  514. /* check_stack_read/write functions track spill/fill of registers,
  515. * stack boundary and alignment are checked in check_mem_access()
  516. */
  517. static int check_stack_write(struct verifier_state *state, int off, int size,
  518. int value_regno)
  519. {
  520. int i;
  521. /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
  522. * so it's aligned access and [off, off + size) are within stack limits
  523. */
  524. if (value_regno >= 0 &&
  525. is_spillable_regtype(state->regs[value_regno].type)) {
  526. /* register containing pointer is being spilled into stack */
  527. if (size != BPF_REG_SIZE) {
  528. verbose("invalid size of register spill\n");
  529. return -EACCES;
  530. }
  531. /* save register state */
  532. state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
  533. state->regs[value_regno];
  534. for (i = 0; i < BPF_REG_SIZE; i++)
  535. state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
  536. } else {
  537. /* regular write of data into stack */
  538. state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
  539. (struct reg_state) {};
  540. for (i = 0; i < size; i++)
  541. state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
  542. }
  543. return 0;
  544. }
  545. static int check_stack_read(struct verifier_state *state, int off, int size,
  546. int value_regno)
  547. {
  548. u8 *slot_type;
  549. int i;
  550. slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
  551. if (slot_type[0] == STACK_SPILL) {
  552. if (size != BPF_REG_SIZE) {
  553. verbose("invalid size of register spill\n");
  554. return -EACCES;
  555. }
  556. for (i = 1; i < BPF_REG_SIZE; i++) {
  557. if (slot_type[i] != STACK_SPILL) {
  558. verbose("corrupted spill memory\n");
  559. return -EACCES;
  560. }
  561. }
  562. if (value_regno >= 0)
  563. /* restore register state from stack */
  564. state->regs[value_regno] =
  565. state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE];
  566. return 0;
  567. } else {
  568. for (i = 0; i < size; i++) {
  569. if (slot_type[i] != STACK_MISC) {
  570. verbose("invalid read from stack off %d+%d size %d\n",
  571. off, i, size);
  572. return -EACCES;
  573. }
  574. }
  575. if (value_regno >= 0)
  576. /* have read misc data from the stack */
  577. mark_reg_unknown_value(state->regs, value_regno);
  578. return 0;
  579. }
  580. }
  581. /* check read/write into map element returned by bpf_map_lookup_elem() */
  582. static int check_map_access(struct verifier_env *env, u32 regno, int off,
  583. int size)
  584. {
  585. struct bpf_map *map = env->cur_state.regs[regno].map_ptr;
  586. if (off < 0 || off + size > map->value_size) {
  587. verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
  588. map->value_size, off, size);
  589. return -EACCES;
  590. }
  591. return 0;
  592. }
  593. /* check access to 'struct bpf_context' fields */
  594. static int check_ctx_access(struct verifier_env *env, int off, int size,
  595. enum bpf_access_type t)
  596. {
  597. if (env->prog->aux->ops->is_valid_access &&
  598. env->prog->aux->ops->is_valid_access(off, size, t))
  599. return 0;
  600. verbose("invalid bpf_context access off=%d size=%d\n", off, size);
  601. return -EACCES;
  602. }
  603. static bool is_pointer_value(struct verifier_env *env, int regno)
  604. {
  605. if (env->allow_ptr_leaks)
  606. return false;
  607. switch (env->cur_state.regs[regno].type) {
  608. case UNKNOWN_VALUE:
  609. case CONST_IMM:
  610. return false;
  611. default:
  612. return true;
  613. }
  614. }
  615. /* check whether memory at (regno + off) is accessible for t = (read | write)
  616. * if t==write, value_regno is a register which value is stored into memory
  617. * if t==read, value_regno is a register which will receive the value from memory
  618. * if t==write && value_regno==-1, some unknown value is stored into memory
  619. * if t==read && value_regno==-1, don't care what we read from memory
  620. */
  621. static int check_mem_access(struct verifier_env *env, u32 regno, int off,
  622. int bpf_size, enum bpf_access_type t,
  623. int value_regno)
  624. {
  625. struct verifier_state *state = &env->cur_state;
  626. int size, err = 0;
  627. if (state->regs[regno].type == PTR_TO_STACK)
  628. off += state->regs[regno].imm;
  629. size = bpf_size_to_bytes(bpf_size);
  630. if (size < 0)
  631. return size;
  632. if (off % size != 0) {
  633. verbose("misaligned access off %d size %d\n", off, size);
  634. return -EACCES;
  635. }
  636. if (state->regs[regno].type == PTR_TO_MAP_VALUE) {
  637. if (t == BPF_WRITE && value_regno >= 0 &&
  638. is_pointer_value(env, value_regno)) {
  639. verbose("R%d leaks addr into map\n", value_regno);
  640. return -EACCES;
  641. }
  642. err = check_map_access(env, regno, off, size);
  643. if (!err && t == BPF_READ && value_regno >= 0)
  644. mark_reg_unknown_value(state->regs, value_regno);
  645. } else if (state->regs[regno].type == PTR_TO_CTX) {
  646. if (t == BPF_WRITE && value_regno >= 0 &&
  647. is_pointer_value(env, value_regno)) {
  648. verbose("R%d leaks addr into ctx\n", value_regno);
  649. return -EACCES;
  650. }
  651. err = check_ctx_access(env, off, size, t);
  652. if (!err && t == BPF_READ && value_regno >= 0)
  653. mark_reg_unknown_value(state->regs, value_regno);
  654. } else if (state->regs[regno].type == FRAME_PTR ||
  655. state->regs[regno].type == PTR_TO_STACK) {
  656. if (off >= 0 || off < -MAX_BPF_STACK) {
  657. verbose("invalid stack off=%d size=%d\n", off, size);
  658. return -EACCES;
  659. }
  660. if (t == BPF_WRITE) {
  661. if (!env->allow_ptr_leaks &&
  662. state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
  663. size != BPF_REG_SIZE) {
  664. verbose("attempt to corrupt spilled pointer on stack\n");
  665. return -EACCES;
  666. }
  667. err = check_stack_write(state, off, size, value_regno);
  668. } else {
  669. err = check_stack_read(state, off, size, value_regno);
  670. }
  671. } else {
  672. verbose("R%d invalid mem access '%s'\n",
  673. regno, reg_type_str[state->regs[regno].type]);
  674. return -EACCES;
  675. }
  676. return err;
  677. }
  678. static int check_xadd(struct verifier_env *env, struct bpf_insn *insn)
  679. {
  680. struct reg_state *regs = env->cur_state.regs;
  681. int err;
  682. if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
  683. insn->imm != 0) {
  684. verbose("BPF_XADD uses reserved fields\n");
  685. return -EINVAL;
  686. }
  687. /* check src1 operand */
  688. err = check_reg_arg(regs, insn->src_reg, SRC_OP);
  689. if (err)
  690. return err;
  691. /* check src2 operand */
  692. err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
  693. if (err)
  694. return err;
  695. /* check whether atomic_add can read the memory */
  696. err = check_mem_access(env, insn->dst_reg, insn->off,
  697. BPF_SIZE(insn->code), BPF_READ, -1);
  698. if (err)
  699. return err;
  700. /* check whether atomic_add can write into the same memory */
  701. return check_mem_access(env, insn->dst_reg, insn->off,
  702. BPF_SIZE(insn->code), BPF_WRITE, -1);
  703. }
  704. /* when register 'regno' is passed into function that will read 'access_size'
  705. * bytes from that pointer, make sure that it's within stack boundary
  706. * and all elements of stack are initialized
  707. */
  708. static int check_stack_boundary(struct verifier_env *env,
  709. int regno, int access_size)
  710. {
  711. struct verifier_state *state = &env->cur_state;
  712. struct reg_state *regs = state->regs;
  713. int off, i;
  714. if (regs[regno].type != PTR_TO_STACK)
  715. return -EACCES;
  716. off = regs[regno].imm;
  717. if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
  718. access_size <= 0) {
  719. verbose("invalid stack type R%d off=%d access_size=%d\n",
  720. regno, off, access_size);
  721. return -EACCES;
  722. }
  723. for (i = 0; i < access_size; i++) {
  724. if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
  725. verbose("invalid indirect read from stack off %d+%d size %d\n",
  726. off, i, access_size);
  727. return -EACCES;
  728. }
  729. }
  730. return 0;
  731. }
  732. static int check_func_arg(struct verifier_env *env, u32 regno,
  733. enum bpf_arg_type arg_type, struct bpf_map **mapp)
  734. {
  735. struct reg_state *reg = env->cur_state.regs + regno;
  736. enum bpf_reg_type expected_type;
  737. int err = 0;
  738. if (arg_type == ARG_DONTCARE)
  739. return 0;
  740. if (reg->type == NOT_INIT) {
  741. verbose("R%d !read_ok\n", regno);
  742. return -EACCES;
  743. }
  744. if (arg_type == ARG_ANYTHING) {
  745. if (is_pointer_value(env, regno)) {
  746. verbose("R%d leaks addr into helper function\n", regno);
  747. return -EACCES;
  748. }
  749. return 0;
  750. }
  751. if (arg_type == ARG_PTR_TO_STACK || arg_type == ARG_PTR_TO_MAP_KEY ||
  752. arg_type == ARG_PTR_TO_MAP_VALUE) {
  753. expected_type = PTR_TO_STACK;
  754. } else if (arg_type == ARG_CONST_STACK_SIZE) {
  755. expected_type = CONST_IMM;
  756. } else if (arg_type == ARG_CONST_MAP_PTR) {
  757. expected_type = CONST_PTR_TO_MAP;
  758. } else if (arg_type == ARG_PTR_TO_CTX) {
  759. expected_type = PTR_TO_CTX;
  760. } else {
  761. verbose("unsupported arg_type %d\n", arg_type);
  762. return -EFAULT;
  763. }
  764. if (reg->type != expected_type) {
  765. verbose("R%d type=%s expected=%s\n", regno,
  766. reg_type_str[reg->type], reg_type_str[expected_type]);
  767. return -EACCES;
  768. }
  769. if (arg_type == ARG_CONST_MAP_PTR) {
  770. /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
  771. *mapp = reg->map_ptr;
  772. } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
  773. /* bpf_map_xxx(..., map_ptr, ..., key) call:
  774. * check that [key, key + map->key_size) are within
  775. * stack limits and initialized
  776. */
  777. if (!*mapp) {
  778. /* in function declaration map_ptr must come before
  779. * map_key, so that it's verified and known before
  780. * we have to check map_key here. Otherwise it means
  781. * that kernel subsystem misconfigured verifier
  782. */
  783. verbose("invalid map_ptr to access map->key\n");
  784. return -EACCES;
  785. }
  786. err = check_stack_boundary(env, regno, (*mapp)->key_size);
  787. } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
  788. /* bpf_map_xxx(..., map_ptr, ..., value) call:
  789. * check [value, value + map->value_size) validity
  790. */
  791. if (!*mapp) {
  792. /* kernel subsystem misconfigured verifier */
  793. verbose("invalid map_ptr to access map->value\n");
  794. return -EACCES;
  795. }
  796. err = check_stack_boundary(env, regno, (*mapp)->value_size);
  797. } else if (arg_type == ARG_CONST_STACK_SIZE) {
  798. /* bpf_xxx(..., buf, len) call will access 'len' bytes
  799. * from stack pointer 'buf'. Check it
  800. * note: regno == len, regno - 1 == buf
  801. */
  802. if (regno == 0) {
  803. /* kernel subsystem misconfigured verifier */
  804. verbose("ARG_CONST_STACK_SIZE cannot be first argument\n");
  805. return -EACCES;
  806. }
  807. err = check_stack_boundary(env, regno - 1, reg->imm);
  808. }
  809. return err;
  810. }
  811. static int check_map_func_compatibility(struct bpf_map *map, int func_id)
  812. {
  813. bool bool_map, bool_func;
  814. int i;
  815. if (!map)
  816. return 0;
  817. for (i = 0; i < ARRAY_SIZE(func_limit); i++) {
  818. bool_map = (map->map_type == func_limit[i].map_type);
  819. bool_func = (func_id == func_limit[i].func_id);
  820. /* only when map & func pair match it can continue.
  821. * don't allow any other map type to be passed into
  822. * the special func;
  823. */
  824. if (bool_func && bool_map != bool_func) {
  825. verbose("cannot pass map_type %d into func %d\n",
  826. map->map_type, func_id);
  827. return -EINVAL;
  828. }
  829. }
  830. return 0;
  831. }
  832. static int check_call(struct verifier_env *env, int func_id)
  833. {
  834. struct verifier_state *state = &env->cur_state;
  835. const struct bpf_func_proto *fn = NULL;
  836. struct reg_state *regs = state->regs;
  837. struct bpf_map *map = NULL;
  838. struct reg_state *reg;
  839. int i, err;
  840. /* find function prototype */
  841. if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
  842. verbose("invalid func %d\n", func_id);
  843. return -EINVAL;
  844. }
  845. if (env->prog->aux->ops->get_func_proto)
  846. fn = env->prog->aux->ops->get_func_proto(func_id);
  847. if (!fn) {
  848. verbose("unknown func %d\n", func_id);
  849. return -EINVAL;
  850. }
  851. /* eBPF programs must be GPL compatible to use GPL-ed functions */
  852. if (!env->prog->gpl_compatible && fn->gpl_only) {
  853. verbose("cannot call GPL only function from proprietary program\n");
  854. return -EINVAL;
  855. }
  856. /* check args */
  857. err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &map);
  858. if (err)
  859. return err;
  860. err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &map);
  861. if (err)
  862. return err;
  863. err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &map);
  864. if (err)
  865. return err;
  866. err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &map);
  867. if (err)
  868. return err;
  869. err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &map);
  870. if (err)
  871. return err;
  872. /* reset caller saved regs */
  873. for (i = 0; i < CALLER_SAVED_REGS; i++) {
  874. reg = regs + caller_saved[i];
  875. reg->type = NOT_INIT;
  876. reg->imm = 0;
  877. }
  878. /* update return register */
  879. if (fn->ret_type == RET_INTEGER) {
  880. regs[BPF_REG_0].type = UNKNOWN_VALUE;
  881. } else if (fn->ret_type == RET_VOID) {
  882. regs[BPF_REG_0].type = NOT_INIT;
  883. } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
  884. regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
  885. /* remember map_ptr, so that check_map_access()
  886. * can check 'value_size' boundary of memory access
  887. * to map element returned from bpf_map_lookup_elem()
  888. */
  889. if (map == NULL) {
  890. verbose("kernel subsystem misconfigured verifier\n");
  891. return -EINVAL;
  892. }
  893. regs[BPF_REG_0].map_ptr = map;
  894. } else {
  895. verbose("unknown return type %d of func %d\n",
  896. fn->ret_type, func_id);
  897. return -EINVAL;
  898. }
  899. err = check_map_func_compatibility(map, func_id);
  900. if (err)
  901. return err;
  902. return 0;
  903. }
  904. /* check validity of 32-bit and 64-bit arithmetic operations */
  905. static int check_alu_op(struct verifier_env *env, struct bpf_insn *insn)
  906. {
  907. struct reg_state *regs = env->cur_state.regs;
  908. u8 opcode = BPF_OP(insn->code);
  909. int err;
  910. if (opcode == BPF_END || opcode == BPF_NEG) {
  911. if (opcode == BPF_NEG) {
  912. if (BPF_SRC(insn->code) != 0 ||
  913. insn->src_reg != BPF_REG_0 ||
  914. insn->off != 0 || insn->imm != 0) {
  915. verbose("BPF_NEG uses reserved fields\n");
  916. return -EINVAL;
  917. }
  918. } else {
  919. if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
  920. (insn->imm != 16 && insn->imm != 32 && insn->imm != 64)) {
  921. verbose("BPF_END uses reserved fields\n");
  922. return -EINVAL;
  923. }
  924. }
  925. /* check src operand */
  926. err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
  927. if (err)
  928. return err;
  929. if (is_pointer_value(env, insn->dst_reg)) {
  930. verbose("R%d pointer arithmetic prohibited\n",
  931. insn->dst_reg);
  932. return -EACCES;
  933. }
  934. /* check dest operand */
  935. err = check_reg_arg(regs, insn->dst_reg, DST_OP);
  936. if (err)
  937. return err;
  938. } else if (opcode == BPF_MOV) {
  939. if (BPF_SRC(insn->code) == BPF_X) {
  940. if (insn->imm != 0 || insn->off != 0) {
  941. verbose("BPF_MOV uses reserved fields\n");
  942. return -EINVAL;
  943. }
  944. /* check src operand */
  945. err = check_reg_arg(regs, insn->src_reg, SRC_OP);
  946. if (err)
  947. return err;
  948. } else {
  949. if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
  950. verbose("BPF_MOV uses reserved fields\n");
  951. return -EINVAL;
  952. }
  953. }
  954. /* check dest operand */
  955. err = check_reg_arg(regs, insn->dst_reg, DST_OP);
  956. if (err)
  957. return err;
  958. if (BPF_SRC(insn->code) == BPF_X) {
  959. if (BPF_CLASS(insn->code) == BPF_ALU64) {
  960. /* case: R1 = R2
  961. * copy register state to dest reg
  962. */
  963. regs[insn->dst_reg] = regs[insn->src_reg];
  964. } else {
  965. if (is_pointer_value(env, insn->src_reg)) {
  966. verbose("R%d partial copy of pointer\n",
  967. insn->src_reg);
  968. return -EACCES;
  969. }
  970. regs[insn->dst_reg].type = UNKNOWN_VALUE;
  971. regs[insn->dst_reg].map_ptr = NULL;
  972. }
  973. } else {
  974. /* case: R = imm
  975. * remember the value we stored into this reg
  976. */
  977. regs[insn->dst_reg].type = CONST_IMM;
  978. regs[insn->dst_reg].imm = insn->imm;
  979. }
  980. } else if (opcode > BPF_END) {
  981. verbose("invalid BPF_ALU opcode %x\n", opcode);
  982. return -EINVAL;
  983. } else { /* all other ALU ops: and, sub, xor, add, ... */
  984. bool stack_relative = false;
  985. if (BPF_SRC(insn->code) == BPF_X) {
  986. if (insn->imm != 0 || insn->off != 0) {
  987. verbose("BPF_ALU uses reserved fields\n");
  988. return -EINVAL;
  989. }
  990. /* check src1 operand */
  991. err = check_reg_arg(regs, insn->src_reg, SRC_OP);
  992. if (err)
  993. return err;
  994. } else {
  995. if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
  996. verbose("BPF_ALU uses reserved fields\n");
  997. return -EINVAL;
  998. }
  999. }
  1000. /* check src2 operand */
  1001. err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
  1002. if (err)
  1003. return err;
  1004. if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
  1005. BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
  1006. verbose("div by zero\n");
  1007. return -EINVAL;
  1008. }
  1009. if ((opcode == BPF_LSH || opcode == BPF_RSH ||
  1010. opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
  1011. int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
  1012. if (insn->imm < 0 || insn->imm >= size) {
  1013. verbose("invalid shift %d\n", insn->imm);
  1014. return -EINVAL;
  1015. }
  1016. }
  1017. /* pattern match 'bpf_add Rx, imm' instruction */
  1018. if (opcode == BPF_ADD && BPF_CLASS(insn->code) == BPF_ALU64 &&
  1019. regs[insn->dst_reg].type == FRAME_PTR &&
  1020. BPF_SRC(insn->code) == BPF_K) {
  1021. stack_relative = true;
  1022. } else if (is_pointer_value(env, insn->dst_reg)) {
  1023. verbose("R%d pointer arithmetic prohibited\n",
  1024. insn->dst_reg);
  1025. return -EACCES;
  1026. } else if (BPF_SRC(insn->code) == BPF_X &&
  1027. is_pointer_value(env, insn->src_reg)) {
  1028. verbose("R%d pointer arithmetic prohibited\n",
  1029. insn->src_reg);
  1030. return -EACCES;
  1031. }
  1032. /* check dest operand */
  1033. err = check_reg_arg(regs, insn->dst_reg, DST_OP);
  1034. if (err)
  1035. return err;
  1036. if (stack_relative) {
  1037. regs[insn->dst_reg].type = PTR_TO_STACK;
  1038. regs[insn->dst_reg].imm = insn->imm;
  1039. }
  1040. }
  1041. return 0;
  1042. }
  1043. static int check_cond_jmp_op(struct verifier_env *env,
  1044. struct bpf_insn *insn, int *insn_idx)
  1045. {
  1046. struct reg_state *regs = env->cur_state.regs;
  1047. struct verifier_state *other_branch;
  1048. u8 opcode = BPF_OP(insn->code);
  1049. int err;
  1050. if (opcode > BPF_EXIT) {
  1051. verbose("invalid BPF_JMP opcode %x\n", opcode);
  1052. return -EINVAL;
  1053. }
  1054. if (BPF_SRC(insn->code) == BPF_X) {
  1055. if (insn->imm != 0) {
  1056. verbose("BPF_JMP uses reserved fields\n");
  1057. return -EINVAL;
  1058. }
  1059. /* check src1 operand */
  1060. err = check_reg_arg(regs, insn->src_reg, SRC_OP);
  1061. if (err)
  1062. return err;
  1063. if (is_pointer_value(env, insn->src_reg)) {
  1064. verbose("R%d pointer comparison prohibited\n",
  1065. insn->src_reg);
  1066. return -EACCES;
  1067. }
  1068. } else {
  1069. if (insn->src_reg != BPF_REG_0) {
  1070. verbose("BPF_JMP uses reserved fields\n");
  1071. return -EINVAL;
  1072. }
  1073. }
  1074. /* check src2 operand */
  1075. err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
  1076. if (err)
  1077. return err;
  1078. /* detect if R == 0 where R was initialized to zero earlier */
  1079. if (BPF_SRC(insn->code) == BPF_K &&
  1080. (opcode == BPF_JEQ || opcode == BPF_JNE) &&
  1081. regs[insn->dst_reg].type == CONST_IMM &&
  1082. regs[insn->dst_reg].imm == insn->imm) {
  1083. if (opcode == BPF_JEQ) {
  1084. /* if (imm == imm) goto pc+off;
  1085. * only follow the goto, ignore fall-through
  1086. */
  1087. *insn_idx += insn->off;
  1088. return 0;
  1089. } else {
  1090. /* if (imm != imm) goto pc+off;
  1091. * only follow fall-through branch, since
  1092. * that's where the program will go
  1093. */
  1094. return 0;
  1095. }
  1096. }
  1097. other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
  1098. if (!other_branch)
  1099. return -EFAULT;
  1100. /* detect if R == 0 where R is returned value from bpf_map_lookup_elem() */
  1101. if (BPF_SRC(insn->code) == BPF_K &&
  1102. insn->imm == 0 && (opcode == BPF_JEQ ||
  1103. opcode == BPF_JNE) &&
  1104. regs[insn->dst_reg].type == PTR_TO_MAP_VALUE_OR_NULL) {
  1105. if (opcode == BPF_JEQ) {
  1106. /* next fallthrough insn can access memory via
  1107. * this register
  1108. */
  1109. regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
  1110. /* branch targer cannot access it, since reg == 0 */
  1111. other_branch->regs[insn->dst_reg].type = CONST_IMM;
  1112. other_branch->regs[insn->dst_reg].imm = 0;
  1113. } else {
  1114. other_branch->regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
  1115. regs[insn->dst_reg].type = CONST_IMM;
  1116. regs[insn->dst_reg].imm = 0;
  1117. }
  1118. } else if (is_pointer_value(env, insn->dst_reg)) {
  1119. verbose("R%d pointer comparison prohibited\n", insn->dst_reg);
  1120. return -EACCES;
  1121. } else if (BPF_SRC(insn->code) == BPF_K &&
  1122. (opcode == BPF_JEQ || opcode == BPF_JNE)) {
  1123. if (opcode == BPF_JEQ) {
  1124. /* detect if (R == imm) goto
  1125. * and in the target state recognize that R = imm
  1126. */
  1127. other_branch->regs[insn->dst_reg].type = CONST_IMM;
  1128. other_branch->regs[insn->dst_reg].imm = insn->imm;
  1129. } else {
  1130. /* detect if (R != imm) goto
  1131. * and in the fall-through state recognize that R = imm
  1132. */
  1133. regs[insn->dst_reg].type = CONST_IMM;
  1134. regs[insn->dst_reg].imm = insn->imm;
  1135. }
  1136. }
  1137. if (log_level)
  1138. print_verifier_state(env);
  1139. return 0;
  1140. }
  1141. /* return the map pointer stored inside BPF_LD_IMM64 instruction */
  1142. static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
  1143. {
  1144. u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
  1145. return (struct bpf_map *) (unsigned long) imm64;
  1146. }
  1147. /* verify BPF_LD_IMM64 instruction */
  1148. static int check_ld_imm(struct verifier_env *env, struct bpf_insn *insn)
  1149. {
  1150. struct reg_state *regs = env->cur_state.regs;
  1151. int err;
  1152. if (BPF_SIZE(insn->code) != BPF_DW) {
  1153. verbose("invalid BPF_LD_IMM insn\n");
  1154. return -EINVAL;
  1155. }
  1156. if (insn->off != 0) {
  1157. verbose("BPF_LD_IMM64 uses reserved fields\n");
  1158. return -EINVAL;
  1159. }
  1160. err = check_reg_arg(regs, insn->dst_reg, DST_OP);
  1161. if (err)
  1162. return err;
  1163. if (insn->src_reg == 0)
  1164. /* generic move 64-bit immediate into a register */
  1165. return 0;
  1166. /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
  1167. BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
  1168. regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
  1169. regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
  1170. return 0;
  1171. }
  1172. static bool may_access_skb(enum bpf_prog_type type)
  1173. {
  1174. switch (type) {
  1175. case BPF_PROG_TYPE_SOCKET_FILTER:
  1176. case BPF_PROG_TYPE_SCHED_CLS:
  1177. case BPF_PROG_TYPE_SCHED_ACT:
  1178. return true;
  1179. default:
  1180. return false;
  1181. }
  1182. }
  1183. /* verify safety of LD_ABS|LD_IND instructions:
  1184. * - they can only appear in the programs where ctx == skb
  1185. * - since they are wrappers of function calls, they scratch R1-R5 registers,
  1186. * preserve R6-R9, and store return value into R0
  1187. *
  1188. * Implicit input:
  1189. * ctx == skb == R6 == CTX
  1190. *
  1191. * Explicit input:
  1192. * SRC == any register
  1193. * IMM == 32-bit immediate
  1194. *
  1195. * Output:
  1196. * R0 - 8/16/32-bit skb data converted to cpu endianness
  1197. */
  1198. static int check_ld_abs(struct verifier_env *env, struct bpf_insn *insn)
  1199. {
  1200. struct reg_state *regs = env->cur_state.regs;
  1201. u8 mode = BPF_MODE(insn->code);
  1202. struct reg_state *reg;
  1203. int i, err;
  1204. if (!may_access_skb(env->prog->type)) {
  1205. verbose("BPF_LD_ABS|IND instructions not allowed for this program type\n");
  1206. return -EINVAL;
  1207. }
  1208. if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
  1209. (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
  1210. verbose("BPF_LD_ABS uses reserved fields\n");
  1211. return -EINVAL;
  1212. }
  1213. /* check whether implicit source operand (register R6) is readable */
  1214. err = check_reg_arg(regs, BPF_REG_6, SRC_OP);
  1215. if (err)
  1216. return err;
  1217. if (regs[BPF_REG_6].type != PTR_TO_CTX) {
  1218. verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
  1219. return -EINVAL;
  1220. }
  1221. if (mode == BPF_IND) {
  1222. /* check explicit source operand */
  1223. err = check_reg_arg(regs, insn->src_reg, SRC_OP);
  1224. if (err)
  1225. return err;
  1226. }
  1227. /* reset caller saved regs to unreadable */
  1228. for (i = 0; i < CALLER_SAVED_REGS; i++) {
  1229. reg = regs + caller_saved[i];
  1230. reg->type = NOT_INIT;
  1231. reg->imm = 0;
  1232. }
  1233. /* mark destination R0 register as readable, since it contains
  1234. * the value fetched from the packet
  1235. */
  1236. regs[BPF_REG_0].type = UNKNOWN_VALUE;
  1237. return 0;
  1238. }
  1239. /* non-recursive DFS pseudo code
  1240. * 1 procedure DFS-iterative(G,v):
  1241. * 2 label v as discovered
  1242. * 3 let S be a stack
  1243. * 4 S.push(v)
  1244. * 5 while S is not empty
  1245. * 6 t <- S.pop()
  1246. * 7 if t is what we're looking for:
  1247. * 8 return t
  1248. * 9 for all edges e in G.adjacentEdges(t) do
  1249. * 10 if edge e is already labelled
  1250. * 11 continue with the next edge
  1251. * 12 w <- G.adjacentVertex(t,e)
  1252. * 13 if vertex w is not discovered and not explored
  1253. * 14 label e as tree-edge
  1254. * 15 label w as discovered
  1255. * 16 S.push(w)
  1256. * 17 continue at 5
  1257. * 18 else if vertex w is discovered
  1258. * 19 label e as back-edge
  1259. * 20 else
  1260. * 21 // vertex w is explored
  1261. * 22 label e as forward- or cross-edge
  1262. * 23 label t as explored
  1263. * 24 S.pop()
  1264. *
  1265. * convention:
  1266. * 0x10 - discovered
  1267. * 0x11 - discovered and fall-through edge labelled
  1268. * 0x12 - discovered and fall-through and branch edges labelled
  1269. * 0x20 - explored
  1270. */
  1271. enum {
  1272. DISCOVERED = 0x10,
  1273. EXPLORED = 0x20,
  1274. FALLTHROUGH = 1,
  1275. BRANCH = 2,
  1276. };
  1277. #define STATE_LIST_MARK ((struct verifier_state_list *) -1L)
  1278. static int *insn_stack; /* stack of insns to process */
  1279. static int cur_stack; /* current stack index */
  1280. static int *insn_state;
  1281. /* t, w, e - match pseudo-code above:
  1282. * t - index of current instruction
  1283. * w - next instruction
  1284. * e - edge
  1285. */
  1286. static int push_insn(int t, int w, int e, struct verifier_env *env)
  1287. {
  1288. if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
  1289. return 0;
  1290. if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
  1291. return 0;
  1292. if (w < 0 || w >= env->prog->len) {
  1293. verbose("jump out of range from insn %d to %d\n", t, w);
  1294. return -EINVAL;
  1295. }
  1296. if (e == BRANCH)
  1297. /* mark branch target for state pruning */
  1298. env->explored_states[w] = STATE_LIST_MARK;
  1299. if (insn_state[w] == 0) {
  1300. /* tree-edge */
  1301. insn_state[t] = DISCOVERED | e;
  1302. insn_state[w] = DISCOVERED;
  1303. if (cur_stack >= env->prog->len)
  1304. return -E2BIG;
  1305. insn_stack[cur_stack++] = w;
  1306. return 1;
  1307. } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
  1308. verbose("back-edge from insn %d to %d\n", t, w);
  1309. return -EINVAL;
  1310. } else if (insn_state[w] == EXPLORED) {
  1311. /* forward- or cross-edge */
  1312. insn_state[t] = DISCOVERED | e;
  1313. } else {
  1314. verbose("insn state internal bug\n");
  1315. return -EFAULT;
  1316. }
  1317. return 0;
  1318. }
  1319. /* non-recursive depth-first-search to detect loops in BPF program
  1320. * loop == back-edge in directed graph
  1321. */
  1322. static int check_cfg(struct verifier_env *env)
  1323. {
  1324. struct bpf_insn *insns = env->prog->insnsi;
  1325. int insn_cnt = env->prog->len;
  1326. int ret = 0;
  1327. int i, t;
  1328. insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
  1329. if (!insn_state)
  1330. return -ENOMEM;
  1331. insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
  1332. if (!insn_stack) {
  1333. kfree(insn_state);
  1334. return -ENOMEM;
  1335. }
  1336. insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
  1337. insn_stack[0] = 0; /* 0 is the first instruction */
  1338. cur_stack = 1;
  1339. peek_stack:
  1340. if (cur_stack == 0)
  1341. goto check_state;
  1342. t = insn_stack[cur_stack - 1];
  1343. if (BPF_CLASS(insns[t].code) == BPF_JMP) {
  1344. u8 opcode = BPF_OP(insns[t].code);
  1345. if (opcode == BPF_EXIT) {
  1346. goto mark_explored;
  1347. } else if (opcode == BPF_CALL) {
  1348. ret = push_insn(t, t + 1, FALLTHROUGH, env);
  1349. if (ret == 1)
  1350. goto peek_stack;
  1351. else if (ret < 0)
  1352. goto err_free;
  1353. } else if (opcode == BPF_JA) {
  1354. if (BPF_SRC(insns[t].code) != BPF_K) {
  1355. ret = -EINVAL;
  1356. goto err_free;
  1357. }
  1358. /* unconditional jump with single edge */
  1359. ret = push_insn(t, t + insns[t].off + 1,
  1360. FALLTHROUGH, env);
  1361. if (ret == 1)
  1362. goto peek_stack;
  1363. else if (ret < 0)
  1364. goto err_free;
  1365. /* tell verifier to check for equivalent states
  1366. * after every call and jump
  1367. */
  1368. if (t + 1 < insn_cnt)
  1369. env->explored_states[t + 1] = STATE_LIST_MARK;
  1370. } else {
  1371. /* conditional jump with two edges */
  1372. ret = push_insn(t, t + 1, FALLTHROUGH, env);
  1373. if (ret == 1)
  1374. goto peek_stack;
  1375. else if (ret < 0)
  1376. goto err_free;
  1377. ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
  1378. if (ret == 1)
  1379. goto peek_stack;
  1380. else if (ret < 0)
  1381. goto err_free;
  1382. }
  1383. } else {
  1384. /* all other non-branch instructions with single
  1385. * fall-through edge
  1386. */
  1387. ret = push_insn(t, t + 1, FALLTHROUGH, env);
  1388. if (ret == 1)
  1389. goto peek_stack;
  1390. else if (ret < 0)
  1391. goto err_free;
  1392. }
  1393. mark_explored:
  1394. insn_state[t] = EXPLORED;
  1395. if (cur_stack-- <= 0) {
  1396. verbose("pop stack internal bug\n");
  1397. ret = -EFAULT;
  1398. goto err_free;
  1399. }
  1400. goto peek_stack;
  1401. check_state:
  1402. for (i = 0; i < insn_cnt; i++) {
  1403. if (insn_state[i] != EXPLORED) {
  1404. verbose("unreachable insn %d\n", i);
  1405. ret = -EINVAL;
  1406. goto err_free;
  1407. }
  1408. }
  1409. ret = 0; /* cfg looks good */
  1410. err_free:
  1411. kfree(insn_state);
  1412. kfree(insn_stack);
  1413. return ret;
  1414. }
  1415. /* compare two verifier states
  1416. *
  1417. * all states stored in state_list are known to be valid, since
  1418. * verifier reached 'bpf_exit' instruction through them
  1419. *
  1420. * this function is called when verifier exploring different branches of
  1421. * execution popped from the state stack. If it sees an old state that has
  1422. * more strict register state and more strict stack state then this execution
  1423. * branch doesn't need to be explored further, since verifier already
  1424. * concluded that more strict state leads to valid finish.
  1425. *
  1426. * Therefore two states are equivalent if register state is more conservative
  1427. * and explored stack state is more conservative than the current one.
  1428. * Example:
  1429. * explored current
  1430. * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
  1431. * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
  1432. *
  1433. * In other words if current stack state (one being explored) has more
  1434. * valid slots than old one that already passed validation, it means
  1435. * the verifier can stop exploring and conclude that current state is valid too
  1436. *
  1437. * Similarly with registers. If explored state has register type as invalid
  1438. * whereas register type in current state is meaningful, it means that
  1439. * the current state will reach 'bpf_exit' instruction safely
  1440. */
  1441. static bool states_equal(struct verifier_state *old, struct verifier_state *cur)
  1442. {
  1443. int i;
  1444. for (i = 0; i < MAX_BPF_REG; i++) {
  1445. if (memcmp(&old->regs[i], &cur->regs[i],
  1446. sizeof(old->regs[0])) != 0) {
  1447. if (old->regs[i].type == NOT_INIT ||
  1448. (old->regs[i].type == UNKNOWN_VALUE &&
  1449. cur->regs[i].type != NOT_INIT))
  1450. continue;
  1451. return false;
  1452. }
  1453. }
  1454. for (i = 0; i < MAX_BPF_STACK; i++) {
  1455. if (old->stack_slot_type[i] == STACK_INVALID)
  1456. continue;
  1457. if (old->stack_slot_type[i] != cur->stack_slot_type[i])
  1458. /* Ex: old explored (safe) state has STACK_SPILL in
  1459. * this stack slot, but current has has STACK_MISC ->
  1460. * this verifier states are not equivalent,
  1461. * return false to continue verification of this path
  1462. */
  1463. return false;
  1464. if (i % BPF_REG_SIZE)
  1465. continue;
  1466. if (memcmp(&old->spilled_regs[i / BPF_REG_SIZE],
  1467. &cur->spilled_regs[i / BPF_REG_SIZE],
  1468. sizeof(old->spilled_regs[0])))
  1469. /* when explored and current stack slot types are
  1470. * the same, check that stored pointers types
  1471. * are the same as well.
  1472. * Ex: explored safe path could have stored
  1473. * (struct reg_state) {.type = PTR_TO_STACK, .imm = -8}
  1474. * but current path has stored:
  1475. * (struct reg_state) {.type = PTR_TO_STACK, .imm = -16}
  1476. * such verifier states are not equivalent.
  1477. * return false to continue verification of this path
  1478. */
  1479. return false;
  1480. else
  1481. continue;
  1482. }
  1483. return true;
  1484. }
  1485. static int is_state_visited(struct verifier_env *env, int insn_idx)
  1486. {
  1487. struct verifier_state_list *new_sl;
  1488. struct verifier_state_list *sl;
  1489. sl = env->explored_states[insn_idx];
  1490. if (!sl)
  1491. /* this 'insn_idx' instruction wasn't marked, so we will not
  1492. * be doing state search here
  1493. */
  1494. return 0;
  1495. while (sl != STATE_LIST_MARK) {
  1496. if (states_equal(&sl->state, &env->cur_state))
  1497. /* reached equivalent register/stack state,
  1498. * prune the search
  1499. */
  1500. return 1;
  1501. sl = sl->next;
  1502. }
  1503. /* there were no equivalent states, remember current one.
  1504. * technically the current state is not proven to be safe yet,
  1505. * but it will either reach bpf_exit (which means it's safe) or
  1506. * it will be rejected. Since there are no loops, we won't be
  1507. * seeing this 'insn_idx' instruction again on the way to bpf_exit
  1508. */
  1509. new_sl = kmalloc(sizeof(struct verifier_state_list), GFP_USER);
  1510. if (!new_sl)
  1511. return -ENOMEM;
  1512. /* add new state to the head of linked list */
  1513. memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
  1514. new_sl->next = env->explored_states[insn_idx];
  1515. env->explored_states[insn_idx] = new_sl;
  1516. return 0;
  1517. }
  1518. static int do_check(struct verifier_env *env)
  1519. {
  1520. struct verifier_state *state = &env->cur_state;
  1521. struct bpf_insn *insns = env->prog->insnsi;
  1522. struct reg_state *regs = state->regs;
  1523. int insn_cnt = env->prog->len;
  1524. int insn_idx, prev_insn_idx = 0;
  1525. int insn_processed = 0;
  1526. bool do_print_state = false;
  1527. init_reg_state(regs);
  1528. insn_idx = 0;
  1529. for (;;) {
  1530. struct bpf_insn *insn;
  1531. u8 class;
  1532. int err;
  1533. if (insn_idx >= insn_cnt) {
  1534. verbose("invalid insn idx %d insn_cnt %d\n",
  1535. insn_idx, insn_cnt);
  1536. return -EFAULT;
  1537. }
  1538. insn = &insns[insn_idx];
  1539. class = BPF_CLASS(insn->code);
  1540. if (++insn_processed > 32768) {
  1541. verbose("BPF program is too large. Proccessed %d insn\n",
  1542. insn_processed);
  1543. return -E2BIG;
  1544. }
  1545. err = is_state_visited(env, insn_idx);
  1546. if (err < 0)
  1547. return err;
  1548. if (err == 1) {
  1549. /* found equivalent state, can prune the search */
  1550. if (log_level) {
  1551. if (do_print_state)
  1552. verbose("\nfrom %d to %d: safe\n",
  1553. prev_insn_idx, insn_idx);
  1554. else
  1555. verbose("%d: safe\n", insn_idx);
  1556. }
  1557. goto process_bpf_exit;
  1558. }
  1559. if (log_level && do_print_state) {
  1560. verbose("\nfrom %d to %d:", prev_insn_idx, insn_idx);
  1561. print_verifier_state(env);
  1562. do_print_state = false;
  1563. }
  1564. if (log_level) {
  1565. verbose("%d: ", insn_idx);
  1566. print_bpf_insn(insn);
  1567. }
  1568. if (class == BPF_ALU || class == BPF_ALU64) {
  1569. err = check_alu_op(env, insn);
  1570. if (err)
  1571. return err;
  1572. } else if (class == BPF_LDX) {
  1573. enum bpf_reg_type src_reg_type;
  1574. /* check for reserved fields is already done */
  1575. /* check src operand */
  1576. err = check_reg_arg(regs, insn->src_reg, SRC_OP);
  1577. if (err)
  1578. return err;
  1579. err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
  1580. if (err)
  1581. return err;
  1582. src_reg_type = regs[insn->src_reg].type;
  1583. /* check that memory (src_reg + off) is readable,
  1584. * the state of dst_reg will be updated by this func
  1585. */
  1586. err = check_mem_access(env, insn->src_reg, insn->off,
  1587. BPF_SIZE(insn->code), BPF_READ,
  1588. insn->dst_reg);
  1589. if (err)
  1590. return err;
  1591. if (BPF_SIZE(insn->code) != BPF_W) {
  1592. insn_idx++;
  1593. continue;
  1594. }
  1595. if (insn->imm == 0) {
  1596. /* saw a valid insn
  1597. * dst_reg = *(u32 *)(src_reg + off)
  1598. * use reserved 'imm' field to mark this insn
  1599. */
  1600. insn->imm = src_reg_type;
  1601. } else if (src_reg_type != insn->imm &&
  1602. (src_reg_type == PTR_TO_CTX ||
  1603. insn->imm == PTR_TO_CTX)) {
  1604. /* ABuser program is trying to use the same insn
  1605. * dst_reg = *(u32*) (src_reg + off)
  1606. * with different pointer types:
  1607. * src_reg == ctx in one branch and
  1608. * src_reg == stack|map in some other branch.
  1609. * Reject it.
  1610. */
  1611. verbose("same insn cannot be used with different pointers\n");
  1612. return -EINVAL;
  1613. }
  1614. } else if (class == BPF_STX) {
  1615. enum bpf_reg_type dst_reg_type;
  1616. if (BPF_MODE(insn->code) == BPF_XADD) {
  1617. err = check_xadd(env, insn);
  1618. if (err)
  1619. return err;
  1620. insn_idx++;
  1621. continue;
  1622. }
  1623. /* check src1 operand */
  1624. err = check_reg_arg(regs, insn->src_reg, SRC_OP);
  1625. if (err)
  1626. return err;
  1627. /* check src2 operand */
  1628. err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
  1629. if (err)
  1630. return err;
  1631. dst_reg_type = regs[insn->dst_reg].type;
  1632. /* check that memory (dst_reg + off) is writeable */
  1633. err = check_mem_access(env, insn->dst_reg, insn->off,
  1634. BPF_SIZE(insn->code), BPF_WRITE,
  1635. insn->src_reg);
  1636. if (err)
  1637. return err;
  1638. if (insn->imm == 0) {
  1639. insn->imm = dst_reg_type;
  1640. } else if (dst_reg_type != insn->imm &&
  1641. (dst_reg_type == PTR_TO_CTX ||
  1642. insn->imm == PTR_TO_CTX)) {
  1643. verbose("same insn cannot be used with different pointers\n");
  1644. return -EINVAL;
  1645. }
  1646. } else if (class == BPF_ST) {
  1647. if (BPF_MODE(insn->code) != BPF_MEM ||
  1648. insn->src_reg != BPF_REG_0) {
  1649. verbose("BPF_ST uses reserved fields\n");
  1650. return -EINVAL;
  1651. }
  1652. /* check src operand */
  1653. err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
  1654. if (err)
  1655. return err;
  1656. /* check that memory (dst_reg + off) is writeable */
  1657. err = check_mem_access(env, insn->dst_reg, insn->off,
  1658. BPF_SIZE(insn->code), BPF_WRITE,
  1659. -1);
  1660. if (err)
  1661. return err;
  1662. } else if (class == BPF_JMP) {
  1663. u8 opcode = BPF_OP(insn->code);
  1664. if (opcode == BPF_CALL) {
  1665. if (BPF_SRC(insn->code) != BPF_K ||
  1666. insn->off != 0 ||
  1667. insn->src_reg != BPF_REG_0 ||
  1668. insn->dst_reg != BPF_REG_0) {
  1669. verbose("BPF_CALL uses reserved fields\n");
  1670. return -EINVAL;
  1671. }
  1672. err = check_call(env, insn->imm);
  1673. if (err)
  1674. return err;
  1675. } else if (opcode == BPF_JA) {
  1676. if (BPF_SRC(insn->code) != BPF_K ||
  1677. insn->imm != 0 ||
  1678. insn->src_reg != BPF_REG_0 ||
  1679. insn->dst_reg != BPF_REG_0) {
  1680. verbose("BPF_JA uses reserved fields\n");
  1681. return -EINVAL;
  1682. }
  1683. insn_idx += insn->off + 1;
  1684. continue;
  1685. } else if (opcode == BPF_EXIT) {
  1686. if (BPF_SRC(insn->code) != BPF_K ||
  1687. insn->imm != 0 ||
  1688. insn->src_reg != BPF_REG_0 ||
  1689. insn->dst_reg != BPF_REG_0) {
  1690. verbose("BPF_EXIT uses reserved fields\n");
  1691. return -EINVAL;
  1692. }
  1693. /* eBPF calling convetion is such that R0 is used
  1694. * to return the value from eBPF program.
  1695. * Make sure that it's readable at this time
  1696. * of bpf_exit, which means that program wrote
  1697. * something into it earlier
  1698. */
  1699. err = check_reg_arg(regs, BPF_REG_0, SRC_OP);
  1700. if (err)
  1701. return err;
  1702. if (is_pointer_value(env, BPF_REG_0)) {
  1703. verbose("R0 leaks addr as return value\n");
  1704. return -EACCES;
  1705. }
  1706. process_bpf_exit:
  1707. insn_idx = pop_stack(env, &prev_insn_idx);
  1708. if (insn_idx < 0) {
  1709. break;
  1710. } else {
  1711. do_print_state = true;
  1712. continue;
  1713. }
  1714. } else {
  1715. err = check_cond_jmp_op(env, insn, &insn_idx);
  1716. if (err)
  1717. return err;
  1718. }
  1719. } else if (class == BPF_LD) {
  1720. u8 mode = BPF_MODE(insn->code);
  1721. if (mode == BPF_ABS || mode == BPF_IND) {
  1722. err = check_ld_abs(env, insn);
  1723. if (err)
  1724. return err;
  1725. } else if (mode == BPF_IMM) {
  1726. err = check_ld_imm(env, insn);
  1727. if (err)
  1728. return err;
  1729. insn_idx++;
  1730. } else {
  1731. verbose("invalid BPF_LD mode\n");
  1732. return -EINVAL;
  1733. }
  1734. } else {
  1735. verbose("unknown insn class %d\n", class);
  1736. return -EINVAL;
  1737. }
  1738. insn_idx++;
  1739. }
  1740. return 0;
  1741. }
  1742. /* look for pseudo eBPF instructions that access map FDs and
  1743. * replace them with actual map pointers
  1744. */
  1745. static int replace_map_fd_with_map_ptr(struct verifier_env *env)
  1746. {
  1747. struct bpf_insn *insn = env->prog->insnsi;
  1748. int insn_cnt = env->prog->len;
  1749. int i, j;
  1750. for (i = 0; i < insn_cnt; i++, insn++) {
  1751. if (BPF_CLASS(insn->code) == BPF_LDX &&
  1752. (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
  1753. verbose("BPF_LDX uses reserved fields\n");
  1754. return -EINVAL;
  1755. }
  1756. if (BPF_CLASS(insn->code) == BPF_STX &&
  1757. ((BPF_MODE(insn->code) != BPF_MEM &&
  1758. BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
  1759. verbose("BPF_STX uses reserved fields\n");
  1760. return -EINVAL;
  1761. }
  1762. if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
  1763. struct bpf_map *map;
  1764. struct fd f;
  1765. if (i == insn_cnt - 1 || insn[1].code != 0 ||
  1766. insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
  1767. insn[1].off != 0) {
  1768. verbose("invalid bpf_ld_imm64 insn\n");
  1769. return -EINVAL;
  1770. }
  1771. if (insn->src_reg == 0)
  1772. /* valid generic load 64-bit imm */
  1773. goto next_insn;
  1774. if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
  1775. verbose("unrecognized bpf_ld_imm64 insn\n");
  1776. return -EINVAL;
  1777. }
  1778. f = fdget(insn->imm);
  1779. map = __bpf_map_get(f);
  1780. if (IS_ERR(map)) {
  1781. verbose("fd %d is not pointing to valid bpf_map\n",
  1782. insn->imm);
  1783. fdput(f);
  1784. return PTR_ERR(map);
  1785. }
  1786. /* store map pointer inside BPF_LD_IMM64 instruction */
  1787. insn[0].imm = (u32) (unsigned long) map;
  1788. insn[1].imm = ((u64) (unsigned long) map) >> 32;
  1789. /* check whether we recorded this map already */
  1790. for (j = 0; j < env->used_map_cnt; j++)
  1791. if (env->used_maps[j] == map) {
  1792. fdput(f);
  1793. goto next_insn;
  1794. }
  1795. if (env->used_map_cnt >= MAX_USED_MAPS) {
  1796. fdput(f);
  1797. return -E2BIG;
  1798. }
  1799. /* remember this map */
  1800. env->used_maps[env->used_map_cnt++] = map;
  1801. /* hold the map. If the program is rejected by verifier,
  1802. * the map will be released by release_maps() or it
  1803. * will be used by the valid program until it's unloaded
  1804. * and all maps are released in free_bpf_prog_info()
  1805. */
  1806. bpf_map_inc(map, false);
  1807. fdput(f);
  1808. next_insn:
  1809. insn++;
  1810. i++;
  1811. }
  1812. }
  1813. /* now all pseudo BPF_LD_IMM64 instructions load valid
  1814. * 'struct bpf_map *' into a register instead of user map_fd.
  1815. * These pointers will be used later by verifier to validate map access.
  1816. */
  1817. return 0;
  1818. }
  1819. /* drop refcnt of maps used by the rejected program */
  1820. static void release_maps(struct verifier_env *env)
  1821. {
  1822. int i;
  1823. for (i = 0; i < env->used_map_cnt; i++)
  1824. bpf_map_put(env->used_maps[i]);
  1825. }
  1826. /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
  1827. static void convert_pseudo_ld_imm64(struct verifier_env *env)
  1828. {
  1829. struct bpf_insn *insn = env->prog->insnsi;
  1830. int insn_cnt = env->prog->len;
  1831. int i;
  1832. for (i = 0; i < insn_cnt; i++, insn++)
  1833. if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
  1834. insn->src_reg = 0;
  1835. }
  1836. static void adjust_branches(struct bpf_prog *prog, int pos, int delta)
  1837. {
  1838. struct bpf_insn *insn = prog->insnsi;
  1839. int insn_cnt = prog->len;
  1840. int i;
  1841. for (i = 0; i < insn_cnt; i++, insn++) {
  1842. if (BPF_CLASS(insn->code) != BPF_JMP ||
  1843. BPF_OP(insn->code) == BPF_CALL ||
  1844. BPF_OP(insn->code) == BPF_EXIT)
  1845. continue;
  1846. /* adjust offset of jmps if necessary */
  1847. if (i < pos && i + insn->off + 1 > pos)
  1848. insn->off += delta;
  1849. else if (i > pos && i + insn->off + 1 < pos)
  1850. insn->off -= delta;
  1851. }
  1852. }
  1853. /* convert load instructions that access fields of 'struct __sk_buff'
  1854. * into sequence of instructions that access fields of 'struct sk_buff'
  1855. */
  1856. static int convert_ctx_accesses(struct verifier_env *env)
  1857. {
  1858. struct bpf_insn *insn = env->prog->insnsi;
  1859. int insn_cnt = env->prog->len;
  1860. struct bpf_insn insn_buf[16];
  1861. struct bpf_prog *new_prog;
  1862. u32 cnt;
  1863. int i;
  1864. enum bpf_access_type type;
  1865. if (!env->prog->aux->ops->convert_ctx_access)
  1866. return 0;
  1867. for (i = 0; i < insn_cnt; i++, insn++) {
  1868. if (insn->code == (BPF_LDX | BPF_MEM | BPF_W))
  1869. type = BPF_READ;
  1870. else if (insn->code == (BPF_STX | BPF_MEM | BPF_W))
  1871. type = BPF_WRITE;
  1872. else
  1873. continue;
  1874. if (insn->imm != PTR_TO_CTX) {
  1875. /* clear internal mark */
  1876. insn->imm = 0;
  1877. continue;
  1878. }
  1879. cnt = env->prog->aux->ops->
  1880. convert_ctx_access(type, insn->dst_reg, insn->src_reg,
  1881. insn->off, insn_buf, env->prog);
  1882. if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
  1883. verbose("bpf verifier is misconfigured\n");
  1884. return -EINVAL;
  1885. }
  1886. if (cnt == 1) {
  1887. memcpy(insn, insn_buf, sizeof(*insn));
  1888. continue;
  1889. }
  1890. /* several new insns need to be inserted. Make room for them */
  1891. insn_cnt += cnt - 1;
  1892. new_prog = bpf_prog_realloc(env->prog,
  1893. bpf_prog_size(insn_cnt),
  1894. GFP_USER);
  1895. if (!new_prog)
  1896. return -ENOMEM;
  1897. new_prog->len = insn_cnt;
  1898. memmove(new_prog->insnsi + i + cnt, new_prog->insns + i + 1,
  1899. sizeof(*insn) * (insn_cnt - i - cnt));
  1900. /* copy substitute insns in place of load instruction */
  1901. memcpy(new_prog->insnsi + i, insn_buf, sizeof(*insn) * cnt);
  1902. /* adjust branches in the whole program */
  1903. adjust_branches(new_prog, i, cnt - 1);
  1904. /* keep walking new program and skip insns we just inserted */
  1905. env->prog = new_prog;
  1906. insn = new_prog->insnsi + i + cnt - 1;
  1907. i += cnt - 1;
  1908. }
  1909. return 0;
  1910. }
  1911. static void free_states(struct verifier_env *env)
  1912. {
  1913. struct verifier_state_list *sl, *sln;
  1914. int i;
  1915. if (!env->explored_states)
  1916. return;
  1917. for (i = 0; i < env->prog->len; i++) {
  1918. sl = env->explored_states[i];
  1919. if (sl)
  1920. while (sl != STATE_LIST_MARK) {
  1921. sln = sl->next;
  1922. kfree(sl);
  1923. sl = sln;
  1924. }
  1925. }
  1926. kfree(env->explored_states);
  1927. }
  1928. int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
  1929. {
  1930. char __user *log_ubuf = NULL;
  1931. struct verifier_env *env;
  1932. int ret = -EINVAL;
  1933. if ((*prog)->len <= 0 || (*prog)->len > BPF_MAXINSNS)
  1934. return -E2BIG;
  1935. /* 'struct verifier_env' can be global, but since it's not small,
  1936. * allocate/free it every time bpf_check() is called
  1937. */
  1938. env = kzalloc(sizeof(struct verifier_env), GFP_KERNEL);
  1939. if (!env)
  1940. return -ENOMEM;
  1941. env->prog = *prog;
  1942. /* grab the mutex to protect few globals used by verifier */
  1943. mutex_lock(&bpf_verifier_lock);
  1944. if (attr->log_level || attr->log_buf || attr->log_size) {
  1945. /* user requested verbose verifier output
  1946. * and supplied buffer to store the verification trace
  1947. */
  1948. log_level = attr->log_level;
  1949. log_ubuf = (char __user *) (unsigned long) attr->log_buf;
  1950. log_size = attr->log_size;
  1951. log_len = 0;
  1952. ret = -EINVAL;
  1953. /* log_* values have to be sane */
  1954. if (log_size < 128 || log_size > UINT_MAX >> 8 ||
  1955. log_level == 0 || log_ubuf == NULL)
  1956. goto free_env;
  1957. ret = -ENOMEM;
  1958. log_buf = vmalloc(log_size);
  1959. if (!log_buf)
  1960. goto free_env;
  1961. } else {
  1962. log_level = 0;
  1963. }
  1964. ret = replace_map_fd_with_map_ptr(env);
  1965. if (ret < 0)
  1966. goto skip_full_check;
  1967. env->explored_states = kcalloc(env->prog->len,
  1968. sizeof(struct verifier_state_list *),
  1969. GFP_USER);
  1970. ret = -ENOMEM;
  1971. if (!env->explored_states)
  1972. goto skip_full_check;
  1973. ret = check_cfg(env);
  1974. if (ret < 0)
  1975. goto skip_full_check;
  1976. env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
  1977. ret = do_check(env);
  1978. skip_full_check:
  1979. while (pop_stack(env, NULL) >= 0);
  1980. free_states(env);
  1981. if (ret == 0)
  1982. /* program is valid, convert *(u32*)(ctx + off) accesses */
  1983. ret = convert_ctx_accesses(env);
  1984. if (log_level && log_len >= log_size - 1) {
  1985. BUG_ON(log_len >= log_size);
  1986. /* verifier log exceeded user supplied buffer */
  1987. ret = -ENOSPC;
  1988. /* fall through to return what was recorded */
  1989. }
  1990. /* copy verifier log back to user space including trailing zero */
  1991. if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) {
  1992. ret = -EFAULT;
  1993. goto free_log_buf;
  1994. }
  1995. if (ret == 0 && env->used_map_cnt) {
  1996. /* if program passed verifier, update used_maps in bpf_prog_info */
  1997. env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
  1998. sizeof(env->used_maps[0]),
  1999. GFP_KERNEL);
  2000. if (!env->prog->aux->used_maps) {
  2001. ret = -ENOMEM;
  2002. goto free_log_buf;
  2003. }
  2004. memcpy(env->prog->aux->used_maps, env->used_maps,
  2005. sizeof(env->used_maps[0]) * env->used_map_cnt);
  2006. env->prog->aux->used_map_cnt = env->used_map_cnt;
  2007. /* program is valid. Convert pseudo bpf_ld_imm64 into generic
  2008. * bpf_ld_imm64 instructions
  2009. */
  2010. convert_pseudo_ld_imm64(env);
  2011. }
  2012. free_log_buf:
  2013. if (log_level)
  2014. vfree(log_buf);
  2015. free_env:
  2016. if (!env->prog->aux->used_maps)
  2017. /* if we didn't copy map pointers into bpf_prog_info, release
  2018. * them now. Otherwise free_bpf_prog_info() will release them.
  2019. */
  2020. release_maps(env);
  2021. *prog = env->prog;
  2022. kfree(env);
  2023. mutex_unlock(&bpf_verifier_lock);
  2024. return ret;
  2025. }