dsi.c 132 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525
  1. /*
  2. * Copyright (C) 2009 Nokia Corporation
  3. * Author: Tomi Valkeinen <tomi.valkeinen@ti.com>
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms of the GNU General Public License version 2 as published by
  7. * the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * You should have received a copy of the GNU General Public License along with
  15. * this program. If not, see <http://www.gnu.org/licenses/>.
  16. */
  17. #define DSS_SUBSYS_NAME "DSI"
  18. #include <linux/kernel.h>
  19. #include <linux/mfd/syscon.h>
  20. #include <linux/regmap.h>
  21. #include <linux/io.h>
  22. #include <linux/clk.h>
  23. #include <linux/device.h>
  24. #include <linux/err.h>
  25. #include <linux/interrupt.h>
  26. #include <linux/delay.h>
  27. #include <linux/mutex.h>
  28. #include <linux/module.h>
  29. #include <linux/semaphore.h>
  30. #include <linux/seq_file.h>
  31. #include <linux/platform_device.h>
  32. #include <linux/regulator/consumer.h>
  33. #include <linux/wait.h>
  34. #include <linux/workqueue.h>
  35. #include <linux/sched.h>
  36. #include <linux/slab.h>
  37. #include <linux/debugfs.h>
  38. #include <linux/pm_runtime.h>
  39. #include <linux/of.h>
  40. #include <linux/of_graph.h>
  41. #include <linux/of_platform.h>
  42. #include <linux/component.h>
  43. #include <linux/sys_soc.h>
  44. #include <video/mipi_display.h>
  45. #include "omapdss.h"
  46. #include "dss.h"
  47. #define DSI_CATCH_MISSING_TE
  48. struct dsi_reg { u16 module; u16 idx; };
  49. #define DSI_REG(mod, idx) ((const struct dsi_reg) { mod, idx })
  50. /* DSI Protocol Engine */
  51. #define DSI_PROTO 0
  52. #define DSI_PROTO_SZ 0x200
  53. #define DSI_REVISION DSI_REG(DSI_PROTO, 0x0000)
  54. #define DSI_SYSCONFIG DSI_REG(DSI_PROTO, 0x0010)
  55. #define DSI_SYSSTATUS DSI_REG(DSI_PROTO, 0x0014)
  56. #define DSI_IRQSTATUS DSI_REG(DSI_PROTO, 0x0018)
  57. #define DSI_IRQENABLE DSI_REG(DSI_PROTO, 0x001C)
  58. #define DSI_CTRL DSI_REG(DSI_PROTO, 0x0040)
  59. #define DSI_GNQ DSI_REG(DSI_PROTO, 0x0044)
  60. #define DSI_COMPLEXIO_CFG1 DSI_REG(DSI_PROTO, 0x0048)
  61. #define DSI_COMPLEXIO_IRQ_STATUS DSI_REG(DSI_PROTO, 0x004C)
  62. #define DSI_COMPLEXIO_IRQ_ENABLE DSI_REG(DSI_PROTO, 0x0050)
  63. #define DSI_CLK_CTRL DSI_REG(DSI_PROTO, 0x0054)
  64. #define DSI_TIMING1 DSI_REG(DSI_PROTO, 0x0058)
  65. #define DSI_TIMING2 DSI_REG(DSI_PROTO, 0x005C)
  66. #define DSI_VM_TIMING1 DSI_REG(DSI_PROTO, 0x0060)
  67. #define DSI_VM_TIMING2 DSI_REG(DSI_PROTO, 0x0064)
  68. #define DSI_VM_TIMING3 DSI_REG(DSI_PROTO, 0x0068)
  69. #define DSI_CLK_TIMING DSI_REG(DSI_PROTO, 0x006C)
  70. #define DSI_TX_FIFO_VC_SIZE DSI_REG(DSI_PROTO, 0x0070)
  71. #define DSI_RX_FIFO_VC_SIZE DSI_REG(DSI_PROTO, 0x0074)
  72. #define DSI_COMPLEXIO_CFG2 DSI_REG(DSI_PROTO, 0x0078)
  73. #define DSI_RX_FIFO_VC_FULLNESS DSI_REG(DSI_PROTO, 0x007C)
  74. #define DSI_VM_TIMING4 DSI_REG(DSI_PROTO, 0x0080)
  75. #define DSI_TX_FIFO_VC_EMPTINESS DSI_REG(DSI_PROTO, 0x0084)
  76. #define DSI_VM_TIMING5 DSI_REG(DSI_PROTO, 0x0088)
  77. #define DSI_VM_TIMING6 DSI_REG(DSI_PROTO, 0x008C)
  78. #define DSI_VM_TIMING7 DSI_REG(DSI_PROTO, 0x0090)
  79. #define DSI_STOPCLK_TIMING DSI_REG(DSI_PROTO, 0x0094)
  80. #define DSI_VC_CTRL(n) DSI_REG(DSI_PROTO, 0x0100 + (n * 0x20))
  81. #define DSI_VC_TE(n) DSI_REG(DSI_PROTO, 0x0104 + (n * 0x20))
  82. #define DSI_VC_LONG_PACKET_HEADER(n) DSI_REG(DSI_PROTO, 0x0108 + (n * 0x20))
  83. #define DSI_VC_LONG_PACKET_PAYLOAD(n) DSI_REG(DSI_PROTO, 0x010C + (n * 0x20))
  84. #define DSI_VC_SHORT_PACKET_HEADER(n) DSI_REG(DSI_PROTO, 0x0110 + (n * 0x20))
  85. #define DSI_VC_IRQSTATUS(n) DSI_REG(DSI_PROTO, 0x0118 + (n * 0x20))
  86. #define DSI_VC_IRQENABLE(n) DSI_REG(DSI_PROTO, 0x011C + (n * 0x20))
  87. /* DSIPHY_SCP */
  88. #define DSI_PHY 1
  89. #define DSI_PHY_OFFSET 0x200
  90. #define DSI_PHY_SZ 0x40
  91. #define DSI_DSIPHY_CFG0 DSI_REG(DSI_PHY, 0x0000)
  92. #define DSI_DSIPHY_CFG1 DSI_REG(DSI_PHY, 0x0004)
  93. #define DSI_DSIPHY_CFG2 DSI_REG(DSI_PHY, 0x0008)
  94. #define DSI_DSIPHY_CFG5 DSI_REG(DSI_PHY, 0x0014)
  95. #define DSI_DSIPHY_CFG10 DSI_REG(DSI_PHY, 0x0028)
  96. /* DSI_PLL_CTRL_SCP */
  97. #define DSI_PLL 2
  98. #define DSI_PLL_OFFSET 0x300
  99. #define DSI_PLL_SZ 0x20
  100. #define DSI_PLL_CONTROL DSI_REG(DSI_PLL, 0x0000)
  101. #define DSI_PLL_STATUS DSI_REG(DSI_PLL, 0x0004)
  102. #define DSI_PLL_GO DSI_REG(DSI_PLL, 0x0008)
  103. #define DSI_PLL_CONFIGURATION1 DSI_REG(DSI_PLL, 0x000C)
  104. #define DSI_PLL_CONFIGURATION2 DSI_REG(DSI_PLL, 0x0010)
  105. #define REG_GET(dsi, idx, start, end) \
  106. FLD_GET(dsi_read_reg(dsi, idx), start, end)
  107. #define REG_FLD_MOD(dsi, idx, val, start, end) \
  108. dsi_write_reg(dsi, idx, FLD_MOD(dsi_read_reg(dsi, idx), val, start, end))
  109. /* Global interrupts */
  110. #define DSI_IRQ_VC0 (1 << 0)
  111. #define DSI_IRQ_VC1 (1 << 1)
  112. #define DSI_IRQ_VC2 (1 << 2)
  113. #define DSI_IRQ_VC3 (1 << 3)
  114. #define DSI_IRQ_WAKEUP (1 << 4)
  115. #define DSI_IRQ_RESYNC (1 << 5)
  116. #define DSI_IRQ_PLL_LOCK (1 << 7)
  117. #define DSI_IRQ_PLL_UNLOCK (1 << 8)
  118. #define DSI_IRQ_PLL_RECALL (1 << 9)
  119. #define DSI_IRQ_COMPLEXIO_ERR (1 << 10)
  120. #define DSI_IRQ_HS_TX_TIMEOUT (1 << 14)
  121. #define DSI_IRQ_LP_RX_TIMEOUT (1 << 15)
  122. #define DSI_IRQ_TE_TRIGGER (1 << 16)
  123. #define DSI_IRQ_ACK_TRIGGER (1 << 17)
  124. #define DSI_IRQ_SYNC_LOST (1 << 18)
  125. #define DSI_IRQ_LDO_POWER_GOOD (1 << 19)
  126. #define DSI_IRQ_TA_TIMEOUT (1 << 20)
  127. #define DSI_IRQ_ERROR_MASK \
  128. (DSI_IRQ_HS_TX_TIMEOUT | DSI_IRQ_LP_RX_TIMEOUT | DSI_IRQ_SYNC_LOST | \
  129. DSI_IRQ_TA_TIMEOUT)
  130. #define DSI_IRQ_CHANNEL_MASK 0xf
  131. /* Virtual channel interrupts */
  132. #define DSI_VC_IRQ_CS (1 << 0)
  133. #define DSI_VC_IRQ_ECC_CORR (1 << 1)
  134. #define DSI_VC_IRQ_PACKET_SENT (1 << 2)
  135. #define DSI_VC_IRQ_FIFO_TX_OVF (1 << 3)
  136. #define DSI_VC_IRQ_FIFO_RX_OVF (1 << 4)
  137. #define DSI_VC_IRQ_BTA (1 << 5)
  138. #define DSI_VC_IRQ_ECC_NO_CORR (1 << 6)
  139. #define DSI_VC_IRQ_FIFO_TX_UDF (1 << 7)
  140. #define DSI_VC_IRQ_PP_BUSY_CHANGE (1 << 8)
  141. #define DSI_VC_IRQ_ERROR_MASK \
  142. (DSI_VC_IRQ_CS | DSI_VC_IRQ_ECC_CORR | DSI_VC_IRQ_FIFO_TX_OVF | \
  143. DSI_VC_IRQ_FIFO_RX_OVF | DSI_VC_IRQ_ECC_NO_CORR | \
  144. DSI_VC_IRQ_FIFO_TX_UDF)
  145. /* ComplexIO interrupts */
  146. #define DSI_CIO_IRQ_ERRSYNCESC1 (1 << 0)
  147. #define DSI_CIO_IRQ_ERRSYNCESC2 (1 << 1)
  148. #define DSI_CIO_IRQ_ERRSYNCESC3 (1 << 2)
  149. #define DSI_CIO_IRQ_ERRSYNCESC4 (1 << 3)
  150. #define DSI_CIO_IRQ_ERRSYNCESC5 (1 << 4)
  151. #define DSI_CIO_IRQ_ERRESC1 (1 << 5)
  152. #define DSI_CIO_IRQ_ERRESC2 (1 << 6)
  153. #define DSI_CIO_IRQ_ERRESC3 (1 << 7)
  154. #define DSI_CIO_IRQ_ERRESC4 (1 << 8)
  155. #define DSI_CIO_IRQ_ERRESC5 (1 << 9)
  156. #define DSI_CIO_IRQ_ERRCONTROL1 (1 << 10)
  157. #define DSI_CIO_IRQ_ERRCONTROL2 (1 << 11)
  158. #define DSI_CIO_IRQ_ERRCONTROL3 (1 << 12)
  159. #define DSI_CIO_IRQ_ERRCONTROL4 (1 << 13)
  160. #define DSI_CIO_IRQ_ERRCONTROL5 (1 << 14)
  161. #define DSI_CIO_IRQ_STATEULPS1 (1 << 15)
  162. #define DSI_CIO_IRQ_STATEULPS2 (1 << 16)
  163. #define DSI_CIO_IRQ_STATEULPS3 (1 << 17)
  164. #define DSI_CIO_IRQ_STATEULPS4 (1 << 18)
  165. #define DSI_CIO_IRQ_STATEULPS5 (1 << 19)
  166. #define DSI_CIO_IRQ_ERRCONTENTIONLP0_1 (1 << 20)
  167. #define DSI_CIO_IRQ_ERRCONTENTIONLP1_1 (1 << 21)
  168. #define DSI_CIO_IRQ_ERRCONTENTIONLP0_2 (1 << 22)
  169. #define DSI_CIO_IRQ_ERRCONTENTIONLP1_2 (1 << 23)
  170. #define DSI_CIO_IRQ_ERRCONTENTIONLP0_3 (1 << 24)
  171. #define DSI_CIO_IRQ_ERRCONTENTIONLP1_3 (1 << 25)
  172. #define DSI_CIO_IRQ_ERRCONTENTIONLP0_4 (1 << 26)
  173. #define DSI_CIO_IRQ_ERRCONTENTIONLP1_4 (1 << 27)
  174. #define DSI_CIO_IRQ_ERRCONTENTIONLP0_5 (1 << 28)
  175. #define DSI_CIO_IRQ_ERRCONTENTIONLP1_5 (1 << 29)
  176. #define DSI_CIO_IRQ_ULPSACTIVENOT_ALL0 (1 << 30)
  177. #define DSI_CIO_IRQ_ULPSACTIVENOT_ALL1 (1 << 31)
  178. #define DSI_CIO_IRQ_ERROR_MASK \
  179. (DSI_CIO_IRQ_ERRSYNCESC1 | DSI_CIO_IRQ_ERRSYNCESC2 | \
  180. DSI_CIO_IRQ_ERRSYNCESC3 | DSI_CIO_IRQ_ERRSYNCESC4 | \
  181. DSI_CIO_IRQ_ERRSYNCESC5 | \
  182. DSI_CIO_IRQ_ERRESC1 | DSI_CIO_IRQ_ERRESC2 | \
  183. DSI_CIO_IRQ_ERRESC3 | DSI_CIO_IRQ_ERRESC4 | \
  184. DSI_CIO_IRQ_ERRESC5 | \
  185. DSI_CIO_IRQ_ERRCONTROL1 | DSI_CIO_IRQ_ERRCONTROL2 | \
  186. DSI_CIO_IRQ_ERRCONTROL3 | DSI_CIO_IRQ_ERRCONTROL4 | \
  187. DSI_CIO_IRQ_ERRCONTROL5 | \
  188. DSI_CIO_IRQ_ERRCONTENTIONLP0_1 | DSI_CIO_IRQ_ERRCONTENTIONLP1_1 | \
  189. DSI_CIO_IRQ_ERRCONTENTIONLP0_2 | DSI_CIO_IRQ_ERRCONTENTIONLP1_2 | \
  190. DSI_CIO_IRQ_ERRCONTENTIONLP0_3 | DSI_CIO_IRQ_ERRCONTENTIONLP1_3 | \
  191. DSI_CIO_IRQ_ERRCONTENTIONLP0_4 | DSI_CIO_IRQ_ERRCONTENTIONLP1_4 | \
  192. DSI_CIO_IRQ_ERRCONTENTIONLP0_5 | DSI_CIO_IRQ_ERRCONTENTIONLP1_5)
  193. typedef void (*omap_dsi_isr_t) (void *arg, u32 mask);
  194. struct dsi_data;
  195. static int dsi_display_init_dispc(struct dsi_data *dsi);
  196. static void dsi_display_uninit_dispc(struct dsi_data *dsi);
  197. static int dsi_vc_send_null(struct dsi_data *dsi, int channel);
  198. /* DSI PLL HSDIV indices */
  199. #define HSDIV_DISPC 0
  200. #define HSDIV_DSI 1
  201. #define DSI_MAX_NR_ISRS 2
  202. #define DSI_MAX_NR_LANES 5
  203. enum dsi_model {
  204. DSI_MODEL_OMAP3,
  205. DSI_MODEL_OMAP4,
  206. DSI_MODEL_OMAP5,
  207. };
  208. enum dsi_lane_function {
  209. DSI_LANE_UNUSED = 0,
  210. DSI_LANE_CLK,
  211. DSI_LANE_DATA1,
  212. DSI_LANE_DATA2,
  213. DSI_LANE_DATA3,
  214. DSI_LANE_DATA4,
  215. };
  216. struct dsi_lane_config {
  217. enum dsi_lane_function function;
  218. u8 polarity;
  219. };
  220. struct dsi_isr_data {
  221. omap_dsi_isr_t isr;
  222. void *arg;
  223. u32 mask;
  224. };
  225. enum fifo_size {
  226. DSI_FIFO_SIZE_0 = 0,
  227. DSI_FIFO_SIZE_32 = 1,
  228. DSI_FIFO_SIZE_64 = 2,
  229. DSI_FIFO_SIZE_96 = 3,
  230. DSI_FIFO_SIZE_128 = 4,
  231. };
  232. enum dsi_vc_source {
  233. DSI_VC_SOURCE_L4 = 0,
  234. DSI_VC_SOURCE_VP,
  235. };
  236. struct dsi_irq_stats {
  237. unsigned long last_reset;
  238. unsigned int irq_count;
  239. unsigned int dsi_irqs[32];
  240. unsigned int vc_irqs[4][32];
  241. unsigned int cio_irqs[32];
  242. };
  243. struct dsi_isr_tables {
  244. struct dsi_isr_data isr_table[DSI_MAX_NR_ISRS];
  245. struct dsi_isr_data isr_table_vc[4][DSI_MAX_NR_ISRS];
  246. struct dsi_isr_data isr_table_cio[DSI_MAX_NR_ISRS];
  247. };
  248. struct dsi_clk_calc_ctx {
  249. struct dsi_data *dsi;
  250. struct dss_pll *pll;
  251. /* inputs */
  252. const struct omap_dss_dsi_config *config;
  253. unsigned long req_pck_min, req_pck_nom, req_pck_max;
  254. /* outputs */
  255. struct dss_pll_clock_info dsi_cinfo;
  256. struct dispc_clock_info dispc_cinfo;
  257. struct videomode vm;
  258. struct omap_dss_dsi_videomode_timings dsi_vm;
  259. };
  260. struct dsi_lp_clock_info {
  261. unsigned long lp_clk;
  262. u16 lp_clk_div;
  263. };
  264. struct dsi_module_id_data {
  265. u32 address;
  266. int id;
  267. };
  268. enum dsi_quirks {
  269. DSI_QUIRK_PLL_PWR_BUG = (1 << 0), /* DSI-PLL power command 0x3 is not working */
  270. DSI_QUIRK_DCS_CMD_CONFIG_VC = (1 << 1),
  271. DSI_QUIRK_VC_OCP_WIDTH = (1 << 2),
  272. DSI_QUIRK_REVERSE_TXCLKESC = (1 << 3),
  273. DSI_QUIRK_GNQ = (1 << 4),
  274. DSI_QUIRK_PHY_DCC = (1 << 5),
  275. };
  276. struct dsi_of_data {
  277. enum dsi_model model;
  278. const struct dss_pll_hw *pll_hw;
  279. const struct dsi_module_id_data *modules;
  280. unsigned int max_fck_freq;
  281. unsigned int max_pll_lpdiv;
  282. enum dsi_quirks quirks;
  283. };
  284. struct dsi_data {
  285. struct device *dev;
  286. void __iomem *proto_base;
  287. void __iomem *phy_base;
  288. void __iomem *pll_base;
  289. const struct dsi_of_data *data;
  290. int module_id;
  291. int irq;
  292. bool is_enabled;
  293. struct clk *dss_clk;
  294. struct regmap *syscon;
  295. struct dss_device *dss;
  296. struct dispc_clock_info user_dispc_cinfo;
  297. struct dss_pll_clock_info user_dsi_cinfo;
  298. struct dsi_lp_clock_info user_lp_cinfo;
  299. struct dsi_lp_clock_info current_lp_cinfo;
  300. struct dss_pll pll;
  301. bool vdds_dsi_enabled;
  302. struct regulator *vdds_dsi_reg;
  303. struct {
  304. enum dsi_vc_source source;
  305. struct omap_dss_device *dssdev;
  306. enum fifo_size tx_fifo_size;
  307. enum fifo_size rx_fifo_size;
  308. int vc_id;
  309. } vc[4];
  310. struct mutex lock;
  311. struct semaphore bus_lock;
  312. spinlock_t irq_lock;
  313. struct dsi_isr_tables isr_tables;
  314. /* space for a copy used by the interrupt handler */
  315. struct dsi_isr_tables isr_tables_copy;
  316. int update_channel;
  317. #ifdef DSI_PERF_MEASURE
  318. unsigned int update_bytes;
  319. #endif
  320. bool te_enabled;
  321. bool ulps_enabled;
  322. void (*framedone_callback)(int, void *);
  323. void *framedone_data;
  324. struct delayed_work framedone_timeout_work;
  325. #ifdef DSI_CATCH_MISSING_TE
  326. struct timer_list te_timer;
  327. #endif
  328. unsigned long cache_req_pck;
  329. unsigned long cache_clk_freq;
  330. struct dss_pll_clock_info cache_cinfo;
  331. u32 errors;
  332. spinlock_t errors_lock;
  333. #ifdef DSI_PERF_MEASURE
  334. ktime_t perf_setup_time;
  335. ktime_t perf_start_time;
  336. #endif
  337. int debug_read;
  338. int debug_write;
  339. struct {
  340. struct dss_debugfs_entry *irqs;
  341. struct dss_debugfs_entry *regs;
  342. } debugfs;
  343. #ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS
  344. spinlock_t irq_stats_lock;
  345. struct dsi_irq_stats irq_stats;
  346. #endif
  347. unsigned int num_lanes_supported;
  348. unsigned int line_buffer_size;
  349. struct dsi_lane_config lanes[DSI_MAX_NR_LANES];
  350. unsigned int num_lanes_used;
  351. unsigned int scp_clk_refcount;
  352. struct dss_lcd_mgr_config mgr_config;
  353. struct videomode vm;
  354. enum omap_dss_dsi_pixel_format pix_fmt;
  355. enum omap_dss_dsi_mode mode;
  356. struct omap_dss_dsi_videomode_timings vm_timings;
  357. struct omap_dss_device output;
  358. };
  359. struct dsi_packet_sent_handler_data {
  360. struct dsi_data *dsi;
  361. struct completion *completion;
  362. };
  363. #ifdef DSI_PERF_MEASURE
  364. static bool dsi_perf;
  365. module_param(dsi_perf, bool, 0644);
  366. #endif
  367. static inline struct dsi_data *to_dsi_data(struct omap_dss_device *dssdev)
  368. {
  369. return dev_get_drvdata(dssdev->dev);
  370. }
  371. static struct dsi_data *dsi_get_dsi_from_id(int module)
  372. {
  373. struct omap_dss_device *out;
  374. enum omap_dss_output_id id;
  375. switch (module) {
  376. case 0:
  377. id = OMAP_DSS_OUTPUT_DSI1;
  378. break;
  379. case 1:
  380. id = OMAP_DSS_OUTPUT_DSI2;
  381. break;
  382. default:
  383. return NULL;
  384. }
  385. out = omap_dss_get_output(id);
  386. return out ? to_dsi_data(out) : NULL;
  387. }
  388. static inline void dsi_write_reg(struct dsi_data *dsi,
  389. const struct dsi_reg idx, u32 val)
  390. {
  391. void __iomem *base;
  392. switch(idx.module) {
  393. case DSI_PROTO: base = dsi->proto_base; break;
  394. case DSI_PHY: base = dsi->phy_base; break;
  395. case DSI_PLL: base = dsi->pll_base; break;
  396. default: return;
  397. }
  398. __raw_writel(val, base + idx.idx);
  399. }
  400. static inline u32 dsi_read_reg(struct dsi_data *dsi, const struct dsi_reg idx)
  401. {
  402. void __iomem *base;
  403. switch(idx.module) {
  404. case DSI_PROTO: base = dsi->proto_base; break;
  405. case DSI_PHY: base = dsi->phy_base; break;
  406. case DSI_PLL: base = dsi->pll_base; break;
  407. default: return 0;
  408. }
  409. return __raw_readl(base + idx.idx);
  410. }
  411. static void dsi_bus_lock(struct omap_dss_device *dssdev)
  412. {
  413. struct dsi_data *dsi = to_dsi_data(dssdev);
  414. down(&dsi->bus_lock);
  415. }
  416. static void dsi_bus_unlock(struct omap_dss_device *dssdev)
  417. {
  418. struct dsi_data *dsi = to_dsi_data(dssdev);
  419. up(&dsi->bus_lock);
  420. }
  421. static bool dsi_bus_is_locked(struct dsi_data *dsi)
  422. {
  423. return dsi->bus_lock.count == 0;
  424. }
  425. static void dsi_completion_handler(void *data, u32 mask)
  426. {
  427. complete((struct completion *)data);
  428. }
  429. static inline bool wait_for_bit_change(struct dsi_data *dsi,
  430. const struct dsi_reg idx,
  431. int bitnum, int value)
  432. {
  433. unsigned long timeout;
  434. ktime_t wait;
  435. int t;
  436. /* first busyloop to see if the bit changes right away */
  437. t = 100;
  438. while (t-- > 0) {
  439. if (REG_GET(dsi, idx, bitnum, bitnum) == value)
  440. return true;
  441. }
  442. /* then loop for 500ms, sleeping for 1ms in between */
  443. timeout = jiffies + msecs_to_jiffies(500);
  444. while (time_before(jiffies, timeout)) {
  445. if (REG_GET(dsi, idx, bitnum, bitnum) == value)
  446. return true;
  447. wait = ns_to_ktime(1000 * 1000);
  448. set_current_state(TASK_UNINTERRUPTIBLE);
  449. schedule_hrtimeout(&wait, HRTIMER_MODE_REL);
  450. }
  451. return false;
  452. }
  453. static u8 dsi_get_pixel_size(enum omap_dss_dsi_pixel_format fmt)
  454. {
  455. switch (fmt) {
  456. case OMAP_DSS_DSI_FMT_RGB888:
  457. case OMAP_DSS_DSI_FMT_RGB666:
  458. return 24;
  459. case OMAP_DSS_DSI_FMT_RGB666_PACKED:
  460. return 18;
  461. case OMAP_DSS_DSI_FMT_RGB565:
  462. return 16;
  463. default:
  464. BUG();
  465. return 0;
  466. }
  467. }
  468. #ifdef DSI_PERF_MEASURE
  469. static void dsi_perf_mark_setup(struct dsi_data *dsi)
  470. {
  471. dsi->perf_setup_time = ktime_get();
  472. }
  473. static void dsi_perf_mark_start(struct dsi_data *dsi)
  474. {
  475. dsi->perf_start_time = ktime_get();
  476. }
  477. static void dsi_perf_show(struct dsi_data *dsi, const char *name)
  478. {
  479. ktime_t t, setup_time, trans_time;
  480. u32 total_bytes;
  481. u32 setup_us, trans_us, total_us;
  482. if (!dsi_perf)
  483. return;
  484. t = ktime_get();
  485. setup_time = ktime_sub(dsi->perf_start_time, dsi->perf_setup_time);
  486. setup_us = (u32)ktime_to_us(setup_time);
  487. if (setup_us == 0)
  488. setup_us = 1;
  489. trans_time = ktime_sub(t, dsi->perf_start_time);
  490. trans_us = (u32)ktime_to_us(trans_time);
  491. if (trans_us == 0)
  492. trans_us = 1;
  493. total_us = setup_us + trans_us;
  494. total_bytes = dsi->update_bytes;
  495. pr_info("DSI(%s): %u us + %u us = %u us (%uHz), %u bytes, %u kbytes/sec\n",
  496. name,
  497. setup_us,
  498. trans_us,
  499. total_us,
  500. 1000 * 1000 / total_us,
  501. total_bytes,
  502. total_bytes * 1000 / total_us);
  503. }
  504. #else
  505. static inline void dsi_perf_mark_setup(struct dsi_data *dsi)
  506. {
  507. }
  508. static inline void dsi_perf_mark_start(struct dsi_data *dsi)
  509. {
  510. }
  511. static inline void dsi_perf_show(struct dsi_data *dsi, const char *name)
  512. {
  513. }
  514. #endif
  515. static int verbose_irq;
  516. static void print_irq_status(u32 status)
  517. {
  518. if (status == 0)
  519. return;
  520. if (!verbose_irq && (status & ~DSI_IRQ_CHANNEL_MASK) == 0)
  521. return;
  522. #define PIS(x) (status & DSI_IRQ_##x) ? (#x " ") : ""
  523. pr_debug("DSI IRQ: 0x%x: %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
  524. status,
  525. verbose_irq ? PIS(VC0) : "",
  526. verbose_irq ? PIS(VC1) : "",
  527. verbose_irq ? PIS(VC2) : "",
  528. verbose_irq ? PIS(VC3) : "",
  529. PIS(WAKEUP),
  530. PIS(RESYNC),
  531. PIS(PLL_LOCK),
  532. PIS(PLL_UNLOCK),
  533. PIS(PLL_RECALL),
  534. PIS(COMPLEXIO_ERR),
  535. PIS(HS_TX_TIMEOUT),
  536. PIS(LP_RX_TIMEOUT),
  537. PIS(TE_TRIGGER),
  538. PIS(ACK_TRIGGER),
  539. PIS(SYNC_LOST),
  540. PIS(LDO_POWER_GOOD),
  541. PIS(TA_TIMEOUT));
  542. #undef PIS
  543. }
  544. static void print_irq_status_vc(int channel, u32 status)
  545. {
  546. if (status == 0)
  547. return;
  548. if (!verbose_irq && (status & ~DSI_VC_IRQ_PACKET_SENT) == 0)
  549. return;
  550. #define PIS(x) (status & DSI_VC_IRQ_##x) ? (#x " ") : ""
  551. pr_debug("DSI VC(%d) IRQ 0x%x: %s%s%s%s%s%s%s%s%s\n",
  552. channel,
  553. status,
  554. PIS(CS),
  555. PIS(ECC_CORR),
  556. PIS(ECC_NO_CORR),
  557. verbose_irq ? PIS(PACKET_SENT) : "",
  558. PIS(BTA),
  559. PIS(FIFO_TX_OVF),
  560. PIS(FIFO_RX_OVF),
  561. PIS(FIFO_TX_UDF),
  562. PIS(PP_BUSY_CHANGE));
  563. #undef PIS
  564. }
  565. static void print_irq_status_cio(u32 status)
  566. {
  567. if (status == 0)
  568. return;
  569. #define PIS(x) (status & DSI_CIO_IRQ_##x) ? (#x " ") : ""
  570. pr_debug("DSI CIO IRQ 0x%x: %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
  571. status,
  572. PIS(ERRSYNCESC1),
  573. PIS(ERRSYNCESC2),
  574. PIS(ERRSYNCESC3),
  575. PIS(ERRESC1),
  576. PIS(ERRESC2),
  577. PIS(ERRESC3),
  578. PIS(ERRCONTROL1),
  579. PIS(ERRCONTROL2),
  580. PIS(ERRCONTROL3),
  581. PIS(STATEULPS1),
  582. PIS(STATEULPS2),
  583. PIS(STATEULPS3),
  584. PIS(ERRCONTENTIONLP0_1),
  585. PIS(ERRCONTENTIONLP1_1),
  586. PIS(ERRCONTENTIONLP0_2),
  587. PIS(ERRCONTENTIONLP1_2),
  588. PIS(ERRCONTENTIONLP0_3),
  589. PIS(ERRCONTENTIONLP1_3),
  590. PIS(ULPSACTIVENOT_ALL0),
  591. PIS(ULPSACTIVENOT_ALL1));
  592. #undef PIS
  593. }
  594. #ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS
  595. static void dsi_collect_irq_stats(struct dsi_data *dsi, u32 irqstatus,
  596. u32 *vcstatus, u32 ciostatus)
  597. {
  598. int i;
  599. spin_lock(&dsi->irq_stats_lock);
  600. dsi->irq_stats.irq_count++;
  601. dss_collect_irq_stats(irqstatus, dsi->irq_stats.dsi_irqs);
  602. for (i = 0; i < 4; ++i)
  603. dss_collect_irq_stats(vcstatus[i], dsi->irq_stats.vc_irqs[i]);
  604. dss_collect_irq_stats(ciostatus, dsi->irq_stats.cio_irqs);
  605. spin_unlock(&dsi->irq_stats_lock);
  606. }
  607. #else
  608. #define dsi_collect_irq_stats(dsi, irqstatus, vcstatus, ciostatus)
  609. #endif
  610. static int debug_irq;
  611. static void dsi_handle_irq_errors(struct dsi_data *dsi, u32 irqstatus,
  612. u32 *vcstatus, u32 ciostatus)
  613. {
  614. int i;
  615. if (irqstatus & DSI_IRQ_ERROR_MASK) {
  616. DSSERR("DSI error, irqstatus %x\n", irqstatus);
  617. print_irq_status(irqstatus);
  618. spin_lock(&dsi->errors_lock);
  619. dsi->errors |= irqstatus & DSI_IRQ_ERROR_MASK;
  620. spin_unlock(&dsi->errors_lock);
  621. } else if (debug_irq) {
  622. print_irq_status(irqstatus);
  623. }
  624. for (i = 0; i < 4; ++i) {
  625. if (vcstatus[i] & DSI_VC_IRQ_ERROR_MASK) {
  626. DSSERR("DSI VC(%d) error, vc irqstatus %x\n",
  627. i, vcstatus[i]);
  628. print_irq_status_vc(i, vcstatus[i]);
  629. } else if (debug_irq) {
  630. print_irq_status_vc(i, vcstatus[i]);
  631. }
  632. }
  633. if (ciostatus & DSI_CIO_IRQ_ERROR_MASK) {
  634. DSSERR("DSI CIO error, cio irqstatus %x\n", ciostatus);
  635. print_irq_status_cio(ciostatus);
  636. } else if (debug_irq) {
  637. print_irq_status_cio(ciostatus);
  638. }
  639. }
  640. static void dsi_call_isrs(struct dsi_isr_data *isr_array,
  641. unsigned int isr_array_size, u32 irqstatus)
  642. {
  643. struct dsi_isr_data *isr_data;
  644. int i;
  645. for (i = 0; i < isr_array_size; i++) {
  646. isr_data = &isr_array[i];
  647. if (isr_data->isr && isr_data->mask & irqstatus)
  648. isr_data->isr(isr_data->arg, irqstatus);
  649. }
  650. }
  651. static void dsi_handle_isrs(struct dsi_isr_tables *isr_tables,
  652. u32 irqstatus, u32 *vcstatus, u32 ciostatus)
  653. {
  654. int i;
  655. dsi_call_isrs(isr_tables->isr_table,
  656. ARRAY_SIZE(isr_tables->isr_table),
  657. irqstatus);
  658. for (i = 0; i < 4; ++i) {
  659. if (vcstatus[i] == 0)
  660. continue;
  661. dsi_call_isrs(isr_tables->isr_table_vc[i],
  662. ARRAY_SIZE(isr_tables->isr_table_vc[i]),
  663. vcstatus[i]);
  664. }
  665. if (ciostatus != 0)
  666. dsi_call_isrs(isr_tables->isr_table_cio,
  667. ARRAY_SIZE(isr_tables->isr_table_cio),
  668. ciostatus);
  669. }
  670. static irqreturn_t omap_dsi_irq_handler(int irq, void *arg)
  671. {
  672. struct dsi_data *dsi = arg;
  673. u32 irqstatus, vcstatus[4], ciostatus;
  674. int i;
  675. if (!dsi->is_enabled)
  676. return IRQ_NONE;
  677. spin_lock(&dsi->irq_lock);
  678. irqstatus = dsi_read_reg(dsi, DSI_IRQSTATUS);
  679. /* IRQ is not for us */
  680. if (!irqstatus) {
  681. spin_unlock(&dsi->irq_lock);
  682. return IRQ_NONE;
  683. }
  684. dsi_write_reg(dsi, DSI_IRQSTATUS, irqstatus & ~DSI_IRQ_CHANNEL_MASK);
  685. /* flush posted write */
  686. dsi_read_reg(dsi, DSI_IRQSTATUS);
  687. for (i = 0; i < 4; ++i) {
  688. if ((irqstatus & (1 << i)) == 0) {
  689. vcstatus[i] = 0;
  690. continue;
  691. }
  692. vcstatus[i] = dsi_read_reg(dsi, DSI_VC_IRQSTATUS(i));
  693. dsi_write_reg(dsi, DSI_VC_IRQSTATUS(i), vcstatus[i]);
  694. /* flush posted write */
  695. dsi_read_reg(dsi, DSI_VC_IRQSTATUS(i));
  696. }
  697. if (irqstatus & DSI_IRQ_COMPLEXIO_ERR) {
  698. ciostatus = dsi_read_reg(dsi, DSI_COMPLEXIO_IRQ_STATUS);
  699. dsi_write_reg(dsi, DSI_COMPLEXIO_IRQ_STATUS, ciostatus);
  700. /* flush posted write */
  701. dsi_read_reg(dsi, DSI_COMPLEXIO_IRQ_STATUS);
  702. } else {
  703. ciostatus = 0;
  704. }
  705. #ifdef DSI_CATCH_MISSING_TE
  706. if (irqstatus & DSI_IRQ_TE_TRIGGER)
  707. del_timer(&dsi->te_timer);
  708. #endif
  709. /* make a copy and unlock, so that isrs can unregister
  710. * themselves */
  711. memcpy(&dsi->isr_tables_copy, &dsi->isr_tables,
  712. sizeof(dsi->isr_tables));
  713. spin_unlock(&dsi->irq_lock);
  714. dsi_handle_isrs(&dsi->isr_tables_copy, irqstatus, vcstatus, ciostatus);
  715. dsi_handle_irq_errors(dsi, irqstatus, vcstatus, ciostatus);
  716. dsi_collect_irq_stats(dsi, irqstatus, vcstatus, ciostatus);
  717. return IRQ_HANDLED;
  718. }
  719. /* dsi->irq_lock has to be locked by the caller */
  720. static void _omap_dsi_configure_irqs(struct dsi_data *dsi,
  721. struct dsi_isr_data *isr_array,
  722. unsigned int isr_array_size,
  723. u32 default_mask,
  724. const struct dsi_reg enable_reg,
  725. const struct dsi_reg status_reg)
  726. {
  727. struct dsi_isr_data *isr_data;
  728. u32 mask;
  729. u32 old_mask;
  730. int i;
  731. mask = default_mask;
  732. for (i = 0; i < isr_array_size; i++) {
  733. isr_data = &isr_array[i];
  734. if (isr_data->isr == NULL)
  735. continue;
  736. mask |= isr_data->mask;
  737. }
  738. old_mask = dsi_read_reg(dsi, enable_reg);
  739. /* clear the irqstatus for newly enabled irqs */
  740. dsi_write_reg(dsi, status_reg, (mask ^ old_mask) & mask);
  741. dsi_write_reg(dsi, enable_reg, mask);
  742. /* flush posted writes */
  743. dsi_read_reg(dsi, enable_reg);
  744. dsi_read_reg(dsi, status_reg);
  745. }
  746. /* dsi->irq_lock has to be locked by the caller */
  747. static void _omap_dsi_set_irqs(struct dsi_data *dsi)
  748. {
  749. u32 mask = DSI_IRQ_ERROR_MASK;
  750. #ifdef DSI_CATCH_MISSING_TE
  751. mask |= DSI_IRQ_TE_TRIGGER;
  752. #endif
  753. _omap_dsi_configure_irqs(dsi, dsi->isr_tables.isr_table,
  754. ARRAY_SIZE(dsi->isr_tables.isr_table), mask,
  755. DSI_IRQENABLE, DSI_IRQSTATUS);
  756. }
  757. /* dsi->irq_lock has to be locked by the caller */
  758. static void _omap_dsi_set_irqs_vc(struct dsi_data *dsi, int vc)
  759. {
  760. _omap_dsi_configure_irqs(dsi, dsi->isr_tables.isr_table_vc[vc],
  761. ARRAY_SIZE(dsi->isr_tables.isr_table_vc[vc]),
  762. DSI_VC_IRQ_ERROR_MASK,
  763. DSI_VC_IRQENABLE(vc), DSI_VC_IRQSTATUS(vc));
  764. }
  765. /* dsi->irq_lock has to be locked by the caller */
  766. static void _omap_dsi_set_irqs_cio(struct dsi_data *dsi)
  767. {
  768. _omap_dsi_configure_irqs(dsi, dsi->isr_tables.isr_table_cio,
  769. ARRAY_SIZE(dsi->isr_tables.isr_table_cio),
  770. DSI_CIO_IRQ_ERROR_MASK,
  771. DSI_COMPLEXIO_IRQ_ENABLE, DSI_COMPLEXIO_IRQ_STATUS);
  772. }
  773. static void _dsi_initialize_irq(struct dsi_data *dsi)
  774. {
  775. unsigned long flags;
  776. int vc;
  777. spin_lock_irqsave(&dsi->irq_lock, flags);
  778. memset(&dsi->isr_tables, 0, sizeof(dsi->isr_tables));
  779. _omap_dsi_set_irqs(dsi);
  780. for (vc = 0; vc < 4; ++vc)
  781. _omap_dsi_set_irqs_vc(dsi, vc);
  782. _omap_dsi_set_irqs_cio(dsi);
  783. spin_unlock_irqrestore(&dsi->irq_lock, flags);
  784. }
  785. static int _dsi_register_isr(omap_dsi_isr_t isr, void *arg, u32 mask,
  786. struct dsi_isr_data *isr_array, unsigned int isr_array_size)
  787. {
  788. struct dsi_isr_data *isr_data;
  789. int free_idx;
  790. int i;
  791. BUG_ON(isr == NULL);
  792. /* check for duplicate entry and find a free slot */
  793. free_idx = -1;
  794. for (i = 0; i < isr_array_size; i++) {
  795. isr_data = &isr_array[i];
  796. if (isr_data->isr == isr && isr_data->arg == arg &&
  797. isr_data->mask == mask) {
  798. return -EINVAL;
  799. }
  800. if (isr_data->isr == NULL && free_idx == -1)
  801. free_idx = i;
  802. }
  803. if (free_idx == -1)
  804. return -EBUSY;
  805. isr_data = &isr_array[free_idx];
  806. isr_data->isr = isr;
  807. isr_data->arg = arg;
  808. isr_data->mask = mask;
  809. return 0;
  810. }
  811. static int _dsi_unregister_isr(omap_dsi_isr_t isr, void *arg, u32 mask,
  812. struct dsi_isr_data *isr_array, unsigned int isr_array_size)
  813. {
  814. struct dsi_isr_data *isr_data;
  815. int i;
  816. for (i = 0; i < isr_array_size; i++) {
  817. isr_data = &isr_array[i];
  818. if (isr_data->isr != isr || isr_data->arg != arg ||
  819. isr_data->mask != mask)
  820. continue;
  821. isr_data->isr = NULL;
  822. isr_data->arg = NULL;
  823. isr_data->mask = 0;
  824. return 0;
  825. }
  826. return -EINVAL;
  827. }
  828. static int dsi_register_isr(struct dsi_data *dsi, omap_dsi_isr_t isr,
  829. void *arg, u32 mask)
  830. {
  831. unsigned long flags;
  832. int r;
  833. spin_lock_irqsave(&dsi->irq_lock, flags);
  834. r = _dsi_register_isr(isr, arg, mask, dsi->isr_tables.isr_table,
  835. ARRAY_SIZE(dsi->isr_tables.isr_table));
  836. if (r == 0)
  837. _omap_dsi_set_irqs(dsi);
  838. spin_unlock_irqrestore(&dsi->irq_lock, flags);
  839. return r;
  840. }
  841. static int dsi_unregister_isr(struct dsi_data *dsi, omap_dsi_isr_t isr,
  842. void *arg, u32 mask)
  843. {
  844. unsigned long flags;
  845. int r;
  846. spin_lock_irqsave(&dsi->irq_lock, flags);
  847. r = _dsi_unregister_isr(isr, arg, mask, dsi->isr_tables.isr_table,
  848. ARRAY_SIZE(dsi->isr_tables.isr_table));
  849. if (r == 0)
  850. _omap_dsi_set_irqs(dsi);
  851. spin_unlock_irqrestore(&dsi->irq_lock, flags);
  852. return r;
  853. }
  854. static int dsi_register_isr_vc(struct dsi_data *dsi, int channel,
  855. omap_dsi_isr_t isr, void *arg, u32 mask)
  856. {
  857. unsigned long flags;
  858. int r;
  859. spin_lock_irqsave(&dsi->irq_lock, flags);
  860. r = _dsi_register_isr(isr, arg, mask,
  861. dsi->isr_tables.isr_table_vc[channel],
  862. ARRAY_SIZE(dsi->isr_tables.isr_table_vc[channel]));
  863. if (r == 0)
  864. _omap_dsi_set_irqs_vc(dsi, channel);
  865. spin_unlock_irqrestore(&dsi->irq_lock, flags);
  866. return r;
  867. }
  868. static int dsi_unregister_isr_vc(struct dsi_data *dsi, int channel,
  869. omap_dsi_isr_t isr, void *arg, u32 mask)
  870. {
  871. unsigned long flags;
  872. int r;
  873. spin_lock_irqsave(&dsi->irq_lock, flags);
  874. r = _dsi_unregister_isr(isr, arg, mask,
  875. dsi->isr_tables.isr_table_vc[channel],
  876. ARRAY_SIZE(dsi->isr_tables.isr_table_vc[channel]));
  877. if (r == 0)
  878. _omap_dsi_set_irqs_vc(dsi, channel);
  879. spin_unlock_irqrestore(&dsi->irq_lock, flags);
  880. return r;
  881. }
  882. static int dsi_register_isr_cio(struct dsi_data *dsi, omap_dsi_isr_t isr,
  883. void *arg, u32 mask)
  884. {
  885. unsigned long flags;
  886. int r;
  887. spin_lock_irqsave(&dsi->irq_lock, flags);
  888. r = _dsi_register_isr(isr, arg, mask, dsi->isr_tables.isr_table_cio,
  889. ARRAY_SIZE(dsi->isr_tables.isr_table_cio));
  890. if (r == 0)
  891. _omap_dsi_set_irqs_cio(dsi);
  892. spin_unlock_irqrestore(&dsi->irq_lock, flags);
  893. return r;
  894. }
  895. static int dsi_unregister_isr_cio(struct dsi_data *dsi, omap_dsi_isr_t isr,
  896. void *arg, u32 mask)
  897. {
  898. unsigned long flags;
  899. int r;
  900. spin_lock_irqsave(&dsi->irq_lock, flags);
  901. r = _dsi_unregister_isr(isr, arg, mask, dsi->isr_tables.isr_table_cio,
  902. ARRAY_SIZE(dsi->isr_tables.isr_table_cio));
  903. if (r == 0)
  904. _omap_dsi_set_irqs_cio(dsi);
  905. spin_unlock_irqrestore(&dsi->irq_lock, flags);
  906. return r;
  907. }
  908. static u32 dsi_get_errors(struct dsi_data *dsi)
  909. {
  910. unsigned long flags;
  911. u32 e;
  912. spin_lock_irqsave(&dsi->errors_lock, flags);
  913. e = dsi->errors;
  914. dsi->errors = 0;
  915. spin_unlock_irqrestore(&dsi->errors_lock, flags);
  916. return e;
  917. }
  918. static int dsi_runtime_get(struct dsi_data *dsi)
  919. {
  920. int r;
  921. DSSDBG("dsi_runtime_get\n");
  922. r = pm_runtime_get_sync(dsi->dev);
  923. WARN_ON(r < 0);
  924. return r < 0 ? r : 0;
  925. }
  926. static void dsi_runtime_put(struct dsi_data *dsi)
  927. {
  928. int r;
  929. DSSDBG("dsi_runtime_put\n");
  930. r = pm_runtime_put_sync(dsi->dev);
  931. WARN_ON(r < 0 && r != -ENOSYS);
  932. }
  933. static int dsi_regulator_init(struct dsi_data *dsi)
  934. {
  935. struct regulator *vdds_dsi;
  936. if (dsi->vdds_dsi_reg != NULL)
  937. return 0;
  938. vdds_dsi = devm_regulator_get(dsi->dev, "vdd");
  939. if (IS_ERR(vdds_dsi)) {
  940. if (PTR_ERR(vdds_dsi) != -EPROBE_DEFER)
  941. DSSERR("can't get DSI VDD regulator\n");
  942. return PTR_ERR(vdds_dsi);
  943. }
  944. dsi->vdds_dsi_reg = vdds_dsi;
  945. return 0;
  946. }
  947. static void _dsi_print_reset_status(struct dsi_data *dsi)
  948. {
  949. u32 l;
  950. int b0, b1, b2;
  951. /* A dummy read using the SCP interface to any DSIPHY register is
  952. * required after DSIPHY reset to complete the reset of the DSI complex
  953. * I/O. */
  954. l = dsi_read_reg(dsi, DSI_DSIPHY_CFG5);
  955. if (dsi->data->quirks & DSI_QUIRK_REVERSE_TXCLKESC) {
  956. b0 = 28;
  957. b1 = 27;
  958. b2 = 26;
  959. } else {
  960. b0 = 24;
  961. b1 = 25;
  962. b2 = 26;
  963. }
  964. #define DSI_FLD_GET(fld, start, end)\
  965. FLD_GET(dsi_read_reg(dsi, DSI_##fld), start, end)
  966. pr_debug("DSI resets: PLL (%d) CIO (%d) PHY (%x%x%x, %d, %d, %d)\n",
  967. DSI_FLD_GET(PLL_STATUS, 0, 0),
  968. DSI_FLD_GET(COMPLEXIO_CFG1, 29, 29),
  969. DSI_FLD_GET(DSIPHY_CFG5, b0, b0),
  970. DSI_FLD_GET(DSIPHY_CFG5, b1, b1),
  971. DSI_FLD_GET(DSIPHY_CFG5, b2, b2),
  972. DSI_FLD_GET(DSIPHY_CFG5, 29, 29),
  973. DSI_FLD_GET(DSIPHY_CFG5, 30, 30),
  974. DSI_FLD_GET(DSIPHY_CFG5, 31, 31));
  975. #undef DSI_FLD_GET
  976. }
  977. static inline int dsi_if_enable(struct dsi_data *dsi, bool enable)
  978. {
  979. DSSDBG("dsi_if_enable(%d)\n", enable);
  980. enable = enable ? 1 : 0;
  981. REG_FLD_MOD(dsi, DSI_CTRL, enable, 0, 0); /* IF_EN */
  982. if (!wait_for_bit_change(dsi, DSI_CTRL, 0, enable)) {
  983. DSSERR("Failed to set dsi_if_enable to %d\n", enable);
  984. return -EIO;
  985. }
  986. return 0;
  987. }
  988. static unsigned long dsi_get_pll_hsdiv_dispc_rate(struct dsi_data *dsi)
  989. {
  990. return dsi->pll.cinfo.clkout[HSDIV_DISPC];
  991. }
  992. static unsigned long dsi_get_pll_hsdiv_dsi_rate(struct dsi_data *dsi)
  993. {
  994. return dsi->pll.cinfo.clkout[HSDIV_DSI];
  995. }
  996. static unsigned long dsi_get_txbyteclkhs(struct dsi_data *dsi)
  997. {
  998. return dsi->pll.cinfo.clkdco / 16;
  999. }
  1000. static unsigned long dsi_fclk_rate(struct dsi_data *dsi)
  1001. {
  1002. unsigned long r;
  1003. enum dss_clk_source source;
  1004. source = dss_get_dsi_clk_source(dsi->dss, dsi->module_id);
  1005. if (source == DSS_CLK_SRC_FCK) {
  1006. /* DSI FCLK source is DSS_CLK_FCK */
  1007. r = clk_get_rate(dsi->dss_clk);
  1008. } else {
  1009. /* DSI FCLK source is dsi_pll_hsdiv_dsi_clk */
  1010. r = dsi_get_pll_hsdiv_dsi_rate(dsi);
  1011. }
  1012. return r;
  1013. }
  1014. static int dsi_lp_clock_calc(unsigned long dsi_fclk,
  1015. unsigned long lp_clk_min, unsigned long lp_clk_max,
  1016. struct dsi_lp_clock_info *lp_cinfo)
  1017. {
  1018. unsigned int lp_clk_div;
  1019. unsigned long lp_clk;
  1020. lp_clk_div = DIV_ROUND_UP(dsi_fclk, lp_clk_max * 2);
  1021. lp_clk = dsi_fclk / 2 / lp_clk_div;
  1022. if (lp_clk < lp_clk_min || lp_clk > lp_clk_max)
  1023. return -EINVAL;
  1024. lp_cinfo->lp_clk_div = lp_clk_div;
  1025. lp_cinfo->lp_clk = lp_clk;
  1026. return 0;
  1027. }
  1028. static int dsi_set_lp_clk_divisor(struct dsi_data *dsi)
  1029. {
  1030. unsigned long dsi_fclk;
  1031. unsigned int lp_clk_div;
  1032. unsigned long lp_clk;
  1033. unsigned int lpdiv_max = dsi->data->max_pll_lpdiv;
  1034. lp_clk_div = dsi->user_lp_cinfo.lp_clk_div;
  1035. if (lp_clk_div == 0 || lp_clk_div > lpdiv_max)
  1036. return -EINVAL;
  1037. dsi_fclk = dsi_fclk_rate(dsi);
  1038. lp_clk = dsi_fclk / 2 / lp_clk_div;
  1039. DSSDBG("LP_CLK_DIV %u, LP_CLK %lu\n", lp_clk_div, lp_clk);
  1040. dsi->current_lp_cinfo.lp_clk = lp_clk;
  1041. dsi->current_lp_cinfo.lp_clk_div = lp_clk_div;
  1042. /* LP_CLK_DIVISOR */
  1043. REG_FLD_MOD(dsi, DSI_CLK_CTRL, lp_clk_div, 12, 0);
  1044. /* LP_RX_SYNCHRO_ENABLE */
  1045. REG_FLD_MOD(dsi, DSI_CLK_CTRL, dsi_fclk > 30000000 ? 1 : 0, 21, 21);
  1046. return 0;
  1047. }
  1048. static void dsi_enable_scp_clk(struct dsi_data *dsi)
  1049. {
  1050. if (dsi->scp_clk_refcount++ == 0)
  1051. REG_FLD_MOD(dsi, DSI_CLK_CTRL, 1, 14, 14); /* CIO_CLK_ICG */
  1052. }
  1053. static void dsi_disable_scp_clk(struct dsi_data *dsi)
  1054. {
  1055. WARN_ON(dsi->scp_clk_refcount == 0);
  1056. if (--dsi->scp_clk_refcount == 0)
  1057. REG_FLD_MOD(dsi, DSI_CLK_CTRL, 0, 14, 14); /* CIO_CLK_ICG */
  1058. }
  1059. enum dsi_pll_power_state {
  1060. DSI_PLL_POWER_OFF = 0x0,
  1061. DSI_PLL_POWER_ON_HSCLK = 0x1,
  1062. DSI_PLL_POWER_ON_ALL = 0x2,
  1063. DSI_PLL_POWER_ON_DIV = 0x3,
  1064. };
  1065. static int dsi_pll_power(struct dsi_data *dsi, enum dsi_pll_power_state state)
  1066. {
  1067. int t = 0;
  1068. /* DSI-PLL power command 0x3 is not working */
  1069. if ((dsi->data->quirks & DSI_QUIRK_PLL_PWR_BUG) &&
  1070. state == DSI_PLL_POWER_ON_DIV)
  1071. state = DSI_PLL_POWER_ON_ALL;
  1072. /* PLL_PWR_CMD */
  1073. REG_FLD_MOD(dsi, DSI_CLK_CTRL, state, 31, 30);
  1074. /* PLL_PWR_STATUS */
  1075. while (FLD_GET(dsi_read_reg(dsi, DSI_CLK_CTRL), 29, 28) != state) {
  1076. if (++t > 1000) {
  1077. DSSERR("Failed to set DSI PLL power mode to %d\n",
  1078. state);
  1079. return -ENODEV;
  1080. }
  1081. udelay(1);
  1082. }
  1083. return 0;
  1084. }
  1085. static void dsi_pll_calc_dsi_fck(struct dsi_data *dsi,
  1086. struct dss_pll_clock_info *cinfo)
  1087. {
  1088. unsigned long max_dsi_fck;
  1089. max_dsi_fck = dsi->data->max_fck_freq;
  1090. cinfo->mX[HSDIV_DSI] = DIV_ROUND_UP(cinfo->clkdco, max_dsi_fck);
  1091. cinfo->clkout[HSDIV_DSI] = cinfo->clkdco / cinfo->mX[HSDIV_DSI];
  1092. }
  1093. static int dsi_pll_enable(struct dss_pll *pll)
  1094. {
  1095. struct dsi_data *dsi = container_of(pll, struct dsi_data, pll);
  1096. int r = 0;
  1097. DSSDBG("PLL init\n");
  1098. r = dsi_regulator_init(dsi);
  1099. if (r)
  1100. return r;
  1101. r = dsi_runtime_get(dsi);
  1102. if (r)
  1103. return r;
  1104. /*
  1105. * Note: SCP CLK is not required on OMAP3, but it is required on OMAP4.
  1106. */
  1107. dsi_enable_scp_clk(dsi);
  1108. if (!dsi->vdds_dsi_enabled) {
  1109. r = regulator_enable(dsi->vdds_dsi_reg);
  1110. if (r)
  1111. goto err0;
  1112. dsi->vdds_dsi_enabled = true;
  1113. }
  1114. /* XXX PLL does not come out of reset without this... */
  1115. dispc_pck_free_enable(dsi->dss->dispc, 1);
  1116. if (!wait_for_bit_change(dsi, DSI_PLL_STATUS, 0, 1)) {
  1117. DSSERR("PLL not coming out of reset.\n");
  1118. r = -ENODEV;
  1119. dispc_pck_free_enable(dsi->dss->dispc, 0);
  1120. goto err1;
  1121. }
  1122. /* XXX ... but if left on, we get problems when planes do not
  1123. * fill the whole display. No idea about this */
  1124. dispc_pck_free_enable(dsi->dss->dispc, 0);
  1125. r = dsi_pll_power(dsi, DSI_PLL_POWER_ON_ALL);
  1126. if (r)
  1127. goto err1;
  1128. DSSDBG("PLL init done\n");
  1129. return 0;
  1130. err1:
  1131. if (dsi->vdds_dsi_enabled) {
  1132. regulator_disable(dsi->vdds_dsi_reg);
  1133. dsi->vdds_dsi_enabled = false;
  1134. }
  1135. err0:
  1136. dsi_disable_scp_clk(dsi);
  1137. dsi_runtime_put(dsi);
  1138. return r;
  1139. }
  1140. static void dsi_pll_uninit(struct dsi_data *dsi, bool disconnect_lanes)
  1141. {
  1142. dsi_pll_power(dsi, DSI_PLL_POWER_OFF);
  1143. if (disconnect_lanes) {
  1144. WARN_ON(!dsi->vdds_dsi_enabled);
  1145. regulator_disable(dsi->vdds_dsi_reg);
  1146. dsi->vdds_dsi_enabled = false;
  1147. }
  1148. dsi_disable_scp_clk(dsi);
  1149. dsi_runtime_put(dsi);
  1150. DSSDBG("PLL uninit done\n");
  1151. }
  1152. static void dsi_pll_disable(struct dss_pll *pll)
  1153. {
  1154. struct dsi_data *dsi = container_of(pll, struct dsi_data, pll);
  1155. dsi_pll_uninit(dsi, true);
  1156. }
  1157. static void dsi_dump_dsi_clocks(struct dsi_data *dsi, struct seq_file *s)
  1158. {
  1159. struct dss_pll_clock_info *cinfo = &dsi->pll.cinfo;
  1160. enum dss_clk_source dispc_clk_src, dsi_clk_src;
  1161. int dsi_module = dsi->module_id;
  1162. struct dss_pll *pll = &dsi->pll;
  1163. dispc_clk_src = dss_get_dispc_clk_source(dsi->dss);
  1164. dsi_clk_src = dss_get_dsi_clk_source(dsi->dss, dsi_module);
  1165. if (dsi_runtime_get(dsi))
  1166. return;
  1167. seq_printf(s, "- DSI%d PLL -\n", dsi_module + 1);
  1168. seq_printf(s, "dsi pll clkin\t%lu\n", clk_get_rate(pll->clkin));
  1169. seq_printf(s, "Fint\t\t%-16lun %u\n", cinfo->fint, cinfo->n);
  1170. seq_printf(s, "CLKIN4DDR\t%-16lum %u\n",
  1171. cinfo->clkdco, cinfo->m);
  1172. seq_printf(s, "DSI_PLL_HSDIV_DISPC (%s)\t%-16lum_dispc %u\t(%s)\n",
  1173. dss_get_clk_source_name(dsi_module == 0 ?
  1174. DSS_CLK_SRC_PLL1_1 :
  1175. DSS_CLK_SRC_PLL2_1),
  1176. cinfo->clkout[HSDIV_DISPC],
  1177. cinfo->mX[HSDIV_DISPC],
  1178. dispc_clk_src == DSS_CLK_SRC_FCK ?
  1179. "off" : "on");
  1180. seq_printf(s, "DSI_PLL_HSDIV_DSI (%s)\t%-16lum_dsi %u\t(%s)\n",
  1181. dss_get_clk_source_name(dsi_module == 0 ?
  1182. DSS_CLK_SRC_PLL1_2 :
  1183. DSS_CLK_SRC_PLL2_2),
  1184. cinfo->clkout[HSDIV_DSI],
  1185. cinfo->mX[HSDIV_DSI],
  1186. dsi_clk_src == DSS_CLK_SRC_FCK ?
  1187. "off" : "on");
  1188. seq_printf(s, "- DSI%d -\n", dsi_module + 1);
  1189. seq_printf(s, "dsi fclk source = %s\n",
  1190. dss_get_clk_source_name(dsi_clk_src));
  1191. seq_printf(s, "DSI_FCLK\t%lu\n", dsi_fclk_rate(dsi));
  1192. seq_printf(s, "DDR_CLK\t\t%lu\n",
  1193. cinfo->clkdco / 4);
  1194. seq_printf(s, "TxByteClkHS\t%lu\n", dsi_get_txbyteclkhs(dsi));
  1195. seq_printf(s, "LP_CLK\t\t%lu\n", dsi->current_lp_cinfo.lp_clk);
  1196. dsi_runtime_put(dsi);
  1197. }
  1198. void dsi_dump_clocks(struct seq_file *s)
  1199. {
  1200. struct dsi_data *dsi;
  1201. int i;
  1202. for (i = 0; i < MAX_NUM_DSI; i++) {
  1203. dsi = dsi_get_dsi_from_id(i);
  1204. if (dsi)
  1205. dsi_dump_dsi_clocks(dsi, s);
  1206. }
  1207. }
  1208. #ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS
  1209. static int dsi_dump_dsi_irqs(struct seq_file *s, void *p)
  1210. {
  1211. struct dsi_data *dsi = p;
  1212. unsigned long flags;
  1213. struct dsi_irq_stats stats;
  1214. spin_lock_irqsave(&dsi->irq_stats_lock, flags);
  1215. stats = dsi->irq_stats;
  1216. memset(&dsi->irq_stats, 0, sizeof(dsi->irq_stats));
  1217. dsi->irq_stats.last_reset = jiffies;
  1218. spin_unlock_irqrestore(&dsi->irq_stats_lock, flags);
  1219. seq_printf(s, "period %u ms\n",
  1220. jiffies_to_msecs(jiffies - stats.last_reset));
  1221. seq_printf(s, "irqs %d\n", stats.irq_count);
  1222. #define PIS(x) \
  1223. seq_printf(s, "%-20s %10d\n", #x, stats.dsi_irqs[ffs(DSI_IRQ_##x)-1]);
  1224. seq_printf(s, "-- DSI%d interrupts --\n", dsi->module_id + 1);
  1225. PIS(VC0);
  1226. PIS(VC1);
  1227. PIS(VC2);
  1228. PIS(VC3);
  1229. PIS(WAKEUP);
  1230. PIS(RESYNC);
  1231. PIS(PLL_LOCK);
  1232. PIS(PLL_UNLOCK);
  1233. PIS(PLL_RECALL);
  1234. PIS(COMPLEXIO_ERR);
  1235. PIS(HS_TX_TIMEOUT);
  1236. PIS(LP_RX_TIMEOUT);
  1237. PIS(TE_TRIGGER);
  1238. PIS(ACK_TRIGGER);
  1239. PIS(SYNC_LOST);
  1240. PIS(LDO_POWER_GOOD);
  1241. PIS(TA_TIMEOUT);
  1242. #undef PIS
  1243. #define PIS(x) \
  1244. seq_printf(s, "%-20s %10d %10d %10d %10d\n", #x, \
  1245. stats.vc_irqs[0][ffs(DSI_VC_IRQ_##x)-1], \
  1246. stats.vc_irqs[1][ffs(DSI_VC_IRQ_##x)-1], \
  1247. stats.vc_irqs[2][ffs(DSI_VC_IRQ_##x)-1], \
  1248. stats.vc_irqs[3][ffs(DSI_VC_IRQ_##x)-1]);
  1249. seq_printf(s, "-- VC interrupts --\n");
  1250. PIS(CS);
  1251. PIS(ECC_CORR);
  1252. PIS(PACKET_SENT);
  1253. PIS(FIFO_TX_OVF);
  1254. PIS(FIFO_RX_OVF);
  1255. PIS(BTA);
  1256. PIS(ECC_NO_CORR);
  1257. PIS(FIFO_TX_UDF);
  1258. PIS(PP_BUSY_CHANGE);
  1259. #undef PIS
  1260. #define PIS(x) \
  1261. seq_printf(s, "%-20s %10d\n", #x, \
  1262. stats.cio_irqs[ffs(DSI_CIO_IRQ_##x)-1]);
  1263. seq_printf(s, "-- CIO interrupts --\n");
  1264. PIS(ERRSYNCESC1);
  1265. PIS(ERRSYNCESC2);
  1266. PIS(ERRSYNCESC3);
  1267. PIS(ERRESC1);
  1268. PIS(ERRESC2);
  1269. PIS(ERRESC3);
  1270. PIS(ERRCONTROL1);
  1271. PIS(ERRCONTROL2);
  1272. PIS(ERRCONTROL3);
  1273. PIS(STATEULPS1);
  1274. PIS(STATEULPS2);
  1275. PIS(STATEULPS3);
  1276. PIS(ERRCONTENTIONLP0_1);
  1277. PIS(ERRCONTENTIONLP1_1);
  1278. PIS(ERRCONTENTIONLP0_2);
  1279. PIS(ERRCONTENTIONLP1_2);
  1280. PIS(ERRCONTENTIONLP0_3);
  1281. PIS(ERRCONTENTIONLP1_3);
  1282. PIS(ULPSACTIVENOT_ALL0);
  1283. PIS(ULPSACTIVENOT_ALL1);
  1284. #undef PIS
  1285. return 0;
  1286. }
  1287. #endif
  1288. static int dsi_dump_dsi_regs(struct seq_file *s, void *p)
  1289. {
  1290. struct dsi_data *dsi = p;
  1291. if (dsi_runtime_get(dsi))
  1292. return 0;
  1293. dsi_enable_scp_clk(dsi);
  1294. #define DUMPREG(r) seq_printf(s, "%-35s %08x\n", #r, dsi_read_reg(dsi, r))
  1295. DUMPREG(DSI_REVISION);
  1296. DUMPREG(DSI_SYSCONFIG);
  1297. DUMPREG(DSI_SYSSTATUS);
  1298. DUMPREG(DSI_IRQSTATUS);
  1299. DUMPREG(DSI_IRQENABLE);
  1300. DUMPREG(DSI_CTRL);
  1301. DUMPREG(DSI_COMPLEXIO_CFG1);
  1302. DUMPREG(DSI_COMPLEXIO_IRQ_STATUS);
  1303. DUMPREG(DSI_COMPLEXIO_IRQ_ENABLE);
  1304. DUMPREG(DSI_CLK_CTRL);
  1305. DUMPREG(DSI_TIMING1);
  1306. DUMPREG(DSI_TIMING2);
  1307. DUMPREG(DSI_VM_TIMING1);
  1308. DUMPREG(DSI_VM_TIMING2);
  1309. DUMPREG(DSI_VM_TIMING3);
  1310. DUMPREG(DSI_CLK_TIMING);
  1311. DUMPREG(DSI_TX_FIFO_VC_SIZE);
  1312. DUMPREG(DSI_RX_FIFO_VC_SIZE);
  1313. DUMPREG(DSI_COMPLEXIO_CFG2);
  1314. DUMPREG(DSI_RX_FIFO_VC_FULLNESS);
  1315. DUMPREG(DSI_VM_TIMING4);
  1316. DUMPREG(DSI_TX_FIFO_VC_EMPTINESS);
  1317. DUMPREG(DSI_VM_TIMING5);
  1318. DUMPREG(DSI_VM_TIMING6);
  1319. DUMPREG(DSI_VM_TIMING7);
  1320. DUMPREG(DSI_STOPCLK_TIMING);
  1321. DUMPREG(DSI_VC_CTRL(0));
  1322. DUMPREG(DSI_VC_TE(0));
  1323. DUMPREG(DSI_VC_LONG_PACKET_HEADER(0));
  1324. DUMPREG(DSI_VC_LONG_PACKET_PAYLOAD(0));
  1325. DUMPREG(DSI_VC_SHORT_PACKET_HEADER(0));
  1326. DUMPREG(DSI_VC_IRQSTATUS(0));
  1327. DUMPREG(DSI_VC_IRQENABLE(0));
  1328. DUMPREG(DSI_VC_CTRL(1));
  1329. DUMPREG(DSI_VC_TE(1));
  1330. DUMPREG(DSI_VC_LONG_PACKET_HEADER(1));
  1331. DUMPREG(DSI_VC_LONG_PACKET_PAYLOAD(1));
  1332. DUMPREG(DSI_VC_SHORT_PACKET_HEADER(1));
  1333. DUMPREG(DSI_VC_IRQSTATUS(1));
  1334. DUMPREG(DSI_VC_IRQENABLE(1));
  1335. DUMPREG(DSI_VC_CTRL(2));
  1336. DUMPREG(DSI_VC_TE(2));
  1337. DUMPREG(DSI_VC_LONG_PACKET_HEADER(2));
  1338. DUMPREG(DSI_VC_LONG_PACKET_PAYLOAD(2));
  1339. DUMPREG(DSI_VC_SHORT_PACKET_HEADER(2));
  1340. DUMPREG(DSI_VC_IRQSTATUS(2));
  1341. DUMPREG(DSI_VC_IRQENABLE(2));
  1342. DUMPREG(DSI_VC_CTRL(3));
  1343. DUMPREG(DSI_VC_TE(3));
  1344. DUMPREG(DSI_VC_LONG_PACKET_HEADER(3));
  1345. DUMPREG(DSI_VC_LONG_PACKET_PAYLOAD(3));
  1346. DUMPREG(DSI_VC_SHORT_PACKET_HEADER(3));
  1347. DUMPREG(DSI_VC_IRQSTATUS(3));
  1348. DUMPREG(DSI_VC_IRQENABLE(3));
  1349. DUMPREG(DSI_DSIPHY_CFG0);
  1350. DUMPREG(DSI_DSIPHY_CFG1);
  1351. DUMPREG(DSI_DSIPHY_CFG2);
  1352. DUMPREG(DSI_DSIPHY_CFG5);
  1353. DUMPREG(DSI_PLL_CONTROL);
  1354. DUMPREG(DSI_PLL_STATUS);
  1355. DUMPREG(DSI_PLL_GO);
  1356. DUMPREG(DSI_PLL_CONFIGURATION1);
  1357. DUMPREG(DSI_PLL_CONFIGURATION2);
  1358. #undef DUMPREG
  1359. dsi_disable_scp_clk(dsi);
  1360. dsi_runtime_put(dsi);
  1361. return 0;
  1362. }
  1363. enum dsi_cio_power_state {
  1364. DSI_COMPLEXIO_POWER_OFF = 0x0,
  1365. DSI_COMPLEXIO_POWER_ON = 0x1,
  1366. DSI_COMPLEXIO_POWER_ULPS = 0x2,
  1367. };
  1368. static int dsi_cio_power(struct dsi_data *dsi, enum dsi_cio_power_state state)
  1369. {
  1370. int t = 0;
  1371. /* PWR_CMD */
  1372. REG_FLD_MOD(dsi, DSI_COMPLEXIO_CFG1, state, 28, 27);
  1373. /* PWR_STATUS */
  1374. while (FLD_GET(dsi_read_reg(dsi, DSI_COMPLEXIO_CFG1),
  1375. 26, 25) != state) {
  1376. if (++t > 1000) {
  1377. DSSERR("failed to set complexio power state to "
  1378. "%d\n", state);
  1379. return -ENODEV;
  1380. }
  1381. udelay(1);
  1382. }
  1383. return 0;
  1384. }
  1385. static unsigned int dsi_get_line_buf_size(struct dsi_data *dsi)
  1386. {
  1387. int val;
  1388. /* line buffer on OMAP3 is 1024 x 24bits */
  1389. /* XXX: for some reason using full buffer size causes
  1390. * considerable TX slowdown with update sizes that fill the
  1391. * whole buffer */
  1392. if (!(dsi->data->quirks & DSI_QUIRK_GNQ))
  1393. return 1023 * 3;
  1394. val = REG_GET(dsi, DSI_GNQ, 14, 12); /* VP1_LINE_BUFFER_SIZE */
  1395. switch (val) {
  1396. case 1:
  1397. return 512 * 3; /* 512x24 bits */
  1398. case 2:
  1399. return 682 * 3; /* 682x24 bits */
  1400. case 3:
  1401. return 853 * 3; /* 853x24 bits */
  1402. case 4:
  1403. return 1024 * 3; /* 1024x24 bits */
  1404. case 5:
  1405. return 1194 * 3; /* 1194x24 bits */
  1406. case 6:
  1407. return 1365 * 3; /* 1365x24 bits */
  1408. case 7:
  1409. return 1920 * 3; /* 1920x24 bits */
  1410. default:
  1411. BUG();
  1412. return 0;
  1413. }
  1414. }
  1415. static int dsi_set_lane_config(struct dsi_data *dsi)
  1416. {
  1417. static const u8 offsets[] = { 0, 4, 8, 12, 16 };
  1418. static const enum dsi_lane_function functions[] = {
  1419. DSI_LANE_CLK,
  1420. DSI_LANE_DATA1,
  1421. DSI_LANE_DATA2,
  1422. DSI_LANE_DATA3,
  1423. DSI_LANE_DATA4,
  1424. };
  1425. u32 r;
  1426. int i;
  1427. r = dsi_read_reg(dsi, DSI_COMPLEXIO_CFG1);
  1428. for (i = 0; i < dsi->num_lanes_used; ++i) {
  1429. unsigned int offset = offsets[i];
  1430. unsigned int polarity, lane_number;
  1431. unsigned int t;
  1432. for (t = 0; t < dsi->num_lanes_supported; ++t)
  1433. if (dsi->lanes[t].function == functions[i])
  1434. break;
  1435. if (t == dsi->num_lanes_supported)
  1436. return -EINVAL;
  1437. lane_number = t;
  1438. polarity = dsi->lanes[t].polarity;
  1439. r = FLD_MOD(r, lane_number + 1, offset + 2, offset);
  1440. r = FLD_MOD(r, polarity, offset + 3, offset + 3);
  1441. }
  1442. /* clear the unused lanes */
  1443. for (; i < dsi->num_lanes_supported; ++i) {
  1444. unsigned int offset = offsets[i];
  1445. r = FLD_MOD(r, 0, offset + 2, offset);
  1446. r = FLD_MOD(r, 0, offset + 3, offset + 3);
  1447. }
  1448. dsi_write_reg(dsi, DSI_COMPLEXIO_CFG1, r);
  1449. return 0;
  1450. }
  1451. static inline unsigned int ns2ddr(struct dsi_data *dsi, unsigned int ns)
  1452. {
  1453. /* convert time in ns to ddr ticks, rounding up */
  1454. unsigned long ddr_clk = dsi->pll.cinfo.clkdco / 4;
  1455. return (ns * (ddr_clk / 1000 / 1000) + 999) / 1000;
  1456. }
  1457. static inline unsigned int ddr2ns(struct dsi_data *dsi, unsigned int ddr)
  1458. {
  1459. unsigned long ddr_clk = dsi->pll.cinfo.clkdco / 4;
  1460. return ddr * 1000 * 1000 / (ddr_clk / 1000);
  1461. }
  1462. static void dsi_cio_timings(struct dsi_data *dsi)
  1463. {
  1464. u32 r;
  1465. u32 ths_prepare, ths_prepare_ths_zero, ths_trail, ths_exit;
  1466. u32 tlpx_half, tclk_trail, tclk_zero;
  1467. u32 tclk_prepare;
  1468. /* calculate timings */
  1469. /* 1 * DDR_CLK = 2 * UI */
  1470. /* min 40ns + 4*UI max 85ns + 6*UI */
  1471. ths_prepare = ns2ddr(dsi, 70) + 2;
  1472. /* min 145ns + 10*UI */
  1473. ths_prepare_ths_zero = ns2ddr(dsi, 175) + 2;
  1474. /* min max(8*UI, 60ns+4*UI) */
  1475. ths_trail = ns2ddr(dsi, 60) + 5;
  1476. /* min 100ns */
  1477. ths_exit = ns2ddr(dsi, 145);
  1478. /* tlpx min 50n */
  1479. tlpx_half = ns2ddr(dsi, 25);
  1480. /* min 60ns */
  1481. tclk_trail = ns2ddr(dsi, 60) + 2;
  1482. /* min 38ns, max 95ns */
  1483. tclk_prepare = ns2ddr(dsi, 65);
  1484. /* min tclk-prepare + tclk-zero = 300ns */
  1485. tclk_zero = ns2ddr(dsi, 260);
  1486. DSSDBG("ths_prepare %u (%uns), ths_prepare_ths_zero %u (%uns)\n",
  1487. ths_prepare, ddr2ns(dsi, ths_prepare),
  1488. ths_prepare_ths_zero, ddr2ns(dsi, ths_prepare_ths_zero));
  1489. DSSDBG("ths_trail %u (%uns), ths_exit %u (%uns)\n",
  1490. ths_trail, ddr2ns(dsi, ths_trail),
  1491. ths_exit, ddr2ns(dsi, ths_exit));
  1492. DSSDBG("tlpx_half %u (%uns), tclk_trail %u (%uns), "
  1493. "tclk_zero %u (%uns)\n",
  1494. tlpx_half, ddr2ns(dsi, tlpx_half),
  1495. tclk_trail, ddr2ns(dsi, tclk_trail),
  1496. tclk_zero, ddr2ns(dsi, tclk_zero));
  1497. DSSDBG("tclk_prepare %u (%uns)\n",
  1498. tclk_prepare, ddr2ns(dsi, tclk_prepare));
  1499. /* program timings */
  1500. r = dsi_read_reg(dsi, DSI_DSIPHY_CFG0);
  1501. r = FLD_MOD(r, ths_prepare, 31, 24);
  1502. r = FLD_MOD(r, ths_prepare_ths_zero, 23, 16);
  1503. r = FLD_MOD(r, ths_trail, 15, 8);
  1504. r = FLD_MOD(r, ths_exit, 7, 0);
  1505. dsi_write_reg(dsi, DSI_DSIPHY_CFG0, r);
  1506. r = dsi_read_reg(dsi, DSI_DSIPHY_CFG1);
  1507. r = FLD_MOD(r, tlpx_half, 20, 16);
  1508. r = FLD_MOD(r, tclk_trail, 15, 8);
  1509. r = FLD_MOD(r, tclk_zero, 7, 0);
  1510. if (dsi->data->quirks & DSI_QUIRK_PHY_DCC) {
  1511. r = FLD_MOD(r, 0, 21, 21); /* DCCEN = disable */
  1512. r = FLD_MOD(r, 1, 22, 22); /* CLKINP_DIVBY2EN = enable */
  1513. r = FLD_MOD(r, 1, 23, 23); /* CLKINP_SEL = enable */
  1514. }
  1515. dsi_write_reg(dsi, DSI_DSIPHY_CFG1, r);
  1516. r = dsi_read_reg(dsi, DSI_DSIPHY_CFG2);
  1517. r = FLD_MOD(r, tclk_prepare, 7, 0);
  1518. dsi_write_reg(dsi, DSI_DSIPHY_CFG2, r);
  1519. }
  1520. /* lane masks have lane 0 at lsb. mask_p for positive lines, n for negative */
  1521. static void dsi_cio_enable_lane_override(struct dsi_data *dsi,
  1522. unsigned int mask_p,
  1523. unsigned int mask_n)
  1524. {
  1525. int i;
  1526. u32 l;
  1527. u8 lptxscp_start = dsi->num_lanes_supported == 3 ? 22 : 26;
  1528. l = 0;
  1529. for (i = 0; i < dsi->num_lanes_supported; ++i) {
  1530. unsigned int p = dsi->lanes[i].polarity;
  1531. if (mask_p & (1 << i))
  1532. l |= 1 << (i * 2 + (p ? 0 : 1));
  1533. if (mask_n & (1 << i))
  1534. l |= 1 << (i * 2 + (p ? 1 : 0));
  1535. }
  1536. /*
  1537. * Bits in REGLPTXSCPDAT4TO0DXDY:
  1538. * 17: DY0 18: DX0
  1539. * 19: DY1 20: DX1
  1540. * 21: DY2 22: DX2
  1541. * 23: DY3 24: DX3
  1542. * 25: DY4 26: DX4
  1543. */
  1544. /* Set the lane override configuration */
  1545. /* REGLPTXSCPDAT4TO0DXDY */
  1546. REG_FLD_MOD(dsi, DSI_DSIPHY_CFG10, l, lptxscp_start, 17);
  1547. /* Enable lane override */
  1548. /* ENLPTXSCPDAT */
  1549. REG_FLD_MOD(dsi, DSI_DSIPHY_CFG10, 1, 27, 27);
  1550. }
  1551. static void dsi_cio_disable_lane_override(struct dsi_data *dsi)
  1552. {
  1553. /* Disable lane override */
  1554. REG_FLD_MOD(dsi, DSI_DSIPHY_CFG10, 0, 27, 27); /* ENLPTXSCPDAT */
  1555. /* Reset the lane override configuration */
  1556. /* REGLPTXSCPDAT4TO0DXDY */
  1557. REG_FLD_MOD(dsi, DSI_DSIPHY_CFG10, 0, 22, 17);
  1558. }
  1559. static int dsi_cio_wait_tx_clk_esc_reset(struct dsi_data *dsi)
  1560. {
  1561. int t, i;
  1562. bool in_use[DSI_MAX_NR_LANES];
  1563. static const u8 offsets_old[] = { 28, 27, 26 };
  1564. static const u8 offsets_new[] = { 24, 25, 26, 27, 28 };
  1565. const u8 *offsets;
  1566. if (dsi->data->quirks & DSI_QUIRK_REVERSE_TXCLKESC)
  1567. offsets = offsets_old;
  1568. else
  1569. offsets = offsets_new;
  1570. for (i = 0; i < dsi->num_lanes_supported; ++i)
  1571. in_use[i] = dsi->lanes[i].function != DSI_LANE_UNUSED;
  1572. t = 100000;
  1573. while (true) {
  1574. u32 l;
  1575. int ok;
  1576. l = dsi_read_reg(dsi, DSI_DSIPHY_CFG5);
  1577. ok = 0;
  1578. for (i = 0; i < dsi->num_lanes_supported; ++i) {
  1579. if (!in_use[i] || (l & (1 << offsets[i])))
  1580. ok++;
  1581. }
  1582. if (ok == dsi->num_lanes_supported)
  1583. break;
  1584. if (--t == 0) {
  1585. for (i = 0; i < dsi->num_lanes_supported; ++i) {
  1586. if (!in_use[i] || (l & (1 << offsets[i])))
  1587. continue;
  1588. DSSERR("CIO TXCLKESC%d domain not coming " \
  1589. "out of reset\n", i);
  1590. }
  1591. return -EIO;
  1592. }
  1593. }
  1594. return 0;
  1595. }
  1596. /* return bitmask of enabled lanes, lane0 being the lsb */
  1597. static unsigned int dsi_get_lane_mask(struct dsi_data *dsi)
  1598. {
  1599. unsigned int mask = 0;
  1600. int i;
  1601. for (i = 0; i < dsi->num_lanes_supported; ++i) {
  1602. if (dsi->lanes[i].function != DSI_LANE_UNUSED)
  1603. mask |= 1 << i;
  1604. }
  1605. return mask;
  1606. }
  1607. /* OMAP4 CONTROL_DSIPHY */
  1608. #define OMAP4_DSIPHY_SYSCON_OFFSET 0x78
  1609. #define OMAP4_DSI2_LANEENABLE_SHIFT 29
  1610. #define OMAP4_DSI2_LANEENABLE_MASK (0x7 << 29)
  1611. #define OMAP4_DSI1_LANEENABLE_SHIFT 24
  1612. #define OMAP4_DSI1_LANEENABLE_MASK (0x1f << 24)
  1613. #define OMAP4_DSI1_PIPD_SHIFT 19
  1614. #define OMAP4_DSI1_PIPD_MASK (0x1f << 19)
  1615. #define OMAP4_DSI2_PIPD_SHIFT 14
  1616. #define OMAP4_DSI2_PIPD_MASK (0x1f << 14)
  1617. static int dsi_omap4_mux_pads(struct dsi_data *dsi, unsigned int lanes)
  1618. {
  1619. u32 enable_mask, enable_shift;
  1620. u32 pipd_mask, pipd_shift;
  1621. if (dsi->module_id == 0) {
  1622. enable_mask = OMAP4_DSI1_LANEENABLE_MASK;
  1623. enable_shift = OMAP4_DSI1_LANEENABLE_SHIFT;
  1624. pipd_mask = OMAP4_DSI1_PIPD_MASK;
  1625. pipd_shift = OMAP4_DSI1_PIPD_SHIFT;
  1626. } else if (dsi->module_id == 1) {
  1627. enable_mask = OMAP4_DSI2_LANEENABLE_MASK;
  1628. enable_shift = OMAP4_DSI2_LANEENABLE_SHIFT;
  1629. pipd_mask = OMAP4_DSI2_PIPD_MASK;
  1630. pipd_shift = OMAP4_DSI2_PIPD_SHIFT;
  1631. } else {
  1632. return -ENODEV;
  1633. }
  1634. return regmap_update_bits(dsi->syscon, OMAP4_DSIPHY_SYSCON_OFFSET,
  1635. enable_mask | pipd_mask,
  1636. (lanes << enable_shift) | (lanes << pipd_shift));
  1637. }
  1638. /* OMAP5 CONTROL_DSIPHY */
  1639. #define OMAP5_DSIPHY_SYSCON_OFFSET 0x74
  1640. #define OMAP5_DSI1_LANEENABLE_SHIFT 24
  1641. #define OMAP5_DSI2_LANEENABLE_SHIFT 19
  1642. #define OMAP5_DSI_LANEENABLE_MASK 0x1f
  1643. static int dsi_omap5_mux_pads(struct dsi_data *dsi, unsigned int lanes)
  1644. {
  1645. u32 enable_shift;
  1646. if (dsi->module_id == 0)
  1647. enable_shift = OMAP5_DSI1_LANEENABLE_SHIFT;
  1648. else if (dsi->module_id == 1)
  1649. enable_shift = OMAP5_DSI2_LANEENABLE_SHIFT;
  1650. else
  1651. return -ENODEV;
  1652. return regmap_update_bits(dsi->syscon, OMAP5_DSIPHY_SYSCON_OFFSET,
  1653. OMAP5_DSI_LANEENABLE_MASK << enable_shift,
  1654. lanes << enable_shift);
  1655. }
  1656. static int dsi_enable_pads(struct dsi_data *dsi, unsigned int lane_mask)
  1657. {
  1658. if (dsi->data->model == DSI_MODEL_OMAP4)
  1659. return dsi_omap4_mux_pads(dsi, lane_mask);
  1660. if (dsi->data->model == DSI_MODEL_OMAP5)
  1661. return dsi_omap5_mux_pads(dsi, lane_mask);
  1662. return 0;
  1663. }
  1664. static void dsi_disable_pads(struct dsi_data *dsi)
  1665. {
  1666. if (dsi->data->model == DSI_MODEL_OMAP4)
  1667. dsi_omap4_mux_pads(dsi, 0);
  1668. else if (dsi->data->model == DSI_MODEL_OMAP5)
  1669. dsi_omap5_mux_pads(dsi, 0);
  1670. }
  1671. static int dsi_cio_init(struct dsi_data *dsi)
  1672. {
  1673. int r;
  1674. u32 l;
  1675. DSSDBG("DSI CIO init starts");
  1676. r = dsi_enable_pads(dsi, dsi_get_lane_mask(dsi));
  1677. if (r)
  1678. return r;
  1679. dsi_enable_scp_clk(dsi);
  1680. /* A dummy read using the SCP interface to any DSIPHY register is
  1681. * required after DSIPHY reset to complete the reset of the DSI complex
  1682. * I/O. */
  1683. dsi_read_reg(dsi, DSI_DSIPHY_CFG5);
  1684. if (!wait_for_bit_change(dsi, DSI_DSIPHY_CFG5, 30, 1)) {
  1685. DSSERR("CIO SCP Clock domain not coming out of reset.\n");
  1686. r = -EIO;
  1687. goto err_scp_clk_dom;
  1688. }
  1689. r = dsi_set_lane_config(dsi);
  1690. if (r)
  1691. goto err_scp_clk_dom;
  1692. /* set TX STOP MODE timer to maximum for this operation */
  1693. l = dsi_read_reg(dsi, DSI_TIMING1);
  1694. l = FLD_MOD(l, 1, 15, 15); /* FORCE_TX_STOP_MODE_IO */
  1695. l = FLD_MOD(l, 1, 14, 14); /* STOP_STATE_X16_IO */
  1696. l = FLD_MOD(l, 1, 13, 13); /* STOP_STATE_X4_IO */
  1697. l = FLD_MOD(l, 0x1fff, 12, 0); /* STOP_STATE_COUNTER_IO */
  1698. dsi_write_reg(dsi, DSI_TIMING1, l);
  1699. if (dsi->ulps_enabled) {
  1700. unsigned int mask_p;
  1701. int i;
  1702. DSSDBG("manual ulps exit\n");
  1703. /* ULPS is exited by Mark-1 state for 1ms, followed by
  1704. * stop state. DSS HW cannot do this via the normal
  1705. * ULPS exit sequence, as after reset the DSS HW thinks
  1706. * that we are not in ULPS mode, and refuses to send the
  1707. * sequence. So we need to send the ULPS exit sequence
  1708. * manually by setting positive lines high and negative lines
  1709. * low for 1ms.
  1710. */
  1711. mask_p = 0;
  1712. for (i = 0; i < dsi->num_lanes_supported; ++i) {
  1713. if (dsi->lanes[i].function == DSI_LANE_UNUSED)
  1714. continue;
  1715. mask_p |= 1 << i;
  1716. }
  1717. dsi_cio_enable_lane_override(dsi, mask_p, 0);
  1718. }
  1719. r = dsi_cio_power(dsi, DSI_COMPLEXIO_POWER_ON);
  1720. if (r)
  1721. goto err_cio_pwr;
  1722. if (!wait_for_bit_change(dsi, DSI_COMPLEXIO_CFG1, 29, 1)) {
  1723. DSSERR("CIO PWR clock domain not coming out of reset.\n");
  1724. r = -ENODEV;
  1725. goto err_cio_pwr_dom;
  1726. }
  1727. dsi_if_enable(dsi, true);
  1728. dsi_if_enable(dsi, false);
  1729. REG_FLD_MOD(dsi, DSI_CLK_CTRL, 1, 20, 20); /* LP_CLK_ENABLE */
  1730. r = dsi_cio_wait_tx_clk_esc_reset(dsi);
  1731. if (r)
  1732. goto err_tx_clk_esc_rst;
  1733. if (dsi->ulps_enabled) {
  1734. /* Keep Mark-1 state for 1ms (as per DSI spec) */
  1735. ktime_t wait = ns_to_ktime(1000 * 1000);
  1736. set_current_state(TASK_UNINTERRUPTIBLE);
  1737. schedule_hrtimeout(&wait, HRTIMER_MODE_REL);
  1738. /* Disable the override. The lanes should be set to Mark-11
  1739. * state by the HW */
  1740. dsi_cio_disable_lane_override(dsi);
  1741. }
  1742. /* FORCE_TX_STOP_MODE_IO */
  1743. REG_FLD_MOD(dsi, DSI_TIMING1, 0, 15, 15);
  1744. dsi_cio_timings(dsi);
  1745. if (dsi->mode == OMAP_DSS_DSI_VIDEO_MODE) {
  1746. /* DDR_CLK_ALWAYS_ON */
  1747. REG_FLD_MOD(dsi, DSI_CLK_CTRL,
  1748. dsi->vm_timings.ddr_clk_always_on, 13, 13);
  1749. }
  1750. dsi->ulps_enabled = false;
  1751. DSSDBG("CIO init done\n");
  1752. return 0;
  1753. err_tx_clk_esc_rst:
  1754. REG_FLD_MOD(dsi, DSI_CLK_CTRL, 0, 20, 20); /* LP_CLK_ENABLE */
  1755. err_cio_pwr_dom:
  1756. dsi_cio_power(dsi, DSI_COMPLEXIO_POWER_OFF);
  1757. err_cio_pwr:
  1758. if (dsi->ulps_enabled)
  1759. dsi_cio_disable_lane_override(dsi);
  1760. err_scp_clk_dom:
  1761. dsi_disable_scp_clk(dsi);
  1762. dsi_disable_pads(dsi);
  1763. return r;
  1764. }
  1765. static void dsi_cio_uninit(struct dsi_data *dsi)
  1766. {
  1767. /* DDR_CLK_ALWAYS_ON */
  1768. REG_FLD_MOD(dsi, DSI_CLK_CTRL, 0, 13, 13);
  1769. dsi_cio_power(dsi, DSI_COMPLEXIO_POWER_OFF);
  1770. dsi_disable_scp_clk(dsi);
  1771. dsi_disable_pads(dsi);
  1772. }
  1773. static void dsi_config_tx_fifo(struct dsi_data *dsi,
  1774. enum fifo_size size1, enum fifo_size size2,
  1775. enum fifo_size size3, enum fifo_size size4)
  1776. {
  1777. u32 r = 0;
  1778. int add = 0;
  1779. int i;
  1780. dsi->vc[0].tx_fifo_size = size1;
  1781. dsi->vc[1].tx_fifo_size = size2;
  1782. dsi->vc[2].tx_fifo_size = size3;
  1783. dsi->vc[3].tx_fifo_size = size4;
  1784. for (i = 0; i < 4; i++) {
  1785. u8 v;
  1786. int size = dsi->vc[i].tx_fifo_size;
  1787. if (add + size > 4) {
  1788. DSSERR("Illegal FIFO configuration\n");
  1789. BUG();
  1790. return;
  1791. }
  1792. v = FLD_VAL(add, 2, 0) | FLD_VAL(size, 7, 4);
  1793. r |= v << (8 * i);
  1794. /*DSSDBG("TX FIFO vc %d: size %d, add %d\n", i, size, add); */
  1795. add += size;
  1796. }
  1797. dsi_write_reg(dsi, DSI_TX_FIFO_VC_SIZE, r);
  1798. }
  1799. static void dsi_config_rx_fifo(struct dsi_data *dsi,
  1800. enum fifo_size size1, enum fifo_size size2,
  1801. enum fifo_size size3, enum fifo_size size4)
  1802. {
  1803. u32 r = 0;
  1804. int add = 0;
  1805. int i;
  1806. dsi->vc[0].rx_fifo_size = size1;
  1807. dsi->vc[1].rx_fifo_size = size2;
  1808. dsi->vc[2].rx_fifo_size = size3;
  1809. dsi->vc[3].rx_fifo_size = size4;
  1810. for (i = 0; i < 4; i++) {
  1811. u8 v;
  1812. int size = dsi->vc[i].rx_fifo_size;
  1813. if (add + size > 4) {
  1814. DSSERR("Illegal FIFO configuration\n");
  1815. BUG();
  1816. return;
  1817. }
  1818. v = FLD_VAL(add, 2, 0) | FLD_VAL(size, 7, 4);
  1819. r |= v << (8 * i);
  1820. /*DSSDBG("RX FIFO vc %d: size %d, add %d\n", i, size, add); */
  1821. add += size;
  1822. }
  1823. dsi_write_reg(dsi, DSI_RX_FIFO_VC_SIZE, r);
  1824. }
  1825. static int dsi_force_tx_stop_mode_io(struct dsi_data *dsi)
  1826. {
  1827. u32 r;
  1828. r = dsi_read_reg(dsi, DSI_TIMING1);
  1829. r = FLD_MOD(r, 1, 15, 15); /* FORCE_TX_STOP_MODE_IO */
  1830. dsi_write_reg(dsi, DSI_TIMING1, r);
  1831. if (!wait_for_bit_change(dsi, DSI_TIMING1, 15, 0)) {
  1832. DSSERR("TX_STOP bit not going down\n");
  1833. return -EIO;
  1834. }
  1835. return 0;
  1836. }
  1837. static bool dsi_vc_is_enabled(struct dsi_data *dsi, int channel)
  1838. {
  1839. return REG_GET(dsi, DSI_VC_CTRL(channel), 0, 0);
  1840. }
  1841. static void dsi_packet_sent_handler_vp(void *data, u32 mask)
  1842. {
  1843. struct dsi_packet_sent_handler_data *vp_data =
  1844. (struct dsi_packet_sent_handler_data *) data;
  1845. struct dsi_data *dsi = vp_data->dsi;
  1846. const int channel = dsi->update_channel;
  1847. u8 bit = dsi->te_enabled ? 30 : 31;
  1848. if (REG_GET(dsi, DSI_VC_TE(channel), bit, bit) == 0)
  1849. complete(vp_data->completion);
  1850. }
  1851. static int dsi_sync_vc_vp(struct dsi_data *dsi, int channel)
  1852. {
  1853. DECLARE_COMPLETION_ONSTACK(completion);
  1854. struct dsi_packet_sent_handler_data vp_data = {
  1855. .dsi = dsi,
  1856. .completion = &completion
  1857. };
  1858. int r = 0;
  1859. u8 bit;
  1860. bit = dsi->te_enabled ? 30 : 31;
  1861. r = dsi_register_isr_vc(dsi, channel, dsi_packet_sent_handler_vp,
  1862. &vp_data, DSI_VC_IRQ_PACKET_SENT);
  1863. if (r)
  1864. goto err0;
  1865. /* Wait for completion only if TE_EN/TE_START is still set */
  1866. if (REG_GET(dsi, DSI_VC_TE(channel), bit, bit)) {
  1867. if (wait_for_completion_timeout(&completion,
  1868. msecs_to_jiffies(10)) == 0) {
  1869. DSSERR("Failed to complete previous frame transfer\n");
  1870. r = -EIO;
  1871. goto err1;
  1872. }
  1873. }
  1874. dsi_unregister_isr_vc(dsi, channel, dsi_packet_sent_handler_vp,
  1875. &vp_data, DSI_VC_IRQ_PACKET_SENT);
  1876. return 0;
  1877. err1:
  1878. dsi_unregister_isr_vc(dsi, channel, dsi_packet_sent_handler_vp,
  1879. &vp_data, DSI_VC_IRQ_PACKET_SENT);
  1880. err0:
  1881. return r;
  1882. }
  1883. static void dsi_packet_sent_handler_l4(void *data, u32 mask)
  1884. {
  1885. struct dsi_packet_sent_handler_data *l4_data =
  1886. (struct dsi_packet_sent_handler_data *) data;
  1887. struct dsi_data *dsi = l4_data->dsi;
  1888. const int channel = dsi->update_channel;
  1889. if (REG_GET(dsi, DSI_VC_CTRL(channel), 5, 5) == 0)
  1890. complete(l4_data->completion);
  1891. }
  1892. static int dsi_sync_vc_l4(struct dsi_data *dsi, int channel)
  1893. {
  1894. DECLARE_COMPLETION_ONSTACK(completion);
  1895. struct dsi_packet_sent_handler_data l4_data = {
  1896. .dsi = dsi,
  1897. .completion = &completion
  1898. };
  1899. int r = 0;
  1900. r = dsi_register_isr_vc(dsi, channel, dsi_packet_sent_handler_l4,
  1901. &l4_data, DSI_VC_IRQ_PACKET_SENT);
  1902. if (r)
  1903. goto err0;
  1904. /* Wait for completion only if TX_FIFO_NOT_EMPTY is still set */
  1905. if (REG_GET(dsi, DSI_VC_CTRL(channel), 5, 5)) {
  1906. if (wait_for_completion_timeout(&completion,
  1907. msecs_to_jiffies(10)) == 0) {
  1908. DSSERR("Failed to complete previous l4 transfer\n");
  1909. r = -EIO;
  1910. goto err1;
  1911. }
  1912. }
  1913. dsi_unregister_isr_vc(dsi, channel, dsi_packet_sent_handler_l4,
  1914. &l4_data, DSI_VC_IRQ_PACKET_SENT);
  1915. return 0;
  1916. err1:
  1917. dsi_unregister_isr_vc(dsi, channel, dsi_packet_sent_handler_l4,
  1918. &l4_data, DSI_VC_IRQ_PACKET_SENT);
  1919. err0:
  1920. return r;
  1921. }
  1922. static int dsi_sync_vc(struct dsi_data *dsi, int channel)
  1923. {
  1924. WARN_ON(!dsi_bus_is_locked(dsi));
  1925. WARN_ON(in_interrupt());
  1926. if (!dsi_vc_is_enabled(dsi, channel))
  1927. return 0;
  1928. switch (dsi->vc[channel].source) {
  1929. case DSI_VC_SOURCE_VP:
  1930. return dsi_sync_vc_vp(dsi, channel);
  1931. case DSI_VC_SOURCE_L4:
  1932. return dsi_sync_vc_l4(dsi, channel);
  1933. default:
  1934. BUG();
  1935. return -EINVAL;
  1936. }
  1937. }
  1938. static int dsi_vc_enable(struct dsi_data *dsi, int channel, bool enable)
  1939. {
  1940. DSSDBG("dsi_vc_enable channel %d, enable %d\n",
  1941. channel, enable);
  1942. enable = enable ? 1 : 0;
  1943. REG_FLD_MOD(dsi, DSI_VC_CTRL(channel), enable, 0, 0);
  1944. if (!wait_for_bit_change(dsi, DSI_VC_CTRL(channel), 0, enable)) {
  1945. DSSERR("Failed to set dsi_vc_enable to %d\n", enable);
  1946. return -EIO;
  1947. }
  1948. return 0;
  1949. }
  1950. static void dsi_vc_initial_config(struct dsi_data *dsi, int channel)
  1951. {
  1952. u32 r;
  1953. DSSDBG("Initial config of virtual channel %d", channel);
  1954. r = dsi_read_reg(dsi, DSI_VC_CTRL(channel));
  1955. if (FLD_GET(r, 15, 15)) /* VC_BUSY */
  1956. DSSERR("VC(%d) busy when trying to configure it!\n",
  1957. channel);
  1958. r = FLD_MOD(r, 0, 1, 1); /* SOURCE, 0 = L4 */
  1959. r = FLD_MOD(r, 0, 2, 2); /* BTA_SHORT_EN */
  1960. r = FLD_MOD(r, 0, 3, 3); /* BTA_LONG_EN */
  1961. r = FLD_MOD(r, 0, 4, 4); /* MODE, 0 = command */
  1962. r = FLD_MOD(r, 1, 7, 7); /* CS_TX_EN */
  1963. r = FLD_MOD(r, 1, 8, 8); /* ECC_TX_EN */
  1964. r = FLD_MOD(r, 0, 9, 9); /* MODE_SPEED, high speed on/off */
  1965. if (dsi->data->quirks & DSI_QUIRK_VC_OCP_WIDTH)
  1966. r = FLD_MOD(r, 3, 11, 10); /* OCP_WIDTH = 32 bit */
  1967. r = FLD_MOD(r, 4, 29, 27); /* DMA_RX_REQ_NB = no dma */
  1968. r = FLD_MOD(r, 4, 23, 21); /* DMA_TX_REQ_NB = no dma */
  1969. dsi_write_reg(dsi, DSI_VC_CTRL(channel), r);
  1970. dsi->vc[channel].source = DSI_VC_SOURCE_L4;
  1971. }
  1972. static int dsi_vc_config_source(struct dsi_data *dsi, int channel,
  1973. enum dsi_vc_source source)
  1974. {
  1975. if (dsi->vc[channel].source == source)
  1976. return 0;
  1977. DSSDBG("Source config of virtual channel %d", channel);
  1978. dsi_sync_vc(dsi, channel);
  1979. dsi_vc_enable(dsi, channel, 0);
  1980. /* VC_BUSY */
  1981. if (!wait_for_bit_change(dsi, DSI_VC_CTRL(channel), 15, 0)) {
  1982. DSSERR("vc(%d) busy when trying to config for VP\n", channel);
  1983. return -EIO;
  1984. }
  1985. /* SOURCE, 0 = L4, 1 = video port */
  1986. REG_FLD_MOD(dsi, DSI_VC_CTRL(channel), source, 1, 1);
  1987. /* DCS_CMD_ENABLE */
  1988. if (dsi->data->quirks & DSI_QUIRK_DCS_CMD_CONFIG_VC) {
  1989. bool enable = source == DSI_VC_SOURCE_VP;
  1990. REG_FLD_MOD(dsi, DSI_VC_CTRL(channel), enable, 30, 30);
  1991. }
  1992. dsi_vc_enable(dsi, channel, 1);
  1993. dsi->vc[channel].source = source;
  1994. return 0;
  1995. }
  1996. static void dsi_vc_enable_hs(struct omap_dss_device *dssdev, int channel,
  1997. bool enable)
  1998. {
  1999. struct dsi_data *dsi = to_dsi_data(dssdev);
  2000. DSSDBG("dsi_vc_enable_hs(%d, %d)\n", channel, enable);
  2001. WARN_ON(!dsi_bus_is_locked(dsi));
  2002. dsi_vc_enable(dsi, channel, 0);
  2003. dsi_if_enable(dsi, 0);
  2004. REG_FLD_MOD(dsi, DSI_VC_CTRL(channel), enable, 9, 9);
  2005. dsi_vc_enable(dsi, channel, 1);
  2006. dsi_if_enable(dsi, 1);
  2007. dsi_force_tx_stop_mode_io(dsi);
  2008. /* start the DDR clock by sending a NULL packet */
  2009. if (dsi->vm_timings.ddr_clk_always_on && enable)
  2010. dsi_vc_send_null(dsi, channel);
  2011. }
  2012. static void dsi_vc_flush_long_data(struct dsi_data *dsi, int channel)
  2013. {
  2014. while (REG_GET(dsi, DSI_VC_CTRL(channel), 20, 20)) {
  2015. u32 val;
  2016. val = dsi_read_reg(dsi, DSI_VC_SHORT_PACKET_HEADER(channel));
  2017. DSSDBG("\t\tb1 %#02x b2 %#02x b3 %#02x b4 %#02x\n",
  2018. (val >> 0) & 0xff,
  2019. (val >> 8) & 0xff,
  2020. (val >> 16) & 0xff,
  2021. (val >> 24) & 0xff);
  2022. }
  2023. }
  2024. static void dsi_show_rx_ack_with_err(u16 err)
  2025. {
  2026. DSSERR("\tACK with ERROR (%#x):\n", err);
  2027. if (err & (1 << 0))
  2028. DSSERR("\t\tSoT Error\n");
  2029. if (err & (1 << 1))
  2030. DSSERR("\t\tSoT Sync Error\n");
  2031. if (err & (1 << 2))
  2032. DSSERR("\t\tEoT Sync Error\n");
  2033. if (err & (1 << 3))
  2034. DSSERR("\t\tEscape Mode Entry Command Error\n");
  2035. if (err & (1 << 4))
  2036. DSSERR("\t\tLP Transmit Sync Error\n");
  2037. if (err & (1 << 5))
  2038. DSSERR("\t\tHS Receive Timeout Error\n");
  2039. if (err & (1 << 6))
  2040. DSSERR("\t\tFalse Control Error\n");
  2041. if (err & (1 << 7))
  2042. DSSERR("\t\t(reserved7)\n");
  2043. if (err & (1 << 8))
  2044. DSSERR("\t\tECC Error, single-bit (corrected)\n");
  2045. if (err & (1 << 9))
  2046. DSSERR("\t\tECC Error, multi-bit (not corrected)\n");
  2047. if (err & (1 << 10))
  2048. DSSERR("\t\tChecksum Error\n");
  2049. if (err & (1 << 11))
  2050. DSSERR("\t\tData type not recognized\n");
  2051. if (err & (1 << 12))
  2052. DSSERR("\t\tInvalid VC ID\n");
  2053. if (err & (1 << 13))
  2054. DSSERR("\t\tInvalid Transmission Length\n");
  2055. if (err & (1 << 14))
  2056. DSSERR("\t\t(reserved14)\n");
  2057. if (err & (1 << 15))
  2058. DSSERR("\t\tDSI Protocol Violation\n");
  2059. }
  2060. static u16 dsi_vc_flush_receive_data(struct dsi_data *dsi, int channel)
  2061. {
  2062. /* RX_FIFO_NOT_EMPTY */
  2063. while (REG_GET(dsi, DSI_VC_CTRL(channel), 20, 20)) {
  2064. u32 val;
  2065. u8 dt;
  2066. val = dsi_read_reg(dsi, DSI_VC_SHORT_PACKET_HEADER(channel));
  2067. DSSERR("\trawval %#08x\n", val);
  2068. dt = FLD_GET(val, 5, 0);
  2069. if (dt == MIPI_DSI_RX_ACKNOWLEDGE_AND_ERROR_REPORT) {
  2070. u16 err = FLD_GET(val, 23, 8);
  2071. dsi_show_rx_ack_with_err(err);
  2072. } else if (dt == MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_1BYTE) {
  2073. DSSERR("\tDCS short response, 1 byte: %#x\n",
  2074. FLD_GET(val, 23, 8));
  2075. } else if (dt == MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_2BYTE) {
  2076. DSSERR("\tDCS short response, 2 byte: %#x\n",
  2077. FLD_GET(val, 23, 8));
  2078. } else if (dt == MIPI_DSI_RX_DCS_LONG_READ_RESPONSE) {
  2079. DSSERR("\tDCS long response, len %d\n",
  2080. FLD_GET(val, 23, 8));
  2081. dsi_vc_flush_long_data(dsi, channel);
  2082. } else {
  2083. DSSERR("\tunknown datatype 0x%02x\n", dt);
  2084. }
  2085. }
  2086. return 0;
  2087. }
  2088. static int dsi_vc_send_bta(struct dsi_data *dsi, int channel)
  2089. {
  2090. if (dsi->debug_write || dsi->debug_read)
  2091. DSSDBG("dsi_vc_send_bta %d\n", channel);
  2092. WARN_ON(!dsi_bus_is_locked(dsi));
  2093. /* RX_FIFO_NOT_EMPTY */
  2094. if (REG_GET(dsi, DSI_VC_CTRL(channel), 20, 20)) {
  2095. DSSERR("rx fifo not empty when sending BTA, dumping data:\n");
  2096. dsi_vc_flush_receive_data(dsi, channel);
  2097. }
  2098. REG_FLD_MOD(dsi, DSI_VC_CTRL(channel), 1, 6, 6); /* BTA_EN */
  2099. /* flush posted write */
  2100. dsi_read_reg(dsi, DSI_VC_CTRL(channel));
  2101. return 0;
  2102. }
  2103. static int dsi_vc_send_bta_sync(struct omap_dss_device *dssdev, int channel)
  2104. {
  2105. struct dsi_data *dsi = to_dsi_data(dssdev);
  2106. DECLARE_COMPLETION_ONSTACK(completion);
  2107. int r = 0;
  2108. u32 err;
  2109. r = dsi_register_isr_vc(dsi, channel, dsi_completion_handler,
  2110. &completion, DSI_VC_IRQ_BTA);
  2111. if (r)
  2112. goto err0;
  2113. r = dsi_register_isr(dsi, dsi_completion_handler, &completion,
  2114. DSI_IRQ_ERROR_MASK);
  2115. if (r)
  2116. goto err1;
  2117. r = dsi_vc_send_bta(dsi, channel);
  2118. if (r)
  2119. goto err2;
  2120. if (wait_for_completion_timeout(&completion,
  2121. msecs_to_jiffies(500)) == 0) {
  2122. DSSERR("Failed to receive BTA\n");
  2123. r = -EIO;
  2124. goto err2;
  2125. }
  2126. err = dsi_get_errors(dsi);
  2127. if (err) {
  2128. DSSERR("Error while sending BTA: %x\n", err);
  2129. r = -EIO;
  2130. goto err2;
  2131. }
  2132. err2:
  2133. dsi_unregister_isr(dsi, dsi_completion_handler, &completion,
  2134. DSI_IRQ_ERROR_MASK);
  2135. err1:
  2136. dsi_unregister_isr_vc(dsi, channel, dsi_completion_handler,
  2137. &completion, DSI_VC_IRQ_BTA);
  2138. err0:
  2139. return r;
  2140. }
  2141. static inline void dsi_vc_write_long_header(struct dsi_data *dsi, int channel,
  2142. u8 data_type, u16 len, u8 ecc)
  2143. {
  2144. u32 val;
  2145. u8 data_id;
  2146. WARN_ON(!dsi_bus_is_locked(dsi));
  2147. data_id = data_type | dsi->vc[channel].vc_id << 6;
  2148. val = FLD_VAL(data_id, 7, 0) | FLD_VAL(len, 23, 8) |
  2149. FLD_VAL(ecc, 31, 24);
  2150. dsi_write_reg(dsi, DSI_VC_LONG_PACKET_HEADER(channel), val);
  2151. }
  2152. static inline void dsi_vc_write_long_payload(struct dsi_data *dsi, int channel,
  2153. u8 b1, u8 b2, u8 b3, u8 b4)
  2154. {
  2155. u32 val;
  2156. val = b4 << 24 | b3 << 16 | b2 << 8 | b1 << 0;
  2157. /* DSSDBG("\twriting %02x, %02x, %02x, %02x (%#010x)\n",
  2158. b1, b2, b3, b4, val); */
  2159. dsi_write_reg(dsi, DSI_VC_LONG_PACKET_PAYLOAD(channel), val);
  2160. }
  2161. static int dsi_vc_send_long(struct dsi_data *dsi, int channel, u8 data_type,
  2162. u8 *data, u16 len, u8 ecc)
  2163. {
  2164. /*u32 val; */
  2165. int i;
  2166. u8 *p;
  2167. int r = 0;
  2168. u8 b1, b2, b3, b4;
  2169. if (dsi->debug_write)
  2170. DSSDBG("dsi_vc_send_long, %d bytes\n", len);
  2171. /* len + header */
  2172. if (dsi->vc[channel].tx_fifo_size * 32 * 4 < len + 4) {
  2173. DSSERR("unable to send long packet: packet too long.\n");
  2174. return -EINVAL;
  2175. }
  2176. dsi_vc_config_source(dsi, channel, DSI_VC_SOURCE_L4);
  2177. dsi_vc_write_long_header(dsi, channel, data_type, len, ecc);
  2178. p = data;
  2179. for (i = 0; i < len >> 2; i++) {
  2180. if (dsi->debug_write)
  2181. DSSDBG("\tsending full packet %d\n", i);
  2182. b1 = *p++;
  2183. b2 = *p++;
  2184. b3 = *p++;
  2185. b4 = *p++;
  2186. dsi_vc_write_long_payload(dsi, channel, b1, b2, b3, b4);
  2187. }
  2188. i = len % 4;
  2189. if (i) {
  2190. b1 = 0; b2 = 0; b3 = 0;
  2191. if (dsi->debug_write)
  2192. DSSDBG("\tsending remainder bytes %d\n", i);
  2193. switch (i) {
  2194. case 3:
  2195. b1 = *p++;
  2196. b2 = *p++;
  2197. b3 = *p++;
  2198. break;
  2199. case 2:
  2200. b1 = *p++;
  2201. b2 = *p++;
  2202. break;
  2203. case 1:
  2204. b1 = *p++;
  2205. break;
  2206. }
  2207. dsi_vc_write_long_payload(dsi, channel, b1, b2, b3, 0);
  2208. }
  2209. return r;
  2210. }
  2211. static int dsi_vc_send_short(struct dsi_data *dsi, int channel, u8 data_type,
  2212. u16 data, u8 ecc)
  2213. {
  2214. u32 r;
  2215. u8 data_id;
  2216. WARN_ON(!dsi_bus_is_locked(dsi));
  2217. if (dsi->debug_write)
  2218. DSSDBG("dsi_vc_send_short(ch%d, dt %#x, b1 %#x, b2 %#x)\n",
  2219. channel,
  2220. data_type, data & 0xff, (data >> 8) & 0xff);
  2221. dsi_vc_config_source(dsi, channel, DSI_VC_SOURCE_L4);
  2222. if (FLD_GET(dsi_read_reg(dsi, DSI_VC_CTRL(channel)), 16, 16)) {
  2223. DSSERR("ERROR FIFO FULL, aborting transfer\n");
  2224. return -EINVAL;
  2225. }
  2226. data_id = data_type | dsi->vc[channel].vc_id << 6;
  2227. r = (data_id << 0) | (data << 8) | (ecc << 24);
  2228. dsi_write_reg(dsi, DSI_VC_SHORT_PACKET_HEADER(channel), r);
  2229. return 0;
  2230. }
  2231. static int dsi_vc_send_null(struct dsi_data *dsi, int channel)
  2232. {
  2233. return dsi_vc_send_long(dsi, channel, MIPI_DSI_NULL_PACKET, NULL, 0, 0);
  2234. }
  2235. static int dsi_vc_write_nosync_common(struct dsi_data *dsi, int channel,
  2236. u8 *data, int len,
  2237. enum dss_dsi_content_type type)
  2238. {
  2239. int r;
  2240. if (len == 0) {
  2241. BUG_ON(type == DSS_DSI_CONTENT_DCS);
  2242. r = dsi_vc_send_short(dsi, channel,
  2243. MIPI_DSI_GENERIC_SHORT_WRITE_0_PARAM, 0, 0);
  2244. } else if (len == 1) {
  2245. r = dsi_vc_send_short(dsi, channel,
  2246. type == DSS_DSI_CONTENT_GENERIC ?
  2247. MIPI_DSI_GENERIC_SHORT_WRITE_1_PARAM :
  2248. MIPI_DSI_DCS_SHORT_WRITE, data[0], 0);
  2249. } else if (len == 2) {
  2250. r = dsi_vc_send_short(dsi, channel,
  2251. type == DSS_DSI_CONTENT_GENERIC ?
  2252. MIPI_DSI_GENERIC_SHORT_WRITE_2_PARAM :
  2253. MIPI_DSI_DCS_SHORT_WRITE_PARAM,
  2254. data[0] | (data[1] << 8), 0);
  2255. } else {
  2256. r = dsi_vc_send_long(dsi, channel,
  2257. type == DSS_DSI_CONTENT_GENERIC ?
  2258. MIPI_DSI_GENERIC_LONG_WRITE :
  2259. MIPI_DSI_DCS_LONG_WRITE, data, len, 0);
  2260. }
  2261. return r;
  2262. }
  2263. static int dsi_vc_dcs_write_nosync(struct omap_dss_device *dssdev, int channel,
  2264. u8 *data, int len)
  2265. {
  2266. struct dsi_data *dsi = to_dsi_data(dssdev);
  2267. return dsi_vc_write_nosync_common(dsi, channel, data, len,
  2268. DSS_DSI_CONTENT_DCS);
  2269. }
  2270. static int dsi_vc_generic_write_nosync(struct omap_dss_device *dssdev, int channel,
  2271. u8 *data, int len)
  2272. {
  2273. struct dsi_data *dsi = to_dsi_data(dssdev);
  2274. return dsi_vc_write_nosync_common(dsi, channel, data, len,
  2275. DSS_DSI_CONTENT_GENERIC);
  2276. }
  2277. static int dsi_vc_write_common(struct omap_dss_device *dssdev,
  2278. int channel, u8 *data, int len,
  2279. enum dss_dsi_content_type type)
  2280. {
  2281. struct dsi_data *dsi = to_dsi_data(dssdev);
  2282. int r;
  2283. r = dsi_vc_write_nosync_common(dsi, channel, data, len, type);
  2284. if (r)
  2285. goto err;
  2286. r = dsi_vc_send_bta_sync(dssdev, channel);
  2287. if (r)
  2288. goto err;
  2289. /* RX_FIFO_NOT_EMPTY */
  2290. if (REG_GET(dsi, DSI_VC_CTRL(channel), 20, 20)) {
  2291. DSSERR("rx fifo not empty after write, dumping data:\n");
  2292. dsi_vc_flush_receive_data(dsi, channel);
  2293. r = -EIO;
  2294. goto err;
  2295. }
  2296. return 0;
  2297. err:
  2298. DSSERR("dsi_vc_write_common(ch %d, cmd 0x%02x, len %d) failed\n",
  2299. channel, data[0], len);
  2300. return r;
  2301. }
  2302. static int dsi_vc_dcs_write(struct omap_dss_device *dssdev, int channel, u8 *data,
  2303. int len)
  2304. {
  2305. return dsi_vc_write_common(dssdev, channel, data, len,
  2306. DSS_DSI_CONTENT_DCS);
  2307. }
  2308. static int dsi_vc_generic_write(struct omap_dss_device *dssdev, int channel, u8 *data,
  2309. int len)
  2310. {
  2311. return dsi_vc_write_common(dssdev, channel, data, len,
  2312. DSS_DSI_CONTENT_GENERIC);
  2313. }
  2314. static int dsi_vc_dcs_send_read_request(struct dsi_data *dsi, int channel,
  2315. u8 dcs_cmd)
  2316. {
  2317. int r;
  2318. if (dsi->debug_read)
  2319. DSSDBG("dsi_vc_dcs_send_read_request(ch%d, dcs_cmd %x)\n",
  2320. channel, dcs_cmd);
  2321. r = dsi_vc_send_short(dsi, channel, MIPI_DSI_DCS_READ, dcs_cmd, 0);
  2322. if (r) {
  2323. DSSERR("dsi_vc_dcs_send_read_request(ch %d, cmd 0x%02x)"
  2324. " failed\n", channel, dcs_cmd);
  2325. return r;
  2326. }
  2327. return 0;
  2328. }
  2329. static int dsi_vc_generic_send_read_request(struct dsi_data *dsi, int channel,
  2330. u8 *reqdata, int reqlen)
  2331. {
  2332. u16 data;
  2333. u8 data_type;
  2334. int r;
  2335. if (dsi->debug_read)
  2336. DSSDBG("dsi_vc_generic_send_read_request(ch %d, reqlen %d)\n",
  2337. channel, reqlen);
  2338. if (reqlen == 0) {
  2339. data_type = MIPI_DSI_GENERIC_READ_REQUEST_0_PARAM;
  2340. data = 0;
  2341. } else if (reqlen == 1) {
  2342. data_type = MIPI_DSI_GENERIC_READ_REQUEST_1_PARAM;
  2343. data = reqdata[0];
  2344. } else if (reqlen == 2) {
  2345. data_type = MIPI_DSI_GENERIC_READ_REQUEST_2_PARAM;
  2346. data = reqdata[0] | (reqdata[1] << 8);
  2347. } else {
  2348. BUG();
  2349. return -EINVAL;
  2350. }
  2351. r = dsi_vc_send_short(dsi, channel, data_type, data, 0);
  2352. if (r) {
  2353. DSSERR("dsi_vc_generic_send_read_request(ch %d, reqlen %d)"
  2354. " failed\n", channel, reqlen);
  2355. return r;
  2356. }
  2357. return 0;
  2358. }
  2359. static int dsi_vc_read_rx_fifo(struct dsi_data *dsi, int channel, u8 *buf,
  2360. int buflen, enum dss_dsi_content_type type)
  2361. {
  2362. u32 val;
  2363. u8 dt;
  2364. int r;
  2365. /* RX_FIFO_NOT_EMPTY */
  2366. if (REG_GET(dsi, DSI_VC_CTRL(channel), 20, 20) == 0) {
  2367. DSSERR("RX fifo empty when trying to read.\n");
  2368. r = -EIO;
  2369. goto err;
  2370. }
  2371. val = dsi_read_reg(dsi, DSI_VC_SHORT_PACKET_HEADER(channel));
  2372. if (dsi->debug_read)
  2373. DSSDBG("\theader: %08x\n", val);
  2374. dt = FLD_GET(val, 5, 0);
  2375. if (dt == MIPI_DSI_RX_ACKNOWLEDGE_AND_ERROR_REPORT) {
  2376. u16 err = FLD_GET(val, 23, 8);
  2377. dsi_show_rx_ack_with_err(err);
  2378. r = -EIO;
  2379. goto err;
  2380. } else if (dt == (type == DSS_DSI_CONTENT_GENERIC ?
  2381. MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_1BYTE :
  2382. MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_1BYTE)) {
  2383. u8 data = FLD_GET(val, 15, 8);
  2384. if (dsi->debug_read)
  2385. DSSDBG("\t%s short response, 1 byte: %02x\n",
  2386. type == DSS_DSI_CONTENT_GENERIC ? "GENERIC" :
  2387. "DCS", data);
  2388. if (buflen < 1) {
  2389. r = -EIO;
  2390. goto err;
  2391. }
  2392. buf[0] = data;
  2393. return 1;
  2394. } else if (dt == (type == DSS_DSI_CONTENT_GENERIC ?
  2395. MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_2BYTE :
  2396. MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_2BYTE)) {
  2397. u16 data = FLD_GET(val, 23, 8);
  2398. if (dsi->debug_read)
  2399. DSSDBG("\t%s short response, 2 byte: %04x\n",
  2400. type == DSS_DSI_CONTENT_GENERIC ? "GENERIC" :
  2401. "DCS", data);
  2402. if (buflen < 2) {
  2403. r = -EIO;
  2404. goto err;
  2405. }
  2406. buf[0] = data & 0xff;
  2407. buf[1] = (data >> 8) & 0xff;
  2408. return 2;
  2409. } else if (dt == (type == DSS_DSI_CONTENT_GENERIC ?
  2410. MIPI_DSI_RX_GENERIC_LONG_READ_RESPONSE :
  2411. MIPI_DSI_RX_DCS_LONG_READ_RESPONSE)) {
  2412. int w;
  2413. int len = FLD_GET(val, 23, 8);
  2414. if (dsi->debug_read)
  2415. DSSDBG("\t%s long response, len %d\n",
  2416. type == DSS_DSI_CONTENT_GENERIC ? "GENERIC" :
  2417. "DCS", len);
  2418. if (len > buflen) {
  2419. r = -EIO;
  2420. goto err;
  2421. }
  2422. /* two byte checksum ends the packet, not included in len */
  2423. for (w = 0; w < len + 2;) {
  2424. int b;
  2425. val = dsi_read_reg(dsi,
  2426. DSI_VC_SHORT_PACKET_HEADER(channel));
  2427. if (dsi->debug_read)
  2428. DSSDBG("\t\t%02x %02x %02x %02x\n",
  2429. (val >> 0) & 0xff,
  2430. (val >> 8) & 0xff,
  2431. (val >> 16) & 0xff,
  2432. (val >> 24) & 0xff);
  2433. for (b = 0; b < 4; ++b) {
  2434. if (w < len)
  2435. buf[w] = (val >> (b * 8)) & 0xff;
  2436. /* we discard the 2 byte checksum */
  2437. ++w;
  2438. }
  2439. }
  2440. return len;
  2441. } else {
  2442. DSSERR("\tunknown datatype 0x%02x\n", dt);
  2443. r = -EIO;
  2444. goto err;
  2445. }
  2446. err:
  2447. DSSERR("dsi_vc_read_rx_fifo(ch %d type %s) failed\n", channel,
  2448. type == DSS_DSI_CONTENT_GENERIC ? "GENERIC" : "DCS");
  2449. return r;
  2450. }
  2451. static int dsi_vc_dcs_read(struct omap_dss_device *dssdev, int channel, u8 dcs_cmd,
  2452. u8 *buf, int buflen)
  2453. {
  2454. struct dsi_data *dsi = to_dsi_data(dssdev);
  2455. int r;
  2456. r = dsi_vc_dcs_send_read_request(dsi, channel, dcs_cmd);
  2457. if (r)
  2458. goto err;
  2459. r = dsi_vc_send_bta_sync(dssdev, channel);
  2460. if (r)
  2461. goto err;
  2462. r = dsi_vc_read_rx_fifo(dsi, channel, buf, buflen,
  2463. DSS_DSI_CONTENT_DCS);
  2464. if (r < 0)
  2465. goto err;
  2466. if (r != buflen) {
  2467. r = -EIO;
  2468. goto err;
  2469. }
  2470. return 0;
  2471. err:
  2472. DSSERR("dsi_vc_dcs_read(ch %d, cmd 0x%02x) failed\n", channel, dcs_cmd);
  2473. return r;
  2474. }
  2475. static int dsi_vc_generic_read(struct omap_dss_device *dssdev, int channel,
  2476. u8 *reqdata, int reqlen, u8 *buf, int buflen)
  2477. {
  2478. struct dsi_data *dsi = to_dsi_data(dssdev);
  2479. int r;
  2480. r = dsi_vc_generic_send_read_request(dsi, channel, reqdata, reqlen);
  2481. if (r)
  2482. return r;
  2483. r = dsi_vc_send_bta_sync(dssdev, channel);
  2484. if (r)
  2485. return r;
  2486. r = dsi_vc_read_rx_fifo(dsi, channel, buf, buflen,
  2487. DSS_DSI_CONTENT_GENERIC);
  2488. if (r < 0)
  2489. return r;
  2490. if (r != buflen) {
  2491. r = -EIO;
  2492. return r;
  2493. }
  2494. return 0;
  2495. }
  2496. static int dsi_vc_set_max_rx_packet_size(struct omap_dss_device *dssdev, int channel,
  2497. u16 len)
  2498. {
  2499. struct dsi_data *dsi = to_dsi_data(dssdev);
  2500. return dsi_vc_send_short(dsi, channel,
  2501. MIPI_DSI_SET_MAXIMUM_RETURN_PACKET_SIZE, len, 0);
  2502. }
  2503. static int dsi_enter_ulps(struct dsi_data *dsi)
  2504. {
  2505. DECLARE_COMPLETION_ONSTACK(completion);
  2506. int r, i;
  2507. unsigned int mask;
  2508. DSSDBG("Entering ULPS");
  2509. WARN_ON(!dsi_bus_is_locked(dsi));
  2510. WARN_ON(dsi->ulps_enabled);
  2511. if (dsi->ulps_enabled)
  2512. return 0;
  2513. /* DDR_CLK_ALWAYS_ON */
  2514. if (REG_GET(dsi, DSI_CLK_CTRL, 13, 13)) {
  2515. dsi_if_enable(dsi, 0);
  2516. REG_FLD_MOD(dsi, DSI_CLK_CTRL, 0, 13, 13);
  2517. dsi_if_enable(dsi, 1);
  2518. }
  2519. dsi_sync_vc(dsi, 0);
  2520. dsi_sync_vc(dsi, 1);
  2521. dsi_sync_vc(dsi, 2);
  2522. dsi_sync_vc(dsi, 3);
  2523. dsi_force_tx_stop_mode_io(dsi);
  2524. dsi_vc_enable(dsi, 0, false);
  2525. dsi_vc_enable(dsi, 1, false);
  2526. dsi_vc_enable(dsi, 2, false);
  2527. dsi_vc_enable(dsi, 3, false);
  2528. if (REG_GET(dsi, DSI_COMPLEXIO_CFG2, 16, 16)) { /* HS_BUSY */
  2529. DSSERR("HS busy when enabling ULPS\n");
  2530. return -EIO;
  2531. }
  2532. if (REG_GET(dsi, DSI_COMPLEXIO_CFG2, 17, 17)) { /* LP_BUSY */
  2533. DSSERR("LP busy when enabling ULPS\n");
  2534. return -EIO;
  2535. }
  2536. r = dsi_register_isr_cio(dsi, dsi_completion_handler, &completion,
  2537. DSI_CIO_IRQ_ULPSACTIVENOT_ALL0);
  2538. if (r)
  2539. return r;
  2540. mask = 0;
  2541. for (i = 0; i < dsi->num_lanes_supported; ++i) {
  2542. if (dsi->lanes[i].function == DSI_LANE_UNUSED)
  2543. continue;
  2544. mask |= 1 << i;
  2545. }
  2546. /* Assert TxRequestEsc for data lanes and TxUlpsClk for clk lane */
  2547. /* LANEx_ULPS_SIG2 */
  2548. REG_FLD_MOD(dsi, DSI_COMPLEXIO_CFG2, mask, 9, 5);
  2549. /* flush posted write and wait for SCP interface to finish the write */
  2550. dsi_read_reg(dsi, DSI_COMPLEXIO_CFG2);
  2551. if (wait_for_completion_timeout(&completion,
  2552. msecs_to_jiffies(1000)) == 0) {
  2553. DSSERR("ULPS enable timeout\n");
  2554. r = -EIO;
  2555. goto err;
  2556. }
  2557. dsi_unregister_isr_cio(dsi, dsi_completion_handler, &completion,
  2558. DSI_CIO_IRQ_ULPSACTIVENOT_ALL0);
  2559. /* Reset LANEx_ULPS_SIG2 */
  2560. REG_FLD_MOD(dsi, DSI_COMPLEXIO_CFG2, 0, 9, 5);
  2561. /* flush posted write and wait for SCP interface to finish the write */
  2562. dsi_read_reg(dsi, DSI_COMPLEXIO_CFG2);
  2563. dsi_cio_power(dsi, DSI_COMPLEXIO_POWER_ULPS);
  2564. dsi_if_enable(dsi, false);
  2565. dsi->ulps_enabled = true;
  2566. return 0;
  2567. err:
  2568. dsi_unregister_isr_cio(dsi, dsi_completion_handler, &completion,
  2569. DSI_CIO_IRQ_ULPSACTIVENOT_ALL0);
  2570. return r;
  2571. }
  2572. static void dsi_set_lp_rx_timeout(struct dsi_data *dsi, unsigned int ticks,
  2573. bool x4, bool x16)
  2574. {
  2575. unsigned long fck;
  2576. unsigned long total_ticks;
  2577. u32 r;
  2578. BUG_ON(ticks > 0x1fff);
  2579. /* ticks in DSI_FCK */
  2580. fck = dsi_fclk_rate(dsi);
  2581. r = dsi_read_reg(dsi, DSI_TIMING2);
  2582. r = FLD_MOD(r, 1, 15, 15); /* LP_RX_TO */
  2583. r = FLD_MOD(r, x16 ? 1 : 0, 14, 14); /* LP_RX_TO_X16 */
  2584. r = FLD_MOD(r, x4 ? 1 : 0, 13, 13); /* LP_RX_TO_X4 */
  2585. r = FLD_MOD(r, ticks, 12, 0); /* LP_RX_COUNTER */
  2586. dsi_write_reg(dsi, DSI_TIMING2, r);
  2587. total_ticks = ticks * (x16 ? 16 : 1) * (x4 ? 4 : 1);
  2588. DSSDBG("LP_RX_TO %lu ticks (%#x%s%s) = %lu ns\n",
  2589. total_ticks,
  2590. ticks, x4 ? " x4" : "", x16 ? " x16" : "",
  2591. (total_ticks * 1000) / (fck / 1000 / 1000));
  2592. }
  2593. static void dsi_set_ta_timeout(struct dsi_data *dsi, unsigned int ticks,
  2594. bool x8, bool x16)
  2595. {
  2596. unsigned long fck;
  2597. unsigned long total_ticks;
  2598. u32 r;
  2599. BUG_ON(ticks > 0x1fff);
  2600. /* ticks in DSI_FCK */
  2601. fck = dsi_fclk_rate(dsi);
  2602. r = dsi_read_reg(dsi, DSI_TIMING1);
  2603. r = FLD_MOD(r, 1, 31, 31); /* TA_TO */
  2604. r = FLD_MOD(r, x16 ? 1 : 0, 30, 30); /* TA_TO_X16 */
  2605. r = FLD_MOD(r, x8 ? 1 : 0, 29, 29); /* TA_TO_X8 */
  2606. r = FLD_MOD(r, ticks, 28, 16); /* TA_TO_COUNTER */
  2607. dsi_write_reg(dsi, DSI_TIMING1, r);
  2608. total_ticks = ticks * (x16 ? 16 : 1) * (x8 ? 8 : 1);
  2609. DSSDBG("TA_TO %lu ticks (%#x%s%s) = %lu ns\n",
  2610. total_ticks,
  2611. ticks, x8 ? " x8" : "", x16 ? " x16" : "",
  2612. (total_ticks * 1000) / (fck / 1000 / 1000));
  2613. }
  2614. static void dsi_set_stop_state_counter(struct dsi_data *dsi, unsigned int ticks,
  2615. bool x4, bool x16)
  2616. {
  2617. unsigned long fck;
  2618. unsigned long total_ticks;
  2619. u32 r;
  2620. BUG_ON(ticks > 0x1fff);
  2621. /* ticks in DSI_FCK */
  2622. fck = dsi_fclk_rate(dsi);
  2623. r = dsi_read_reg(dsi, DSI_TIMING1);
  2624. r = FLD_MOD(r, 1, 15, 15); /* FORCE_TX_STOP_MODE_IO */
  2625. r = FLD_MOD(r, x16 ? 1 : 0, 14, 14); /* STOP_STATE_X16_IO */
  2626. r = FLD_MOD(r, x4 ? 1 : 0, 13, 13); /* STOP_STATE_X4_IO */
  2627. r = FLD_MOD(r, ticks, 12, 0); /* STOP_STATE_COUNTER_IO */
  2628. dsi_write_reg(dsi, DSI_TIMING1, r);
  2629. total_ticks = ticks * (x16 ? 16 : 1) * (x4 ? 4 : 1);
  2630. DSSDBG("STOP_STATE_COUNTER %lu ticks (%#x%s%s) = %lu ns\n",
  2631. total_ticks,
  2632. ticks, x4 ? " x4" : "", x16 ? " x16" : "",
  2633. (total_ticks * 1000) / (fck / 1000 / 1000));
  2634. }
  2635. static void dsi_set_hs_tx_timeout(struct dsi_data *dsi, unsigned int ticks,
  2636. bool x4, bool x16)
  2637. {
  2638. unsigned long fck;
  2639. unsigned long total_ticks;
  2640. u32 r;
  2641. BUG_ON(ticks > 0x1fff);
  2642. /* ticks in TxByteClkHS */
  2643. fck = dsi_get_txbyteclkhs(dsi);
  2644. r = dsi_read_reg(dsi, DSI_TIMING2);
  2645. r = FLD_MOD(r, 1, 31, 31); /* HS_TX_TO */
  2646. r = FLD_MOD(r, x16 ? 1 : 0, 30, 30); /* HS_TX_TO_X16 */
  2647. r = FLD_MOD(r, x4 ? 1 : 0, 29, 29); /* HS_TX_TO_X8 (4 really) */
  2648. r = FLD_MOD(r, ticks, 28, 16); /* HS_TX_TO_COUNTER */
  2649. dsi_write_reg(dsi, DSI_TIMING2, r);
  2650. total_ticks = ticks * (x16 ? 16 : 1) * (x4 ? 4 : 1);
  2651. DSSDBG("HS_TX_TO %lu ticks (%#x%s%s) = %lu ns\n",
  2652. total_ticks,
  2653. ticks, x4 ? " x4" : "", x16 ? " x16" : "",
  2654. (total_ticks * 1000) / (fck / 1000 / 1000));
  2655. }
  2656. static void dsi_config_vp_num_line_buffers(struct dsi_data *dsi)
  2657. {
  2658. int num_line_buffers;
  2659. if (dsi->mode == OMAP_DSS_DSI_VIDEO_MODE) {
  2660. int bpp = dsi_get_pixel_size(dsi->pix_fmt);
  2661. struct videomode *vm = &dsi->vm;
  2662. /*
  2663. * Don't use line buffers if width is greater than the video
  2664. * port's line buffer size
  2665. */
  2666. if (dsi->line_buffer_size <= vm->hactive * bpp / 8)
  2667. num_line_buffers = 0;
  2668. else
  2669. num_line_buffers = 2;
  2670. } else {
  2671. /* Use maximum number of line buffers in command mode */
  2672. num_line_buffers = 2;
  2673. }
  2674. /* LINE_BUFFER */
  2675. REG_FLD_MOD(dsi, DSI_CTRL, num_line_buffers, 13, 12);
  2676. }
  2677. static void dsi_config_vp_sync_events(struct dsi_data *dsi)
  2678. {
  2679. bool sync_end;
  2680. u32 r;
  2681. if (dsi->vm_timings.trans_mode == OMAP_DSS_DSI_PULSE_MODE)
  2682. sync_end = true;
  2683. else
  2684. sync_end = false;
  2685. r = dsi_read_reg(dsi, DSI_CTRL);
  2686. r = FLD_MOD(r, 1, 9, 9); /* VP_DE_POL */
  2687. r = FLD_MOD(r, 1, 10, 10); /* VP_HSYNC_POL */
  2688. r = FLD_MOD(r, 1, 11, 11); /* VP_VSYNC_POL */
  2689. r = FLD_MOD(r, 1, 15, 15); /* VP_VSYNC_START */
  2690. r = FLD_MOD(r, sync_end, 16, 16); /* VP_VSYNC_END */
  2691. r = FLD_MOD(r, 1, 17, 17); /* VP_HSYNC_START */
  2692. r = FLD_MOD(r, sync_end, 18, 18); /* VP_HSYNC_END */
  2693. dsi_write_reg(dsi, DSI_CTRL, r);
  2694. }
  2695. static void dsi_config_blanking_modes(struct dsi_data *dsi)
  2696. {
  2697. int blanking_mode = dsi->vm_timings.blanking_mode;
  2698. int hfp_blanking_mode = dsi->vm_timings.hfp_blanking_mode;
  2699. int hbp_blanking_mode = dsi->vm_timings.hbp_blanking_mode;
  2700. int hsa_blanking_mode = dsi->vm_timings.hsa_blanking_mode;
  2701. u32 r;
  2702. /*
  2703. * 0 = TX FIFO packets sent or LPS in corresponding blanking periods
  2704. * 1 = Long blanking packets are sent in corresponding blanking periods
  2705. */
  2706. r = dsi_read_reg(dsi, DSI_CTRL);
  2707. r = FLD_MOD(r, blanking_mode, 20, 20); /* BLANKING_MODE */
  2708. r = FLD_MOD(r, hfp_blanking_mode, 21, 21); /* HFP_BLANKING */
  2709. r = FLD_MOD(r, hbp_blanking_mode, 22, 22); /* HBP_BLANKING */
  2710. r = FLD_MOD(r, hsa_blanking_mode, 23, 23); /* HSA_BLANKING */
  2711. dsi_write_reg(dsi, DSI_CTRL, r);
  2712. }
  2713. /*
  2714. * According to section 'HS Command Mode Interleaving' in OMAP TRM, Scenario 3
  2715. * results in maximum transition time for data and clock lanes to enter and
  2716. * exit HS mode. Hence, this is the scenario where the least amount of command
  2717. * mode data can be interleaved. We program the minimum amount of TXBYTECLKHS
  2718. * clock cycles that can be used to interleave command mode data in HS so that
  2719. * all scenarios are satisfied.
  2720. */
  2721. static int dsi_compute_interleave_hs(int blank, bool ddr_alwon, int enter_hs,
  2722. int exit_hs, int exiths_clk, int ddr_pre, int ddr_post)
  2723. {
  2724. int transition;
  2725. /*
  2726. * If DDR_CLK_ALWAYS_ON is set, we need to consider HS mode transition
  2727. * time of data lanes only, if it isn't set, we need to consider HS
  2728. * transition time of both data and clock lanes. HS transition time
  2729. * of Scenario 3 is considered.
  2730. */
  2731. if (ddr_alwon) {
  2732. transition = enter_hs + exit_hs + max(enter_hs, 2) + 1;
  2733. } else {
  2734. int trans1, trans2;
  2735. trans1 = ddr_pre + enter_hs + exit_hs + max(enter_hs, 2) + 1;
  2736. trans2 = ddr_pre + enter_hs + exiths_clk + ddr_post + ddr_pre +
  2737. enter_hs + 1;
  2738. transition = max(trans1, trans2);
  2739. }
  2740. return blank > transition ? blank - transition : 0;
  2741. }
  2742. /*
  2743. * According to section 'LP Command Mode Interleaving' in OMAP TRM, Scenario 1
  2744. * results in maximum transition time for data lanes to enter and exit LP mode.
  2745. * Hence, this is the scenario where the least amount of command mode data can
  2746. * be interleaved. We program the minimum amount of bytes that can be
  2747. * interleaved in LP so that all scenarios are satisfied.
  2748. */
  2749. static int dsi_compute_interleave_lp(int blank, int enter_hs, int exit_hs,
  2750. int lp_clk_div, int tdsi_fclk)
  2751. {
  2752. int trans_lp; /* time required for a LP transition, in TXBYTECLKHS */
  2753. int tlp_avail; /* time left for interleaving commands, in CLKIN4DDR */
  2754. int ttxclkesc; /* period of LP transmit escape clock, in CLKIN4DDR */
  2755. int thsbyte_clk = 16; /* Period of TXBYTECLKHS clock, in CLKIN4DDR */
  2756. int lp_inter; /* cmd mode data that can be interleaved, in bytes */
  2757. /* maximum LP transition time according to Scenario 1 */
  2758. trans_lp = exit_hs + max(enter_hs, 2) + 1;
  2759. /* CLKIN4DDR = 16 * TXBYTECLKHS */
  2760. tlp_avail = thsbyte_clk * (blank - trans_lp);
  2761. ttxclkesc = tdsi_fclk * lp_clk_div;
  2762. lp_inter = ((tlp_avail - 8 * thsbyte_clk - 5 * tdsi_fclk) / ttxclkesc -
  2763. 26) / 16;
  2764. return max(lp_inter, 0);
  2765. }
  2766. static void dsi_config_cmd_mode_interleaving(struct dsi_data *dsi)
  2767. {
  2768. int blanking_mode;
  2769. int hfp_blanking_mode, hbp_blanking_mode, hsa_blanking_mode;
  2770. int hsa, hfp, hbp, width_bytes, bllp, lp_clk_div;
  2771. int ddr_clk_pre, ddr_clk_post, enter_hs_mode_lat, exit_hs_mode_lat;
  2772. int tclk_trail, ths_exit, exiths_clk;
  2773. bool ddr_alwon;
  2774. struct videomode *vm = &dsi->vm;
  2775. int bpp = dsi_get_pixel_size(dsi->pix_fmt);
  2776. int ndl = dsi->num_lanes_used - 1;
  2777. int dsi_fclk_hsdiv = dsi->user_dsi_cinfo.mX[HSDIV_DSI] + 1;
  2778. int hsa_interleave_hs = 0, hsa_interleave_lp = 0;
  2779. int hfp_interleave_hs = 0, hfp_interleave_lp = 0;
  2780. int hbp_interleave_hs = 0, hbp_interleave_lp = 0;
  2781. int bl_interleave_hs = 0, bl_interleave_lp = 0;
  2782. u32 r;
  2783. r = dsi_read_reg(dsi, DSI_CTRL);
  2784. blanking_mode = FLD_GET(r, 20, 20);
  2785. hfp_blanking_mode = FLD_GET(r, 21, 21);
  2786. hbp_blanking_mode = FLD_GET(r, 22, 22);
  2787. hsa_blanking_mode = FLD_GET(r, 23, 23);
  2788. r = dsi_read_reg(dsi, DSI_VM_TIMING1);
  2789. hbp = FLD_GET(r, 11, 0);
  2790. hfp = FLD_GET(r, 23, 12);
  2791. hsa = FLD_GET(r, 31, 24);
  2792. r = dsi_read_reg(dsi, DSI_CLK_TIMING);
  2793. ddr_clk_post = FLD_GET(r, 7, 0);
  2794. ddr_clk_pre = FLD_GET(r, 15, 8);
  2795. r = dsi_read_reg(dsi, DSI_VM_TIMING7);
  2796. exit_hs_mode_lat = FLD_GET(r, 15, 0);
  2797. enter_hs_mode_lat = FLD_GET(r, 31, 16);
  2798. r = dsi_read_reg(dsi, DSI_CLK_CTRL);
  2799. lp_clk_div = FLD_GET(r, 12, 0);
  2800. ddr_alwon = FLD_GET(r, 13, 13);
  2801. r = dsi_read_reg(dsi, DSI_DSIPHY_CFG0);
  2802. ths_exit = FLD_GET(r, 7, 0);
  2803. r = dsi_read_reg(dsi, DSI_DSIPHY_CFG1);
  2804. tclk_trail = FLD_GET(r, 15, 8);
  2805. exiths_clk = ths_exit + tclk_trail;
  2806. width_bytes = DIV_ROUND_UP(vm->hactive * bpp, 8);
  2807. bllp = hbp + hfp + hsa + DIV_ROUND_UP(width_bytes + 6, ndl);
  2808. if (!hsa_blanking_mode) {
  2809. hsa_interleave_hs = dsi_compute_interleave_hs(hsa, ddr_alwon,
  2810. enter_hs_mode_lat, exit_hs_mode_lat,
  2811. exiths_clk, ddr_clk_pre, ddr_clk_post);
  2812. hsa_interleave_lp = dsi_compute_interleave_lp(hsa,
  2813. enter_hs_mode_lat, exit_hs_mode_lat,
  2814. lp_clk_div, dsi_fclk_hsdiv);
  2815. }
  2816. if (!hfp_blanking_mode) {
  2817. hfp_interleave_hs = dsi_compute_interleave_hs(hfp, ddr_alwon,
  2818. enter_hs_mode_lat, exit_hs_mode_lat,
  2819. exiths_clk, ddr_clk_pre, ddr_clk_post);
  2820. hfp_interleave_lp = dsi_compute_interleave_lp(hfp,
  2821. enter_hs_mode_lat, exit_hs_mode_lat,
  2822. lp_clk_div, dsi_fclk_hsdiv);
  2823. }
  2824. if (!hbp_blanking_mode) {
  2825. hbp_interleave_hs = dsi_compute_interleave_hs(hbp, ddr_alwon,
  2826. enter_hs_mode_lat, exit_hs_mode_lat,
  2827. exiths_clk, ddr_clk_pre, ddr_clk_post);
  2828. hbp_interleave_lp = dsi_compute_interleave_lp(hbp,
  2829. enter_hs_mode_lat, exit_hs_mode_lat,
  2830. lp_clk_div, dsi_fclk_hsdiv);
  2831. }
  2832. if (!blanking_mode) {
  2833. bl_interleave_hs = dsi_compute_interleave_hs(bllp, ddr_alwon,
  2834. enter_hs_mode_lat, exit_hs_mode_lat,
  2835. exiths_clk, ddr_clk_pre, ddr_clk_post);
  2836. bl_interleave_lp = dsi_compute_interleave_lp(bllp,
  2837. enter_hs_mode_lat, exit_hs_mode_lat,
  2838. lp_clk_div, dsi_fclk_hsdiv);
  2839. }
  2840. DSSDBG("DSI HS interleaving(TXBYTECLKHS) HSA %d, HFP %d, HBP %d, BLLP %d\n",
  2841. hsa_interleave_hs, hfp_interleave_hs, hbp_interleave_hs,
  2842. bl_interleave_hs);
  2843. DSSDBG("DSI LP interleaving(bytes) HSA %d, HFP %d, HBP %d, BLLP %d\n",
  2844. hsa_interleave_lp, hfp_interleave_lp, hbp_interleave_lp,
  2845. bl_interleave_lp);
  2846. r = dsi_read_reg(dsi, DSI_VM_TIMING4);
  2847. r = FLD_MOD(r, hsa_interleave_hs, 23, 16);
  2848. r = FLD_MOD(r, hfp_interleave_hs, 15, 8);
  2849. r = FLD_MOD(r, hbp_interleave_hs, 7, 0);
  2850. dsi_write_reg(dsi, DSI_VM_TIMING4, r);
  2851. r = dsi_read_reg(dsi, DSI_VM_TIMING5);
  2852. r = FLD_MOD(r, hsa_interleave_lp, 23, 16);
  2853. r = FLD_MOD(r, hfp_interleave_lp, 15, 8);
  2854. r = FLD_MOD(r, hbp_interleave_lp, 7, 0);
  2855. dsi_write_reg(dsi, DSI_VM_TIMING5, r);
  2856. r = dsi_read_reg(dsi, DSI_VM_TIMING6);
  2857. r = FLD_MOD(r, bl_interleave_hs, 31, 15);
  2858. r = FLD_MOD(r, bl_interleave_lp, 16, 0);
  2859. dsi_write_reg(dsi, DSI_VM_TIMING6, r);
  2860. }
  2861. static int dsi_proto_config(struct dsi_data *dsi)
  2862. {
  2863. u32 r;
  2864. int buswidth = 0;
  2865. dsi_config_tx_fifo(dsi, DSI_FIFO_SIZE_32,
  2866. DSI_FIFO_SIZE_32,
  2867. DSI_FIFO_SIZE_32,
  2868. DSI_FIFO_SIZE_32);
  2869. dsi_config_rx_fifo(dsi, DSI_FIFO_SIZE_32,
  2870. DSI_FIFO_SIZE_32,
  2871. DSI_FIFO_SIZE_32,
  2872. DSI_FIFO_SIZE_32);
  2873. /* XXX what values for the timeouts? */
  2874. dsi_set_stop_state_counter(dsi, 0x1000, false, false);
  2875. dsi_set_ta_timeout(dsi, 0x1fff, true, true);
  2876. dsi_set_lp_rx_timeout(dsi, 0x1fff, true, true);
  2877. dsi_set_hs_tx_timeout(dsi, 0x1fff, true, true);
  2878. switch (dsi_get_pixel_size(dsi->pix_fmt)) {
  2879. case 16:
  2880. buswidth = 0;
  2881. break;
  2882. case 18:
  2883. buswidth = 1;
  2884. break;
  2885. case 24:
  2886. buswidth = 2;
  2887. break;
  2888. default:
  2889. BUG();
  2890. return -EINVAL;
  2891. }
  2892. r = dsi_read_reg(dsi, DSI_CTRL);
  2893. r = FLD_MOD(r, 1, 1, 1); /* CS_RX_EN */
  2894. r = FLD_MOD(r, 1, 2, 2); /* ECC_RX_EN */
  2895. r = FLD_MOD(r, 1, 3, 3); /* TX_FIFO_ARBITRATION */
  2896. r = FLD_MOD(r, 1, 4, 4); /* VP_CLK_RATIO, always 1, see errata*/
  2897. r = FLD_MOD(r, buswidth, 7, 6); /* VP_DATA_BUS_WIDTH */
  2898. r = FLD_MOD(r, 0, 8, 8); /* VP_CLK_POL */
  2899. r = FLD_MOD(r, 1, 14, 14); /* TRIGGER_RESET_MODE */
  2900. r = FLD_MOD(r, 1, 19, 19); /* EOT_ENABLE */
  2901. if (!(dsi->data->quirks & DSI_QUIRK_DCS_CMD_CONFIG_VC)) {
  2902. r = FLD_MOD(r, 1, 24, 24); /* DCS_CMD_ENABLE */
  2903. /* DCS_CMD_CODE, 1=start, 0=continue */
  2904. r = FLD_MOD(r, 0, 25, 25);
  2905. }
  2906. dsi_write_reg(dsi, DSI_CTRL, r);
  2907. dsi_config_vp_num_line_buffers(dsi);
  2908. if (dsi->mode == OMAP_DSS_DSI_VIDEO_MODE) {
  2909. dsi_config_vp_sync_events(dsi);
  2910. dsi_config_blanking_modes(dsi);
  2911. dsi_config_cmd_mode_interleaving(dsi);
  2912. }
  2913. dsi_vc_initial_config(dsi, 0);
  2914. dsi_vc_initial_config(dsi, 1);
  2915. dsi_vc_initial_config(dsi, 2);
  2916. dsi_vc_initial_config(dsi, 3);
  2917. return 0;
  2918. }
  2919. static void dsi_proto_timings(struct dsi_data *dsi)
  2920. {
  2921. unsigned int tlpx, tclk_zero, tclk_prepare, tclk_trail;
  2922. unsigned int tclk_pre, tclk_post;
  2923. unsigned int ths_prepare, ths_prepare_ths_zero, ths_zero;
  2924. unsigned int ths_trail, ths_exit;
  2925. unsigned int ddr_clk_pre, ddr_clk_post;
  2926. unsigned int enter_hs_mode_lat, exit_hs_mode_lat;
  2927. unsigned int ths_eot;
  2928. int ndl = dsi->num_lanes_used - 1;
  2929. u32 r;
  2930. r = dsi_read_reg(dsi, DSI_DSIPHY_CFG0);
  2931. ths_prepare = FLD_GET(r, 31, 24);
  2932. ths_prepare_ths_zero = FLD_GET(r, 23, 16);
  2933. ths_zero = ths_prepare_ths_zero - ths_prepare;
  2934. ths_trail = FLD_GET(r, 15, 8);
  2935. ths_exit = FLD_GET(r, 7, 0);
  2936. r = dsi_read_reg(dsi, DSI_DSIPHY_CFG1);
  2937. tlpx = FLD_GET(r, 20, 16) * 2;
  2938. tclk_trail = FLD_GET(r, 15, 8);
  2939. tclk_zero = FLD_GET(r, 7, 0);
  2940. r = dsi_read_reg(dsi, DSI_DSIPHY_CFG2);
  2941. tclk_prepare = FLD_GET(r, 7, 0);
  2942. /* min 8*UI */
  2943. tclk_pre = 20;
  2944. /* min 60ns + 52*UI */
  2945. tclk_post = ns2ddr(dsi, 60) + 26;
  2946. ths_eot = DIV_ROUND_UP(4, ndl);
  2947. ddr_clk_pre = DIV_ROUND_UP(tclk_pre + tlpx + tclk_zero + tclk_prepare,
  2948. 4);
  2949. ddr_clk_post = DIV_ROUND_UP(tclk_post + ths_trail, 4) + ths_eot;
  2950. BUG_ON(ddr_clk_pre == 0 || ddr_clk_pre > 255);
  2951. BUG_ON(ddr_clk_post == 0 || ddr_clk_post > 255);
  2952. r = dsi_read_reg(dsi, DSI_CLK_TIMING);
  2953. r = FLD_MOD(r, ddr_clk_pre, 15, 8);
  2954. r = FLD_MOD(r, ddr_clk_post, 7, 0);
  2955. dsi_write_reg(dsi, DSI_CLK_TIMING, r);
  2956. DSSDBG("ddr_clk_pre %u, ddr_clk_post %u\n",
  2957. ddr_clk_pre,
  2958. ddr_clk_post);
  2959. enter_hs_mode_lat = 1 + DIV_ROUND_UP(tlpx, 4) +
  2960. DIV_ROUND_UP(ths_prepare, 4) +
  2961. DIV_ROUND_UP(ths_zero + 3, 4);
  2962. exit_hs_mode_lat = DIV_ROUND_UP(ths_trail + ths_exit, 4) + 1 + ths_eot;
  2963. r = FLD_VAL(enter_hs_mode_lat, 31, 16) |
  2964. FLD_VAL(exit_hs_mode_lat, 15, 0);
  2965. dsi_write_reg(dsi, DSI_VM_TIMING7, r);
  2966. DSSDBG("enter_hs_mode_lat %u, exit_hs_mode_lat %u\n",
  2967. enter_hs_mode_lat, exit_hs_mode_lat);
  2968. if (dsi->mode == OMAP_DSS_DSI_VIDEO_MODE) {
  2969. /* TODO: Implement a video mode check_timings function */
  2970. int hsa = dsi->vm_timings.hsa;
  2971. int hfp = dsi->vm_timings.hfp;
  2972. int hbp = dsi->vm_timings.hbp;
  2973. int vsa = dsi->vm_timings.vsa;
  2974. int vfp = dsi->vm_timings.vfp;
  2975. int vbp = dsi->vm_timings.vbp;
  2976. int window_sync = dsi->vm_timings.window_sync;
  2977. bool hsync_end;
  2978. struct videomode *vm = &dsi->vm;
  2979. int bpp = dsi_get_pixel_size(dsi->pix_fmt);
  2980. int tl, t_he, width_bytes;
  2981. hsync_end = dsi->vm_timings.trans_mode == OMAP_DSS_DSI_PULSE_MODE;
  2982. t_he = hsync_end ?
  2983. ((hsa == 0 && ndl == 3) ? 1 : DIV_ROUND_UP(4, ndl)) : 0;
  2984. width_bytes = DIV_ROUND_UP(vm->hactive * bpp, 8);
  2985. /* TL = t_HS + HSA + t_HE + HFP + ceil((WC + 6) / NDL) + HBP */
  2986. tl = DIV_ROUND_UP(4, ndl) + (hsync_end ? hsa : 0) + t_he + hfp +
  2987. DIV_ROUND_UP(width_bytes + 6, ndl) + hbp;
  2988. DSSDBG("HBP: %d, HFP: %d, HSA: %d, TL: %d TXBYTECLKHS\n", hbp,
  2989. hfp, hsync_end ? hsa : 0, tl);
  2990. DSSDBG("VBP: %d, VFP: %d, VSA: %d, VACT: %d lines\n", vbp, vfp,
  2991. vsa, vm->vactive);
  2992. r = dsi_read_reg(dsi, DSI_VM_TIMING1);
  2993. r = FLD_MOD(r, hbp, 11, 0); /* HBP */
  2994. r = FLD_MOD(r, hfp, 23, 12); /* HFP */
  2995. r = FLD_MOD(r, hsync_end ? hsa : 0, 31, 24); /* HSA */
  2996. dsi_write_reg(dsi, DSI_VM_TIMING1, r);
  2997. r = dsi_read_reg(dsi, DSI_VM_TIMING2);
  2998. r = FLD_MOD(r, vbp, 7, 0); /* VBP */
  2999. r = FLD_MOD(r, vfp, 15, 8); /* VFP */
  3000. r = FLD_MOD(r, vsa, 23, 16); /* VSA */
  3001. r = FLD_MOD(r, window_sync, 27, 24); /* WINDOW_SYNC */
  3002. dsi_write_reg(dsi, DSI_VM_TIMING2, r);
  3003. r = dsi_read_reg(dsi, DSI_VM_TIMING3);
  3004. r = FLD_MOD(r, vm->vactive, 14, 0); /* VACT */
  3005. r = FLD_MOD(r, tl, 31, 16); /* TL */
  3006. dsi_write_reg(dsi, DSI_VM_TIMING3, r);
  3007. }
  3008. }
  3009. static int dsi_configure_pins(struct omap_dss_device *dssdev,
  3010. const struct omap_dsi_pin_config *pin_cfg)
  3011. {
  3012. struct dsi_data *dsi = to_dsi_data(dssdev);
  3013. int num_pins;
  3014. const int *pins;
  3015. struct dsi_lane_config lanes[DSI_MAX_NR_LANES];
  3016. int num_lanes;
  3017. int i;
  3018. static const enum dsi_lane_function functions[] = {
  3019. DSI_LANE_CLK,
  3020. DSI_LANE_DATA1,
  3021. DSI_LANE_DATA2,
  3022. DSI_LANE_DATA3,
  3023. DSI_LANE_DATA4,
  3024. };
  3025. num_pins = pin_cfg->num_pins;
  3026. pins = pin_cfg->pins;
  3027. if (num_pins < 4 || num_pins > dsi->num_lanes_supported * 2
  3028. || num_pins % 2 != 0)
  3029. return -EINVAL;
  3030. for (i = 0; i < DSI_MAX_NR_LANES; ++i)
  3031. lanes[i].function = DSI_LANE_UNUSED;
  3032. num_lanes = 0;
  3033. for (i = 0; i < num_pins; i += 2) {
  3034. u8 lane, pol;
  3035. int dx, dy;
  3036. dx = pins[i];
  3037. dy = pins[i + 1];
  3038. if (dx < 0 || dx >= dsi->num_lanes_supported * 2)
  3039. return -EINVAL;
  3040. if (dy < 0 || dy >= dsi->num_lanes_supported * 2)
  3041. return -EINVAL;
  3042. if (dx & 1) {
  3043. if (dy != dx - 1)
  3044. return -EINVAL;
  3045. pol = 1;
  3046. } else {
  3047. if (dy != dx + 1)
  3048. return -EINVAL;
  3049. pol = 0;
  3050. }
  3051. lane = dx / 2;
  3052. lanes[lane].function = functions[i / 2];
  3053. lanes[lane].polarity = pol;
  3054. num_lanes++;
  3055. }
  3056. memcpy(dsi->lanes, lanes, sizeof(dsi->lanes));
  3057. dsi->num_lanes_used = num_lanes;
  3058. return 0;
  3059. }
  3060. static int dsi_enable_video_output(struct omap_dss_device *dssdev, int channel)
  3061. {
  3062. struct dsi_data *dsi = to_dsi_data(dssdev);
  3063. int bpp = dsi_get_pixel_size(dsi->pix_fmt);
  3064. struct omap_dss_device *out = &dsi->output;
  3065. u8 data_type;
  3066. u16 word_count;
  3067. int r;
  3068. if (!out->dispc_channel_connected) {
  3069. DSSERR("failed to enable display: no output/manager\n");
  3070. return -ENODEV;
  3071. }
  3072. r = dsi_display_init_dispc(dsi);
  3073. if (r)
  3074. goto err_init_dispc;
  3075. if (dsi->mode == OMAP_DSS_DSI_VIDEO_MODE) {
  3076. switch (dsi->pix_fmt) {
  3077. case OMAP_DSS_DSI_FMT_RGB888:
  3078. data_type = MIPI_DSI_PACKED_PIXEL_STREAM_24;
  3079. break;
  3080. case OMAP_DSS_DSI_FMT_RGB666:
  3081. data_type = MIPI_DSI_PIXEL_STREAM_3BYTE_18;
  3082. break;
  3083. case OMAP_DSS_DSI_FMT_RGB666_PACKED:
  3084. data_type = MIPI_DSI_PACKED_PIXEL_STREAM_18;
  3085. break;
  3086. case OMAP_DSS_DSI_FMT_RGB565:
  3087. data_type = MIPI_DSI_PACKED_PIXEL_STREAM_16;
  3088. break;
  3089. default:
  3090. r = -EINVAL;
  3091. goto err_pix_fmt;
  3092. }
  3093. dsi_if_enable(dsi, false);
  3094. dsi_vc_enable(dsi, channel, false);
  3095. /* MODE, 1 = video mode */
  3096. REG_FLD_MOD(dsi, DSI_VC_CTRL(channel), 1, 4, 4);
  3097. word_count = DIV_ROUND_UP(dsi->vm.hactive * bpp, 8);
  3098. dsi_vc_write_long_header(dsi, channel, data_type,
  3099. word_count, 0);
  3100. dsi_vc_enable(dsi, channel, true);
  3101. dsi_if_enable(dsi, true);
  3102. }
  3103. r = dss_mgr_enable(&dsi->output);
  3104. if (r)
  3105. goto err_mgr_enable;
  3106. return 0;
  3107. err_mgr_enable:
  3108. if (dsi->mode == OMAP_DSS_DSI_VIDEO_MODE) {
  3109. dsi_if_enable(dsi, false);
  3110. dsi_vc_enable(dsi, channel, false);
  3111. }
  3112. err_pix_fmt:
  3113. dsi_display_uninit_dispc(dsi);
  3114. err_init_dispc:
  3115. return r;
  3116. }
  3117. static void dsi_disable_video_output(struct omap_dss_device *dssdev, int channel)
  3118. {
  3119. struct dsi_data *dsi = to_dsi_data(dssdev);
  3120. if (dsi->mode == OMAP_DSS_DSI_VIDEO_MODE) {
  3121. dsi_if_enable(dsi, false);
  3122. dsi_vc_enable(dsi, channel, false);
  3123. /* MODE, 0 = command mode */
  3124. REG_FLD_MOD(dsi, DSI_VC_CTRL(channel), 0, 4, 4);
  3125. dsi_vc_enable(dsi, channel, true);
  3126. dsi_if_enable(dsi, true);
  3127. }
  3128. dss_mgr_disable(&dsi->output);
  3129. dsi_display_uninit_dispc(dsi);
  3130. }
  3131. static void dsi_update_screen_dispc(struct dsi_data *dsi)
  3132. {
  3133. unsigned int bytespp;
  3134. unsigned int bytespl;
  3135. unsigned int bytespf;
  3136. unsigned int total_len;
  3137. unsigned int packet_payload;
  3138. unsigned int packet_len;
  3139. u32 l;
  3140. int r;
  3141. const unsigned channel = dsi->update_channel;
  3142. const unsigned int line_buf_size = dsi->line_buffer_size;
  3143. u16 w = dsi->vm.hactive;
  3144. u16 h = dsi->vm.vactive;
  3145. DSSDBG("dsi_update_screen_dispc(%dx%d)\n", w, h);
  3146. dsi_vc_config_source(dsi, channel, DSI_VC_SOURCE_VP);
  3147. bytespp = dsi_get_pixel_size(dsi->pix_fmt) / 8;
  3148. bytespl = w * bytespp;
  3149. bytespf = bytespl * h;
  3150. /* NOTE: packet_payload has to be equal to N * bytespl, where N is
  3151. * number of lines in a packet. See errata about VP_CLK_RATIO */
  3152. if (bytespf < line_buf_size)
  3153. packet_payload = bytespf;
  3154. else
  3155. packet_payload = (line_buf_size) / bytespl * bytespl;
  3156. packet_len = packet_payload + 1; /* 1 byte for DCS cmd */
  3157. total_len = (bytespf / packet_payload) * packet_len;
  3158. if (bytespf % packet_payload)
  3159. total_len += (bytespf % packet_payload) + 1;
  3160. l = FLD_VAL(total_len, 23, 0); /* TE_SIZE */
  3161. dsi_write_reg(dsi, DSI_VC_TE(channel), l);
  3162. dsi_vc_write_long_header(dsi, channel, MIPI_DSI_DCS_LONG_WRITE,
  3163. packet_len, 0);
  3164. if (dsi->te_enabled)
  3165. l = FLD_MOD(l, 1, 30, 30); /* TE_EN */
  3166. else
  3167. l = FLD_MOD(l, 1, 31, 31); /* TE_START */
  3168. dsi_write_reg(dsi, DSI_VC_TE(channel), l);
  3169. /* We put SIDLEMODE to no-idle for the duration of the transfer,
  3170. * because DSS interrupts are not capable of waking up the CPU and the
  3171. * framedone interrupt could be delayed for quite a long time. I think
  3172. * the same goes for any DSS interrupts, but for some reason I have not
  3173. * seen the problem anywhere else than here.
  3174. */
  3175. dispc_disable_sidle(dsi->dss->dispc);
  3176. dsi_perf_mark_start(dsi);
  3177. r = schedule_delayed_work(&dsi->framedone_timeout_work,
  3178. msecs_to_jiffies(250));
  3179. BUG_ON(r == 0);
  3180. dss_mgr_set_timings(&dsi->output, &dsi->vm);
  3181. dss_mgr_start_update(&dsi->output);
  3182. if (dsi->te_enabled) {
  3183. /* disable LP_RX_TO, so that we can receive TE. Time to wait
  3184. * for TE is longer than the timer allows */
  3185. REG_FLD_MOD(dsi, DSI_TIMING2, 0, 15, 15); /* LP_RX_TO */
  3186. dsi_vc_send_bta(dsi, channel);
  3187. #ifdef DSI_CATCH_MISSING_TE
  3188. mod_timer(&dsi->te_timer, jiffies + msecs_to_jiffies(250));
  3189. #endif
  3190. }
  3191. }
  3192. #ifdef DSI_CATCH_MISSING_TE
  3193. static void dsi_te_timeout(struct timer_list *unused)
  3194. {
  3195. DSSERR("TE not received for 250ms!\n");
  3196. }
  3197. #endif
  3198. static void dsi_handle_framedone(struct dsi_data *dsi, int error)
  3199. {
  3200. /* SIDLEMODE back to smart-idle */
  3201. dispc_enable_sidle(dsi->dss->dispc);
  3202. if (dsi->te_enabled) {
  3203. /* enable LP_RX_TO again after the TE */
  3204. REG_FLD_MOD(dsi, DSI_TIMING2, 1, 15, 15); /* LP_RX_TO */
  3205. }
  3206. dsi->framedone_callback(error, dsi->framedone_data);
  3207. if (!error)
  3208. dsi_perf_show(dsi, "DISPC");
  3209. }
  3210. static void dsi_framedone_timeout_work_callback(struct work_struct *work)
  3211. {
  3212. struct dsi_data *dsi = container_of(work, struct dsi_data,
  3213. framedone_timeout_work.work);
  3214. /* XXX While extremely unlikely, we could get FRAMEDONE interrupt after
  3215. * 250ms which would conflict with this timeout work. What should be
  3216. * done is first cancel the transfer on the HW, and then cancel the
  3217. * possibly scheduled framedone work. However, cancelling the transfer
  3218. * on the HW is buggy, and would probably require resetting the whole
  3219. * DSI */
  3220. DSSERR("Framedone not received for 250ms!\n");
  3221. dsi_handle_framedone(dsi, -ETIMEDOUT);
  3222. }
  3223. static void dsi_framedone_irq_callback(void *data)
  3224. {
  3225. struct dsi_data *dsi = data;
  3226. /* Note: We get FRAMEDONE when DISPC has finished sending pixels and
  3227. * turns itself off. However, DSI still has the pixels in its buffers,
  3228. * and is sending the data.
  3229. */
  3230. cancel_delayed_work(&dsi->framedone_timeout_work);
  3231. dsi_handle_framedone(dsi, 0);
  3232. }
  3233. static int dsi_update(struct omap_dss_device *dssdev, int channel,
  3234. void (*callback)(int, void *), void *data)
  3235. {
  3236. struct dsi_data *dsi = to_dsi_data(dssdev);
  3237. u16 dw, dh;
  3238. dsi_perf_mark_setup(dsi);
  3239. dsi->update_channel = channel;
  3240. dsi->framedone_callback = callback;
  3241. dsi->framedone_data = data;
  3242. dw = dsi->vm.hactive;
  3243. dh = dsi->vm.vactive;
  3244. #ifdef DSI_PERF_MEASURE
  3245. dsi->update_bytes = dw * dh *
  3246. dsi_get_pixel_size(dsi->pix_fmt) / 8;
  3247. #endif
  3248. dsi_update_screen_dispc(dsi);
  3249. return 0;
  3250. }
  3251. /* Display funcs */
  3252. static int dsi_configure_dispc_clocks(struct dsi_data *dsi)
  3253. {
  3254. struct dispc_clock_info dispc_cinfo;
  3255. int r;
  3256. unsigned long fck;
  3257. fck = dsi_get_pll_hsdiv_dispc_rate(dsi);
  3258. dispc_cinfo.lck_div = dsi->user_dispc_cinfo.lck_div;
  3259. dispc_cinfo.pck_div = dsi->user_dispc_cinfo.pck_div;
  3260. r = dispc_calc_clock_rates(dsi->dss->dispc, fck, &dispc_cinfo);
  3261. if (r) {
  3262. DSSERR("Failed to calc dispc clocks\n");
  3263. return r;
  3264. }
  3265. dsi->mgr_config.clock_info = dispc_cinfo;
  3266. return 0;
  3267. }
  3268. static int dsi_display_init_dispc(struct dsi_data *dsi)
  3269. {
  3270. enum omap_channel channel = dsi->output.dispc_channel;
  3271. int r;
  3272. dss_select_lcd_clk_source(dsi->dss, channel, dsi->module_id == 0 ?
  3273. DSS_CLK_SRC_PLL1_1 :
  3274. DSS_CLK_SRC_PLL2_1);
  3275. if (dsi->mode == OMAP_DSS_DSI_CMD_MODE) {
  3276. r = dss_mgr_register_framedone_handler(&dsi->output,
  3277. dsi_framedone_irq_callback, dsi);
  3278. if (r) {
  3279. DSSERR("can't register FRAMEDONE handler\n");
  3280. goto err;
  3281. }
  3282. dsi->mgr_config.stallmode = true;
  3283. dsi->mgr_config.fifohandcheck = true;
  3284. } else {
  3285. dsi->mgr_config.stallmode = false;
  3286. dsi->mgr_config.fifohandcheck = false;
  3287. }
  3288. /*
  3289. * override interlace, logic level and edge related parameters in
  3290. * videomode with default values
  3291. */
  3292. dsi->vm.flags &= ~DISPLAY_FLAGS_INTERLACED;
  3293. dsi->vm.flags &= ~DISPLAY_FLAGS_HSYNC_LOW;
  3294. dsi->vm.flags |= DISPLAY_FLAGS_HSYNC_HIGH;
  3295. dsi->vm.flags &= ~DISPLAY_FLAGS_VSYNC_LOW;
  3296. dsi->vm.flags |= DISPLAY_FLAGS_VSYNC_HIGH;
  3297. dsi->vm.flags &= ~DISPLAY_FLAGS_PIXDATA_NEGEDGE;
  3298. dsi->vm.flags |= DISPLAY_FLAGS_PIXDATA_POSEDGE;
  3299. dsi->vm.flags &= ~DISPLAY_FLAGS_DE_LOW;
  3300. dsi->vm.flags |= DISPLAY_FLAGS_DE_HIGH;
  3301. dsi->vm.flags &= ~DISPLAY_FLAGS_SYNC_POSEDGE;
  3302. dsi->vm.flags |= DISPLAY_FLAGS_SYNC_NEGEDGE;
  3303. dss_mgr_set_timings(&dsi->output, &dsi->vm);
  3304. r = dsi_configure_dispc_clocks(dsi);
  3305. if (r)
  3306. goto err1;
  3307. dsi->mgr_config.io_pad_mode = DSS_IO_PAD_MODE_BYPASS;
  3308. dsi->mgr_config.video_port_width =
  3309. dsi_get_pixel_size(dsi->pix_fmt);
  3310. dsi->mgr_config.lcden_sig_polarity = 0;
  3311. dss_mgr_set_lcd_config(&dsi->output, &dsi->mgr_config);
  3312. return 0;
  3313. err1:
  3314. if (dsi->mode == OMAP_DSS_DSI_CMD_MODE)
  3315. dss_mgr_unregister_framedone_handler(&dsi->output,
  3316. dsi_framedone_irq_callback, dsi);
  3317. err:
  3318. dss_select_lcd_clk_source(dsi->dss, channel, DSS_CLK_SRC_FCK);
  3319. return r;
  3320. }
  3321. static void dsi_display_uninit_dispc(struct dsi_data *dsi)
  3322. {
  3323. enum omap_channel channel = dsi->output.dispc_channel;
  3324. if (dsi->mode == OMAP_DSS_DSI_CMD_MODE)
  3325. dss_mgr_unregister_framedone_handler(&dsi->output,
  3326. dsi_framedone_irq_callback, dsi);
  3327. dss_select_lcd_clk_source(dsi->dss, channel, DSS_CLK_SRC_FCK);
  3328. }
  3329. static int dsi_configure_dsi_clocks(struct dsi_data *dsi)
  3330. {
  3331. struct dss_pll_clock_info cinfo;
  3332. int r;
  3333. cinfo = dsi->user_dsi_cinfo;
  3334. r = dss_pll_set_config(&dsi->pll, &cinfo);
  3335. if (r) {
  3336. DSSERR("Failed to set dsi clocks\n");
  3337. return r;
  3338. }
  3339. return 0;
  3340. }
  3341. static int dsi_display_init_dsi(struct dsi_data *dsi)
  3342. {
  3343. int r;
  3344. r = dss_pll_enable(&dsi->pll);
  3345. if (r)
  3346. goto err0;
  3347. r = dsi_configure_dsi_clocks(dsi);
  3348. if (r)
  3349. goto err1;
  3350. dss_select_dsi_clk_source(dsi->dss, dsi->module_id,
  3351. dsi->module_id == 0 ?
  3352. DSS_CLK_SRC_PLL1_2 : DSS_CLK_SRC_PLL2_2);
  3353. DSSDBG("PLL OK\n");
  3354. r = dsi_cio_init(dsi);
  3355. if (r)
  3356. goto err2;
  3357. _dsi_print_reset_status(dsi);
  3358. dsi_proto_timings(dsi);
  3359. dsi_set_lp_clk_divisor(dsi);
  3360. if (1)
  3361. _dsi_print_reset_status(dsi);
  3362. r = dsi_proto_config(dsi);
  3363. if (r)
  3364. goto err3;
  3365. /* enable interface */
  3366. dsi_vc_enable(dsi, 0, 1);
  3367. dsi_vc_enable(dsi, 1, 1);
  3368. dsi_vc_enable(dsi, 2, 1);
  3369. dsi_vc_enable(dsi, 3, 1);
  3370. dsi_if_enable(dsi, 1);
  3371. dsi_force_tx_stop_mode_io(dsi);
  3372. return 0;
  3373. err3:
  3374. dsi_cio_uninit(dsi);
  3375. err2:
  3376. dss_select_dsi_clk_source(dsi->dss, dsi->module_id, DSS_CLK_SRC_FCK);
  3377. err1:
  3378. dss_pll_disable(&dsi->pll);
  3379. err0:
  3380. return r;
  3381. }
  3382. static void dsi_display_uninit_dsi(struct dsi_data *dsi, bool disconnect_lanes,
  3383. bool enter_ulps)
  3384. {
  3385. if (enter_ulps && !dsi->ulps_enabled)
  3386. dsi_enter_ulps(dsi);
  3387. /* disable interface */
  3388. dsi_if_enable(dsi, 0);
  3389. dsi_vc_enable(dsi, 0, 0);
  3390. dsi_vc_enable(dsi, 1, 0);
  3391. dsi_vc_enable(dsi, 2, 0);
  3392. dsi_vc_enable(dsi, 3, 0);
  3393. dss_select_dsi_clk_source(dsi->dss, dsi->module_id, DSS_CLK_SRC_FCK);
  3394. dsi_cio_uninit(dsi);
  3395. dsi_pll_uninit(dsi, disconnect_lanes);
  3396. }
  3397. static int dsi_display_enable(struct omap_dss_device *dssdev)
  3398. {
  3399. struct dsi_data *dsi = to_dsi_data(dssdev);
  3400. int r = 0;
  3401. DSSDBG("dsi_display_enable\n");
  3402. WARN_ON(!dsi_bus_is_locked(dsi));
  3403. mutex_lock(&dsi->lock);
  3404. r = dsi_runtime_get(dsi);
  3405. if (r)
  3406. goto err_get_dsi;
  3407. _dsi_initialize_irq(dsi);
  3408. r = dsi_display_init_dsi(dsi);
  3409. if (r)
  3410. goto err_init_dsi;
  3411. mutex_unlock(&dsi->lock);
  3412. return 0;
  3413. err_init_dsi:
  3414. dsi_runtime_put(dsi);
  3415. err_get_dsi:
  3416. mutex_unlock(&dsi->lock);
  3417. DSSDBG("dsi_display_enable FAILED\n");
  3418. return r;
  3419. }
  3420. static void dsi_display_disable(struct omap_dss_device *dssdev,
  3421. bool disconnect_lanes, bool enter_ulps)
  3422. {
  3423. struct dsi_data *dsi = to_dsi_data(dssdev);
  3424. DSSDBG("dsi_display_disable\n");
  3425. WARN_ON(!dsi_bus_is_locked(dsi));
  3426. mutex_lock(&dsi->lock);
  3427. dsi_sync_vc(dsi, 0);
  3428. dsi_sync_vc(dsi, 1);
  3429. dsi_sync_vc(dsi, 2);
  3430. dsi_sync_vc(dsi, 3);
  3431. dsi_display_uninit_dsi(dsi, disconnect_lanes, enter_ulps);
  3432. dsi_runtime_put(dsi);
  3433. mutex_unlock(&dsi->lock);
  3434. }
  3435. static int dsi_enable_te(struct omap_dss_device *dssdev, bool enable)
  3436. {
  3437. struct dsi_data *dsi = to_dsi_data(dssdev);
  3438. dsi->te_enabled = enable;
  3439. return 0;
  3440. }
  3441. #ifdef PRINT_VERBOSE_VM_TIMINGS
  3442. static void print_dsi_vm(const char *str,
  3443. const struct omap_dss_dsi_videomode_timings *t)
  3444. {
  3445. unsigned long byteclk = t->hsclk / 4;
  3446. int bl, wc, pps, tot;
  3447. wc = DIV_ROUND_UP(t->hact * t->bitspp, 8);
  3448. pps = DIV_ROUND_UP(wc + 6, t->ndl); /* pixel packet size */
  3449. bl = t->hss + t->hsa + t->hse + t->hbp + t->hfp;
  3450. tot = bl + pps;
  3451. #define TO_DSI_T(x) ((u32)div64_u64((u64)x * 1000000000llu, byteclk))
  3452. pr_debug("%s bck %lu, %u/%u/%u/%u/%u/%u = %u+%u = %u, "
  3453. "%u/%u/%u/%u/%u/%u = %u + %u = %u\n",
  3454. str,
  3455. byteclk,
  3456. t->hss, t->hsa, t->hse, t->hbp, pps, t->hfp,
  3457. bl, pps, tot,
  3458. TO_DSI_T(t->hss),
  3459. TO_DSI_T(t->hsa),
  3460. TO_DSI_T(t->hse),
  3461. TO_DSI_T(t->hbp),
  3462. TO_DSI_T(pps),
  3463. TO_DSI_T(t->hfp),
  3464. TO_DSI_T(bl),
  3465. TO_DSI_T(pps),
  3466. TO_DSI_T(tot));
  3467. #undef TO_DSI_T
  3468. }
  3469. static void print_dispc_vm(const char *str, const struct videomode *vm)
  3470. {
  3471. unsigned long pck = vm->pixelclock;
  3472. int hact, bl, tot;
  3473. hact = vm->hactive;
  3474. bl = vm->hsync_len + vm->hback_porch + vm->hfront_porch;
  3475. tot = hact + bl;
  3476. #define TO_DISPC_T(x) ((u32)div64_u64((u64)x * 1000000000llu, pck))
  3477. pr_debug("%s pck %lu, %u/%u/%u/%u = %u+%u = %u, "
  3478. "%u/%u/%u/%u = %u + %u = %u\n",
  3479. str,
  3480. pck,
  3481. vm->hsync_len, vm->hback_porch, hact, vm->hfront_porch,
  3482. bl, hact, tot,
  3483. TO_DISPC_T(vm->hsync_len),
  3484. TO_DISPC_T(vm->hback_porch),
  3485. TO_DISPC_T(hact),
  3486. TO_DISPC_T(vm->hfront_porch),
  3487. TO_DISPC_T(bl),
  3488. TO_DISPC_T(hact),
  3489. TO_DISPC_T(tot));
  3490. #undef TO_DISPC_T
  3491. }
  3492. /* note: this is not quite accurate */
  3493. static void print_dsi_dispc_vm(const char *str,
  3494. const struct omap_dss_dsi_videomode_timings *t)
  3495. {
  3496. struct videomode vm = { 0 };
  3497. unsigned long byteclk = t->hsclk / 4;
  3498. unsigned long pck;
  3499. u64 dsi_tput;
  3500. int dsi_hact, dsi_htot;
  3501. dsi_tput = (u64)byteclk * t->ndl * 8;
  3502. pck = (u32)div64_u64(dsi_tput, t->bitspp);
  3503. dsi_hact = DIV_ROUND_UP(DIV_ROUND_UP(t->hact * t->bitspp, 8) + 6, t->ndl);
  3504. dsi_htot = t->hss + t->hsa + t->hse + t->hbp + dsi_hact + t->hfp;
  3505. vm.pixelclock = pck;
  3506. vm.hsync_len = div64_u64((u64)(t->hsa + t->hse) * pck, byteclk);
  3507. vm.hback_porch = div64_u64((u64)t->hbp * pck, byteclk);
  3508. vm.hfront_porch = div64_u64((u64)t->hfp * pck, byteclk);
  3509. vm.hactive = t->hact;
  3510. print_dispc_vm(str, &vm);
  3511. }
  3512. #endif /* PRINT_VERBOSE_VM_TIMINGS */
  3513. static bool dsi_cm_calc_dispc_cb(int lckd, int pckd, unsigned long lck,
  3514. unsigned long pck, void *data)
  3515. {
  3516. struct dsi_clk_calc_ctx *ctx = data;
  3517. struct videomode *vm = &ctx->vm;
  3518. ctx->dispc_cinfo.lck_div = lckd;
  3519. ctx->dispc_cinfo.pck_div = pckd;
  3520. ctx->dispc_cinfo.lck = lck;
  3521. ctx->dispc_cinfo.pck = pck;
  3522. *vm = *ctx->config->vm;
  3523. vm->pixelclock = pck;
  3524. vm->hactive = ctx->config->vm->hactive;
  3525. vm->vactive = ctx->config->vm->vactive;
  3526. vm->hsync_len = vm->hfront_porch = vm->hback_porch = vm->vsync_len = 1;
  3527. vm->vfront_porch = vm->vback_porch = 0;
  3528. return true;
  3529. }
  3530. static bool dsi_cm_calc_hsdiv_cb(int m_dispc, unsigned long dispc,
  3531. void *data)
  3532. {
  3533. struct dsi_clk_calc_ctx *ctx = data;
  3534. ctx->dsi_cinfo.mX[HSDIV_DISPC] = m_dispc;
  3535. ctx->dsi_cinfo.clkout[HSDIV_DISPC] = dispc;
  3536. return dispc_div_calc(ctx->dsi->dss->dispc, dispc,
  3537. ctx->req_pck_min, ctx->req_pck_max,
  3538. dsi_cm_calc_dispc_cb, ctx);
  3539. }
  3540. static bool dsi_cm_calc_pll_cb(int n, int m, unsigned long fint,
  3541. unsigned long clkdco, void *data)
  3542. {
  3543. struct dsi_clk_calc_ctx *ctx = data;
  3544. struct dsi_data *dsi = ctx->dsi;
  3545. ctx->dsi_cinfo.n = n;
  3546. ctx->dsi_cinfo.m = m;
  3547. ctx->dsi_cinfo.fint = fint;
  3548. ctx->dsi_cinfo.clkdco = clkdco;
  3549. return dss_pll_hsdiv_calc_a(ctx->pll, clkdco, ctx->req_pck_min,
  3550. dsi->data->max_fck_freq,
  3551. dsi_cm_calc_hsdiv_cb, ctx);
  3552. }
  3553. static bool dsi_cm_calc(struct dsi_data *dsi,
  3554. const struct omap_dss_dsi_config *cfg,
  3555. struct dsi_clk_calc_ctx *ctx)
  3556. {
  3557. unsigned long clkin;
  3558. int bitspp, ndl;
  3559. unsigned long pll_min, pll_max;
  3560. unsigned long pck, txbyteclk;
  3561. clkin = clk_get_rate(dsi->pll.clkin);
  3562. bitspp = dsi_get_pixel_size(cfg->pixel_format);
  3563. ndl = dsi->num_lanes_used - 1;
  3564. /*
  3565. * Here we should calculate minimum txbyteclk to be able to send the
  3566. * frame in time, and also to handle TE. That's not very simple, though,
  3567. * especially as we go to LP between each pixel packet due to HW
  3568. * "feature". So let's just estimate very roughly and multiply by 1.5.
  3569. */
  3570. pck = cfg->vm->pixelclock;
  3571. pck = pck * 3 / 2;
  3572. txbyteclk = pck * bitspp / 8 / ndl;
  3573. memset(ctx, 0, sizeof(*ctx));
  3574. ctx->dsi = dsi;
  3575. ctx->pll = &dsi->pll;
  3576. ctx->config = cfg;
  3577. ctx->req_pck_min = pck;
  3578. ctx->req_pck_nom = pck;
  3579. ctx->req_pck_max = pck * 3 / 2;
  3580. pll_min = max(cfg->hs_clk_min * 4, txbyteclk * 4 * 4);
  3581. pll_max = cfg->hs_clk_max * 4;
  3582. return dss_pll_calc_a(ctx->pll, clkin,
  3583. pll_min, pll_max,
  3584. dsi_cm_calc_pll_cb, ctx);
  3585. }
  3586. static bool dsi_vm_calc_blanking(struct dsi_clk_calc_ctx *ctx)
  3587. {
  3588. struct dsi_data *dsi = ctx->dsi;
  3589. const struct omap_dss_dsi_config *cfg = ctx->config;
  3590. int bitspp = dsi_get_pixel_size(cfg->pixel_format);
  3591. int ndl = dsi->num_lanes_used - 1;
  3592. unsigned long hsclk = ctx->dsi_cinfo.clkdco / 4;
  3593. unsigned long byteclk = hsclk / 4;
  3594. unsigned long dispc_pck, req_pck_min, req_pck_nom, req_pck_max;
  3595. int xres;
  3596. int panel_htot, panel_hbl; /* pixels */
  3597. int dispc_htot, dispc_hbl; /* pixels */
  3598. int dsi_htot, dsi_hact, dsi_hbl, hss, hse; /* byteclks */
  3599. int hfp, hsa, hbp;
  3600. const struct videomode *req_vm;
  3601. struct videomode *dispc_vm;
  3602. struct omap_dss_dsi_videomode_timings *dsi_vm;
  3603. u64 dsi_tput, dispc_tput;
  3604. dsi_tput = (u64)byteclk * ndl * 8;
  3605. req_vm = cfg->vm;
  3606. req_pck_min = ctx->req_pck_min;
  3607. req_pck_max = ctx->req_pck_max;
  3608. req_pck_nom = ctx->req_pck_nom;
  3609. dispc_pck = ctx->dispc_cinfo.pck;
  3610. dispc_tput = (u64)dispc_pck * bitspp;
  3611. xres = req_vm->hactive;
  3612. panel_hbl = req_vm->hfront_porch + req_vm->hback_porch +
  3613. req_vm->hsync_len;
  3614. panel_htot = xres + panel_hbl;
  3615. dsi_hact = DIV_ROUND_UP(DIV_ROUND_UP(xres * bitspp, 8) + 6, ndl);
  3616. /*
  3617. * When there are no line buffers, DISPC and DSI must have the
  3618. * same tput. Otherwise DISPC tput needs to be higher than DSI's.
  3619. */
  3620. if (dsi->line_buffer_size < xres * bitspp / 8) {
  3621. if (dispc_tput != dsi_tput)
  3622. return false;
  3623. } else {
  3624. if (dispc_tput < dsi_tput)
  3625. return false;
  3626. }
  3627. /* DSI tput must be over the min requirement */
  3628. if (dsi_tput < (u64)bitspp * req_pck_min)
  3629. return false;
  3630. /* When non-burst mode, DSI tput must be below max requirement. */
  3631. if (cfg->trans_mode != OMAP_DSS_DSI_BURST_MODE) {
  3632. if (dsi_tput > (u64)bitspp * req_pck_max)
  3633. return false;
  3634. }
  3635. hss = DIV_ROUND_UP(4, ndl);
  3636. if (cfg->trans_mode == OMAP_DSS_DSI_PULSE_MODE) {
  3637. if (ndl == 3 && req_vm->hsync_len == 0)
  3638. hse = 1;
  3639. else
  3640. hse = DIV_ROUND_UP(4, ndl);
  3641. } else {
  3642. hse = 0;
  3643. }
  3644. /* DSI htot to match the panel's nominal pck */
  3645. dsi_htot = div64_u64((u64)panel_htot * byteclk, req_pck_nom);
  3646. /* fail if there would be no time for blanking */
  3647. if (dsi_htot < hss + hse + dsi_hact)
  3648. return false;
  3649. /* total DSI blanking needed to achieve panel's TL */
  3650. dsi_hbl = dsi_htot - dsi_hact;
  3651. /* DISPC htot to match the DSI TL */
  3652. dispc_htot = div64_u64((u64)dsi_htot * dispc_pck, byteclk);
  3653. /* verify that the DSI and DISPC TLs are the same */
  3654. if ((u64)dsi_htot * dispc_pck != (u64)dispc_htot * byteclk)
  3655. return false;
  3656. dispc_hbl = dispc_htot - xres;
  3657. /* setup DSI videomode */
  3658. dsi_vm = &ctx->dsi_vm;
  3659. memset(dsi_vm, 0, sizeof(*dsi_vm));
  3660. dsi_vm->hsclk = hsclk;
  3661. dsi_vm->ndl = ndl;
  3662. dsi_vm->bitspp = bitspp;
  3663. if (cfg->trans_mode != OMAP_DSS_DSI_PULSE_MODE) {
  3664. hsa = 0;
  3665. } else if (ndl == 3 && req_vm->hsync_len == 0) {
  3666. hsa = 0;
  3667. } else {
  3668. hsa = div64_u64((u64)req_vm->hsync_len * byteclk, req_pck_nom);
  3669. hsa = max(hsa - hse, 1);
  3670. }
  3671. hbp = div64_u64((u64)req_vm->hback_porch * byteclk, req_pck_nom);
  3672. hbp = max(hbp, 1);
  3673. hfp = dsi_hbl - (hss + hsa + hse + hbp);
  3674. if (hfp < 1) {
  3675. int t;
  3676. /* we need to take cycles from hbp */
  3677. t = 1 - hfp;
  3678. hbp = max(hbp - t, 1);
  3679. hfp = dsi_hbl - (hss + hsa + hse + hbp);
  3680. if (hfp < 1 && hsa > 0) {
  3681. /* we need to take cycles from hsa */
  3682. t = 1 - hfp;
  3683. hsa = max(hsa - t, 1);
  3684. hfp = dsi_hbl - (hss + hsa + hse + hbp);
  3685. }
  3686. }
  3687. if (hfp < 1)
  3688. return false;
  3689. dsi_vm->hss = hss;
  3690. dsi_vm->hsa = hsa;
  3691. dsi_vm->hse = hse;
  3692. dsi_vm->hbp = hbp;
  3693. dsi_vm->hact = xres;
  3694. dsi_vm->hfp = hfp;
  3695. dsi_vm->vsa = req_vm->vsync_len;
  3696. dsi_vm->vbp = req_vm->vback_porch;
  3697. dsi_vm->vact = req_vm->vactive;
  3698. dsi_vm->vfp = req_vm->vfront_porch;
  3699. dsi_vm->trans_mode = cfg->trans_mode;
  3700. dsi_vm->blanking_mode = 0;
  3701. dsi_vm->hsa_blanking_mode = 1;
  3702. dsi_vm->hfp_blanking_mode = 1;
  3703. dsi_vm->hbp_blanking_mode = 1;
  3704. dsi_vm->ddr_clk_always_on = cfg->ddr_clk_always_on;
  3705. dsi_vm->window_sync = 4;
  3706. /* setup DISPC videomode */
  3707. dispc_vm = &ctx->vm;
  3708. *dispc_vm = *req_vm;
  3709. dispc_vm->pixelclock = dispc_pck;
  3710. if (cfg->trans_mode == OMAP_DSS_DSI_PULSE_MODE) {
  3711. hsa = div64_u64((u64)req_vm->hsync_len * dispc_pck,
  3712. req_pck_nom);
  3713. hsa = max(hsa, 1);
  3714. } else {
  3715. hsa = 1;
  3716. }
  3717. hbp = div64_u64((u64)req_vm->hback_porch * dispc_pck, req_pck_nom);
  3718. hbp = max(hbp, 1);
  3719. hfp = dispc_hbl - hsa - hbp;
  3720. if (hfp < 1) {
  3721. int t;
  3722. /* we need to take cycles from hbp */
  3723. t = 1 - hfp;
  3724. hbp = max(hbp - t, 1);
  3725. hfp = dispc_hbl - hsa - hbp;
  3726. if (hfp < 1) {
  3727. /* we need to take cycles from hsa */
  3728. t = 1 - hfp;
  3729. hsa = max(hsa - t, 1);
  3730. hfp = dispc_hbl - hsa - hbp;
  3731. }
  3732. }
  3733. if (hfp < 1)
  3734. return false;
  3735. dispc_vm->hfront_porch = hfp;
  3736. dispc_vm->hsync_len = hsa;
  3737. dispc_vm->hback_porch = hbp;
  3738. return true;
  3739. }
  3740. static bool dsi_vm_calc_dispc_cb(int lckd, int pckd, unsigned long lck,
  3741. unsigned long pck, void *data)
  3742. {
  3743. struct dsi_clk_calc_ctx *ctx = data;
  3744. ctx->dispc_cinfo.lck_div = lckd;
  3745. ctx->dispc_cinfo.pck_div = pckd;
  3746. ctx->dispc_cinfo.lck = lck;
  3747. ctx->dispc_cinfo.pck = pck;
  3748. if (dsi_vm_calc_blanking(ctx) == false)
  3749. return false;
  3750. #ifdef PRINT_VERBOSE_VM_TIMINGS
  3751. print_dispc_vm("dispc", &ctx->vm);
  3752. print_dsi_vm("dsi ", &ctx->dsi_vm);
  3753. print_dispc_vm("req ", ctx->config->vm);
  3754. print_dsi_dispc_vm("act ", &ctx->dsi_vm);
  3755. #endif
  3756. return true;
  3757. }
  3758. static bool dsi_vm_calc_hsdiv_cb(int m_dispc, unsigned long dispc,
  3759. void *data)
  3760. {
  3761. struct dsi_clk_calc_ctx *ctx = data;
  3762. unsigned long pck_max;
  3763. ctx->dsi_cinfo.mX[HSDIV_DISPC] = m_dispc;
  3764. ctx->dsi_cinfo.clkout[HSDIV_DISPC] = dispc;
  3765. /*
  3766. * In burst mode we can let the dispc pck be arbitrarily high, but it
  3767. * limits our scaling abilities. So for now, don't aim too high.
  3768. */
  3769. if (ctx->config->trans_mode == OMAP_DSS_DSI_BURST_MODE)
  3770. pck_max = ctx->req_pck_max + 10000000;
  3771. else
  3772. pck_max = ctx->req_pck_max;
  3773. return dispc_div_calc(ctx->dsi->dss->dispc, dispc,
  3774. ctx->req_pck_min, pck_max,
  3775. dsi_vm_calc_dispc_cb, ctx);
  3776. }
  3777. static bool dsi_vm_calc_pll_cb(int n, int m, unsigned long fint,
  3778. unsigned long clkdco, void *data)
  3779. {
  3780. struct dsi_clk_calc_ctx *ctx = data;
  3781. struct dsi_data *dsi = ctx->dsi;
  3782. ctx->dsi_cinfo.n = n;
  3783. ctx->dsi_cinfo.m = m;
  3784. ctx->dsi_cinfo.fint = fint;
  3785. ctx->dsi_cinfo.clkdco = clkdco;
  3786. return dss_pll_hsdiv_calc_a(ctx->pll, clkdco, ctx->req_pck_min,
  3787. dsi->data->max_fck_freq,
  3788. dsi_vm_calc_hsdiv_cb, ctx);
  3789. }
  3790. static bool dsi_vm_calc(struct dsi_data *dsi,
  3791. const struct omap_dss_dsi_config *cfg,
  3792. struct dsi_clk_calc_ctx *ctx)
  3793. {
  3794. const struct videomode *vm = cfg->vm;
  3795. unsigned long clkin;
  3796. unsigned long pll_min;
  3797. unsigned long pll_max;
  3798. int ndl = dsi->num_lanes_used - 1;
  3799. int bitspp = dsi_get_pixel_size(cfg->pixel_format);
  3800. unsigned long byteclk_min;
  3801. clkin = clk_get_rate(dsi->pll.clkin);
  3802. memset(ctx, 0, sizeof(*ctx));
  3803. ctx->dsi = dsi;
  3804. ctx->pll = &dsi->pll;
  3805. ctx->config = cfg;
  3806. /* these limits should come from the panel driver */
  3807. ctx->req_pck_min = vm->pixelclock - 1000;
  3808. ctx->req_pck_nom = vm->pixelclock;
  3809. ctx->req_pck_max = vm->pixelclock + 1000;
  3810. byteclk_min = div64_u64((u64)ctx->req_pck_min * bitspp, ndl * 8);
  3811. pll_min = max(cfg->hs_clk_min * 4, byteclk_min * 4 * 4);
  3812. if (cfg->trans_mode == OMAP_DSS_DSI_BURST_MODE) {
  3813. pll_max = cfg->hs_clk_max * 4;
  3814. } else {
  3815. unsigned long byteclk_max;
  3816. byteclk_max = div64_u64((u64)ctx->req_pck_max * bitspp,
  3817. ndl * 8);
  3818. pll_max = byteclk_max * 4 * 4;
  3819. }
  3820. return dss_pll_calc_a(ctx->pll, clkin,
  3821. pll_min, pll_max,
  3822. dsi_vm_calc_pll_cb, ctx);
  3823. }
  3824. static int dsi_set_config(struct omap_dss_device *dssdev,
  3825. const struct omap_dss_dsi_config *config)
  3826. {
  3827. struct dsi_data *dsi = to_dsi_data(dssdev);
  3828. struct dsi_clk_calc_ctx ctx;
  3829. bool ok;
  3830. int r;
  3831. mutex_lock(&dsi->lock);
  3832. dsi->pix_fmt = config->pixel_format;
  3833. dsi->mode = config->mode;
  3834. if (config->mode == OMAP_DSS_DSI_VIDEO_MODE)
  3835. ok = dsi_vm_calc(dsi, config, &ctx);
  3836. else
  3837. ok = dsi_cm_calc(dsi, config, &ctx);
  3838. if (!ok) {
  3839. DSSERR("failed to find suitable DSI clock settings\n");
  3840. r = -EINVAL;
  3841. goto err;
  3842. }
  3843. dsi_pll_calc_dsi_fck(dsi, &ctx.dsi_cinfo);
  3844. r = dsi_lp_clock_calc(ctx.dsi_cinfo.clkout[HSDIV_DSI],
  3845. config->lp_clk_min, config->lp_clk_max, &dsi->user_lp_cinfo);
  3846. if (r) {
  3847. DSSERR("failed to find suitable DSI LP clock settings\n");
  3848. goto err;
  3849. }
  3850. dsi->user_dsi_cinfo = ctx.dsi_cinfo;
  3851. dsi->user_dispc_cinfo = ctx.dispc_cinfo;
  3852. dsi->vm = ctx.vm;
  3853. dsi->vm_timings = ctx.dsi_vm;
  3854. mutex_unlock(&dsi->lock);
  3855. return 0;
  3856. err:
  3857. mutex_unlock(&dsi->lock);
  3858. return r;
  3859. }
  3860. /*
  3861. * Return a hardcoded channel for the DSI output. This should work for
  3862. * current use cases, but this can be later expanded to either resolve
  3863. * the channel in some more dynamic manner, or get the channel as a user
  3864. * parameter.
  3865. */
  3866. static enum omap_channel dsi_get_channel(struct dsi_data *dsi)
  3867. {
  3868. switch (dsi->data->model) {
  3869. case DSI_MODEL_OMAP3:
  3870. return OMAP_DSS_CHANNEL_LCD;
  3871. case DSI_MODEL_OMAP4:
  3872. switch (dsi->module_id) {
  3873. case 0:
  3874. return OMAP_DSS_CHANNEL_LCD;
  3875. case 1:
  3876. return OMAP_DSS_CHANNEL_LCD2;
  3877. default:
  3878. DSSWARN("unsupported module id\n");
  3879. return OMAP_DSS_CHANNEL_LCD;
  3880. }
  3881. case DSI_MODEL_OMAP5:
  3882. switch (dsi->module_id) {
  3883. case 0:
  3884. return OMAP_DSS_CHANNEL_LCD;
  3885. case 1:
  3886. return OMAP_DSS_CHANNEL_LCD3;
  3887. default:
  3888. DSSWARN("unsupported module id\n");
  3889. return OMAP_DSS_CHANNEL_LCD;
  3890. }
  3891. default:
  3892. DSSWARN("unsupported DSS version\n");
  3893. return OMAP_DSS_CHANNEL_LCD;
  3894. }
  3895. }
  3896. static int dsi_request_vc(struct omap_dss_device *dssdev, int *channel)
  3897. {
  3898. struct dsi_data *dsi = to_dsi_data(dssdev);
  3899. int i;
  3900. for (i = 0; i < ARRAY_SIZE(dsi->vc); i++) {
  3901. if (!dsi->vc[i].dssdev) {
  3902. dsi->vc[i].dssdev = dssdev;
  3903. *channel = i;
  3904. return 0;
  3905. }
  3906. }
  3907. DSSERR("cannot get VC for display %s", dssdev->name);
  3908. return -ENOSPC;
  3909. }
  3910. static int dsi_set_vc_id(struct omap_dss_device *dssdev, int channel, int vc_id)
  3911. {
  3912. struct dsi_data *dsi = to_dsi_data(dssdev);
  3913. if (vc_id < 0 || vc_id > 3) {
  3914. DSSERR("VC ID out of range\n");
  3915. return -EINVAL;
  3916. }
  3917. if (channel < 0 || channel > 3) {
  3918. DSSERR("Virtual Channel out of range\n");
  3919. return -EINVAL;
  3920. }
  3921. if (dsi->vc[channel].dssdev != dssdev) {
  3922. DSSERR("Virtual Channel not allocated to display %s\n",
  3923. dssdev->name);
  3924. return -EINVAL;
  3925. }
  3926. dsi->vc[channel].vc_id = vc_id;
  3927. return 0;
  3928. }
  3929. static void dsi_release_vc(struct omap_dss_device *dssdev, int channel)
  3930. {
  3931. struct dsi_data *dsi = to_dsi_data(dssdev);
  3932. if ((channel >= 0 && channel <= 3) &&
  3933. dsi->vc[channel].dssdev == dssdev) {
  3934. dsi->vc[channel].dssdev = NULL;
  3935. dsi->vc[channel].vc_id = 0;
  3936. }
  3937. }
  3938. static int dsi_get_clocks(struct dsi_data *dsi)
  3939. {
  3940. struct clk *clk;
  3941. clk = devm_clk_get(dsi->dev, "fck");
  3942. if (IS_ERR(clk)) {
  3943. DSSERR("can't get fck\n");
  3944. return PTR_ERR(clk);
  3945. }
  3946. dsi->dss_clk = clk;
  3947. return 0;
  3948. }
  3949. static int dsi_connect(struct omap_dss_device *dssdev,
  3950. struct omap_dss_device *dst)
  3951. {
  3952. struct dsi_data *dsi = to_dsi_data(dssdev);
  3953. int r;
  3954. r = dsi_regulator_init(dsi);
  3955. if (r)
  3956. return r;
  3957. r = dss_mgr_connect(&dsi->output, dssdev);
  3958. if (r)
  3959. return r;
  3960. r = omapdss_output_set_device(dssdev, dst);
  3961. if (r) {
  3962. DSSERR("failed to connect output to new device: %s\n",
  3963. dssdev->name);
  3964. dss_mgr_disconnect(&dsi->output, dssdev);
  3965. return r;
  3966. }
  3967. return 0;
  3968. }
  3969. static void dsi_disconnect(struct omap_dss_device *dssdev,
  3970. struct omap_dss_device *dst)
  3971. {
  3972. struct dsi_data *dsi = to_dsi_data(dssdev);
  3973. omapdss_output_unset_device(dssdev);
  3974. dss_mgr_disconnect(&dsi->output, dssdev);
  3975. }
  3976. static const struct omap_dss_device_ops dsi_ops = {
  3977. .connect = dsi_connect,
  3978. .disconnect = dsi_disconnect,
  3979. .enable = dsi_display_enable,
  3980. .dsi = {
  3981. .bus_lock = dsi_bus_lock,
  3982. .bus_unlock = dsi_bus_unlock,
  3983. .disable = dsi_display_disable,
  3984. .enable_hs = dsi_vc_enable_hs,
  3985. .configure_pins = dsi_configure_pins,
  3986. .set_config = dsi_set_config,
  3987. .enable_video_output = dsi_enable_video_output,
  3988. .disable_video_output = dsi_disable_video_output,
  3989. .update = dsi_update,
  3990. .enable_te = dsi_enable_te,
  3991. .request_vc = dsi_request_vc,
  3992. .set_vc_id = dsi_set_vc_id,
  3993. .release_vc = dsi_release_vc,
  3994. .dcs_write = dsi_vc_dcs_write,
  3995. .dcs_write_nosync = dsi_vc_dcs_write_nosync,
  3996. .dcs_read = dsi_vc_dcs_read,
  3997. .gen_write = dsi_vc_generic_write,
  3998. .gen_write_nosync = dsi_vc_generic_write_nosync,
  3999. .gen_read = dsi_vc_generic_read,
  4000. .bta_sync = dsi_vc_send_bta_sync,
  4001. .set_max_rx_packet_size = dsi_vc_set_max_rx_packet_size,
  4002. },
  4003. };
  4004. static void dsi_init_output(struct dsi_data *dsi)
  4005. {
  4006. struct omap_dss_device *out = &dsi->output;
  4007. out->dev = dsi->dev;
  4008. out->id = dsi->module_id == 0 ?
  4009. OMAP_DSS_OUTPUT_DSI1 : OMAP_DSS_OUTPUT_DSI2;
  4010. out->output_type = OMAP_DISPLAY_TYPE_DSI;
  4011. out->name = dsi->module_id == 0 ? "dsi.0" : "dsi.1";
  4012. out->dispc_channel = dsi_get_channel(dsi);
  4013. out->ops = &dsi_ops;
  4014. out->owner = THIS_MODULE;
  4015. omapdss_register_output(out);
  4016. }
  4017. static void dsi_uninit_output(struct dsi_data *dsi)
  4018. {
  4019. struct omap_dss_device *out = &dsi->output;
  4020. omapdss_unregister_output(out);
  4021. }
  4022. static int dsi_probe_of(struct dsi_data *dsi)
  4023. {
  4024. struct device_node *node = dsi->dev->of_node;
  4025. struct property *prop;
  4026. u32 lane_arr[10];
  4027. int len, num_pins;
  4028. int r, i;
  4029. struct device_node *ep;
  4030. struct omap_dsi_pin_config pin_cfg;
  4031. ep = of_graph_get_endpoint_by_regs(node, 0, 0);
  4032. if (!ep)
  4033. return 0;
  4034. prop = of_find_property(ep, "lanes", &len);
  4035. if (prop == NULL) {
  4036. dev_err(dsi->dev, "failed to find lane data\n");
  4037. r = -EINVAL;
  4038. goto err;
  4039. }
  4040. num_pins = len / sizeof(u32);
  4041. if (num_pins < 4 || num_pins % 2 != 0 ||
  4042. num_pins > dsi->num_lanes_supported * 2) {
  4043. dev_err(dsi->dev, "bad number of lanes\n");
  4044. r = -EINVAL;
  4045. goto err;
  4046. }
  4047. r = of_property_read_u32_array(ep, "lanes", lane_arr, num_pins);
  4048. if (r) {
  4049. dev_err(dsi->dev, "failed to read lane data\n");
  4050. goto err;
  4051. }
  4052. pin_cfg.num_pins = num_pins;
  4053. for (i = 0; i < num_pins; ++i)
  4054. pin_cfg.pins[i] = (int)lane_arr[i];
  4055. r = dsi_configure_pins(&dsi->output, &pin_cfg);
  4056. if (r) {
  4057. dev_err(dsi->dev, "failed to configure pins");
  4058. goto err;
  4059. }
  4060. of_node_put(ep);
  4061. return 0;
  4062. err:
  4063. of_node_put(ep);
  4064. return r;
  4065. }
  4066. static const struct dss_pll_ops dsi_pll_ops = {
  4067. .enable = dsi_pll_enable,
  4068. .disable = dsi_pll_disable,
  4069. .set_config = dss_pll_write_config_type_a,
  4070. };
  4071. static const struct dss_pll_hw dss_omap3_dsi_pll_hw = {
  4072. .type = DSS_PLL_TYPE_A,
  4073. .n_max = (1 << 7) - 1,
  4074. .m_max = (1 << 11) - 1,
  4075. .mX_max = (1 << 4) - 1,
  4076. .fint_min = 750000,
  4077. .fint_max = 2100000,
  4078. .clkdco_low = 1000000000,
  4079. .clkdco_max = 1800000000,
  4080. .n_msb = 7,
  4081. .n_lsb = 1,
  4082. .m_msb = 18,
  4083. .m_lsb = 8,
  4084. .mX_msb[0] = 22,
  4085. .mX_lsb[0] = 19,
  4086. .mX_msb[1] = 26,
  4087. .mX_lsb[1] = 23,
  4088. .has_stopmode = true,
  4089. .has_freqsel = true,
  4090. .has_selfreqdco = false,
  4091. .has_refsel = false,
  4092. };
  4093. static const struct dss_pll_hw dss_omap4_dsi_pll_hw = {
  4094. .type = DSS_PLL_TYPE_A,
  4095. .n_max = (1 << 8) - 1,
  4096. .m_max = (1 << 12) - 1,
  4097. .mX_max = (1 << 5) - 1,
  4098. .fint_min = 500000,
  4099. .fint_max = 2500000,
  4100. .clkdco_low = 1000000000,
  4101. .clkdco_max = 1800000000,
  4102. .n_msb = 8,
  4103. .n_lsb = 1,
  4104. .m_msb = 20,
  4105. .m_lsb = 9,
  4106. .mX_msb[0] = 25,
  4107. .mX_lsb[0] = 21,
  4108. .mX_msb[1] = 30,
  4109. .mX_lsb[1] = 26,
  4110. .has_stopmode = true,
  4111. .has_freqsel = false,
  4112. .has_selfreqdco = false,
  4113. .has_refsel = false,
  4114. };
  4115. static const struct dss_pll_hw dss_omap5_dsi_pll_hw = {
  4116. .type = DSS_PLL_TYPE_A,
  4117. .n_max = (1 << 8) - 1,
  4118. .m_max = (1 << 12) - 1,
  4119. .mX_max = (1 << 5) - 1,
  4120. .fint_min = 150000,
  4121. .fint_max = 52000000,
  4122. .clkdco_low = 1000000000,
  4123. .clkdco_max = 1800000000,
  4124. .n_msb = 8,
  4125. .n_lsb = 1,
  4126. .m_msb = 20,
  4127. .m_lsb = 9,
  4128. .mX_msb[0] = 25,
  4129. .mX_lsb[0] = 21,
  4130. .mX_msb[1] = 30,
  4131. .mX_lsb[1] = 26,
  4132. .has_stopmode = true,
  4133. .has_freqsel = false,
  4134. .has_selfreqdco = true,
  4135. .has_refsel = true,
  4136. };
  4137. static int dsi_init_pll_data(struct dss_device *dss, struct dsi_data *dsi)
  4138. {
  4139. struct dss_pll *pll = &dsi->pll;
  4140. struct clk *clk;
  4141. int r;
  4142. clk = devm_clk_get(dsi->dev, "sys_clk");
  4143. if (IS_ERR(clk)) {
  4144. DSSERR("can't get sys_clk\n");
  4145. return PTR_ERR(clk);
  4146. }
  4147. pll->name = dsi->module_id == 0 ? "dsi0" : "dsi1";
  4148. pll->id = dsi->module_id == 0 ? DSS_PLL_DSI1 : DSS_PLL_DSI2;
  4149. pll->clkin = clk;
  4150. pll->base = dsi->pll_base;
  4151. pll->hw = dsi->data->pll_hw;
  4152. pll->ops = &dsi_pll_ops;
  4153. r = dss_pll_register(dss, pll);
  4154. if (r)
  4155. return r;
  4156. return 0;
  4157. }
  4158. /* DSI1 HW IP initialisation */
  4159. static const struct dsi_of_data dsi_of_data_omap34xx = {
  4160. .model = DSI_MODEL_OMAP3,
  4161. .pll_hw = &dss_omap3_dsi_pll_hw,
  4162. .modules = (const struct dsi_module_id_data[]) {
  4163. { .address = 0x4804fc00, .id = 0, },
  4164. { },
  4165. },
  4166. .max_fck_freq = 173000000,
  4167. .max_pll_lpdiv = (1 << 13) - 1,
  4168. .quirks = DSI_QUIRK_REVERSE_TXCLKESC,
  4169. };
  4170. static const struct dsi_of_data dsi_of_data_omap36xx = {
  4171. .model = DSI_MODEL_OMAP3,
  4172. .pll_hw = &dss_omap3_dsi_pll_hw,
  4173. .modules = (const struct dsi_module_id_data[]) {
  4174. { .address = 0x4804fc00, .id = 0, },
  4175. { },
  4176. },
  4177. .max_fck_freq = 173000000,
  4178. .max_pll_lpdiv = (1 << 13) - 1,
  4179. .quirks = DSI_QUIRK_PLL_PWR_BUG,
  4180. };
  4181. static const struct dsi_of_data dsi_of_data_omap4 = {
  4182. .model = DSI_MODEL_OMAP4,
  4183. .pll_hw = &dss_omap4_dsi_pll_hw,
  4184. .modules = (const struct dsi_module_id_data[]) {
  4185. { .address = 0x58004000, .id = 0, },
  4186. { .address = 0x58005000, .id = 1, },
  4187. { },
  4188. },
  4189. .max_fck_freq = 170000000,
  4190. .max_pll_lpdiv = (1 << 13) - 1,
  4191. .quirks = DSI_QUIRK_DCS_CMD_CONFIG_VC | DSI_QUIRK_VC_OCP_WIDTH
  4192. | DSI_QUIRK_GNQ,
  4193. };
  4194. static const struct dsi_of_data dsi_of_data_omap5 = {
  4195. .model = DSI_MODEL_OMAP5,
  4196. .pll_hw = &dss_omap5_dsi_pll_hw,
  4197. .modules = (const struct dsi_module_id_data[]) {
  4198. { .address = 0x58004000, .id = 0, },
  4199. { .address = 0x58009000, .id = 1, },
  4200. { },
  4201. },
  4202. .max_fck_freq = 209250000,
  4203. .max_pll_lpdiv = (1 << 13) - 1,
  4204. .quirks = DSI_QUIRK_DCS_CMD_CONFIG_VC | DSI_QUIRK_VC_OCP_WIDTH
  4205. | DSI_QUIRK_GNQ | DSI_QUIRK_PHY_DCC,
  4206. };
  4207. static const struct of_device_id dsi_of_match[] = {
  4208. { .compatible = "ti,omap3-dsi", .data = &dsi_of_data_omap36xx, },
  4209. { .compatible = "ti,omap4-dsi", .data = &dsi_of_data_omap4, },
  4210. { .compatible = "ti,omap5-dsi", .data = &dsi_of_data_omap5, },
  4211. {},
  4212. };
  4213. static const struct soc_device_attribute dsi_soc_devices[] = {
  4214. { .machine = "OMAP3[45]*", .data = &dsi_of_data_omap34xx },
  4215. { .machine = "AM35*", .data = &dsi_of_data_omap34xx },
  4216. { /* sentinel */ }
  4217. };
  4218. static int dsi_bind(struct device *dev, struct device *master, void *data)
  4219. {
  4220. struct platform_device *pdev = to_platform_device(dev);
  4221. struct dss_device *dss = dss_get_device(master);
  4222. const struct soc_device_attribute *soc;
  4223. const struct dsi_module_id_data *d;
  4224. u32 rev;
  4225. int r, i;
  4226. struct dsi_data *dsi;
  4227. struct resource *dsi_mem;
  4228. struct resource *res;
  4229. char name[10];
  4230. dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL);
  4231. if (!dsi)
  4232. return -ENOMEM;
  4233. dsi->dss = dss;
  4234. dsi->dev = dev;
  4235. dev_set_drvdata(dev, dsi);
  4236. spin_lock_init(&dsi->irq_lock);
  4237. spin_lock_init(&dsi->errors_lock);
  4238. dsi->errors = 0;
  4239. #ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS
  4240. spin_lock_init(&dsi->irq_stats_lock);
  4241. dsi->irq_stats.last_reset = jiffies;
  4242. #endif
  4243. mutex_init(&dsi->lock);
  4244. sema_init(&dsi->bus_lock, 1);
  4245. INIT_DEFERRABLE_WORK(&dsi->framedone_timeout_work,
  4246. dsi_framedone_timeout_work_callback);
  4247. #ifdef DSI_CATCH_MISSING_TE
  4248. timer_setup(&dsi->te_timer, dsi_te_timeout, 0);
  4249. #endif
  4250. dsi_mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "proto");
  4251. dsi->proto_base = devm_ioremap_resource(dev, dsi_mem);
  4252. if (IS_ERR(dsi->proto_base))
  4253. return PTR_ERR(dsi->proto_base);
  4254. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "phy");
  4255. dsi->phy_base = devm_ioremap_resource(dev, res);
  4256. if (IS_ERR(dsi->phy_base))
  4257. return PTR_ERR(dsi->phy_base);
  4258. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "pll");
  4259. dsi->pll_base = devm_ioremap_resource(dev, res);
  4260. if (IS_ERR(dsi->pll_base))
  4261. return PTR_ERR(dsi->pll_base);
  4262. dsi->irq = platform_get_irq(pdev, 0);
  4263. if (dsi->irq < 0) {
  4264. DSSERR("platform_get_irq failed\n");
  4265. return -ENODEV;
  4266. }
  4267. r = devm_request_irq(dev, dsi->irq, omap_dsi_irq_handler,
  4268. IRQF_SHARED, dev_name(dev), dsi);
  4269. if (r < 0) {
  4270. DSSERR("request_irq failed\n");
  4271. return r;
  4272. }
  4273. soc = soc_device_match(dsi_soc_devices);
  4274. if (soc)
  4275. dsi->data = soc->data;
  4276. else
  4277. dsi->data = of_match_node(dsi_of_match, dev->of_node)->data;
  4278. d = dsi->data->modules;
  4279. while (d->address != 0 && d->address != dsi_mem->start)
  4280. d++;
  4281. if (d->address == 0) {
  4282. DSSERR("unsupported DSI module\n");
  4283. return -ENODEV;
  4284. }
  4285. dsi->module_id = d->id;
  4286. if (dsi->data->model == DSI_MODEL_OMAP4 ||
  4287. dsi->data->model == DSI_MODEL_OMAP5) {
  4288. struct device_node *np;
  4289. /*
  4290. * The OMAP4/5 display DT bindings don't reference the padconf
  4291. * syscon. Our only option to retrieve it is to find it by name.
  4292. */
  4293. np = of_find_node_by_name(NULL,
  4294. dsi->data->model == DSI_MODEL_OMAP4 ?
  4295. "omap4_padconf_global" : "omap5_padconf_global");
  4296. if (!np)
  4297. return -ENODEV;
  4298. dsi->syscon = syscon_node_to_regmap(np);
  4299. of_node_put(np);
  4300. }
  4301. /* DSI VCs initialization */
  4302. for (i = 0; i < ARRAY_SIZE(dsi->vc); i++) {
  4303. dsi->vc[i].source = DSI_VC_SOURCE_L4;
  4304. dsi->vc[i].dssdev = NULL;
  4305. dsi->vc[i].vc_id = 0;
  4306. }
  4307. r = dsi_get_clocks(dsi);
  4308. if (r)
  4309. return r;
  4310. dsi_init_pll_data(dss, dsi);
  4311. pm_runtime_enable(dev);
  4312. r = dsi_runtime_get(dsi);
  4313. if (r)
  4314. goto err_runtime_get;
  4315. rev = dsi_read_reg(dsi, DSI_REVISION);
  4316. dev_dbg(dev, "OMAP DSI rev %d.%d\n",
  4317. FLD_GET(rev, 7, 4), FLD_GET(rev, 3, 0));
  4318. /* DSI on OMAP3 doesn't have register DSI_GNQ, set number
  4319. * of data to 3 by default */
  4320. if (dsi->data->quirks & DSI_QUIRK_GNQ)
  4321. /* NB_DATA_LANES */
  4322. dsi->num_lanes_supported = 1 + REG_GET(dsi, DSI_GNQ, 11, 9);
  4323. else
  4324. dsi->num_lanes_supported = 3;
  4325. dsi->line_buffer_size = dsi_get_line_buf_size(dsi);
  4326. dsi_init_output(dsi);
  4327. r = dsi_probe_of(dsi);
  4328. if (r) {
  4329. DSSERR("Invalid DSI DT data\n");
  4330. goto err_probe_of;
  4331. }
  4332. r = of_platform_populate(dev->of_node, NULL, NULL, dev);
  4333. if (r)
  4334. DSSERR("Failed to populate DSI child devices: %d\n", r);
  4335. dsi_runtime_put(dsi);
  4336. snprintf(name, sizeof(name), "dsi%u_regs", dsi->module_id + 1);
  4337. dsi->debugfs.regs = dss_debugfs_create_file(dss, name,
  4338. dsi_dump_dsi_regs, &dsi);
  4339. #ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS
  4340. snprintf(name, sizeof(name), "dsi%u_irqs", dsi->module_id + 1);
  4341. dsi->debugfs.irqs = dss_debugfs_create_file(dss, name,
  4342. dsi_dump_dsi_irqs, &dsi);
  4343. #endif
  4344. return 0;
  4345. err_probe_of:
  4346. dsi_uninit_output(dsi);
  4347. dsi_runtime_put(dsi);
  4348. err_runtime_get:
  4349. pm_runtime_disable(dev);
  4350. return r;
  4351. }
  4352. static void dsi_unbind(struct device *dev, struct device *master, void *data)
  4353. {
  4354. struct dsi_data *dsi = dev_get_drvdata(dev);
  4355. dss_debugfs_remove_file(dsi->debugfs.irqs);
  4356. dss_debugfs_remove_file(dsi->debugfs.regs);
  4357. of_platform_depopulate(dev);
  4358. WARN_ON(dsi->scp_clk_refcount > 0);
  4359. dss_pll_unregister(&dsi->pll);
  4360. dsi_uninit_output(dsi);
  4361. pm_runtime_disable(dev);
  4362. if (dsi->vdds_dsi_reg != NULL && dsi->vdds_dsi_enabled) {
  4363. regulator_disable(dsi->vdds_dsi_reg);
  4364. dsi->vdds_dsi_enabled = false;
  4365. }
  4366. }
  4367. static const struct component_ops dsi_component_ops = {
  4368. .bind = dsi_bind,
  4369. .unbind = dsi_unbind,
  4370. };
  4371. static int dsi_probe(struct platform_device *pdev)
  4372. {
  4373. return component_add(&pdev->dev, &dsi_component_ops);
  4374. }
  4375. static int dsi_remove(struct platform_device *pdev)
  4376. {
  4377. component_del(&pdev->dev, &dsi_component_ops);
  4378. return 0;
  4379. }
  4380. static int dsi_runtime_suspend(struct device *dev)
  4381. {
  4382. struct dsi_data *dsi = dev_get_drvdata(dev);
  4383. dsi->is_enabled = false;
  4384. /* ensure the irq handler sees the is_enabled value */
  4385. smp_wmb();
  4386. /* wait for current handler to finish before turning the DSI off */
  4387. synchronize_irq(dsi->irq);
  4388. dispc_runtime_put(dsi->dss->dispc);
  4389. return 0;
  4390. }
  4391. static int dsi_runtime_resume(struct device *dev)
  4392. {
  4393. struct dsi_data *dsi = dev_get_drvdata(dev);
  4394. int r;
  4395. r = dispc_runtime_get(dsi->dss->dispc);
  4396. if (r)
  4397. return r;
  4398. dsi->is_enabled = true;
  4399. /* ensure the irq handler sees the is_enabled value */
  4400. smp_wmb();
  4401. return 0;
  4402. }
  4403. static const struct dev_pm_ops dsi_pm_ops = {
  4404. .runtime_suspend = dsi_runtime_suspend,
  4405. .runtime_resume = dsi_runtime_resume,
  4406. };
  4407. struct platform_driver omap_dsihw_driver = {
  4408. .probe = dsi_probe,
  4409. .remove = dsi_remove,
  4410. .driver = {
  4411. .name = "omapdss_dsi",
  4412. .pm = &dsi_pm_ops,
  4413. .of_match_table = dsi_of_match,
  4414. .suppress_bind_attrs = true,
  4415. },
  4416. };