amdgpu_cs.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983
  1. /*
  2. * Copyright 2008 Jerome Glisse.
  3. * All Rights Reserved.
  4. *
  5. * Permission is hereby granted, free of charge, to any person obtaining a
  6. * copy of this software and associated documentation files (the "Software"),
  7. * to deal in the Software without restriction, including without limitation
  8. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  9. * and/or sell copies of the Software, and to permit persons to whom the
  10. * Software is furnished to do so, subject to the following conditions:
  11. *
  12. * The above copyright notice and this permission notice (including the next
  13. * paragraph) shall be included in all copies or substantial portions of the
  14. * Software.
  15. *
  16. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19. * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
  20. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  21. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  22. * DEALINGS IN THE SOFTWARE.
  23. *
  24. * Authors:
  25. * Jerome Glisse <glisse@freedesktop.org>
  26. */
  27. #include <linux/list_sort.h>
  28. #include <drm/drmP.h>
  29. #include <drm/amdgpu_drm.h>
  30. #include "amdgpu.h"
  31. #include "amdgpu_trace.h"
  32. #define AMDGPU_CS_MAX_PRIORITY 32u
  33. #define AMDGPU_CS_NUM_BUCKETS (AMDGPU_CS_MAX_PRIORITY + 1)
  34. /* This is based on the bucket sort with O(n) time complexity.
  35. * An item with priority "i" is added to bucket[i]. The lists are then
  36. * concatenated in descending order.
  37. */
  38. struct amdgpu_cs_buckets {
  39. struct list_head bucket[AMDGPU_CS_NUM_BUCKETS];
  40. };
  41. static void amdgpu_cs_buckets_init(struct amdgpu_cs_buckets *b)
  42. {
  43. unsigned i;
  44. for (i = 0; i < AMDGPU_CS_NUM_BUCKETS; i++)
  45. INIT_LIST_HEAD(&b->bucket[i]);
  46. }
  47. static void amdgpu_cs_buckets_add(struct amdgpu_cs_buckets *b,
  48. struct list_head *item, unsigned priority)
  49. {
  50. /* Since buffers which appear sooner in the relocation list are
  51. * likely to be used more often than buffers which appear later
  52. * in the list, the sort mustn't change the ordering of buffers
  53. * with the same priority, i.e. it must be stable.
  54. */
  55. list_add_tail(item, &b->bucket[min(priority, AMDGPU_CS_MAX_PRIORITY)]);
  56. }
  57. static void amdgpu_cs_buckets_get_list(struct amdgpu_cs_buckets *b,
  58. struct list_head *out_list)
  59. {
  60. unsigned i;
  61. /* Connect the sorted buckets in the output list. */
  62. for (i = 0; i < AMDGPU_CS_NUM_BUCKETS; i++) {
  63. list_splice(&b->bucket[i], out_list);
  64. }
  65. }
  66. int amdgpu_cs_get_ring(struct amdgpu_device *adev, u32 ip_type,
  67. u32 ip_instance, u32 ring,
  68. struct amdgpu_ring **out_ring)
  69. {
  70. /* Right now all IPs have only one instance - multiple rings. */
  71. if (ip_instance != 0) {
  72. DRM_ERROR("invalid ip instance: %d\n", ip_instance);
  73. return -EINVAL;
  74. }
  75. switch (ip_type) {
  76. default:
  77. DRM_ERROR("unknown ip type: %d\n", ip_type);
  78. return -EINVAL;
  79. case AMDGPU_HW_IP_GFX:
  80. if (ring < adev->gfx.num_gfx_rings) {
  81. *out_ring = &adev->gfx.gfx_ring[ring];
  82. } else {
  83. DRM_ERROR("only %d gfx rings are supported now\n",
  84. adev->gfx.num_gfx_rings);
  85. return -EINVAL;
  86. }
  87. break;
  88. case AMDGPU_HW_IP_COMPUTE:
  89. if (ring < adev->gfx.num_compute_rings) {
  90. *out_ring = &adev->gfx.compute_ring[ring];
  91. } else {
  92. DRM_ERROR("only %d compute rings are supported now\n",
  93. adev->gfx.num_compute_rings);
  94. return -EINVAL;
  95. }
  96. break;
  97. case AMDGPU_HW_IP_DMA:
  98. if (ring < 2) {
  99. *out_ring = &adev->sdma[ring].ring;
  100. } else {
  101. DRM_ERROR("only two SDMA rings are supported\n");
  102. return -EINVAL;
  103. }
  104. break;
  105. case AMDGPU_HW_IP_UVD:
  106. *out_ring = &adev->uvd.ring;
  107. break;
  108. case AMDGPU_HW_IP_VCE:
  109. if (ring < 2){
  110. *out_ring = &adev->vce.ring[ring];
  111. } else {
  112. DRM_ERROR("only two VCE rings are supported\n");
  113. return -EINVAL;
  114. }
  115. break;
  116. }
  117. return 0;
  118. }
  119. struct amdgpu_cs_parser *amdgpu_cs_parser_create(struct amdgpu_device *adev,
  120. struct drm_file *filp,
  121. struct amdgpu_ctx *ctx,
  122. struct amdgpu_ib *ibs,
  123. uint32_t num_ibs)
  124. {
  125. struct amdgpu_cs_parser *parser;
  126. int i;
  127. parser = kzalloc(sizeof(struct amdgpu_cs_parser), GFP_KERNEL);
  128. if (!parser)
  129. return NULL;
  130. parser->adev = adev;
  131. parser->filp = filp;
  132. parser->ctx = ctx;
  133. parser->ibs = ibs;
  134. parser->num_ibs = num_ibs;
  135. for (i = 0; i < num_ibs; i++)
  136. ibs[i].ctx = ctx;
  137. return parser;
  138. }
  139. int amdgpu_cs_parser_init(struct amdgpu_cs_parser *p, void *data)
  140. {
  141. union drm_amdgpu_cs *cs = data;
  142. uint64_t *chunk_array_user;
  143. uint64_t *chunk_array = NULL;
  144. struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
  145. unsigned size, i;
  146. int r = 0;
  147. if (!cs->in.num_chunks)
  148. goto out;
  149. p->ctx = amdgpu_ctx_get(fpriv, cs->in.ctx_id);
  150. if (!p->ctx) {
  151. r = -EINVAL;
  152. goto out;
  153. }
  154. p->bo_list = amdgpu_bo_list_get(fpriv, cs->in.bo_list_handle);
  155. /* get chunks */
  156. INIT_LIST_HEAD(&p->validated);
  157. chunk_array = kmalloc_array(cs->in.num_chunks, sizeof(uint64_t), GFP_KERNEL);
  158. if (chunk_array == NULL) {
  159. r = -ENOMEM;
  160. goto out;
  161. }
  162. chunk_array_user = (uint64_t __user *)(cs->in.chunks);
  163. if (copy_from_user(chunk_array, chunk_array_user,
  164. sizeof(uint64_t)*cs->in.num_chunks)) {
  165. r = -EFAULT;
  166. goto out;
  167. }
  168. p->nchunks = cs->in.num_chunks;
  169. p->chunks = kmalloc_array(p->nchunks, sizeof(struct amdgpu_cs_chunk),
  170. GFP_KERNEL);
  171. if (p->chunks == NULL) {
  172. r = -ENOMEM;
  173. goto out;
  174. }
  175. for (i = 0; i < p->nchunks; i++) {
  176. struct drm_amdgpu_cs_chunk __user **chunk_ptr = NULL;
  177. struct drm_amdgpu_cs_chunk user_chunk;
  178. uint32_t __user *cdata;
  179. chunk_ptr = (void __user *)chunk_array[i];
  180. if (copy_from_user(&user_chunk, chunk_ptr,
  181. sizeof(struct drm_amdgpu_cs_chunk))) {
  182. r = -EFAULT;
  183. goto out;
  184. }
  185. p->chunks[i].chunk_id = user_chunk.chunk_id;
  186. p->chunks[i].length_dw = user_chunk.length_dw;
  187. size = p->chunks[i].length_dw;
  188. cdata = (void __user *)user_chunk.chunk_data;
  189. p->chunks[i].user_ptr = cdata;
  190. p->chunks[i].kdata = drm_malloc_ab(size, sizeof(uint32_t));
  191. if (p->chunks[i].kdata == NULL) {
  192. r = -ENOMEM;
  193. goto out;
  194. }
  195. size *= sizeof(uint32_t);
  196. if (copy_from_user(p->chunks[i].kdata, cdata, size)) {
  197. r = -EFAULT;
  198. goto out;
  199. }
  200. switch (p->chunks[i].chunk_id) {
  201. case AMDGPU_CHUNK_ID_IB:
  202. p->num_ibs++;
  203. break;
  204. case AMDGPU_CHUNK_ID_FENCE:
  205. size = sizeof(struct drm_amdgpu_cs_chunk_fence);
  206. if (p->chunks[i].length_dw * sizeof(uint32_t) >= size) {
  207. uint32_t handle;
  208. struct drm_gem_object *gobj;
  209. struct drm_amdgpu_cs_chunk_fence *fence_data;
  210. fence_data = (void *)p->chunks[i].kdata;
  211. handle = fence_data->handle;
  212. gobj = drm_gem_object_lookup(p->adev->ddev,
  213. p->filp, handle);
  214. if (gobj == NULL) {
  215. r = -EINVAL;
  216. goto out;
  217. }
  218. p->uf.bo = gem_to_amdgpu_bo(gobj);
  219. p->uf.offset = fence_data->offset;
  220. } else {
  221. r = -EINVAL;
  222. goto out;
  223. }
  224. break;
  225. case AMDGPU_CHUNK_ID_DEPENDENCIES:
  226. break;
  227. default:
  228. r = -EINVAL;
  229. goto out;
  230. }
  231. }
  232. p->ibs = kcalloc(p->num_ibs, sizeof(struct amdgpu_ib), GFP_KERNEL);
  233. if (!p->ibs)
  234. r = -ENOMEM;
  235. out:
  236. kfree(chunk_array);
  237. return r;
  238. }
  239. /* Returns how many bytes TTM can move per IB.
  240. */
  241. static u64 amdgpu_cs_get_threshold_for_moves(struct amdgpu_device *adev)
  242. {
  243. u64 real_vram_size = adev->mc.real_vram_size;
  244. u64 vram_usage = atomic64_read(&adev->vram_usage);
  245. /* This function is based on the current VRAM usage.
  246. *
  247. * - If all of VRAM is free, allow relocating the number of bytes that
  248. * is equal to 1/4 of the size of VRAM for this IB.
  249. * - If more than one half of VRAM is occupied, only allow relocating
  250. * 1 MB of data for this IB.
  251. *
  252. * - From 0 to one half of used VRAM, the threshold decreases
  253. * linearly.
  254. * __________________
  255. * 1/4 of -|\ |
  256. * VRAM | \ |
  257. * | \ |
  258. * | \ |
  259. * | \ |
  260. * | \ |
  261. * | \ |
  262. * | \________|1 MB
  263. * |----------------|
  264. * VRAM 0 % 100 %
  265. * used used
  266. *
  267. * Note: It's a threshold, not a limit. The threshold must be crossed
  268. * for buffer relocations to stop, so any buffer of an arbitrary size
  269. * can be moved as long as the threshold isn't crossed before
  270. * the relocation takes place. We don't want to disable buffer
  271. * relocations completely.
  272. *
  273. * The idea is that buffers should be placed in VRAM at creation time
  274. * and TTM should only do a minimum number of relocations during
  275. * command submission. In practice, you need to submit at least
  276. * a dozen IBs to move all buffers to VRAM if they are in GTT.
  277. *
  278. * Also, things can get pretty crazy under memory pressure and actual
  279. * VRAM usage can change a lot, so playing safe even at 50% does
  280. * consistently increase performance.
  281. */
  282. u64 half_vram = real_vram_size >> 1;
  283. u64 half_free_vram = vram_usage >= half_vram ? 0 : half_vram - vram_usage;
  284. u64 bytes_moved_threshold = half_free_vram >> 1;
  285. return max(bytes_moved_threshold, 1024*1024ull);
  286. }
  287. int amdgpu_cs_list_validate(struct amdgpu_cs_parser *p)
  288. {
  289. struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
  290. struct amdgpu_vm *vm = &fpriv->vm;
  291. struct amdgpu_device *adev = p->adev;
  292. struct amdgpu_bo_list_entry *lobj;
  293. struct list_head duplicates;
  294. struct amdgpu_bo *bo;
  295. u64 bytes_moved = 0, initial_bytes_moved;
  296. u64 bytes_moved_threshold = amdgpu_cs_get_threshold_for_moves(adev);
  297. int r;
  298. INIT_LIST_HEAD(&duplicates);
  299. r = ttm_eu_reserve_buffers(&p->ticket, &p->validated, true, &duplicates);
  300. if (unlikely(r != 0)) {
  301. return r;
  302. }
  303. list_for_each_entry(lobj, &p->validated, tv.head) {
  304. bo = lobj->robj;
  305. if (!bo->pin_count) {
  306. u32 domain = lobj->prefered_domains;
  307. u32 current_domain =
  308. amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type);
  309. /* Check if this buffer will be moved and don't move it
  310. * if we have moved too many buffers for this IB already.
  311. *
  312. * Note that this allows moving at least one buffer of
  313. * any size, because it doesn't take the current "bo"
  314. * into account. We don't want to disallow buffer moves
  315. * completely.
  316. */
  317. if ((lobj->allowed_domains & current_domain) != 0 &&
  318. (domain & current_domain) == 0 && /* will be moved */
  319. bytes_moved > bytes_moved_threshold) {
  320. /* don't move it */
  321. domain = current_domain;
  322. }
  323. retry:
  324. amdgpu_ttm_placement_from_domain(bo, domain);
  325. initial_bytes_moved = atomic64_read(&adev->num_bytes_moved);
  326. r = ttm_bo_validate(&bo->tbo, &bo->placement, true, false);
  327. bytes_moved += atomic64_read(&adev->num_bytes_moved) -
  328. initial_bytes_moved;
  329. if (unlikely(r)) {
  330. if (r != -ERESTARTSYS && domain != lobj->allowed_domains) {
  331. domain = lobj->allowed_domains;
  332. goto retry;
  333. }
  334. ttm_eu_backoff_reservation(&p->ticket, &p->validated);
  335. return r;
  336. }
  337. }
  338. lobj->bo_va = amdgpu_vm_bo_find(vm, bo);
  339. }
  340. return 0;
  341. }
  342. static int amdgpu_cs_parser_relocs(struct amdgpu_cs_parser *p)
  343. {
  344. struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
  345. struct amdgpu_cs_buckets buckets;
  346. bool need_mmap_lock = false;
  347. int i, r;
  348. if (p->bo_list) {
  349. need_mmap_lock = p->bo_list->has_userptr;
  350. amdgpu_cs_buckets_init(&buckets);
  351. for (i = 0; i < p->bo_list->num_entries; i++)
  352. amdgpu_cs_buckets_add(&buckets, &p->bo_list->array[i].tv.head,
  353. p->bo_list->array[i].priority);
  354. amdgpu_cs_buckets_get_list(&buckets, &p->validated);
  355. }
  356. p->vm_bos = amdgpu_vm_get_bos(p->adev, &fpriv->vm,
  357. &p->validated);
  358. if (need_mmap_lock)
  359. down_read(&current->mm->mmap_sem);
  360. r = amdgpu_cs_list_validate(p);
  361. if (need_mmap_lock)
  362. up_read(&current->mm->mmap_sem);
  363. return r;
  364. }
  365. static int amdgpu_cs_sync_rings(struct amdgpu_cs_parser *p)
  366. {
  367. struct amdgpu_bo_list_entry *e;
  368. int r;
  369. list_for_each_entry(e, &p->validated, tv.head) {
  370. struct reservation_object *resv = e->robj->tbo.resv;
  371. r = amdgpu_sync_resv(p->adev, &p->ibs[0].sync, resv, p->filp);
  372. if (r)
  373. return r;
  374. }
  375. return 0;
  376. }
  377. static int cmp_size_smaller_first(void *priv, struct list_head *a,
  378. struct list_head *b)
  379. {
  380. struct amdgpu_bo_list_entry *la = list_entry(a, struct amdgpu_bo_list_entry, tv.head);
  381. struct amdgpu_bo_list_entry *lb = list_entry(b, struct amdgpu_bo_list_entry, tv.head);
  382. /* Sort A before B if A is smaller. */
  383. return (int)la->robj->tbo.num_pages - (int)lb->robj->tbo.num_pages;
  384. }
  385. static void amdgpu_cs_parser_fini_early(struct amdgpu_cs_parser *parser, int error, bool backoff)
  386. {
  387. if (!error) {
  388. /* Sort the buffer list from the smallest to largest buffer,
  389. * which affects the order of buffers in the LRU list.
  390. * This assures that the smallest buffers are added first
  391. * to the LRU list, so they are likely to be later evicted
  392. * first, instead of large buffers whose eviction is more
  393. * expensive.
  394. *
  395. * This slightly lowers the number of bytes moved by TTM
  396. * per frame under memory pressure.
  397. */
  398. list_sort(NULL, &parser->validated, cmp_size_smaller_first);
  399. ttm_eu_fence_buffer_objects(&parser->ticket,
  400. &parser->validated,
  401. &parser->ibs[parser->num_ibs-1].fence->base);
  402. } else if (backoff) {
  403. ttm_eu_backoff_reservation(&parser->ticket,
  404. &parser->validated);
  405. }
  406. }
  407. static void amdgpu_cs_parser_fini_late(struct amdgpu_cs_parser *parser)
  408. {
  409. unsigned i;
  410. if (parser->ctx)
  411. amdgpu_ctx_put(parser->ctx);
  412. if (parser->bo_list)
  413. amdgpu_bo_list_put(parser->bo_list);
  414. drm_free_large(parser->vm_bos);
  415. for (i = 0; i < parser->nchunks; i++)
  416. drm_free_large(parser->chunks[i].kdata);
  417. kfree(parser->chunks);
  418. if (!amdgpu_enable_scheduler)
  419. {
  420. if (parser->ibs)
  421. for (i = 0; i < parser->num_ibs; i++)
  422. amdgpu_ib_free(parser->adev, &parser->ibs[i]);
  423. kfree(parser->ibs);
  424. if (parser->uf.bo)
  425. drm_gem_object_unreference_unlocked(&parser->uf.bo->gem_base);
  426. }
  427. kfree(parser);
  428. }
  429. /**
  430. * cs_parser_fini() - clean parser states
  431. * @parser: parser structure holding parsing context.
  432. * @error: error number
  433. *
  434. * If error is set than unvalidate buffer, otherwise just free memory
  435. * used by parsing context.
  436. **/
  437. static void amdgpu_cs_parser_fini(struct amdgpu_cs_parser *parser, int error, bool backoff)
  438. {
  439. amdgpu_cs_parser_fini_early(parser, error, backoff);
  440. amdgpu_cs_parser_fini_late(parser);
  441. }
  442. static int amdgpu_bo_vm_update_pte(struct amdgpu_cs_parser *p,
  443. struct amdgpu_vm *vm)
  444. {
  445. struct amdgpu_device *adev = p->adev;
  446. struct amdgpu_bo_va *bo_va;
  447. struct amdgpu_bo *bo;
  448. int i, r;
  449. r = amdgpu_vm_update_page_directory(adev, vm);
  450. if (r)
  451. return r;
  452. r = amdgpu_sync_fence(adev, &p->ibs[0].sync, vm->page_directory_fence);
  453. if (r)
  454. return r;
  455. r = amdgpu_vm_clear_freed(adev, vm);
  456. if (r)
  457. return r;
  458. if (p->bo_list) {
  459. for (i = 0; i < p->bo_list->num_entries; i++) {
  460. struct fence *f;
  461. /* ignore duplicates */
  462. bo = p->bo_list->array[i].robj;
  463. if (!bo)
  464. continue;
  465. bo_va = p->bo_list->array[i].bo_va;
  466. if (bo_va == NULL)
  467. continue;
  468. r = amdgpu_vm_bo_update(adev, bo_va, &bo->tbo.mem);
  469. if (r)
  470. return r;
  471. f = bo_va->last_pt_update;
  472. r = amdgpu_sync_fence(adev, &p->ibs[0].sync, f);
  473. if (r)
  474. return r;
  475. }
  476. }
  477. return amdgpu_vm_clear_invalids(adev, vm, &p->ibs[0].sync);
  478. }
  479. static int amdgpu_cs_ib_vm_chunk(struct amdgpu_device *adev,
  480. struct amdgpu_cs_parser *parser)
  481. {
  482. struct amdgpu_fpriv *fpriv = parser->filp->driver_priv;
  483. struct amdgpu_vm *vm = &fpriv->vm;
  484. struct amdgpu_ring *ring;
  485. int i, r;
  486. if (parser->num_ibs == 0)
  487. return 0;
  488. /* Only for UVD/VCE VM emulation */
  489. for (i = 0; i < parser->num_ibs; i++) {
  490. ring = parser->ibs[i].ring;
  491. if (ring->funcs->parse_cs) {
  492. r = amdgpu_ring_parse_cs(ring, parser, i);
  493. if (r)
  494. return r;
  495. }
  496. }
  497. mutex_lock(&vm->mutex);
  498. r = amdgpu_bo_vm_update_pte(parser, vm);
  499. if (r) {
  500. goto out;
  501. }
  502. amdgpu_cs_sync_rings(parser);
  503. if (!amdgpu_enable_scheduler)
  504. r = amdgpu_ib_schedule(adev, parser->num_ibs, parser->ibs,
  505. parser->filp);
  506. out:
  507. mutex_unlock(&vm->mutex);
  508. return r;
  509. }
  510. static int amdgpu_cs_handle_lockup(struct amdgpu_device *adev, int r)
  511. {
  512. if (r == -EDEADLK) {
  513. r = amdgpu_gpu_reset(adev);
  514. if (!r)
  515. r = -EAGAIN;
  516. }
  517. return r;
  518. }
  519. static int amdgpu_cs_ib_fill(struct amdgpu_device *adev,
  520. struct amdgpu_cs_parser *parser)
  521. {
  522. struct amdgpu_fpriv *fpriv = parser->filp->driver_priv;
  523. struct amdgpu_vm *vm = &fpriv->vm;
  524. int i, j;
  525. int r;
  526. for (i = 0, j = 0; i < parser->nchunks && j < parser->num_ibs; i++) {
  527. struct amdgpu_cs_chunk *chunk;
  528. struct amdgpu_ib *ib;
  529. struct drm_amdgpu_cs_chunk_ib *chunk_ib;
  530. struct amdgpu_ring *ring;
  531. chunk = &parser->chunks[i];
  532. ib = &parser->ibs[j];
  533. chunk_ib = (struct drm_amdgpu_cs_chunk_ib *)chunk->kdata;
  534. if (chunk->chunk_id != AMDGPU_CHUNK_ID_IB)
  535. continue;
  536. r = amdgpu_cs_get_ring(adev, chunk_ib->ip_type,
  537. chunk_ib->ip_instance, chunk_ib->ring,
  538. &ring);
  539. if (r)
  540. return r;
  541. if (ring->funcs->parse_cs) {
  542. struct amdgpu_bo_va_mapping *m;
  543. struct amdgpu_bo *aobj = NULL;
  544. uint64_t offset;
  545. uint8_t *kptr;
  546. m = amdgpu_cs_find_mapping(parser, chunk_ib->va_start,
  547. &aobj);
  548. if (!aobj) {
  549. DRM_ERROR("IB va_start is invalid\n");
  550. return -EINVAL;
  551. }
  552. if ((chunk_ib->va_start + chunk_ib->ib_bytes) >
  553. (m->it.last + 1) * AMDGPU_GPU_PAGE_SIZE) {
  554. DRM_ERROR("IB va_start+ib_bytes is invalid\n");
  555. return -EINVAL;
  556. }
  557. /* the IB should be reserved at this point */
  558. r = amdgpu_bo_kmap(aobj, (void **)&kptr);
  559. if (r) {
  560. return r;
  561. }
  562. offset = ((uint64_t)m->it.start) * AMDGPU_GPU_PAGE_SIZE;
  563. kptr += chunk_ib->va_start - offset;
  564. r = amdgpu_ib_get(ring, NULL, chunk_ib->ib_bytes, ib);
  565. if (r) {
  566. DRM_ERROR("Failed to get ib !\n");
  567. return r;
  568. }
  569. memcpy(ib->ptr, kptr, chunk_ib->ib_bytes);
  570. amdgpu_bo_kunmap(aobj);
  571. } else {
  572. r = amdgpu_ib_get(ring, vm, 0, ib);
  573. if (r) {
  574. DRM_ERROR("Failed to get ib !\n");
  575. return r;
  576. }
  577. ib->gpu_addr = chunk_ib->va_start;
  578. }
  579. ib->length_dw = chunk_ib->ib_bytes / 4;
  580. ib->flags = chunk_ib->flags;
  581. ib->ctx = parser->ctx;
  582. j++;
  583. }
  584. if (!parser->num_ibs)
  585. return 0;
  586. /* add GDS resources to first IB */
  587. if (parser->bo_list) {
  588. struct amdgpu_bo *gds = parser->bo_list->gds_obj;
  589. struct amdgpu_bo *gws = parser->bo_list->gws_obj;
  590. struct amdgpu_bo *oa = parser->bo_list->oa_obj;
  591. struct amdgpu_ib *ib = &parser->ibs[0];
  592. if (gds) {
  593. ib->gds_base = amdgpu_bo_gpu_offset(gds);
  594. ib->gds_size = amdgpu_bo_size(gds);
  595. }
  596. if (gws) {
  597. ib->gws_base = amdgpu_bo_gpu_offset(gws);
  598. ib->gws_size = amdgpu_bo_size(gws);
  599. }
  600. if (oa) {
  601. ib->oa_base = amdgpu_bo_gpu_offset(oa);
  602. ib->oa_size = amdgpu_bo_size(oa);
  603. }
  604. }
  605. /* wrap the last IB with user fence */
  606. if (parser->uf.bo) {
  607. struct amdgpu_ib *ib = &parser->ibs[parser->num_ibs - 1];
  608. /* UVD & VCE fw doesn't support user fences */
  609. if (ib->ring->type == AMDGPU_RING_TYPE_UVD ||
  610. ib->ring->type == AMDGPU_RING_TYPE_VCE)
  611. return -EINVAL;
  612. ib->user = &parser->uf;
  613. }
  614. return 0;
  615. }
  616. static int amdgpu_cs_dependencies(struct amdgpu_device *adev,
  617. struct amdgpu_cs_parser *p)
  618. {
  619. struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
  620. struct amdgpu_ib *ib;
  621. int i, j, r;
  622. if (!p->num_ibs)
  623. return 0;
  624. /* Add dependencies to first IB */
  625. ib = &p->ibs[0];
  626. for (i = 0; i < p->nchunks; ++i) {
  627. struct drm_amdgpu_cs_chunk_dep *deps;
  628. struct amdgpu_cs_chunk *chunk;
  629. unsigned num_deps;
  630. chunk = &p->chunks[i];
  631. if (chunk->chunk_id != AMDGPU_CHUNK_ID_DEPENDENCIES)
  632. continue;
  633. deps = (struct drm_amdgpu_cs_chunk_dep *)chunk->kdata;
  634. num_deps = chunk->length_dw * 4 /
  635. sizeof(struct drm_amdgpu_cs_chunk_dep);
  636. for (j = 0; j < num_deps; ++j) {
  637. struct amdgpu_ring *ring;
  638. struct amdgpu_ctx *ctx;
  639. struct fence *fence;
  640. r = amdgpu_cs_get_ring(adev, deps[j].ip_type,
  641. deps[j].ip_instance,
  642. deps[j].ring, &ring);
  643. if (r)
  644. return r;
  645. ctx = amdgpu_ctx_get(fpriv, deps[j].ctx_id);
  646. if (ctx == NULL)
  647. return -EINVAL;
  648. fence = amdgpu_ctx_get_fence(ctx, ring,
  649. deps[j].handle);
  650. if (IS_ERR(fence)) {
  651. r = PTR_ERR(fence);
  652. amdgpu_ctx_put(ctx);
  653. return r;
  654. } else if (fence) {
  655. r = amdgpu_sync_fence(adev, &ib->sync, fence);
  656. fence_put(fence);
  657. amdgpu_ctx_put(ctx);
  658. if (r)
  659. return r;
  660. }
  661. }
  662. }
  663. return 0;
  664. }
  665. static int amdgpu_cs_free_job(struct amdgpu_job *sched_job)
  666. {
  667. int i;
  668. if (sched_job->ibs)
  669. for (i = 0; i < sched_job->num_ibs; i++)
  670. amdgpu_ib_free(sched_job->adev, &sched_job->ibs[i]);
  671. kfree(sched_job->ibs);
  672. if (sched_job->uf.bo)
  673. drm_gem_object_unreference_unlocked(&sched_job->uf.bo->gem_base);
  674. return 0;
  675. }
  676. int amdgpu_cs_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
  677. {
  678. struct amdgpu_device *adev = dev->dev_private;
  679. union drm_amdgpu_cs *cs = data;
  680. struct amdgpu_cs_parser *parser;
  681. bool reserved_buffers = false;
  682. int i, r;
  683. down_read(&adev->exclusive_lock);
  684. if (!adev->accel_working) {
  685. up_read(&adev->exclusive_lock);
  686. return -EBUSY;
  687. }
  688. parser = amdgpu_cs_parser_create(adev, filp, NULL, NULL, 0);
  689. if (!parser)
  690. return -ENOMEM;
  691. r = amdgpu_cs_parser_init(parser, data);
  692. if (r) {
  693. DRM_ERROR("Failed to initialize parser !\n");
  694. amdgpu_cs_parser_fini(parser, r, false);
  695. up_read(&adev->exclusive_lock);
  696. r = amdgpu_cs_handle_lockup(adev, r);
  697. return r;
  698. }
  699. r = amdgpu_cs_parser_relocs(parser);
  700. if (r == -ENOMEM)
  701. DRM_ERROR("Not enough memory for command submission!\n");
  702. else if (r && r != -ERESTARTSYS)
  703. DRM_ERROR("Failed to process the buffer list %d!\n", r);
  704. else if (!r) {
  705. reserved_buffers = true;
  706. r = amdgpu_cs_ib_fill(adev, parser);
  707. }
  708. if (!r) {
  709. r = amdgpu_cs_dependencies(adev, parser);
  710. if (r)
  711. DRM_ERROR("Failed in the dependencies handling %d!\n", r);
  712. }
  713. if (r)
  714. goto out;
  715. for (i = 0; i < parser->num_ibs; i++)
  716. trace_amdgpu_cs(parser, i);
  717. r = amdgpu_cs_ib_vm_chunk(adev, parser);
  718. if (r)
  719. goto out;
  720. if (amdgpu_enable_scheduler && parser->num_ibs) {
  721. struct amdgpu_job *job;
  722. struct amdgpu_ring * ring = parser->ibs->ring;
  723. job = kzalloc(sizeof(struct amdgpu_job), GFP_KERNEL);
  724. if (!job)
  725. return -ENOMEM;
  726. job->base.sched = ring->scheduler;
  727. job->base.s_entity = &parser->ctx->rings[ring->idx].entity;
  728. job->adev = parser->adev;
  729. job->ibs = parser->ibs;
  730. job->num_ibs = parser->num_ibs;
  731. job->base.owner = parser->filp;
  732. mutex_init(&job->job_lock);
  733. if (job->ibs[job->num_ibs - 1].user) {
  734. memcpy(&job->uf, &parser->uf,
  735. sizeof(struct amdgpu_user_fence));
  736. job->ibs[job->num_ibs - 1].user = &job->uf;
  737. }
  738. job->free_job = amdgpu_cs_free_job;
  739. mutex_lock(&job->job_lock);
  740. r = amd_sched_entity_push_job((struct amd_sched_job *)job);
  741. if (r) {
  742. mutex_unlock(&job->job_lock);
  743. amdgpu_cs_free_job(job);
  744. kfree(job);
  745. goto out;
  746. }
  747. cs->out.handle =
  748. amdgpu_ctx_add_fence(parser->ctx, ring,
  749. &job->base.s_fence->base);
  750. parser->ibs[parser->num_ibs - 1].sequence = cs->out.handle;
  751. list_sort(NULL, &parser->validated, cmp_size_smaller_first);
  752. ttm_eu_fence_buffer_objects(&parser->ticket,
  753. &parser->validated,
  754. &job->base.s_fence->base);
  755. mutex_unlock(&job->job_lock);
  756. amdgpu_cs_parser_fini_late(parser);
  757. up_read(&adev->exclusive_lock);
  758. return 0;
  759. }
  760. cs->out.handle = parser->ibs[parser->num_ibs - 1].sequence;
  761. out:
  762. amdgpu_cs_parser_fini(parser, r, reserved_buffers);
  763. up_read(&adev->exclusive_lock);
  764. r = amdgpu_cs_handle_lockup(adev, r);
  765. return r;
  766. }
  767. /**
  768. * amdgpu_cs_wait_ioctl - wait for a command submission to finish
  769. *
  770. * @dev: drm device
  771. * @data: data from userspace
  772. * @filp: file private
  773. *
  774. * Wait for the command submission identified by handle to finish.
  775. */
  776. int amdgpu_cs_wait_ioctl(struct drm_device *dev, void *data,
  777. struct drm_file *filp)
  778. {
  779. union drm_amdgpu_wait_cs *wait = data;
  780. struct amdgpu_device *adev = dev->dev_private;
  781. unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout);
  782. struct amdgpu_ring *ring = NULL;
  783. struct amdgpu_ctx *ctx;
  784. struct fence *fence;
  785. long r;
  786. r = amdgpu_cs_get_ring(adev, wait->in.ip_type, wait->in.ip_instance,
  787. wait->in.ring, &ring);
  788. if (r)
  789. return r;
  790. ctx = amdgpu_ctx_get(filp->driver_priv, wait->in.ctx_id);
  791. if (ctx == NULL)
  792. return -EINVAL;
  793. fence = amdgpu_ctx_get_fence(ctx, ring, wait->in.handle);
  794. if (IS_ERR(fence))
  795. r = PTR_ERR(fence);
  796. else if (fence) {
  797. r = fence_wait_timeout(fence, true, timeout);
  798. fence_put(fence);
  799. } else
  800. r = 1;
  801. amdgpu_ctx_put(ctx);
  802. if (r < 0)
  803. return r;
  804. memset(wait, 0, sizeof(*wait));
  805. wait->out.status = (r == 0);
  806. return 0;
  807. }
  808. /**
  809. * amdgpu_cs_find_bo_va - find bo_va for VM address
  810. *
  811. * @parser: command submission parser context
  812. * @addr: VM address
  813. * @bo: resulting BO of the mapping found
  814. *
  815. * Search the buffer objects in the command submission context for a certain
  816. * virtual memory address. Returns allocation structure when found, NULL
  817. * otherwise.
  818. */
  819. struct amdgpu_bo_va_mapping *
  820. amdgpu_cs_find_mapping(struct amdgpu_cs_parser *parser,
  821. uint64_t addr, struct amdgpu_bo **bo)
  822. {
  823. struct amdgpu_bo_list_entry *reloc;
  824. struct amdgpu_bo_va_mapping *mapping;
  825. addr /= AMDGPU_GPU_PAGE_SIZE;
  826. list_for_each_entry(reloc, &parser->validated, tv.head) {
  827. if (!reloc->bo_va)
  828. continue;
  829. list_for_each_entry(mapping, &reloc->bo_va->valids, list) {
  830. if (mapping->it.start > addr ||
  831. addr > mapping->it.last)
  832. continue;
  833. *bo = reloc->bo_va->bo;
  834. return mapping;
  835. }
  836. list_for_each_entry(mapping, &reloc->bo_va->invalids, list) {
  837. if (mapping->it.start > addr ||
  838. addr > mapping->it.last)
  839. continue;
  840. *bo = reloc->bo_va->bo;
  841. return mapping;
  842. }
  843. }
  844. return NULL;
  845. }