sdma_v3_0.c 44 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572
  1. /*
  2. * Copyright 2014 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. * Authors: Alex Deucher
  23. */
  24. #include <linux/firmware.h>
  25. #include <drm/drmP.h>
  26. #include "amdgpu.h"
  27. #include "amdgpu_ucode.h"
  28. #include "amdgpu_trace.h"
  29. #include "vi.h"
  30. #include "vid.h"
  31. #include "oss/oss_3_0_d.h"
  32. #include "oss/oss_3_0_sh_mask.h"
  33. #include "gmc/gmc_8_1_d.h"
  34. #include "gmc/gmc_8_1_sh_mask.h"
  35. #include "gca/gfx_8_0_d.h"
  36. #include "gca/gfx_8_0_enum.h"
  37. #include "gca/gfx_8_0_sh_mask.h"
  38. #include "bif/bif_5_0_d.h"
  39. #include "bif/bif_5_0_sh_mask.h"
  40. #include "tonga_sdma_pkt_open.h"
  41. static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev);
  42. static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev);
  43. static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev);
  44. static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev);
  45. MODULE_FIRMWARE("amdgpu/tonga_sdma.bin");
  46. MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin");
  47. MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin");
  48. MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin");
  49. MODULE_FIRMWARE("amdgpu/fiji_sdma.bin");
  50. MODULE_FIRMWARE("amdgpu/fiji_sdma1.bin");
  51. static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
  52. {
  53. SDMA0_REGISTER_OFFSET,
  54. SDMA1_REGISTER_OFFSET
  55. };
  56. static const u32 golden_settings_tonga_a11[] =
  57. {
  58. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  59. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  60. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  61. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  62. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  63. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  64. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  65. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  66. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  67. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  68. };
  69. static const u32 tonga_mgcg_cgcg_init[] =
  70. {
  71. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  72. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  73. };
  74. static const u32 golden_settings_fiji_a10[] =
  75. {
  76. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  77. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  78. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  79. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  80. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  81. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  82. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  83. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  84. };
  85. static const u32 fiji_mgcg_cgcg_init[] =
  86. {
  87. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  88. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  89. };
  90. static const u32 cz_golden_settings_a11[] =
  91. {
  92. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  93. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  94. mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
  95. mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
  96. mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  97. mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  98. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  99. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  100. mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100,
  101. mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800,
  102. mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  103. mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  104. };
  105. static const u32 cz_mgcg_cgcg_init[] =
  106. {
  107. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  108. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  109. };
  110. /*
  111. * sDMA - System DMA
  112. * Starting with CIK, the GPU has new asynchronous
  113. * DMA engines. These engines are used for compute
  114. * and gfx. There are two DMA engines (SDMA0, SDMA1)
  115. * and each one supports 1 ring buffer used for gfx
  116. * and 2 queues used for compute.
  117. *
  118. * The programming model is very similar to the CP
  119. * (ring buffer, IBs, etc.), but sDMA has it's own
  120. * packet format that is different from the PM4 format
  121. * used by the CP. sDMA supports copying data, writing
  122. * embedded data, solid fills, and a number of other
  123. * things. It also has support for tiling/detiling of
  124. * buffers.
  125. */
  126. static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev)
  127. {
  128. switch (adev->asic_type) {
  129. case CHIP_FIJI:
  130. amdgpu_program_register_sequence(adev,
  131. fiji_mgcg_cgcg_init,
  132. (const u32)ARRAY_SIZE(fiji_mgcg_cgcg_init));
  133. amdgpu_program_register_sequence(adev,
  134. golden_settings_fiji_a10,
  135. (const u32)ARRAY_SIZE(golden_settings_fiji_a10));
  136. break;
  137. case CHIP_TONGA:
  138. amdgpu_program_register_sequence(adev,
  139. tonga_mgcg_cgcg_init,
  140. (const u32)ARRAY_SIZE(tonga_mgcg_cgcg_init));
  141. amdgpu_program_register_sequence(adev,
  142. golden_settings_tonga_a11,
  143. (const u32)ARRAY_SIZE(golden_settings_tonga_a11));
  144. break;
  145. case CHIP_CARRIZO:
  146. amdgpu_program_register_sequence(adev,
  147. cz_mgcg_cgcg_init,
  148. (const u32)ARRAY_SIZE(cz_mgcg_cgcg_init));
  149. amdgpu_program_register_sequence(adev,
  150. cz_golden_settings_a11,
  151. (const u32)ARRAY_SIZE(cz_golden_settings_a11));
  152. break;
  153. default:
  154. break;
  155. }
  156. }
  157. /**
  158. * sdma_v3_0_init_microcode - load ucode images from disk
  159. *
  160. * @adev: amdgpu_device pointer
  161. *
  162. * Use the firmware interface to load the ucode images into
  163. * the driver (not loaded into hw).
  164. * Returns 0 on success, error on failure.
  165. */
  166. static int sdma_v3_0_init_microcode(struct amdgpu_device *adev)
  167. {
  168. const char *chip_name;
  169. char fw_name[30];
  170. int err, i;
  171. struct amdgpu_firmware_info *info = NULL;
  172. const struct common_firmware_header *header = NULL;
  173. const struct sdma_firmware_header_v1_0 *hdr;
  174. DRM_DEBUG("\n");
  175. switch (adev->asic_type) {
  176. case CHIP_TONGA:
  177. chip_name = "tonga";
  178. break;
  179. case CHIP_FIJI:
  180. chip_name = "fiji";
  181. break;
  182. case CHIP_CARRIZO:
  183. chip_name = "carrizo";
  184. break;
  185. default: BUG();
  186. }
  187. for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
  188. if (i == 0)
  189. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
  190. else
  191. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
  192. err = request_firmware(&adev->sdma[i].fw, fw_name, adev->dev);
  193. if (err)
  194. goto out;
  195. err = amdgpu_ucode_validate(adev->sdma[i].fw);
  196. if (err)
  197. goto out;
  198. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma[i].fw->data;
  199. adev->sdma[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
  200. adev->sdma[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
  201. if (adev->sdma[i].feature_version >= 20)
  202. adev->sdma[i].burst_nop = true;
  203. if (adev->firmware.smu_load) {
  204. info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
  205. info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
  206. info->fw = adev->sdma[i].fw;
  207. header = (const struct common_firmware_header *)info->fw->data;
  208. adev->firmware.fw_size +=
  209. ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
  210. }
  211. }
  212. out:
  213. if (err) {
  214. printk(KERN_ERR
  215. "sdma_v3_0: Failed to load firmware \"%s\"\n",
  216. fw_name);
  217. for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
  218. release_firmware(adev->sdma[i].fw);
  219. adev->sdma[i].fw = NULL;
  220. }
  221. }
  222. return err;
  223. }
  224. /**
  225. * sdma_v3_0_ring_get_rptr - get the current read pointer
  226. *
  227. * @ring: amdgpu ring pointer
  228. *
  229. * Get the current rptr from the hardware (VI+).
  230. */
  231. static uint32_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring)
  232. {
  233. u32 rptr;
  234. /* XXX check if swapping is necessary on BE */
  235. rptr = ring->adev->wb.wb[ring->rptr_offs] >> 2;
  236. return rptr;
  237. }
  238. /**
  239. * sdma_v3_0_ring_get_wptr - get the current write pointer
  240. *
  241. * @ring: amdgpu ring pointer
  242. *
  243. * Get the current wptr from the hardware (VI+).
  244. */
  245. static uint32_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring)
  246. {
  247. struct amdgpu_device *adev = ring->adev;
  248. u32 wptr;
  249. if (ring->use_doorbell) {
  250. /* XXX check if swapping is necessary on BE */
  251. wptr = ring->adev->wb.wb[ring->wptr_offs] >> 2;
  252. } else {
  253. int me = (ring == &ring->adev->sdma[0].ring) ? 0 : 1;
  254. wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me]) >> 2;
  255. }
  256. return wptr;
  257. }
  258. /**
  259. * sdma_v3_0_ring_set_wptr - commit the write pointer
  260. *
  261. * @ring: amdgpu ring pointer
  262. *
  263. * Write the wptr back to the hardware (VI+).
  264. */
  265. static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring)
  266. {
  267. struct amdgpu_device *adev = ring->adev;
  268. if (ring->use_doorbell) {
  269. /* XXX check if swapping is necessary on BE */
  270. adev->wb.wb[ring->wptr_offs] = ring->wptr << 2;
  271. WDOORBELL32(ring->doorbell_index, ring->wptr << 2);
  272. } else {
  273. int me = (ring == &ring->adev->sdma[0].ring) ? 0 : 1;
  274. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me], ring->wptr << 2);
  275. }
  276. }
  277. static void sdma_v3_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
  278. {
  279. struct amdgpu_sdma *sdma = amdgpu_get_sdma_instance(ring);
  280. int i;
  281. for (i = 0; i < count; i++)
  282. if (sdma && sdma->burst_nop && (i == 0))
  283. amdgpu_ring_write(ring, ring->nop |
  284. SDMA_PKT_NOP_HEADER_COUNT(count - 1));
  285. else
  286. amdgpu_ring_write(ring, ring->nop);
  287. }
  288. /**
  289. * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine
  290. *
  291. * @ring: amdgpu ring pointer
  292. * @ib: IB object to schedule
  293. *
  294. * Schedule an IB in the DMA ring (VI).
  295. */
  296. static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring,
  297. struct amdgpu_ib *ib)
  298. {
  299. u32 vmid = (ib->vm ? ib->vm->ids[ring->idx].id : 0) & 0xf;
  300. u32 next_rptr = ring->wptr + 5;
  301. while ((next_rptr & 7) != 2)
  302. next_rptr++;
  303. next_rptr += 6;
  304. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  305. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
  306. amdgpu_ring_write(ring, lower_32_bits(ring->next_rptr_gpu_addr) & 0xfffffffc);
  307. amdgpu_ring_write(ring, upper_32_bits(ring->next_rptr_gpu_addr));
  308. amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
  309. amdgpu_ring_write(ring, next_rptr);
  310. /* IB packet must end on a 8 DW boundary */
  311. sdma_v3_0_ring_insert_nop(ring, (10 - (ring->wptr & 7)) % 8);
  312. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
  313. SDMA_PKT_INDIRECT_HEADER_VMID(vmid));
  314. /* base must be 32 byte aligned */
  315. amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
  316. amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
  317. amdgpu_ring_write(ring, ib->length_dw);
  318. amdgpu_ring_write(ring, 0);
  319. amdgpu_ring_write(ring, 0);
  320. }
  321. /**
  322. * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
  323. *
  324. * @ring: amdgpu ring pointer
  325. *
  326. * Emit an hdp flush packet on the requested DMA ring.
  327. */
  328. static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
  329. {
  330. u32 ref_and_mask = 0;
  331. if (ring == &ring->adev->sdma[0].ring)
  332. ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
  333. else
  334. ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
  335. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  336. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
  337. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
  338. amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
  339. amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
  340. amdgpu_ring_write(ring, ref_and_mask); /* reference */
  341. amdgpu_ring_write(ring, ref_and_mask); /* mask */
  342. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  343. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  344. }
  345. /**
  346. * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring
  347. *
  348. * @ring: amdgpu ring pointer
  349. * @fence: amdgpu fence object
  350. *
  351. * Add a DMA fence packet to the ring to write
  352. * the fence seq number and DMA trap packet to generate
  353. * an interrupt if needed (VI).
  354. */
  355. static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
  356. unsigned flags)
  357. {
  358. bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
  359. /* write the fence */
  360. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  361. amdgpu_ring_write(ring, lower_32_bits(addr));
  362. amdgpu_ring_write(ring, upper_32_bits(addr));
  363. amdgpu_ring_write(ring, lower_32_bits(seq));
  364. /* optionally write high bits as well */
  365. if (write64bit) {
  366. addr += 4;
  367. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  368. amdgpu_ring_write(ring, lower_32_bits(addr));
  369. amdgpu_ring_write(ring, upper_32_bits(addr));
  370. amdgpu_ring_write(ring, upper_32_bits(seq));
  371. }
  372. /* generate an interrupt */
  373. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
  374. amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
  375. }
  376. /**
  377. * sdma_v3_0_ring_emit_semaphore - emit a semaphore on the dma ring
  378. *
  379. * @ring: amdgpu_ring structure holding ring information
  380. * @semaphore: amdgpu semaphore object
  381. * @emit_wait: wait or signal semaphore
  382. *
  383. * Add a DMA semaphore packet to the ring wait on or signal
  384. * other rings (VI).
  385. */
  386. static bool sdma_v3_0_ring_emit_semaphore(struct amdgpu_ring *ring,
  387. struct amdgpu_semaphore *semaphore,
  388. bool emit_wait)
  389. {
  390. u64 addr = semaphore->gpu_addr;
  391. u32 sig = emit_wait ? 0 : 1;
  392. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SEM) |
  393. SDMA_PKT_SEMAPHORE_HEADER_SIGNAL(sig));
  394. amdgpu_ring_write(ring, lower_32_bits(addr) & 0xfffffff8);
  395. amdgpu_ring_write(ring, upper_32_bits(addr));
  396. return true;
  397. }
  398. /**
  399. * sdma_v3_0_gfx_stop - stop the gfx async dma engines
  400. *
  401. * @adev: amdgpu_device pointer
  402. *
  403. * Stop the gfx async dma ring buffers (VI).
  404. */
  405. static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev)
  406. {
  407. struct amdgpu_ring *sdma0 = &adev->sdma[0].ring;
  408. struct amdgpu_ring *sdma1 = &adev->sdma[1].ring;
  409. u32 rb_cntl, ib_cntl;
  410. int i;
  411. if ((adev->mman.buffer_funcs_ring == sdma0) ||
  412. (adev->mman.buffer_funcs_ring == sdma1))
  413. amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);
  414. for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
  415. rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
  416. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
  417. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  418. ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
  419. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
  420. WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
  421. }
  422. sdma0->ready = false;
  423. sdma1->ready = false;
  424. }
  425. /**
  426. * sdma_v3_0_rlc_stop - stop the compute async dma engines
  427. *
  428. * @adev: amdgpu_device pointer
  429. *
  430. * Stop the compute async dma queues (VI).
  431. */
  432. static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev)
  433. {
  434. /* XXX todo */
  435. }
  436. /**
  437. * sdma_v3_0_ctx_switch_enable - stop the async dma engines context switch
  438. *
  439. * @adev: amdgpu_device pointer
  440. * @enable: enable/disable the DMA MEs context switch.
  441. *
  442. * Halt or unhalt the async dma engines context switch (VI).
  443. */
  444. static void sdma_v3_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
  445. {
  446. u32 f32_cntl;
  447. int i;
  448. for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
  449. f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]);
  450. if (enable)
  451. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  452. AUTO_CTXSW_ENABLE, 1);
  453. else
  454. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  455. AUTO_CTXSW_ENABLE, 0);
  456. WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl);
  457. }
  458. }
  459. /**
  460. * sdma_v3_0_enable - stop the async dma engines
  461. *
  462. * @adev: amdgpu_device pointer
  463. * @enable: enable/disable the DMA MEs.
  464. *
  465. * Halt or unhalt the async dma engines (VI).
  466. */
  467. static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable)
  468. {
  469. u32 f32_cntl;
  470. int i;
  471. if (enable == false) {
  472. sdma_v3_0_gfx_stop(adev);
  473. sdma_v3_0_rlc_stop(adev);
  474. }
  475. for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
  476. f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
  477. if (enable)
  478. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
  479. else
  480. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
  481. WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
  482. }
  483. }
  484. /**
  485. * sdma_v3_0_gfx_resume - setup and start the async dma engines
  486. *
  487. * @adev: amdgpu_device pointer
  488. *
  489. * Set up the gfx DMA ring buffers and enable them (VI).
  490. * Returns 0 for success, error for failure.
  491. */
  492. static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev)
  493. {
  494. struct amdgpu_ring *ring;
  495. u32 rb_cntl, ib_cntl;
  496. u32 rb_bufsz;
  497. u32 wb_offset;
  498. u32 doorbell;
  499. int i, j, r;
  500. for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
  501. ring = &adev->sdma[i].ring;
  502. wb_offset = (ring->rptr_offs * 4);
  503. mutex_lock(&adev->srbm_mutex);
  504. for (j = 0; j < 16; j++) {
  505. vi_srbm_select(adev, 0, 0, 0, j);
  506. /* SDMA GFX */
  507. WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
  508. WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
  509. }
  510. vi_srbm_select(adev, 0, 0, 0, 0);
  511. mutex_unlock(&adev->srbm_mutex);
  512. WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
  513. /* Set ring buffer size in dwords */
  514. rb_bufsz = order_base_2(ring->ring_size / 4);
  515. rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
  516. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
  517. #ifdef __BIG_ENDIAN
  518. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
  519. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
  520. RPTR_WRITEBACK_SWAP_ENABLE, 1);
  521. #endif
  522. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  523. /* Initialize the ring buffer's read and write pointers */
  524. WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
  525. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0);
  526. /* set the wb address whether it's enabled or not */
  527. WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
  528. upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
  529. WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
  530. lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
  531. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
  532. WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
  533. WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
  534. ring->wptr = 0;
  535. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], ring->wptr << 2);
  536. doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]);
  537. if (ring->use_doorbell) {
  538. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL,
  539. OFFSET, ring->doorbell_index);
  540. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
  541. } else {
  542. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
  543. }
  544. WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell);
  545. /* enable DMA RB */
  546. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
  547. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  548. ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
  549. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
  550. #ifdef __BIG_ENDIAN
  551. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
  552. #endif
  553. /* enable DMA IBs */
  554. WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
  555. ring->ready = true;
  556. r = amdgpu_ring_test_ring(ring);
  557. if (r) {
  558. ring->ready = false;
  559. return r;
  560. }
  561. if (adev->mman.buffer_funcs_ring == ring)
  562. amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size);
  563. }
  564. return 0;
  565. }
  566. /**
  567. * sdma_v3_0_rlc_resume - setup and start the async dma engines
  568. *
  569. * @adev: amdgpu_device pointer
  570. *
  571. * Set up the compute DMA queues and enable them (VI).
  572. * Returns 0 for success, error for failure.
  573. */
  574. static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev)
  575. {
  576. /* XXX todo */
  577. return 0;
  578. }
  579. /**
  580. * sdma_v3_0_load_microcode - load the sDMA ME ucode
  581. *
  582. * @adev: amdgpu_device pointer
  583. *
  584. * Loads the sDMA0/1 ucode.
  585. * Returns 0 for success, -EINVAL if the ucode is not available.
  586. */
  587. static int sdma_v3_0_load_microcode(struct amdgpu_device *adev)
  588. {
  589. const struct sdma_firmware_header_v1_0 *hdr;
  590. const __le32 *fw_data;
  591. u32 fw_size;
  592. int i, j;
  593. if (!adev->sdma[0].fw || !adev->sdma[1].fw)
  594. return -EINVAL;
  595. /* halt the MEs */
  596. sdma_v3_0_enable(adev, false);
  597. for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
  598. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma[i].fw->data;
  599. amdgpu_ucode_print_sdma_hdr(&hdr->header);
  600. fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
  601. fw_data = (const __le32 *)
  602. (adev->sdma[i].fw->data +
  603. le32_to_cpu(hdr->header.ucode_array_offset_bytes));
  604. WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0);
  605. for (j = 0; j < fw_size; j++)
  606. WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++));
  607. WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma[i].fw_version);
  608. }
  609. return 0;
  610. }
  611. /**
  612. * sdma_v3_0_start - setup and start the async dma engines
  613. *
  614. * @adev: amdgpu_device pointer
  615. *
  616. * Set up the DMA engines and enable them (VI).
  617. * Returns 0 for success, error for failure.
  618. */
  619. static int sdma_v3_0_start(struct amdgpu_device *adev)
  620. {
  621. int r;
  622. if (!adev->firmware.smu_load) {
  623. r = sdma_v3_0_load_microcode(adev);
  624. if (r)
  625. return r;
  626. } else {
  627. r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
  628. AMDGPU_UCODE_ID_SDMA0);
  629. if (r)
  630. return -EINVAL;
  631. r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
  632. AMDGPU_UCODE_ID_SDMA1);
  633. if (r)
  634. return -EINVAL;
  635. }
  636. /* unhalt the MEs */
  637. sdma_v3_0_enable(adev, true);
  638. /* enable sdma ring preemption */
  639. sdma_v3_0_ctx_switch_enable(adev, true);
  640. /* start the gfx rings and rlc compute queues */
  641. r = sdma_v3_0_gfx_resume(adev);
  642. if (r)
  643. return r;
  644. r = sdma_v3_0_rlc_resume(adev);
  645. if (r)
  646. return r;
  647. return 0;
  648. }
  649. /**
  650. * sdma_v3_0_ring_test_ring - simple async dma engine test
  651. *
  652. * @ring: amdgpu_ring structure holding ring information
  653. *
  654. * Test the DMA engine by writing using it to write an
  655. * value to memory. (VI).
  656. * Returns 0 for success, error for failure.
  657. */
  658. static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring)
  659. {
  660. struct amdgpu_device *adev = ring->adev;
  661. unsigned i;
  662. unsigned index;
  663. int r;
  664. u32 tmp;
  665. u64 gpu_addr;
  666. r = amdgpu_wb_get(adev, &index);
  667. if (r) {
  668. dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
  669. return r;
  670. }
  671. gpu_addr = adev->wb.gpu_addr + (index * 4);
  672. tmp = 0xCAFEDEAD;
  673. adev->wb.wb[index] = cpu_to_le32(tmp);
  674. r = amdgpu_ring_lock(ring, 5);
  675. if (r) {
  676. DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
  677. amdgpu_wb_free(adev, index);
  678. return r;
  679. }
  680. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  681. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
  682. amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
  683. amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
  684. amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
  685. amdgpu_ring_write(ring, 0xDEADBEEF);
  686. amdgpu_ring_unlock_commit(ring);
  687. for (i = 0; i < adev->usec_timeout; i++) {
  688. tmp = le32_to_cpu(adev->wb.wb[index]);
  689. if (tmp == 0xDEADBEEF)
  690. break;
  691. DRM_UDELAY(1);
  692. }
  693. if (i < adev->usec_timeout) {
  694. DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
  695. } else {
  696. DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
  697. ring->idx, tmp);
  698. r = -EINVAL;
  699. }
  700. amdgpu_wb_free(adev, index);
  701. return r;
  702. }
  703. /**
  704. * sdma_v3_0_ring_test_ib - test an IB on the DMA engine
  705. *
  706. * @ring: amdgpu_ring structure holding ring information
  707. *
  708. * Test a simple IB in the DMA ring (VI).
  709. * Returns 0 on success, error on failure.
  710. */
  711. static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring)
  712. {
  713. struct amdgpu_device *adev = ring->adev;
  714. struct amdgpu_ib ib;
  715. struct fence *f = NULL;
  716. unsigned i;
  717. unsigned index;
  718. int r;
  719. u32 tmp = 0;
  720. u64 gpu_addr;
  721. r = amdgpu_wb_get(adev, &index);
  722. if (r) {
  723. dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
  724. return r;
  725. }
  726. gpu_addr = adev->wb.gpu_addr + (index * 4);
  727. tmp = 0xCAFEDEAD;
  728. adev->wb.wb[index] = cpu_to_le32(tmp);
  729. memset(&ib, 0, sizeof(ib));
  730. r = amdgpu_ib_get(ring, NULL, 256, &ib);
  731. if (r) {
  732. DRM_ERROR("amdgpu: failed to get ib (%d).\n", r);
  733. goto err0;
  734. }
  735. ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  736. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
  737. ib.ptr[1] = lower_32_bits(gpu_addr);
  738. ib.ptr[2] = upper_32_bits(gpu_addr);
  739. ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
  740. ib.ptr[4] = 0xDEADBEEF;
  741. ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  742. ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  743. ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  744. ib.length_dw = 8;
  745. r = amdgpu_sched_ib_submit_kernel_helper(adev, ring, &ib, 1, NULL,
  746. AMDGPU_FENCE_OWNER_UNDEFINED,
  747. &f);
  748. if (r)
  749. goto err1;
  750. r = fence_wait(f, false);
  751. if (r) {
  752. DRM_ERROR("amdgpu: fence wait failed (%d).\n", r);
  753. goto err1;
  754. }
  755. for (i = 0; i < adev->usec_timeout; i++) {
  756. tmp = le32_to_cpu(adev->wb.wb[index]);
  757. if (tmp == 0xDEADBEEF)
  758. break;
  759. DRM_UDELAY(1);
  760. }
  761. if (i < adev->usec_timeout) {
  762. DRM_INFO("ib test on ring %d succeeded in %u usecs\n",
  763. ring->idx, i);
  764. goto err1;
  765. } else {
  766. DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
  767. r = -EINVAL;
  768. }
  769. err1:
  770. fence_put(f);
  771. amdgpu_ib_free(adev, &ib);
  772. err0:
  773. amdgpu_wb_free(adev, index);
  774. return r;
  775. }
  776. /**
  777. * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART
  778. *
  779. * @ib: indirect buffer to fill with commands
  780. * @pe: addr of the page entry
  781. * @src: src addr to copy from
  782. * @count: number of page entries to update
  783. *
  784. * Update PTEs by copying them from the GART using sDMA (CIK).
  785. */
  786. static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib,
  787. uint64_t pe, uint64_t src,
  788. unsigned count)
  789. {
  790. while (count) {
  791. unsigned bytes = count * 8;
  792. if (bytes > 0x1FFFF8)
  793. bytes = 0x1FFFF8;
  794. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  795. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  796. ib->ptr[ib->length_dw++] = bytes;
  797. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  798. ib->ptr[ib->length_dw++] = lower_32_bits(src);
  799. ib->ptr[ib->length_dw++] = upper_32_bits(src);
  800. ib->ptr[ib->length_dw++] = lower_32_bits(pe);
  801. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  802. pe += bytes;
  803. src += bytes;
  804. count -= bytes / 8;
  805. }
  806. }
  807. /**
  808. * sdma_v3_0_vm_write_pte - update PTEs by writing them manually
  809. *
  810. * @ib: indirect buffer to fill with commands
  811. * @pe: addr of the page entry
  812. * @addr: dst addr to write into pe
  813. * @count: number of page entries to update
  814. * @incr: increase next addr by incr bytes
  815. * @flags: access flags
  816. *
  817. * Update PTEs by writing them manually using sDMA (CIK).
  818. */
  819. static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib,
  820. uint64_t pe,
  821. uint64_t addr, unsigned count,
  822. uint32_t incr, uint32_t flags)
  823. {
  824. uint64_t value;
  825. unsigned ndw;
  826. while (count) {
  827. ndw = count * 2;
  828. if (ndw > 0xFFFFE)
  829. ndw = 0xFFFFE;
  830. /* for non-physically contiguous pages (system) */
  831. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  832. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  833. ib->ptr[ib->length_dw++] = pe;
  834. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  835. ib->ptr[ib->length_dw++] = ndw;
  836. for (; ndw > 0; ndw -= 2, --count, pe += 8) {
  837. if (flags & AMDGPU_PTE_SYSTEM) {
  838. value = amdgpu_vm_map_gart(ib->ring->adev, addr);
  839. value &= 0xFFFFFFFFFFFFF000ULL;
  840. } else if (flags & AMDGPU_PTE_VALID) {
  841. value = addr;
  842. } else {
  843. value = 0;
  844. }
  845. addr += incr;
  846. value |= flags;
  847. ib->ptr[ib->length_dw++] = value;
  848. ib->ptr[ib->length_dw++] = upper_32_bits(value);
  849. }
  850. }
  851. }
  852. /**
  853. * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA
  854. *
  855. * @ib: indirect buffer to fill with commands
  856. * @pe: addr of the page entry
  857. * @addr: dst addr to write into pe
  858. * @count: number of page entries to update
  859. * @incr: increase next addr by incr bytes
  860. * @flags: access flags
  861. *
  862. * Update the page tables using sDMA (CIK).
  863. */
  864. static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib,
  865. uint64_t pe,
  866. uint64_t addr, unsigned count,
  867. uint32_t incr, uint32_t flags)
  868. {
  869. uint64_t value;
  870. unsigned ndw;
  871. while (count) {
  872. ndw = count;
  873. if (ndw > 0x7FFFF)
  874. ndw = 0x7FFFF;
  875. if (flags & AMDGPU_PTE_VALID)
  876. value = addr;
  877. else
  878. value = 0;
  879. /* for physically contiguous pages (vram) */
  880. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
  881. ib->ptr[ib->length_dw++] = pe; /* dst addr */
  882. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  883. ib->ptr[ib->length_dw++] = flags; /* mask */
  884. ib->ptr[ib->length_dw++] = 0;
  885. ib->ptr[ib->length_dw++] = value; /* value */
  886. ib->ptr[ib->length_dw++] = upper_32_bits(value);
  887. ib->ptr[ib->length_dw++] = incr; /* increment size */
  888. ib->ptr[ib->length_dw++] = 0;
  889. ib->ptr[ib->length_dw++] = ndw; /* number of entries */
  890. pe += ndw * 8;
  891. addr += ndw * incr;
  892. count -= ndw;
  893. }
  894. }
  895. /**
  896. * sdma_v3_0_vm_pad_ib - pad the IB to the required number of dw
  897. *
  898. * @ib: indirect buffer to fill with padding
  899. *
  900. */
  901. static void sdma_v3_0_vm_pad_ib(struct amdgpu_ib *ib)
  902. {
  903. struct amdgpu_sdma *sdma = amdgpu_get_sdma_instance(ib->ring);
  904. u32 pad_count;
  905. int i;
  906. pad_count = (8 - (ib->length_dw & 0x7)) % 8;
  907. for (i = 0; i < pad_count; i++)
  908. if (sdma && sdma->burst_nop && (i == 0))
  909. ib->ptr[ib->length_dw++] =
  910. SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
  911. SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
  912. else
  913. ib->ptr[ib->length_dw++] =
  914. SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
  915. }
  916. /**
  917. * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA
  918. *
  919. * @ring: amdgpu_ring pointer
  920. * @vm: amdgpu_vm pointer
  921. *
  922. * Update the page table base and flush the VM TLB
  923. * using sDMA (VI).
  924. */
  925. static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
  926. unsigned vm_id, uint64_t pd_addr)
  927. {
  928. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  929. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  930. if (vm_id < 8) {
  931. amdgpu_ring_write(ring, (mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + vm_id));
  932. } else {
  933. amdgpu_ring_write(ring, (mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vm_id - 8));
  934. }
  935. amdgpu_ring_write(ring, pd_addr >> 12);
  936. /* flush TLB */
  937. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  938. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  939. amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST);
  940. amdgpu_ring_write(ring, 1 << vm_id);
  941. /* wait for flush */
  942. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  943. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  944. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
  945. amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
  946. amdgpu_ring_write(ring, 0);
  947. amdgpu_ring_write(ring, 0); /* reference */
  948. amdgpu_ring_write(ring, 0); /* mask */
  949. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  950. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  951. }
  952. static int sdma_v3_0_early_init(void *handle)
  953. {
  954. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  955. sdma_v3_0_set_ring_funcs(adev);
  956. sdma_v3_0_set_buffer_funcs(adev);
  957. sdma_v3_0_set_vm_pte_funcs(adev);
  958. sdma_v3_0_set_irq_funcs(adev);
  959. return 0;
  960. }
  961. static int sdma_v3_0_sw_init(void *handle)
  962. {
  963. struct amdgpu_ring *ring;
  964. int r;
  965. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  966. /* SDMA trap event */
  967. r = amdgpu_irq_add_id(adev, 224, &adev->sdma_trap_irq);
  968. if (r)
  969. return r;
  970. /* SDMA Privileged inst */
  971. r = amdgpu_irq_add_id(adev, 241, &adev->sdma_illegal_inst_irq);
  972. if (r)
  973. return r;
  974. /* SDMA Privileged inst */
  975. r = amdgpu_irq_add_id(adev, 247, &adev->sdma_illegal_inst_irq);
  976. if (r)
  977. return r;
  978. r = sdma_v3_0_init_microcode(adev);
  979. if (r) {
  980. DRM_ERROR("Failed to load sdma firmware!\n");
  981. return r;
  982. }
  983. ring = &adev->sdma[0].ring;
  984. ring->ring_obj = NULL;
  985. ring->use_doorbell = true;
  986. ring->doorbell_index = AMDGPU_DOORBELL_sDMA_ENGINE0;
  987. ring = &adev->sdma[1].ring;
  988. ring->ring_obj = NULL;
  989. ring->use_doorbell = true;
  990. ring->doorbell_index = AMDGPU_DOORBELL_sDMA_ENGINE1;
  991. ring = &adev->sdma[0].ring;
  992. sprintf(ring->name, "sdma0");
  993. r = amdgpu_ring_init(adev, ring, 256 * 1024,
  994. SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 0xf,
  995. &adev->sdma_trap_irq, AMDGPU_SDMA_IRQ_TRAP0,
  996. AMDGPU_RING_TYPE_SDMA);
  997. if (r)
  998. return r;
  999. ring = &adev->sdma[1].ring;
  1000. sprintf(ring->name, "sdma1");
  1001. r = amdgpu_ring_init(adev, ring, 256 * 1024,
  1002. SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 0xf,
  1003. &adev->sdma_trap_irq, AMDGPU_SDMA_IRQ_TRAP1,
  1004. AMDGPU_RING_TYPE_SDMA);
  1005. if (r)
  1006. return r;
  1007. return r;
  1008. }
  1009. static int sdma_v3_0_sw_fini(void *handle)
  1010. {
  1011. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1012. amdgpu_ring_fini(&adev->sdma[0].ring);
  1013. amdgpu_ring_fini(&adev->sdma[1].ring);
  1014. return 0;
  1015. }
  1016. static int sdma_v3_0_hw_init(void *handle)
  1017. {
  1018. int r;
  1019. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1020. sdma_v3_0_init_golden_registers(adev);
  1021. r = sdma_v3_0_start(adev);
  1022. if (r)
  1023. return r;
  1024. return r;
  1025. }
  1026. static int sdma_v3_0_hw_fini(void *handle)
  1027. {
  1028. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1029. sdma_v3_0_ctx_switch_enable(adev, false);
  1030. sdma_v3_0_enable(adev, false);
  1031. return 0;
  1032. }
  1033. static int sdma_v3_0_suspend(void *handle)
  1034. {
  1035. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1036. return sdma_v3_0_hw_fini(adev);
  1037. }
  1038. static int sdma_v3_0_resume(void *handle)
  1039. {
  1040. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1041. return sdma_v3_0_hw_init(adev);
  1042. }
  1043. static bool sdma_v3_0_is_idle(void *handle)
  1044. {
  1045. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1046. u32 tmp = RREG32(mmSRBM_STATUS2);
  1047. if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
  1048. SRBM_STATUS2__SDMA1_BUSY_MASK))
  1049. return false;
  1050. return true;
  1051. }
  1052. static int sdma_v3_0_wait_for_idle(void *handle)
  1053. {
  1054. unsigned i;
  1055. u32 tmp;
  1056. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1057. for (i = 0; i < adev->usec_timeout; i++) {
  1058. tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
  1059. SRBM_STATUS2__SDMA1_BUSY_MASK);
  1060. if (!tmp)
  1061. return 0;
  1062. udelay(1);
  1063. }
  1064. return -ETIMEDOUT;
  1065. }
  1066. static void sdma_v3_0_print_status(void *handle)
  1067. {
  1068. int i, j;
  1069. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1070. dev_info(adev->dev, "VI SDMA registers\n");
  1071. dev_info(adev->dev, " SRBM_STATUS2=0x%08X\n",
  1072. RREG32(mmSRBM_STATUS2));
  1073. for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
  1074. dev_info(adev->dev, " SDMA%d_STATUS_REG=0x%08X\n",
  1075. i, RREG32(mmSDMA0_STATUS_REG + sdma_offsets[i]));
  1076. dev_info(adev->dev, " SDMA%d_F32_CNTL=0x%08X\n",
  1077. i, RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]));
  1078. dev_info(adev->dev, " SDMA%d_CNTL=0x%08X\n",
  1079. i, RREG32(mmSDMA0_CNTL + sdma_offsets[i]));
  1080. dev_info(adev->dev, " SDMA%d_SEM_WAIT_FAIL_TIMER_CNTL=0x%08X\n",
  1081. i, RREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i]));
  1082. dev_info(adev->dev, " SDMA%d_GFX_IB_CNTL=0x%08X\n",
  1083. i, RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]));
  1084. dev_info(adev->dev, " SDMA%d_GFX_RB_CNTL=0x%08X\n",
  1085. i, RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]));
  1086. dev_info(adev->dev, " SDMA%d_GFX_RB_RPTR=0x%08X\n",
  1087. i, RREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i]));
  1088. dev_info(adev->dev, " SDMA%d_GFX_RB_WPTR=0x%08X\n",
  1089. i, RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i]));
  1090. dev_info(adev->dev, " SDMA%d_GFX_RB_RPTR_ADDR_HI=0x%08X\n",
  1091. i, RREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i]));
  1092. dev_info(adev->dev, " SDMA%d_GFX_RB_RPTR_ADDR_LO=0x%08X\n",
  1093. i, RREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i]));
  1094. dev_info(adev->dev, " SDMA%d_GFX_RB_BASE=0x%08X\n",
  1095. i, RREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i]));
  1096. dev_info(adev->dev, " SDMA%d_GFX_RB_BASE_HI=0x%08X\n",
  1097. i, RREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i]));
  1098. dev_info(adev->dev, " SDMA%d_GFX_DOORBELL=0x%08X\n",
  1099. i, RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]));
  1100. mutex_lock(&adev->srbm_mutex);
  1101. for (j = 0; j < 16; j++) {
  1102. vi_srbm_select(adev, 0, 0, 0, j);
  1103. dev_info(adev->dev, " VM %d:\n", j);
  1104. dev_info(adev->dev, " SDMA%d_GFX_VIRTUAL_ADDR=0x%08X\n",
  1105. i, RREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i]));
  1106. dev_info(adev->dev, " SDMA%d_GFX_APE1_CNTL=0x%08X\n",
  1107. i, RREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i]));
  1108. }
  1109. vi_srbm_select(adev, 0, 0, 0, 0);
  1110. mutex_unlock(&adev->srbm_mutex);
  1111. }
  1112. }
  1113. static int sdma_v3_0_soft_reset(void *handle)
  1114. {
  1115. u32 srbm_soft_reset = 0;
  1116. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1117. u32 tmp = RREG32(mmSRBM_STATUS2);
  1118. if (tmp & SRBM_STATUS2__SDMA_BUSY_MASK) {
  1119. /* sdma0 */
  1120. tmp = RREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET);
  1121. tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
  1122. WREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET, tmp);
  1123. srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
  1124. }
  1125. if (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK) {
  1126. /* sdma1 */
  1127. tmp = RREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET);
  1128. tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
  1129. WREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET, tmp);
  1130. srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
  1131. }
  1132. if (srbm_soft_reset) {
  1133. sdma_v3_0_print_status((void *)adev);
  1134. tmp = RREG32(mmSRBM_SOFT_RESET);
  1135. tmp |= srbm_soft_reset;
  1136. dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
  1137. WREG32(mmSRBM_SOFT_RESET, tmp);
  1138. tmp = RREG32(mmSRBM_SOFT_RESET);
  1139. udelay(50);
  1140. tmp &= ~srbm_soft_reset;
  1141. WREG32(mmSRBM_SOFT_RESET, tmp);
  1142. tmp = RREG32(mmSRBM_SOFT_RESET);
  1143. /* Wait a little for things to settle down */
  1144. udelay(50);
  1145. sdma_v3_0_print_status((void *)adev);
  1146. }
  1147. return 0;
  1148. }
  1149. static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev,
  1150. struct amdgpu_irq_src *source,
  1151. unsigned type,
  1152. enum amdgpu_interrupt_state state)
  1153. {
  1154. u32 sdma_cntl;
  1155. switch (type) {
  1156. case AMDGPU_SDMA_IRQ_TRAP0:
  1157. switch (state) {
  1158. case AMDGPU_IRQ_STATE_DISABLE:
  1159. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
  1160. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
  1161. WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
  1162. break;
  1163. case AMDGPU_IRQ_STATE_ENABLE:
  1164. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
  1165. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
  1166. WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
  1167. break;
  1168. default:
  1169. break;
  1170. }
  1171. break;
  1172. case AMDGPU_SDMA_IRQ_TRAP1:
  1173. switch (state) {
  1174. case AMDGPU_IRQ_STATE_DISABLE:
  1175. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
  1176. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
  1177. WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
  1178. break;
  1179. case AMDGPU_IRQ_STATE_ENABLE:
  1180. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
  1181. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
  1182. WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
  1183. break;
  1184. default:
  1185. break;
  1186. }
  1187. break;
  1188. default:
  1189. break;
  1190. }
  1191. return 0;
  1192. }
  1193. static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev,
  1194. struct amdgpu_irq_src *source,
  1195. struct amdgpu_iv_entry *entry)
  1196. {
  1197. u8 instance_id, queue_id;
  1198. instance_id = (entry->ring_id & 0x3) >> 0;
  1199. queue_id = (entry->ring_id & 0xc) >> 2;
  1200. DRM_DEBUG("IH: SDMA trap\n");
  1201. switch (instance_id) {
  1202. case 0:
  1203. switch (queue_id) {
  1204. case 0:
  1205. amdgpu_fence_process(&adev->sdma[0].ring);
  1206. break;
  1207. case 1:
  1208. /* XXX compute */
  1209. break;
  1210. case 2:
  1211. /* XXX compute */
  1212. break;
  1213. }
  1214. break;
  1215. case 1:
  1216. switch (queue_id) {
  1217. case 0:
  1218. amdgpu_fence_process(&adev->sdma[1].ring);
  1219. break;
  1220. case 1:
  1221. /* XXX compute */
  1222. break;
  1223. case 2:
  1224. /* XXX compute */
  1225. break;
  1226. }
  1227. break;
  1228. }
  1229. return 0;
  1230. }
  1231. static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev,
  1232. struct amdgpu_irq_src *source,
  1233. struct amdgpu_iv_entry *entry)
  1234. {
  1235. DRM_ERROR("Illegal instruction in SDMA command stream\n");
  1236. schedule_work(&adev->reset_work);
  1237. return 0;
  1238. }
  1239. static int sdma_v3_0_set_clockgating_state(void *handle,
  1240. enum amd_clockgating_state state)
  1241. {
  1242. return 0;
  1243. }
  1244. static int sdma_v3_0_set_powergating_state(void *handle,
  1245. enum amd_powergating_state state)
  1246. {
  1247. return 0;
  1248. }
  1249. const struct amd_ip_funcs sdma_v3_0_ip_funcs = {
  1250. .early_init = sdma_v3_0_early_init,
  1251. .late_init = NULL,
  1252. .sw_init = sdma_v3_0_sw_init,
  1253. .sw_fini = sdma_v3_0_sw_fini,
  1254. .hw_init = sdma_v3_0_hw_init,
  1255. .hw_fini = sdma_v3_0_hw_fini,
  1256. .suspend = sdma_v3_0_suspend,
  1257. .resume = sdma_v3_0_resume,
  1258. .is_idle = sdma_v3_0_is_idle,
  1259. .wait_for_idle = sdma_v3_0_wait_for_idle,
  1260. .soft_reset = sdma_v3_0_soft_reset,
  1261. .print_status = sdma_v3_0_print_status,
  1262. .set_clockgating_state = sdma_v3_0_set_clockgating_state,
  1263. .set_powergating_state = sdma_v3_0_set_powergating_state,
  1264. };
  1265. /**
  1266. * sdma_v3_0_ring_is_lockup - Check if the DMA engine is locked up
  1267. *
  1268. * @ring: amdgpu_ring structure holding ring information
  1269. *
  1270. * Check if the async DMA engine is locked up (VI).
  1271. * Returns true if the engine appears to be locked up, false if not.
  1272. */
  1273. static bool sdma_v3_0_ring_is_lockup(struct amdgpu_ring *ring)
  1274. {
  1275. if (sdma_v3_0_is_idle(ring->adev)) {
  1276. amdgpu_ring_lockup_update(ring);
  1277. return false;
  1278. }
  1279. return amdgpu_ring_test_lockup(ring);
  1280. }
  1281. static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = {
  1282. .get_rptr = sdma_v3_0_ring_get_rptr,
  1283. .get_wptr = sdma_v3_0_ring_get_wptr,
  1284. .set_wptr = sdma_v3_0_ring_set_wptr,
  1285. .parse_cs = NULL,
  1286. .emit_ib = sdma_v3_0_ring_emit_ib,
  1287. .emit_fence = sdma_v3_0_ring_emit_fence,
  1288. .emit_semaphore = sdma_v3_0_ring_emit_semaphore,
  1289. .emit_vm_flush = sdma_v3_0_ring_emit_vm_flush,
  1290. .emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush,
  1291. .test_ring = sdma_v3_0_ring_test_ring,
  1292. .test_ib = sdma_v3_0_ring_test_ib,
  1293. .is_lockup = sdma_v3_0_ring_is_lockup,
  1294. .insert_nop = sdma_v3_0_ring_insert_nop,
  1295. };
  1296. static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev)
  1297. {
  1298. adev->sdma[0].ring.funcs = &sdma_v3_0_ring_funcs;
  1299. adev->sdma[1].ring.funcs = &sdma_v3_0_ring_funcs;
  1300. }
  1301. static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = {
  1302. .set = sdma_v3_0_set_trap_irq_state,
  1303. .process = sdma_v3_0_process_trap_irq,
  1304. };
  1305. static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = {
  1306. .process = sdma_v3_0_process_illegal_inst_irq,
  1307. };
  1308. static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev)
  1309. {
  1310. adev->sdma_trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
  1311. adev->sdma_trap_irq.funcs = &sdma_v3_0_trap_irq_funcs;
  1312. adev->sdma_illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs;
  1313. }
  1314. /**
  1315. * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine
  1316. *
  1317. * @ring: amdgpu_ring structure holding ring information
  1318. * @src_offset: src GPU address
  1319. * @dst_offset: dst GPU address
  1320. * @byte_count: number of bytes to xfer
  1321. *
  1322. * Copy GPU buffers using the DMA engine (VI).
  1323. * Used by the amdgpu ttm implementation to move pages if
  1324. * registered as the asic copy callback.
  1325. */
  1326. static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ib *ib,
  1327. uint64_t src_offset,
  1328. uint64_t dst_offset,
  1329. uint32_t byte_count)
  1330. {
  1331. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  1332. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  1333. ib->ptr[ib->length_dw++] = byte_count;
  1334. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  1335. ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
  1336. ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
  1337. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1338. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1339. }
  1340. /**
  1341. * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine
  1342. *
  1343. * @ring: amdgpu_ring structure holding ring information
  1344. * @src_data: value to write to buffer
  1345. * @dst_offset: dst GPU address
  1346. * @byte_count: number of bytes to xfer
  1347. *
  1348. * Fill GPU buffers using the DMA engine (VI).
  1349. */
  1350. static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ib *ib,
  1351. uint32_t src_data,
  1352. uint64_t dst_offset,
  1353. uint32_t byte_count)
  1354. {
  1355. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
  1356. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1357. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1358. ib->ptr[ib->length_dw++] = src_data;
  1359. ib->ptr[ib->length_dw++] = byte_count;
  1360. }
  1361. static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = {
  1362. .copy_max_bytes = 0x1fffff,
  1363. .copy_num_dw = 7,
  1364. .emit_copy_buffer = sdma_v3_0_emit_copy_buffer,
  1365. .fill_max_bytes = 0x1fffff,
  1366. .fill_num_dw = 5,
  1367. .emit_fill_buffer = sdma_v3_0_emit_fill_buffer,
  1368. };
  1369. static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev)
  1370. {
  1371. if (adev->mman.buffer_funcs == NULL) {
  1372. adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs;
  1373. adev->mman.buffer_funcs_ring = &adev->sdma[0].ring;
  1374. }
  1375. }
  1376. static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = {
  1377. .copy_pte = sdma_v3_0_vm_copy_pte,
  1378. .write_pte = sdma_v3_0_vm_write_pte,
  1379. .set_pte_pde = sdma_v3_0_vm_set_pte_pde,
  1380. .pad_ib = sdma_v3_0_vm_pad_ib,
  1381. };
  1382. static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev)
  1383. {
  1384. if (adev->vm_manager.vm_pte_funcs == NULL) {
  1385. adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs;
  1386. adev->vm_manager.vm_pte_funcs_ring = &adev->sdma[0].ring;
  1387. adev->vm_manager.vm_pte_funcs_ring->is_pte_ring = true;
  1388. }
  1389. }