amd_iommu.c 94 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101
  1. /*
  2. * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
  3. * Author: Joerg Roedel <jroedel@suse.de>
  4. * Leo Duran <leo.duran@amd.com>
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. #include <linux/ratelimit.h>
  20. #include <linux/pci.h>
  21. #include <linux/pci-ats.h>
  22. #include <linux/bitmap.h>
  23. #include <linux/slab.h>
  24. #include <linux/debugfs.h>
  25. #include <linux/scatterlist.h>
  26. #include <linux/dma-mapping.h>
  27. #include <linux/iommu-helper.h>
  28. #include <linux/iommu.h>
  29. #include <linux/delay.h>
  30. #include <linux/amd-iommu.h>
  31. #include <linux/notifier.h>
  32. #include <linux/export.h>
  33. #include <linux/irq.h>
  34. #include <linux/msi.h>
  35. #include <linux/dma-contiguous.h>
  36. #include <linux/irqdomain.h>
  37. #include <asm/irq_remapping.h>
  38. #include <asm/io_apic.h>
  39. #include <asm/apic.h>
  40. #include <asm/hw_irq.h>
  41. #include <asm/msidef.h>
  42. #include <asm/proto.h>
  43. #include <asm/iommu.h>
  44. #include <asm/gart.h>
  45. #include <asm/dma.h>
  46. #include "amd_iommu_proto.h"
  47. #include "amd_iommu_types.h"
  48. #include "irq_remapping.h"
  49. #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
  50. #define LOOP_TIMEOUT 100000
  51. /*
  52. * This bitmap is used to advertise the page sizes our hardware support
  53. * to the IOMMU core, which will then use this information to split
  54. * physically contiguous memory regions it is mapping into page sizes
  55. * that we support.
  56. *
  57. * 512GB Pages are not supported due to a hardware bug
  58. */
  59. #define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38))
  60. static DEFINE_RWLOCK(amd_iommu_devtable_lock);
  61. /* List of all available dev_data structures */
  62. static LIST_HEAD(dev_data_list);
  63. static DEFINE_SPINLOCK(dev_data_list_lock);
  64. LIST_HEAD(ioapic_map);
  65. LIST_HEAD(hpet_map);
  66. /*
  67. * Domain for untranslated devices - only allocated
  68. * if iommu=pt passed on kernel cmd line.
  69. */
  70. static const struct iommu_ops amd_iommu_ops;
  71. static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
  72. int amd_iommu_max_glx_val = -1;
  73. static struct dma_map_ops amd_iommu_dma_ops;
  74. /*
  75. * This struct contains device specific data for the IOMMU
  76. */
  77. struct iommu_dev_data {
  78. struct list_head list; /* For domain->dev_list */
  79. struct list_head dev_data_list; /* For global dev_data_list */
  80. struct list_head alias_list; /* Link alias-groups together */
  81. struct iommu_dev_data *alias_data;/* The alias dev_data */
  82. struct protection_domain *domain; /* Domain the device is bound to */
  83. u16 devid; /* PCI Device ID */
  84. bool iommu_v2; /* Device can make use of IOMMUv2 */
  85. bool passthrough; /* Device is identity mapped */
  86. struct {
  87. bool enabled;
  88. int qdep;
  89. } ats; /* ATS state */
  90. bool pri_tlp; /* PASID TLB required for
  91. PPR completions */
  92. u32 errata; /* Bitmap for errata to apply */
  93. };
  94. /*
  95. * general struct to manage commands send to an IOMMU
  96. */
  97. struct iommu_cmd {
  98. u32 data[4];
  99. };
  100. struct kmem_cache *amd_iommu_irq_cache;
  101. static void update_domain(struct protection_domain *domain);
  102. static int protection_domain_init(struct protection_domain *domain);
  103. /****************************************************************************
  104. *
  105. * Helper functions
  106. *
  107. ****************************************************************************/
  108. static struct protection_domain *to_pdomain(struct iommu_domain *dom)
  109. {
  110. return container_of(dom, struct protection_domain, domain);
  111. }
  112. static struct iommu_dev_data *alloc_dev_data(u16 devid)
  113. {
  114. struct iommu_dev_data *dev_data;
  115. unsigned long flags;
  116. dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
  117. if (!dev_data)
  118. return NULL;
  119. INIT_LIST_HEAD(&dev_data->alias_list);
  120. dev_data->devid = devid;
  121. spin_lock_irqsave(&dev_data_list_lock, flags);
  122. list_add_tail(&dev_data->dev_data_list, &dev_data_list);
  123. spin_unlock_irqrestore(&dev_data_list_lock, flags);
  124. return dev_data;
  125. }
  126. static void free_dev_data(struct iommu_dev_data *dev_data)
  127. {
  128. unsigned long flags;
  129. spin_lock_irqsave(&dev_data_list_lock, flags);
  130. list_del(&dev_data->dev_data_list);
  131. spin_unlock_irqrestore(&dev_data_list_lock, flags);
  132. kfree(dev_data);
  133. }
  134. static struct iommu_dev_data *search_dev_data(u16 devid)
  135. {
  136. struct iommu_dev_data *dev_data;
  137. unsigned long flags;
  138. spin_lock_irqsave(&dev_data_list_lock, flags);
  139. list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
  140. if (dev_data->devid == devid)
  141. goto out_unlock;
  142. }
  143. dev_data = NULL;
  144. out_unlock:
  145. spin_unlock_irqrestore(&dev_data_list_lock, flags);
  146. return dev_data;
  147. }
  148. static struct iommu_dev_data *find_dev_data(u16 devid)
  149. {
  150. struct iommu_dev_data *dev_data;
  151. dev_data = search_dev_data(devid);
  152. if (dev_data == NULL)
  153. dev_data = alloc_dev_data(devid);
  154. return dev_data;
  155. }
  156. static inline u16 get_device_id(struct device *dev)
  157. {
  158. struct pci_dev *pdev = to_pci_dev(dev);
  159. return PCI_DEVID(pdev->bus->number, pdev->devfn);
  160. }
  161. static struct iommu_dev_data *get_dev_data(struct device *dev)
  162. {
  163. return dev->archdata.iommu;
  164. }
  165. static bool pci_iommuv2_capable(struct pci_dev *pdev)
  166. {
  167. static const int caps[] = {
  168. PCI_EXT_CAP_ID_ATS,
  169. PCI_EXT_CAP_ID_PRI,
  170. PCI_EXT_CAP_ID_PASID,
  171. };
  172. int i, pos;
  173. for (i = 0; i < 3; ++i) {
  174. pos = pci_find_ext_capability(pdev, caps[i]);
  175. if (pos == 0)
  176. return false;
  177. }
  178. return true;
  179. }
  180. static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
  181. {
  182. struct iommu_dev_data *dev_data;
  183. dev_data = get_dev_data(&pdev->dev);
  184. return dev_data->errata & (1 << erratum) ? true : false;
  185. }
  186. /*
  187. * This function actually applies the mapping to the page table of the
  188. * dma_ops domain.
  189. */
  190. static void alloc_unity_mapping(struct dma_ops_domain *dma_dom,
  191. struct unity_map_entry *e)
  192. {
  193. u64 addr;
  194. for (addr = e->address_start; addr < e->address_end;
  195. addr += PAGE_SIZE) {
  196. if (addr < dma_dom->aperture_size)
  197. __set_bit(addr >> PAGE_SHIFT,
  198. dma_dom->aperture[0]->bitmap);
  199. }
  200. }
  201. /*
  202. * Inits the unity mappings required for a specific device
  203. */
  204. static void init_unity_mappings_for_device(struct device *dev,
  205. struct dma_ops_domain *dma_dom)
  206. {
  207. struct unity_map_entry *e;
  208. u16 devid;
  209. devid = get_device_id(dev);
  210. list_for_each_entry(e, &amd_iommu_unity_map, list) {
  211. if (!(devid >= e->devid_start && devid <= e->devid_end))
  212. continue;
  213. alloc_unity_mapping(dma_dom, e);
  214. }
  215. }
  216. /*
  217. * This function checks if the driver got a valid device from the caller to
  218. * avoid dereferencing invalid pointers.
  219. */
  220. static bool check_device(struct device *dev)
  221. {
  222. u16 devid;
  223. if (!dev || !dev->dma_mask)
  224. return false;
  225. /* No PCI device */
  226. if (!dev_is_pci(dev))
  227. return false;
  228. devid = get_device_id(dev);
  229. /* Out of our scope? */
  230. if (devid > amd_iommu_last_bdf)
  231. return false;
  232. if (amd_iommu_rlookup_table[devid] == NULL)
  233. return false;
  234. return true;
  235. }
  236. static void init_iommu_group(struct device *dev)
  237. {
  238. struct dma_ops_domain *dma_domain;
  239. struct iommu_domain *domain;
  240. struct iommu_group *group;
  241. group = iommu_group_get_for_dev(dev);
  242. if (IS_ERR(group))
  243. return;
  244. domain = iommu_group_default_domain(group);
  245. if (!domain)
  246. goto out;
  247. dma_domain = to_pdomain(domain)->priv;
  248. init_unity_mappings_for_device(dev, dma_domain);
  249. out:
  250. iommu_group_put(group);
  251. }
  252. static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
  253. {
  254. *(u16 *)data = alias;
  255. return 0;
  256. }
  257. static u16 get_alias(struct device *dev)
  258. {
  259. struct pci_dev *pdev = to_pci_dev(dev);
  260. u16 devid, ivrs_alias, pci_alias;
  261. devid = get_device_id(dev);
  262. ivrs_alias = amd_iommu_alias_table[devid];
  263. pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);
  264. if (ivrs_alias == pci_alias)
  265. return ivrs_alias;
  266. /*
  267. * DMA alias showdown
  268. *
  269. * The IVRS is fairly reliable in telling us about aliases, but it
  270. * can't know about every screwy device. If we don't have an IVRS
  271. * reported alias, use the PCI reported alias. In that case we may
  272. * still need to initialize the rlookup and dev_table entries if the
  273. * alias is to a non-existent device.
  274. */
  275. if (ivrs_alias == devid) {
  276. if (!amd_iommu_rlookup_table[pci_alias]) {
  277. amd_iommu_rlookup_table[pci_alias] =
  278. amd_iommu_rlookup_table[devid];
  279. memcpy(amd_iommu_dev_table[pci_alias].data,
  280. amd_iommu_dev_table[devid].data,
  281. sizeof(amd_iommu_dev_table[pci_alias].data));
  282. }
  283. return pci_alias;
  284. }
  285. pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
  286. "for device %s[%04x:%04x], kernel reported alias "
  287. "%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
  288. PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
  289. PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
  290. PCI_FUNC(pci_alias));
  291. /*
  292. * If we don't have a PCI DMA alias and the IVRS alias is on the same
  293. * bus, then the IVRS table may know about a quirk that we don't.
  294. */
  295. if (pci_alias == devid &&
  296. PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
  297. pdev->dev_flags |= PCI_DEV_FLAGS_DMA_ALIAS_DEVFN;
  298. pdev->dma_alias_devfn = ivrs_alias & 0xff;
  299. pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
  300. PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
  301. dev_name(dev));
  302. }
  303. return ivrs_alias;
  304. }
  305. static int iommu_init_device(struct device *dev)
  306. {
  307. struct pci_dev *pdev = to_pci_dev(dev);
  308. struct iommu_dev_data *dev_data;
  309. u16 alias;
  310. if (dev->archdata.iommu)
  311. return 0;
  312. dev_data = find_dev_data(get_device_id(dev));
  313. if (!dev_data)
  314. return -ENOMEM;
  315. alias = get_alias(dev);
  316. if (alias != dev_data->devid) {
  317. struct iommu_dev_data *alias_data;
  318. alias_data = find_dev_data(alias);
  319. if (alias_data == NULL) {
  320. pr_err("AMD-Vi: Warning: Unhandled device %s\n",
  321. dev_name(dev));
  322. free_dev_data(dev_data);
  323. return -ENOTSUPP;
  324. }
  325. dev_data->alias_data = alias_data;
  326. /* Add device to the alias_list */
  327. list_add(&dev_data->alias_list, &alias_data->alias_list);
  328. }
  329. if (pci_iommuv2_capable(pdev)) {
  330. struct amd_iommu *iommu;
  331. iommu = amd_iommu_rlookup_table[dev_data->devid];
  332. dev_data->iommu_v2 = iommu->is_iommu_v2;
  333. }
  334. dev->archdata.iommu = dev_data;
  335. iommu_device_link(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
  336. dev);
  337. return 0;
  338. }
  339. static void iommu_ignore_device(struct device *dev)
  340. {
  341. u16 devid, alias;
  342. devid = get_device_id(dev);
  343. alias = amd_iommu_alias_table[devid];
  344. memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
  345. memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
  346. amd_iommu_rlookup_table[devid] = NULL;
  347. amd_iommu_rlookup_table[alias] = NULL;
  348. }
  349. static void iommu_uninit_device(struct device *dev)
  350. {
  351. struct iommu_dev_data *dev_data = search_dev_data(get_device_id(dev));
  352. if (!dev_data)
  353. return;
  354. iommu_device_unlink(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
  355. dev);
  356. iommu_group_remove_device(dev);
  357. /* Unlink from alias, it may change if another device is re-plugged */
  358. dev_data->alias_data = NULL;
  359. /* Remove dma-ops */
  360. dev->archdata.dma_ops = NULL;
  361. /*
  362. * We keep dev_data around for unplugged devices and reuse it when the
  363. * device is re-plugged - not doing so would introduce a ton of races.
  364. */
  365. }
  366. #ifdef CONFIG_AMD_IOMMU_STATS
  367. /*
  368. * Initialization code for statistics collection
  369. */
  370. DECLARE_STATS_COUNTER(compl_wait);
  371. DECLARE_STATS_COUNTER(cnt_map_single);
  372. DECLARE_STATS_COUNTER(cnt_unmap_single);
  373. DECLARE_STATS_COUNTER(cnt_map_sg);
  374. DECLARE_STATS_COUNTER(cnt_unmap_sg);
  375. DECLARE_STATS_COUNTER(cnt_alloc_coherent);
  376. DECLARE_STATS_COUNTER(cnt_free_coherent);
  377. DECLARE_STATS_COUNTER(cross_page);
  378. DECLARE_STATS_COUNTER(domain_flush_single);
  379. DECLARE_STATS_COUNTER(domain_flush_all);
  380. DECLARE_STATS_COUNTER(alloced_io_mem);
  381. DECLARE_STATS_COUNTER(total_map_requests);
  382. DECLARE_STATS_COUNTER(complete_ppr);
  383. DECLARE_STATS_COUNTER(invalidate_iotlb);
  384. DECLARE_STATS_COUNTER(invalidate_iotlb_all);
  385. DECLARE_STATS_COUNTER(pri_requests);
  386. static struct dentry *stats_dir;
  387. static struct dentry *de_fflush;
  388. static void amd_iommu_stats_add(struct __iommu_counter *cnt)
  389. {
  390. if (stats_dir == NULL)
  391. return;
  392. cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
  393. &cnt->value);
  394. }
  395. static void amd_iommu_stats_init(void)
  396. {
  397. stats_dir = debugfs_create_dir("amd-iommu", NULL);
  398. if (stats_dir == NULL)
  399. return;
  400. de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
  401. &amd_iommu_unmap_flush);
  402. amd_iommu_stats_add(&compl_wait);
  403. amd_iommu_stats_add(&cnt_map_single);
  404. amd_iommu_stats_add(&cnt_unmap_single);
  405. amd_iommu_stats_add(&cnt_map_sg);
  406. amd_iommu_stats_add(&cnt_unmap_sg);
  407. amd_iommu_stats_add(&cnt_alloc_coherent);
  408. amd_iommu_stats_add(&cnt_free_coherent);
  409. amd_iommu_stats_add(&cross_page);
  410. amd_iommu_stats_add(&domain_flush_single);
  411. amd_iommu_stats_add(&domain_flush_all);
  412. amd_iommu_stats_add(&alloced_io_mem);
  413. amd_iommu_stats_add(&total_map_requests);
  414. amd_iommu_stats_add(&complete_ppr);
  415. amd_iommu_stats_add(&invalidate_iotlb);
  416. amd_iommu_stats_add(&invalidate_iotlb_all);
  417. amd_iommu_stats_add(&pri_requests);
  418. }
  419. #endif
  420. /****************************************************************************
  421. *
  422. * Interrupt handling functions
  423. *
  424. ****************************************************************************/
  425. static void dump_dte_entry(u16 devid)
  426. {
  427. int i;
  428. for (i = 0; i < 4; ++i)
  429. pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
  430. amd_iommu_dev_table[devid].data[i]);
  431. }
  432. static void dump_command(unsigned long phys_addr)
  433. {
  434. struct iommu_cmd *cmd = phys_to_virt(phys_addr);
  435. int i;
  436. for (i = 0; i < 4; ++i)
  437. pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
  438. }
  439. static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
  440. {
  441. int type, devid, domid, flags;
  442. volatile u32 *event = __evt;
  443. int count = 0;
  444. u64 address;
  445. retry:
  446. type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
  447. devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
  448. domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
  449. flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
  450. address = (u64)(((u64)event[3]) << 32) | event[2];
  451. if (type == 0) {
  452. /* Did we hit the erratum? */
  453. if (++count == LOOP_TIMEOUT) {
  454. pr_err("AMD-Vi: No event written to event log\n");
  455. return;
  456. }
  457. udelay(1);
  458. goto retry;
  459. }
  460. printk(KERN_ERR "AMD-Vi: Event logged [");
  461. switch (type) {
  462. case EVENT_TYPE_ILL_DEV:
  463. printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
  464. "address=0x%016llx flags=0x%04x]\n",
  465. PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  466. address, flags);
  467. dump_dte_entry(devid);
  468. break;
  469. case EVENT_TYPE_IO_FAULT:
  470. printk("IO_PAGE_FAULT device=%02x:%02x.%x "
  471. "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
  472. PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  473. domid, address, flags);
  474. break;
  475. case EVENT_TYPE_DEV_TAB_ERR:
  476. printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
  477. "address=0x%016llx flags=0x%04x]\n",
  478. PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  479. address, flags);
  480. break;
  481. case EVENT_TYPE_PAGE_TAB_ERR:
  482. printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
  483. "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
  484. PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  485. domid, address, flags);
  486. break;
  487. case EVENT_TYPE_ILL_CMD:
  488. printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
  489. dump_command(address);
  490. break;
  491. case EVENT_TYPE_CMD_HARD_ERR:
  492. printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
  493. "flags=0x%04x]\n", address, flags);
  494. break;
  495. case EVENT_TYPE_IOTLB_INV_TO:
  496. printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
  497. "address=0x%016llx]\n",
  498. PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  499. address);
  500. break;
  501. case EVENT_TYPE_INV_DEV_REQ:
  502. printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
  503. "address=0x%016llx flags=0x%04x]\n",
  504. PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  505. address, flags);
  506. break;
  507. default:
  508. printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
  509. }
  510. memset(__evt, 0, 4 * sizeof(u32));
  511. }
  512. static void iommu_poll_events(struct amd_iommu *iommu)
  513. {
  514. u32 head, tail;
  515. head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
  516. tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
  517. while (head != tail) {
  518. iommu_print_event(iommu, iommu->evt_buf + head);
  519. head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
  520. }
  521. writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
  522. }
  523. static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
  524. {
  525. struct amd_iommu_fault fault;
  526. INC_STATS_COUNTER(pri_requests);
  527. if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
  528. pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
  529. return;
  530. }
  531. fault.address = raw[1];
  532. fault.pasid = PPR_PASID(raw[0]);
  533. fault.device_id = PPR_DEVID(raw[0]);
  534. fault.tag = PPR_TAG(raw[0]);
  535. fault.flags = PPR_FLAGS(raw[0]);
  536. atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
  537. }
  538. static void iommu_poll_ppr_log(struct amd_iommu *iommu)
  539. {
  540. u32 head, tail;
  541. if (iommu->ppr_log == NULL)
  542. return;
  543. head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
  544. tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
  545. while (head != tail) {
  546. volatile u64 *raw;
  547. u64 entry[2];
  548. int i;
  549. raw = (u64 *)(iommu->ppr_log + head);
  550. /*
  551. * Hardware bug: Interrupt may arrive before the entry is
  552. * written to memory. If this happens we need to wait for the
  553. * entry to arrive.
  554. */
  555. for (i = 0; i < LOOP_TIMEOUT; ++i) {
  556. if (PPR_REQ_TYPE(raw[0]) != 0)
  557. break;
  558. udelay(1);
  559. }
  560. /* Avoid memcpy function-call overhead */
  561. entry[0] = raw[0];
  562. entry[1] = raw[1];
  563. /*
  564. * To detect the hardware bug we need to clear the entry
  565. * back to zero.
  566. */
  567. raw[0] = raw[1] = 0UL;
  568. /* Update head pointer of hardware ring-buffer */
  569. head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
  570. writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
  571. /* Handle PPR entry */
  572. iommu_handle_ppr_entry(iommu, entry);
  573. /* Refresh ring-buffer information */
  574. head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
  575. tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
  576. }
  577. }
  578. irqreturn_t amd_iommu_int_thread(int irq, void *data)
  579. {
  580. struct amd_iommu *iommu = (struct amd_iommu *) data;
  581. u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
  582. while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
  583. /* Enable EVT and PPR interrupts again */
  584. writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
  585. iommu->mmio_base + MMIO_STATUS_OFFSET);
  586. if (status & MMIO_STATUS_EVT_INT_MASK) {
  587. pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
  588. iommu_poll_events(iommu);
  589. }
  590. if (status & MMIO_STATUS_PPR_INT_MASK) {
  591. pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
  592. iommu_poll_ppr_log(iommu);
  593. }
  594. /*
  595. * Hardware bug: ERBT1312
  596. * When re-enabling interrupt (by writing 1
  597. * to clear the bit), the hardware might also try to set
  598. * the interrupt bit in the event status register.
  599. * In this scenario, the bit will be set, and disable
  600. * subsequent interrupts.
  601. *
  602. * Workaround: The IOMMU driver should read back the
  603. * status register and check if the interrupt bits are cleared.
  604. * If not, driver will need to go through the interrupt handler
  605. * again and re-clear the bits
  606. */
  607. status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
  608. }
  609. return IRQ_HANDLED;
  610. }
  611. irqreturn_t amd_iommu_int_handler(int irq, void *data)
  612. {
  613. return IRQ_WAKE_THREAD;
  614. }
  615. /****************************************************************************
  616. *
  617. * IOMMU command queuing functions
  618. *
  619. ****************************************************************************/
  620. static int wait_on_sem(volatile u64 *sem)
  621. {
  622. int i = 0;
  623. while (*sem == 0 && i < LOOP_TIMEOUT) {
  624. udelay(1);
  625. i += 1;
  626. }
  627. if (i == LOOP_TIMEOUT) {
  628. pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
  629. return -EIO;
  630. }
  631. return 0;
  632. }
  633. static void copy_cmd_to_buffer(struct amd_iommu *iommu,
  634. struct iommu_cmd *cmd,
  635. u32 tail)
  636. {
  637. u8 *target;
  638. target = iommu->cmd_buf + tail;
  639. tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
  640. /* Copy command to buffer */
  641. memcpy(target, cmd, sizeof(*cmd));
  642. /* Tell the IOMMU about it */
  643. writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
  644. }
  645. static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
  646. {
  647. WARN_ON(address & 0x7ULL);
  648. memset(cmd, 0, sizeof(*cmd));
  649. cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
  650. cmd->data[1] = upper_32_bits(__pa(address));
  651. cmd->data[2] = 1;
  652. CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
  653. }
  654. static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
  655. {
  656. memset(cmd, 0, sizeof(*cmd));
  657. cmd->data[0] = devid;
  658. CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
  659. }
  660. static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
  661. size_t size, u16 domid, int pde)
  662. {
  663. u64 pages;
  664. bool s;
  665. pages = iommu_num_pages(address, size, PAGE_SIZE);
  666. s = false;
  667. if (pages > 1) {
  668. /*
  669. * If we have to flush more than one page, flush all
  670. * TLB entries for this domain
  671. */
  672. address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
  673. s = true;
  674. }
  675. address &= PAGE_MASK;
  676. memset(cmd, 0, sizeof(*cmd));
  677. cmd->data[1] |= domid;
  678. cmd->data[2] = lower_32_bits(address);
  679. cmd->data[3] = upper_32_bits(address);
  680. CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
  681. if (s) /* size bit - we flush more than one 4kb page */
  682. cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
  683. if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
  684. cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
  685. }
  686. static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
  687. u64 address, size_t size)
  688. {
  689. u64 pages;
  690. bool s;
  691. pages = iommu_num_pages(address, size, PAGE_SIZE);
  692. s = false;
  693. if (pages > 1) {
  694. /*
  695. * If we have to flush more than one page, flush all
  696. * TLB entries for this domain
  697. */
  698. address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
  699. s = true;
  700. }
  701. address &= PAGE_MASK;
  702. memset(cmd, 0, sizeof(*cmd));
  703. cmd->data[0] = devid;
  704. cmd->data[0] |= (qdep & 0xff) << 24;
  705. cmd->data[1] = devid;
  706. cmd->data[2] = lower_32_bits(address);
  707. cmd->data[3] = upper_32_bits(address);
  708. CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
  709. if (s)
  710. cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
  711. }
  712. static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
  713. u64 address, bool size)
  714. {
  715. memset(cmd, 0, sizeof(*cmd));
  716. address &= ~(0xfffULL);
  717. cmd->data[0] = pasid;
  718. cmd->data[1] = domid;
  719. cmd->data[2] = lower_32_bits(address);
  720. cmd->data[3] = upper_32_bits(address);
  721. cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
  722. cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
  723. if (size)
  724. cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
  725. CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
  726. }
  727. static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
  728. int qdep, u64 address, bool size)
  729. {
  730. memset(cmd, 0, sizeof(*cmd));
  731. address &= ~(0xfffULL);
  732. cmd->data[0] = devid;
  733. cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
  734. cmd->data[0] |= (qdep & 0xff) << 24;
  735. cmd->data[1] = devid;
  736. cmd->data[1] |= (pasid & 0xff) << 16;
  737. cmd->data[2] = lower_32_bits(address);
  738. cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
  739. cmd->data[3] = upper_32_bits(address);
  740. if (size)
  741. cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
  742. CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
  743. }
  744. static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
  745. int status, int tag, bool gn)
  746. {
  747. memset(cmd, 0, sizeof(*cmd));
  748. cmd->data[0] = devid;
  749. if (gn) {
  750. cmd->data[1] = pasid;
  751. cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
  752. }
  753. cmd->data[3] = tag & 0x1ff;
  754. cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
  755. CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
  756. }
  757. static void build_inv_all(struct iommu_cmd *cmd)
  758. {
  759. memset(cmd, 0, sizeof(*cmd));
  760. CMD_SET_TYPE(cmd, CMD_INV_ALL);
  761. }
  762. static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
  763. {
  764. memset(cmd, 0, sizeof(*cmd));
  765. cmd->data[0] = devid;
  766. CMD_SET_TYPE(cmd, CMD_INV_IRT);
  767. }
  768. /*
  769. * Writes the command to the IOMMUs command buffer and informs the
  770. * hardware about the new command.
  771. */
  772. static int iommu_queue_command_sync(struct amd_iommu *iommu,
  773. struct iommu_cmd *cmd,
  774. bool sync)
  775. {
  776. u32 left, tail, head, next_tail;
  777. unsigned long flags;
  778. WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
  779. again:
  780. spin_lock_irqsave(&iommu->lock, flags);
  781. head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
  782. tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
  783. next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
  784. left = (head - next_tail) % iommu->cmd_buf_size;
  785. if (left <= 2) {
  786. struct iommu_cmd sync_cmd;
  787. volatile u64 sem = 0;
  788. int ret;
  789. build_completion_wait(&sync_cmd, (u64)&sem);
  790. copy_cmd_to_buffer(iommu, &sync_cmd, tail);
  791. spin_unlock_irqrestore(&iommu->lock, flags);
  792. if ((ret = wait_on_sem(&sem)) != 0)
  793. return ret;
  794. goto again;
  795. }
  796. copy_cmd_to_buffer(iommu, cmd, tail);
  797. /* We need to sync now to make sure all commands are processed */
  798. iommu->need_sync = sync;
  799. spin_unlock_irqrestore(&iommu->lock, flags);
  800. return 0;
  801. }
  802. static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
  803. {
  804. return iommu_queue_command_sync(iommu, cmd, true);
  805. }
  806. /*
  807. * This function queues a completion wait command into the command
  808. * buffer of an IOMMU
  809. */
  810. static int iommu_completion_wait(struct amd_iommu *iommu)
  811. {
  812. struct iommu_cmd cmd;
  813. volatile u64 sem = 0;
  814. int ret;
  815. if (!iommu->need_sync)
  816. return 0;
  817. build_completion_wait(&cmd, (u64)&sem);
  818. ret = iommu_queue_command_sync(iommu, &cmd, false);
  819. if (ret)
  820. return ret;
  821. return wait_on_sem(&sem);
  822. }
  823. static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
  824. {
  825. struct iommu_cmd cmd;
  826. build_inv_dte(&cmd, devid);
  827. return iommu_queue_command(iommu, &cmd);
  828. }
  829. static void iommu_flush_dte_all(struct amd_iommu *iommu)
  830. {
  831. u32 devid;
  832. for (devid = 0; devid <= 0xffff; ++devid)
  833. iommu_flush_dte(iommu, devid);
  834. iommu_completion_wait(iommu);
  835. }
  836. /*
  837. * This function uses heavy locking and may disable irqs for some time. But
  838. * this is no issue because it is only called during resume.
  839. */
  840. static void iommu_flush_tlb_all(struct amd_iommu *iommu)
  841. {
  842. u32 dom_id;
  843. for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
  844. struct iommu_cmd cmd;
  845. build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
  846. dom_id, 1);
  847. iommu_queue_command(iommu, &cmd);
  848. }
  849. iommu_completion_wait(iommu);
  850. }
  851. static void iommu_flush_all(struct amd_iommu *iommu)
  852. {
  853. struct iommu_cmd cmd;
  854. build_inv_all(&cmd);
  855. iommu_queue_command(iommu, &cmd);
  856. iommu_completion_wait(iommu);
  857. }
  858. static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
  859. {
  860. struct iommu_cmd cmd;
  861. build_inv_irt(&cmd, devid);
  862. iommu_queue_command(iommu, &cmd);
  863. }
  864. static void iommu_flush_irt_all(struct amd_iommu *iommu)
  865. {
  866. u32 devid;
  867. for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
  868. iommu_flush_irt(iommu, devid);
  869. iommu_completion_wait(iommu);
  870. }
  871. void iommu_flush_all_caches(struct amd_iommu *iommu)
  872. {
  873. if (iommu_feature(iommu, FEATURE_IA)) {
  874. iommu_flush_all(iommu);
  875. } else {
  876. iommu_flush_dte_all(iommu);
  877. iommu_flush_irt_all(iommu);
  878. iommu_flush_tlb_all(iommu);
  879. }
  880. }
  881. /*
  882. * Command send function for flushing on-device TLB
  883. */
  884. static int device_flush_iotlb(struct iommu_dev_data *dev_data,
  885. u64 address, size_t size)
  886. {
  887. struct amd_iommu *iommu;
  888. struct iommu_cmd cmd;
  889. int qdep;
  890. qdep = dev_data->ats.qdep;
  891. iommu = amd_iommu_rlookup_table[dev_data->devid];
  892. build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
  893. return iommu_queue_command(iommu, &cmd);
  894. }
  895. /*
  896. * Command send function for invalidating a device table entry
  897. */
  898. static int device_flush_dte(struct iommu_dev_data *dev_data)
  899. {
  900. struct amd_iommu *iommu;
  901. int ret;
  902. iommu = amd_iommu_rlookup_table[dev_data->devid];
  903. ret = iommu_flush_dte(iommu, dev_data->devid);
  904. if (ret)
  905. return ret;
  906. if (dev_data->ats.enabled)
  907. ret = device_flush_iotlb(dev_data, 0, ~0UL);
  908. return ret;
  909. }
  910. /*
  911. * TLB invalidation function which is called from the mapping functions.
  912. * It invalidates a single PTE if the range to flush is within a single
  913. * page. Otherwise it flushes the whole TLB of the IOMMU.
  914. */
  915. static void __domain_flush_pages(struct protection_domain *domain,
  916. u64 address, size_t size, int pde)
  917. {
  918. struct iommu_dev_data *dev_data;
  919. struct iommu_cmd cmd;
  920. int ret = 0, i;
  921. build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
  922. for (i = 0; i < amd_iommus_present; ++i) {
  923. if (!domain->dev_iommu[i])
  924. continue;
  925. /*
  926. * Devices of this domain are behind this IOMMU
  927. * We need a TLB flush
  928. */
  929. ret |= iommu_queue_command(amd_iommus[i], &cmd);
  930. }
  931. list_for_each_entry(dev_data, &domain->dev_list, list) {
  932. if (!dev_data->ats.enabled)
  933. continue;
  934. ret |= device_flush_iotlb(dev_data, address, size);
  935. }
  936. WARN_ON(ret);
  937. }
  938. static void domain_flush_pages(struct protection_domain *domain,
  939. u64 address, size_t size)
  940. {
  941. __domain_flush_pages(domain, address, size, 0);
  942. }
  943. /* Flush the whole IO/TLB for a given protection domain */
  944. static void domain_flush_tlb(struct protection_domain *domain)
  945. {
  946. __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
  947. }
  948. /* Flush the whole IO/TLB for a given protection domain - including PDE */
  949. static void domain_flush_tlb_pde(struct protection_domain *domain)
  950. {
  951. __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
  952. }
  953. static void domain_flush_complete(struct protection_domain *domain)
  954. {
  955. int i;
  956. for (i = 0; i < amd_iommus_present; ++i) {
  957. if (!domain->dev_iommu[i])
  958. continue;
  959. /*
  960. * Devices of this domain are behind this IOMMU
  961. * We need to wait for completion of all commands.
  962. */
  963. iommu_completion_wait(amd_iommus[i]);
  964. }
  965. }
  966. /*
  967. * This function flushes the DTEs for all devices in domain
  968. */
  969. static void domain_flush_devices(struct protection_domain *domain)
  970. {
  971. struct iommu_dev_data *dev_data;
  972. list_for_each_entry(dev_data, &domain->dev_list, list)
  973. device_flush_dte(dev_data);
  974. }
  975. /****************************************************************************
  976. *
  977. * The functions below are used the create the page table mappings for
  978. * unity mapped regions.
  979. *
  980. ****************************************************************************/
  981. /*
  982. * This function is used to add another level to an IO page table. Adding
  983. * another level increases the size of the address space by 9 bits to a size up
  984. * to 64 bits.
  985. */
  986. static bool increase_address_space(struct protection_domain *domain,
  987. gfp_t gfp)
  988. {
  989. u64 *pte;
  990. if (domain->mode == PAGE_MODE_6_LEVEL)
  991. /* address space already 64 bit large */
  992. return false;
  993. pte = (void *)get_zeroed_page(gfp);
  994. if (!pte)
  995. return false;
  996. *pte = PM_LEVEL_PDE(domain->mode,
  997. virt_to_phys(domain->pt_root));
  998. domain->pt_root = pte;
  999. domain->mode += 1;
  1000. domain->updated = true;
  1001. return true;
  1002. }
  1003. static u64 *alloc_pte(struct protection_domain *domain,
  1004. unsigned long address,
  1005. unsigned long page_size,
  1006. u64 **pte_page,
  1007. gfp_t gfp)
  1008. {
  1009. int level, end_lvl;
  1010. u64 *pte, *page;
  1011. BUG_ON(!is_power_of_2(page_size));
  1012. while (address > PM_LEVEL_SIZE(domain->mode))
  1013. increase_address_space(domain, gfp);
  1014. level = domain->mode - 1;
  1015. pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
  1016. address = PAGE_SIZE_ALIGN(address, page_size);
  1017. end_lvl = PAGE_SIZE_LEVEL(page_size);
  1018. while (level > end_lvl) {
  1019. if (!IOMMU_PTE_PRESENT(*pte)) {
  1020. page = (u64 *)get_zeroed_page(gfp);
  1021. if (!page)
  1022. return NULL;
  1023. *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
  1024. }
  1025. /* No level skipping support yet */
  1026. if (PM_PTE_LEVEL(*pte) != level)
  1027. return NULL;
  1028. level -= 1;
  1029. pte = IOMMU_PTE_PAGE(*pte);
  1030. if (pte_page && level == end_lvl)
  1031. *pte_page = pte;
  1032. pte = &pte[PM_LEVEL_INDEX(level, address)];
  1033. }
  1034. return pte;
  1035. }
  1036. /*
  1037. * This function checks if there is a PTE for a given dma address. If
  1038. * there is one, it returns the pointer to it.
  1039. */
  1040. static u64 *fetch_pte(struct protection_domain *domain,
  1041. unsigned long address,
  1042. unsigned long *page_size)
  1043. {
  1044. int level;
  1045. u64 *pte;
  1046. if (address > PM_LEVEL_SIZE(domain->mode))
  1047. return NULL;
  1048. level = domain->mode - 1;
  1049. pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
  1050. *page_size = PTE_LEVEL_PAGE_SIZE(level);
  1051. while (level > 0) {
  1052. /* Not Present */
  1053. if (!IOMMU_PTE_PRESENT(*pte))
  1054. return NULL;
  1055. /* Large PTE */
  1056. if (PM_PTE_LEVEL(*pte) == 7 ||
  1057. PM_PTE_LEVEL(*pte) == 0)
  1058. break;
  1059. /* No level skipping support yet */
  1060. if (PM_PTE_LEVEL(*pte) != level)
  1061. return NULL;
  1062. level -= 1;
  1063. /* Walk to the next level */
  1064. pte = IOMMU_PTE_PAGE(*pte);
  1065. pte = &pte[PM_LEVEL_INDEX(level, address)];
  1066. *page_size = PTE_LEVEL_PAGE_SIZE(level);
  1067. }
  1068. if (PM_PTE_LEVEL(*pte) == 0x07) {
  1069. unsigned long pte_mask;
  1070. /*
  1071. * If we have a series of large PTEs, make
  1072. * sure to return a pointer to the first one.
  1073. */
  1074. *page_size = pte_mask = PTE_PAGE_SIZE(*pte);
  1075. pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
  1076. pte = (u64 *)(((unsigned long)pte) & pte_mask);
  1077. }
  1078. return pte;
  1079. }
  1080. /*
  1081. * Generic mapping functions. It maps a physical address into a DMA
  1082. * address space. It allocates the page table pages if necessary.
  1083. * In the future it can be extended to a generic mapping function
  1084. * supporting all features of AMD IOMMU page tables like level skipping
  1085. * and full 64 bit address spaces.
  1086. */
  1087. static int iommu_map_page(struct protection_domain *dom,
  1088. unsigned long bus_addr,
  1089. unsigned long phys_addr,
  1090. int prot,
  1091. unsigned long page_size)
  1092. {
  1093. u64 __pte, *pte;
  1094. int i, count;
  1095. BUG_ON(!IS_ALIGNED(bus_addr, page_size));
  1096. BUG_ON(!IS_ALIGNED(phys_addr, page_size));
  1097. if (!(prot & IOMMU_PROT_MASK))
  1098. return -EINVAL;
  1099. count = PAGE_SIZE_PTE_COUNT(page_size);
  1100. pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
  1101. if (!pte)
  1102. return -ENOMEM;
  1103. for (i = 0; i < count; ++i)
  1104. if (IOMMU_PTE_PRESENT(pte[i]))
  1105. return -EBUSY;
  1106. if (count > 1) {
  1107. __pte = PAGE_SIZE_PTE(phys_addr, page_size);
  1108. __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
  1109. } else
  1110. __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
  1111. if (prot & IOMMU_PROT_IR)
  1112. __pte |= IOMMU_PTE_IR;
  1113. if (prot & IOMMU_PROT_IW)
  1114. __pte |= IOMMU_PTE_IW;
  1115. for (i = 0; i < count; ++i)
  1116. pte[i] = __pte;
  1117. update_domain(dom);
  1118. return 0;
  1119. }
  1120. static unsigned long iommu_unmap_page(struct protection_domain *dom,
  1121. unsigned long bus_addr,
  1122. unsigned long page_size)
  1123. {
  1124. unsigned long long unmapped;
  1125. unsigned long unmap_size;
  1126. u64 *pte;
  1127. BUG_ON(!is_power_of_2(page_size));
  1128. unmapped = 0;
  1129. while (unmapped < page_size) {
  1130. pte = fetch_pte(dom, bus_addr, &unmap_size);
  1131. if (pte) {
  1132. int i, count;
  1133. count = PAGE_SIZE_PTE_COUNT(unmap_size);
  1134. for (i = 0; i < count; i++)
  1135. pte[i] = 0ULL;
  1136. }
  1137. bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
  1138. unmapped += unmap_size;
  1139. }
  1140. BUG_ON(unmapped && !is_power_of_2(unmapped));
  1141. return unmapped;
  1142. }
  1143. /****************************************************************************
  1144. *
  1145. * The next functions belong to the address allocator for the dma_ops
  1146. * interface functions. They work like the allocators in the other IOMMU
  1147. * drivers. Its basically a bitmap which marks the allocated pages in
  1148. * the aperture. Maybe it could be enhanced in the future to a more
  1149. * efficient allocator.
  1150. *
  1151. ****************************************************************************/
  1152. /*
  1153. * The address allocator core functions.
  1154. *
  1155. * called with domain->lock held
  1156. */
  1157. /*
  1158. * Used to reserve address ranges in the aperture (e.g. for exclusion
  1159. * ranges.
  1160. */
  1161. static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
  1162. unsigned long start_page,
  1163. unsigned int pages)
  1164. {
  1165. unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
  1166. if (start_page + pages > last_page)
  1167. pages = last_page - start_page;
  1168. for (i = start_page; i < start_page + pages; ++i) {
  1169. int index = i / APERTURE_RANGE_PAGES;
  1170. int page = i % APERTURE_RANGE_PAGES;
  1171. __set_bit(page, dom->aperture[index]->bitmap);
  1172. }
  1173. }
  1174. /*
  1175. * This function is used to add a new aperture range to an existing
  1176. * aperture in case of dma_ops domain allocation or address allocation
  1177. * failure.
  1178. */
  1179. static int alloc_new_range(struct dma_ops_domain *dma_dom,
  1180. bool populate, gfp_t gfp)
  1181. {
  1182. int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
  1183. struct amd_iommu *iommu;
  1184. unsigned long i, old_size, pte_pgsize;
  1185. #ifdef CONFIG_IOMMU_STRESS
  1186. populate = false;
  1187. #endif
  1188. if (index >= APERTURE_MAX_RANGES)
  1189. return -ENOMEM;
  1190. dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
  1191. if (!dma_dom->aperture[index])
  1192. return -ENOMEM;
  1193. dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
  1194. if (!dma_dom->aperture[index]->bitmap)
  1195. goto out_free;
  1196. dma_dom->aperture[index]->offset = dma_dom->aperture_size;
  1197. if (populate) {
  1198. unsigned long address = dma_dom->aperture_size;
  1199. int i, num_ptes = APERTURE_RANGE_PAGES / 512;
  1200. u64 *pte, *pte_page;
  1201. for (i = 0; i < num_ptes; ++i) {
  1202. pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
  1203. &pte_page, gfp);
  1204. if (!pte)
  1205. goto out_free;
  1206. dma_dom->aperture[index]->pte_pages[i] = pte_page;
  1207. address += APERTURE_RANGE_SIZE / 64;
  1208. }
  1209. }
  1210. old_size = dma_dom->aperture_size;
  1211. dma_dom->aperture_size += APERTURE_RANGE_SIZE;
  1212. /* Reserve address range used for MSI messages */
  1213. if (old_size < MSI_ADDR_BASE_LO &&
  1214. dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
  1215. unsigned long spage;
  1216. int pages;
  1217. pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
  1218. spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;
  1219. dma_ops_reserve_addresses(dma_dom, spage, pages);
  1220. }
  1221. /* Initialize the exclusion range if necessary */
  1222. for_each_iommu(iommu) {
  1223. if (iommu->exclusion_start &&
  1224. iommu->exclusion_start >= dma_dom->aperture[index]->offset
  1225. && iommu->exclusion_start < dma_dom->aperture_size) {
  1226. unsigned long startpage;
  1227. int pages = iommu_num_pages(iommu->exclusion_start,
  1228. iommu->exclusion_length,
  1229. PAGE_SIZE);
  1230. startpage = iommu->exclusion_start >> PAGE_SHIFT;
  1231. dma_ops_reserve_addresses(dma_dom, startpage, pages);
  1232. }
  1233. }
  1234. /*
  1235. * Check for areas already mapped as present in the new aperture
  1236. * range and mark those pages as reserved in the allocator. Such
  1237. * mappings may already exist as a result of requested unity
  1238. * mappings for devices.
  1239. */
  1240. for (i = dma_dom->aperture[index]->offset;
  1241. i < dma_dom->aperture_size;
  1242. i += pte_pgsize) {
  1243. u64 *pte = fetch_pte(&dma_dom->domain, i, &pte_pgsize);
  1244. if (!pte || !IOMMU_PTE_PRESENT(*pte))
  1245. continue;
  1246. dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT,
  1247. pte_pgsize >> 12);
  1248. }
  1249. update_domain(&dma_dom->domain);
  1250. return 0;
  1251. out_free:
  1252. update_domain(&dma_dom->domain);
  1253. free_page((unsigned long)dma_dom->aperture[index]->bitmap);
  1254. kfree(dma_dom->aperture[index]);
  1255. dma_dom->aperture[index] = NULL;
  1256. return -ENOMEM;
  1257. }
  1258. static unsigned long dma_ops_area_alloc(struct device *dev,
  1259. struct dma_ops_domain *dom,
  1260. unsigned int pages,
  1261. unsigned long align_mask,
  1262. u64 dma_mask,
  1263. unsigned long start)
  1264. {
  1265. unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
  1266. int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
  1267. int i = start >> APERTURE_RANGE_SHIFT;
  1268. unsigned long boundary_size, mask;
  1269. unsigned long address = -1;
  1270. unsigned long limit;
  1271. next_bit >>= PAGE_SHIFT;
  1272. mask = dma_get_seg_boundary(dev);
  1273. boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
  1274. 1UL << (BITS_PER_LONG - PAGE_SHIFT);
  1275. for (;i < max_index; ++i) {
  1276. unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
  1277. if (dom->aperture[i]->offset >= dma_mask)
  1278. break;
  1279. limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
  1280. dma_mask >> PAGE_SHIFT);
  1281. address = iommu_area_alloc(dom->aperture[i]->bitmap,
  1282. limit, next_bit, pages, 0,
  1283. boundary_size, align_mask);
  1284. if (address != -1) {
  1285. address = dom->aperture[i]->offset +
  1286. (address << PAGE_SHIFT);
  1287. dom->next_address = address + (pages << PAGE_SHIFT);
  1288. break;
  1289. }
  1290. next_bit = 0;
  1291. }
  1292. return address;
  1293. }
  1294. static unsigned long dma_ops_alloc_addresses(struct device *dev,
  1295. struct dma_ops_domain *dom,
  1296. unsigned int pages,
  1297. unsigned long align_mask,
  1298. u64 dma_mask)
  1299. {
  1300. unsigned long address;
  1301. #ifdef CONFIG_IOMMU_STRESS
  1302. dom->next_address = 0;
  1303. dom->need_flush = true;
  1304. #endif
  1305. address = dma_ops_area_alloc(dev, dom, pages, align_mask,
  1306. dma_mask, dom->next_address);
  1307. if (address == -1) {
  1308. dom->next_address = 0;
  1309. address = dma_ops_area_alloc(dev, dom, pages, align_mask,
  1310. dma_mask, 0);
  1311. dom->need_flush = true;
  1312. }
  1313. if (unlikely(address == -1))
  1314. address = DMA_ERROR_CODE;
  1315. WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
  1316. return address;
  1317. }
  1318. /*
  1319. * The address free function.
  1320. *
  1321. * called with domain->lock held
  1322. */
  1323. static void dma_ops_free_addresses(struct dma_ops_domain *dom,
  1324. unsigned long address,
  1325. unsigned int pages)
  1326. {
  1327. unsigned i = address >> APERTURE_RANGE_SHIFT;
  1328. struct aperture_range *range = dom->aperture[i];
  1329. BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
  1330. #ifdef CONFIG_IOMMU_STRESS
  1331. if (i < 4)
  1332. return;
  1333. #endif
  1334. if (address >= dom->next_address)
  1335. dom->need_flush = true;
  1336. address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
  1337. bitmap_clear(range->bitmap, address, pages);
  1338. }
  1339. /****************************************************************************
  1340. *
  1341. * The next functions belong to the domain allocation. A domain is
  1342. * allocated for every IOMMU as the default domain. If device isolation
  1343. * is enabled, every device get its own domain. The most important thing
  1344. * about domains is the page table mapping the DMA address space they
  1345. * contain.
  1346. *
  1347. ****************************************************************************/
  1348. /*
  1349. * This function adds a protection domain to the global protection domain list
  1350. */
  1351. static void add_domain_to_list(struct protection_domain *domain)
  1352. {
  1353. unsigned long flags;
  1354. spin_lock_irqsave(&amd_iommu_pd_lock, flags);
  1355. list_add(&domain->list, &amd_iommu_pd_list);
  1356. spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
  1357. }
  1358. /*
  1359. * This function removes a protection domain to the global
  1360. * protection domain list
  1361. */
  1362. static void del_domain_from_list(struct protection_domain *domain)
  1363. {
  1364. unsigned long flags;
  1365. spin_lock_irqsave(&amd_iommu_pd_lock, flags);
  1366. list_del(&domain->list);
  1367. spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
  1368. }
  1369. static u16 domain_id_alloc(void)
  1370. {
  1371. unsigned long flags;
  1372. int id;
  1373. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1374. id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
  1375. BUG_ON(id == 0);
  1376. if (id > 0 && id < MAX_DOMAIN_ID)
  1377. __set_bit(id, amd_iommu_pd_alloc_bitmap);
  1378. else
  1379. id = 0;
  1380. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1381. return id;
  1382. }
  1383. static void domain_id_free(int id)
  1384. {
  1385. unsigned long flags;
  1386. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1387. if (id > 0 && id < MAX_DOMAIN_ID)
  1388. __clear_bit(id, amd_iommu_pd_alloc_bitmap);
  1389. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1390. }
  1391. #define DEFINE_FREE_PT_FN(LVL, FN) \
  1392. static void free_pt_##LVL (unsigned long __pt) \
  1393. { \
  1394. unsigned long p; \
  1395. u64 *pt; \
  1396. int i; \
  1397. \
  1398. pt = (u64 *)__pt; \
  1399. \
  1400. for (i = 0; i < 512; ++i) { \
  1401. /* PTE present? */ \
  1402. if (!IOMMU_PTE_PRESENT(pt[i])) \
  1403. continue; \
  1404. \
  1405. /* Large PTE? */ \
  1406. if (PM_PTE_LEVEL(pt[i]) == 0 || \
  1407. PM_PTE_LEVEL(pt[i]) == 7) \
  1408. continue; \
  1409. \
  1410. p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \
  1411. FN(p); \
  1412. } \
  1413. free_page((unsigned long)pt); \
  1414. }
  1415. DEFINE_FREE_PT_FN(l2, free_page)
  1416. DEFINE_FREE_PT_FN(l3, free_pt_l2)
  1417. DEFINE_FREE_PT_FN(l4, free_pt_l3)
  1418. DEFINE_FREE_PT_FN(l5, free_pt_l4)
  1419. DEFINE_FREE_PT_FN(l6, free_pt_l5)
  1420. static void free_pagetable(struct protection_domain *domain)
  1421. {
  1422. unsigned long root = (unsigned long)domain->pt_root;
  1423. switch (domain->mode) {
  1424. case PAGE_MODE_NONE:
  1425. break;
  1426. case PAGE_MODE_1_LEVEL:
  1427. free_page(root);
  1428. break;
  1429. case PAGE_MODE_2_LEVEL:
  1430. free_pt_l2(root);
  1431. break;
  1432. case PAGE_MODE_3_LEVEL:
  1433. free_pt_l3(root);
  1434. break;
  1435. case PAGE_MODE_4_LEVEL:
  1436. free_pt_l4(root);
  1437. break;
  1438. case PAGE_MODE_5_LEVEL:
  1439. free_pt_l5(root);
  1440. break;
  1441. case PAGE_MODE_6_LEVEL:
  1442. free_pt_l6(root);
  1443. break;
  1444. default:
  1445. BUG();
  1446. }
  1447. }
  1448. static void free_gcr3_tbl_level1(u64 *tbl)
  1449. {
  1450. u64 *ptr;
  1451. int i;
  1452. for (i = 0; i < 512; ++i) {
  1453. if (!(tbl[i] & GCR3_VALID))
  1454. continue;
  1455. ptr = __va(tbl[i] & PAGE_MASK);
  1456. free_page((unsigned long)ptr);
  1457. }
  1458. }
  1459. static void free_gcr3_tbl_level2(u64 *tbl)
  1460. {
  1461. u64 *ptr;
  1462. int i;
  1463. for (i = 0; i < 512; ++i) {
  1464. if (!(tbl[i] & GCR3_VALID))
  1465. continue;
  1466. ptr = __va(tbl[i] & PAGE_MASK);
  1467. free_gcr3_tbl_level1(ptr);
  1468. }
  1469. }
  1470. static void free_gcr3_table(struct protection_domain *domain)
  1471. {
  1472. if (domain->glx == 2)
  1473. free_gcr3_tbl_level2(domain->gcr3_tbl);
  1474. else if (domain->glx == 1)
  1475. free_gcr3_tbl_level1(domain->gcr3_tbl);
  1476. else
  1477. BUG_ON(domain->glx != 0);
  1478. free_page((unsigned long)domain->gcr3_tbl);
  1479. }
  1480. /*
  1481. * Free a domain, only used if something went wrong in the
  1482. * allocation path and we need to free an already allocated page table
  1483. */
  1484. static void dma_ops_domain_free(struct dma_ops_domain *dom)
  1485. {
  1486. int i;
  1487. if (!dom)
  1488. return;
  1489. del_domain_from_list(&dom->domain);
  1490. free_pagetable(&dom->domain);
  1491. for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
  1492. if (!dom->aperture[i])
  1493. continue;
  1494. free_page((unsigned long)dom->aperture[i]->bitmap);
  1495. kfree(dom->aperture[i]);
  1496. }
  1497. kfree(dom);
  1498. }
  1499. /*
  1500. * Allocates a new protection domain usable for the dma_ops functions.
  1501. * It also initializes the page table and the address allocator data
  1502. * structures required for the dma_ops interface
  1503. */
  1504. static struct dma_ops_domain *dma_ops_domain_alloc(void)
  1505. {
  1506. struct dma_ops_domain *dma_dom;
  1507. dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
  1508. if (!dma_dom)
  1509. return NULL;
  1510. if (protection_domain_init(&dma_dom->domain))
  1511. goto free_dma_dom;
  1512. dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
  1513. dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
  1514. dma_dom->domain.flags = PD_DMA_OPS_MASK;
  1515. dma_dom->domain.priv = dma_dom;
  1516. if (!dma_dom->domain.pt_root)
  1517. goto free_dma_dom;
  1518. dma_dom->need_flush = false;
  1519. add_domain_to_list(&dma_dom->domain);
  1520. if (alloc_new_range(dma_dom, true, GFP_KERNEL))
  1521. goto free_dma_dom;
  1522. /*
  1523. * mark the first page as allocated so we never return 0 as
  1524. * a valid dma-address. So we can use 0 as error value
  1525. */
  1526. dma_dom->aperture[0]->bitmap[0] = 1;
  1527. dma_dom->next_address = 0;
  1528. return dma_dom;
  1529. free_dma_dom:
  1530. dma_ops_domain_free(dma_dom);
  1531. return NULL;
  1532. }
  1533. /*
  1534. * little helper function to check whether a given protection domain is a
  1535. * dma_ops domain
  1536. */
  1537. static bool dma_ops_domain(struct protection_domain *domain)
  1538. {
  1539. return domain->flags & PD_DMA_OPS_MASK;
  1540. }
  1541. static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
  1542. {
  1543. u64 pte_root = 0;
  1544. u64 flags = 0;
  1545. if (domain->mode != PAGE_MODE_NONE)
  1546. pte_root = virt_to_phys(domain->pt_root);
  1547. pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
  1548. << DEV_ENTRY_MODE_SHIFT;
  1549. pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
  1550. flags = amd_iommu_dev_table[devid].data[1];
  1551. if (ats)
  1552. flags |= DTE_FLAG_IOTLB;
  1553. if (domain->flags & PD_IOMMUV2_MASK) {
  1554. u64 gcr3 = __pa(domain->gcr3_tbl);
  1555. u64 glx = domain->glx;
  1556. u64 tmp;
  1557. pte_root |= DTE_FLAG_GV;
  1558. pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
  1559. /* First mask out possible old values for GCR3 table */
  1560. tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
  1561. flags &= ~tmp;
  1562. tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
  1563. flags &= ~tmp;
  1564. /* Encode GCR3 table into DTE */
  1565. tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
  1566. pte_root |= tmp;
  1567. tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
  1568. flags |= tmp;
  1569. tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
  1570. flags |= tmp;
  1571. }
  1572. flags &= ~(0xffffUL);
  1573. flags |= domain->id;
  1574. amd_iommu_dev_table[devid].data[1] = flags;
  1575. amd_iommu_dev_table[devid].data[0] = pte_root;
  1576. }
  1577. static void clear_dte_entry(u16 devid)
  1578. {
  1579. /* remove entry from the device table seen by the hardware */
  1580. amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
  1581. amd_iommu_dev_table[devid].data[1] = 0;
  1582. amd_iommu_apply_erratum_63(devid);
  1583. }
  1584. static void do_attach(struct iommu_dev_data *dev_data,
  1585. struct protection_domain *domain)
  1586. {
  1587. struct amd_iommu *iommu;
  1588. bool ats;
  1589. iommu = amd_iommu_rlookup_table[dev_data->devid];
  1590. ats = dev_data->ats.enabled;
  1591. /* Update data structures */
  1592. dev_data->domain = domain;
  1593. list_add(&dev_data->list, &domain->dev_list);
  1594. set_dte_entry(dev_data->devid, domain, ats);
  1595. /* Do reference counting */
  1596. domain->dev_iommu[iommu->index] += 1;
  1597. domain->dev_cnt += 1;
  1598. /* Flush the DTE entry */
  1599. device_flush_dte(dev_data);
  1600. }
  1601. static void do_detach(struct iommu_dev_data *dev_data)
  1602. {
  1603. struct amd_iommu *iommu;
  1604. iommu = amd_iommu_rlookup_table[dev_data->devid];
  1605. /* decrease reference counters */
  1606. dev_data->domain->dev_iommu[iommu->index] -= 1;
  1607. dev_data->domain->dev_cnt -= 1;
  1608. /* Update data structures */
  1609. dev_data->domain = NULL;
  1610. list_del(&dev_data->list);
  1611. clear_dte_entry(dev_data->devid);
  1612. /* Flush the DTE entry */
  1613. device_flush_dte(dev_data);
  1614. }
  1615. /*
  1616. * If a device is not yet associated with a domain, this function does
  1617. * assigns it visible for the hardware
  1618. */
  1619. static int __attach_device(struct iommu_dev_data *dev_data,
  1620. struct protection_domain *domain)
  1621. {
  1622. struct iommu_dev_data *head, *entry;
  1623. int ret;
  1624. /* lock domain */
  1625. spin_lock(&domain->lock);
  1626. head = dev_data;
  1627. if (head->alias_data != NULL)
  1628. head = head->alias_data;
  1629. /* Now we have the root of the alias group, if any */
  1630. ret = -EBUSY;
  1631. if (head->domain != NULL)
  1632. goto out_unlock;
  1633. /* Attach alias group root */
  1634. do_attach(head, domain);
  1635. /* Attach other devices in the alias group */
  1636. list_for_each_entry(entry, &head->alias_list, alias_list)
  1637. do_attach(entry, domain);
  1638. ret = 0;
  1639. out_unlock:
  1640. /* ready */
  1641. spin_unlock(&domain->lock);
  1642. return ret;
  1643. }
  1644. static void pdev_iommuv2_disable(struct pci_dev *pdev)
  1645. {
  1646. pci_disable_ats(pdev);
  1647. pci_disable_pri(pdev);
  1648. pci_disable_pasid(pdev);
  1649. }
  1650. /* FIXME: Change generic reset-function to do the same */
  1651. static int pri_reset_while_enabled(struct pci_dev *pdev)
  1652. {
  1653. u16 control;
  1654. int pos;
  1655. pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
  1656. if (!pos)
  1657. return -EINVAL;
  1658. pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
  1659. control |= PCI_PRI_CTRL_RESET;
  1660. pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
  1661. return 0;
  1662. }
  1663. static int pdev_iommuv2_enable(struct pci_dev *pdev)
  1664. {
  1665. bool reset_enable;
  1666. int reqs, ret;
  1667. /* FIXME: Hardcode number of outstanding requests for now */
  1668. reqs = 32;
  1669. if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
  1670. reqs = 1;
  1671. reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
  1672. /* Only allow access to user-accessible pages */
  1673. ret = pci_enable_pasid(pdev, 0);
  1674. if (ret)
  1675. goto out_err;
  1676. /* First reset the PRI state of the device */
  1677. ret = pci_reset_pri(pdev);
  1678. if (ret)
  1679. goto out_err;
  1680. /* Enable PRI */
  1681. ret = pci_enable_pri(pdev, reqs);
  1682. if (ret)
  1683. goto out_err;
  1684. if (reset_enable) {
  1685. ret = pri_reset_while_enabled(pdev);
  1686. if (ret)
  1687. goto out_err;
  1688. }
  1689. ret = pci_enable_ats(pdev, PAGE_SHIFT);
  1690. if (ret)
  1691. goto out_err;
  1692. return 0;
  1693. out_err:
  1694. pci_disable_pri(pdev);
  1695. pci_disable_pasid(pdev);
  1696. return ret;
  1697. }
  1698. /* FIXME: Move this to PCI code */
  1699. #define PCI_PRI_TLP_OFF (1 << 15)
  1700. static bool pci_pri_tlp_required(struct pci_dev *pdev)
  1701. {
  1702. u16 status;
  1703. int pos;
  1704. pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
  1705. if (!pos)
  1706. return false;
  1707. pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
  1708. return (status & PCI_PRI_TLP_OFF) ? true : false;
  1709. }
  1710. /*
  1711. * If a device is not yet associated with a domain, this function
  1712. * assigns it visible for the hardware
  1713. */
  1714. static int attach_device(struct device *dev,
  1715. struct protection_domain *domain)
  1716. {
  1717. struct pci_dev *pdev = to_pci_dev(dev);
  1718. struct iommu_dev_data *dev_data;
  1719. unsigned long flags;
  1720. int ret;
  1721. dev_data = get_dev_data(dev);
  1722. if (domain->flags & PD_IOMMUV2_MASK) {
  1723. if (!dev_data->passthrough)
  1724. return -EINVAL;
  1725. if (dev_data->iommu_v2) {
  1726. if (pdev_iommuv2_enable(pdev) != 0)
  1727. return -EINVAL;
  1728. dev_data->ats.enabled = true;
  1729. dev_data->ats.qdep = pci_ats_queue_depth(pdev);
  1730. dev_data->pri_tlp = pci_pri_tlp_required(pdev);
  1731. }
  1732. } else if (amd_iommu_iotlb_sup &&
  1733. pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
  1734. dev_data->ats.enabled = true;
  1735. dev_data->ats.qdep = pci_ats_queue_depth(pdev);
  1736. }
  1737. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1738. ret = __attach_device(dev_data, domain);
  1739. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1740. /*
  1741. * We might boot into a crash-kernel here. The crashed kernel
  1742. * left the caches in the IOMMU dirty. So we have to flush
  1743. * here to evict all dirty stuff.
  1744. */
  1745. domain_flush_tlb_pde(domain);
  1746. return ret;
  1747. }
  1748. /*
  1749. * Removes a device from a protection domain (unlocked)
  1750. */
  1751. static void __detach_device(struct iommu_dev_data *dev_data)
  1752. {
  1753. struct iommu_dev_data *head, *entry;
  1754. struct protection_domain *domain;
  1755. unsigned long flags;
  1756. if (WARN_ON(!dev_data->domain))
  1757. return;
  1758. domain = dev_data->domain;
  1759. spin_lock_irqsave(&domain->lock, flags);
  1760. head = dev_data;
  1761. if (head->alias_data != NULL)
  1762. head = head->alias_data;
  1763. list_for_each_entry(entry, &head->alias_list, alias_list)
  1764. do_detach(entry);
  1765. do_detach(head);
  1766. spin_unlock_irqrestore(&domain->lock, flags);
  1767. }
  1768. /*
  1769. * Removes a device from a protection domain (with devtable_lock held)
  1770. */
  1771. static void detach_device(struct device *dev)
  1772. {
  1773. struct protection_domain *domain;
  1774. struct iommu_dev_data *dev_data;
  1775. unsigned long flags;
  1776. dev_data = get_dev_data(dev);
  1777. domain = dev_data->domain;
  1778. /* lock device table */
  1779. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1780. __detach_device(dev_data);
  1781. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1782. if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
  1783. pdev_iommuv2_disable(to_pci_dev(dev));
  1784. else if (dev_data->ats.enabled)
  1785. pci_disable_ats(to_pci_dev(dev));
  1786. dev_data->ats.enabled = false;
  1787. }
  1788. static int amd_iommu_add_device(struct device *dev)
  1789. {
  1790. struct iommu_dev_data *dev_data;
  1791. struct iommu_domain *domain;
  1792. struct amd_iommu *iommu;
  1793. u16 devid;
  1794. int ret;
  1795. if (!check_device(dev) || get_dev_data(dev))
  1796. return 0;
  1797. devid = get_device_id(dev);
  1798. iommu = amd_iommu_rlookup_table[devid];
  1799. ret = iommu_init_device(dev);
  1800. if (ret) {
  1801. if (ret != -ENOTSUPP)
  1802. pr_err("Failed to initialize device %s - trying to proceed anyway\n",
  1803. dev_name(dev));
  1804. iommu_ignore_device(dev);
  1805. dev->archdata.dma_ops = &nommu_dma_ops;
  1806. goto out;
  1807. }
  1808. init_iommu_group(dev);
  1809. dev_data = get_dev_data(dev);
  1810. BUG_ON(!dev_data);
  1811. if (iommu_pass_through || dev_data->iommu_v2)
  1812. iommu_request_dm_for_dev(dev);
  1813. /* Domains are initialized for this device - have a look what we ended up with */
  1814. domain = iommu_get_domain_for_dev(dev);
  1815. if (domain->type == IOMMU_DOMAIN_IDENTITY)
  1816. dev_data->passthrough = true;
  1817. else
  1818. dev->archdata.dma_ops = &amd_iommu_dma_ops;
  1819. out:
  1820. iommu_completion_wait(iommu);
  1821. return 0;
  1822. }
  1823. static void amd_iommu_remove_device(struct device *dev)
  1824. {
  1825. struct amd_iommu *iommu;
  1826. u16 devid;
  1827. if (!check_device(dev))
  1828. return;
  1829. devid = get_device_id(dev);
  1830. iommu = amd_iommu_rlookup_table[devid];
  1831. iommu_uninit_device(dev);
  1832. iommu_completion_wait(iommu);
  1833. }
  1834. /*****************************************************************************
  1835. *
  1836. * The next functions belong to the dma_ops mapping/unmapping code.
  1837. *
  1838. *****************************************************************************/
  1839. /*
  1840. * In the dma_ops path we only have the struct device. This function
  1841. * finds the corresponding IOMMU, the protection domain and the
  1842. * requestor id for a given device.
  1843. * If the device is not yet associated with a domain this is also done
  1844. * in this function.
  1845. */
  1846. static struct protection_domain *get_domain(struct device *dev)
  1847. {
  1848. struct protection_domain *domain;
  1849. struct iommu_domain *io_domain;
  1850. if (!check_device(dev))
  1851. return ERR_PTR(-EINVAL);
  1852. io_domain = iommu_get_domain_for_dev(dev);
  1853. if (!io_domain)
  1854. return NULL;
  1855. domain = to_pdomain(io_domain);
  1856. if (!dma_ops_domain(domain))
  1857. return ERR_PTR(-EBUSY);
  1858. return domain;
  1859. }
  1860. static void update_device_table(struct protection_domain *domain)
  1861. {
  1862. struct iommu_dev_data *dev_data;
  1863. list_for_each_entry(dev_data, &domain->dev_list, list)
  1864. set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
  1865. }
  1866. static void update_domain(struct protection_domain *domain)
  1867. {
  1868. if (!domain->updated)
  1869. return;
  1870. update_device_table(domain);
  1871. domain_flush_devices(domain);
  1872. domain_flush_tlb_pde(domain);
  1873. domain->updated = false;
  1874. }
  1875. /*
  1876. * This function fetches the PTE for a given address in the aperture
  1877. */
  1878. static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
  1879. unsigned long address)
  1880. {
  1881. struct aperture_range *aperture;
  1882. u64 *pte, *pte_page;
  1883. aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
  1884. if (!aperture)
  1885. return NULL;
  1886. pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
  1887. if (!pte) {
  1888. pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
  1889. GFP_ATOMIC);
  1890. aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
  1891. } else
  1892. pte += PM_LEVEL_INDEX(0, address);
  1893. update_domain(&dom->domain);
  1894. return pte;
  1895. }
  1896. /*
  1897. * This is the generic map function. It maps one 4kb page at paddr to
  1898. * the given address in the DMA address space for the domain.
  1899. */
  1900. static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
  1901. unsigned long address,
  1902. phys_addr_t paddr,
  1903. int direction)
  1904. {
  1905. u64 *pte, __pte;
  1906. WARN_ON(address > dom->aperture_size);
  1907. paddr &= PAGE_MASK;
  1908. pte = dma_ops_get_pte(dom, address);
  1909. if (!pte)
  1910. return DMA_ERROR_CODE;
  1911. __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
  1912. if (direction == DMA_TO_DEVICE)
  1913. __pte |= IOMMU_PTE_IR;
  1914. else if (direction == DMA_FROM_DEVICE)
  1915. __pte |= IOMMU_PTE_IW;
  1916. else if (direction == DMA_BIDIRECTIONAL)
  1917. __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
  1918. WARN_ON(*pte);
  1919. *pte = __pte;
  1920. return (dma_addr_t)address;
  1921. }
  1922. /*
  1923. * The generic unmapping function for on page in the DMA address space.
  1924. */
  1925. static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
  1926. unsigned long address)
  1927. {
  1928. struct aperture_range *aperture;
  1929. u64 *pte;
  1930. if (address >= dom->aperture_size)
  1931. return;
  1932. aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
  1933. if (!aperture)
  1934. return;
  1935. pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
  1936. if (!pte)
  1937. return;
  1938. pte += PM_LEVEL_INDEX(0, address);
  1939. WARN_ON(!*pte);
  1940. *pte = 0ULL;
  1941. }
  1942. /*
  1943. * This function contains common code for mapping of a physically
  1944. * contiguous memory region into DMA address space. It is used by all
  1945. * mapping functions provided with this IOMMU driver.
  1946. * Must be called with the domain lock held.
  1947. */
  1948. static dma_addr_t __map_single(struct device *dev,
  1949. struct dma_ops_domain *dma_dom,
  1950. phys_addr_t paddr,
  1951. size_t size,
  1952. int dir,
  1953. bool align,
  1954. u64 dma_mask)
  1955. {
  1956. dma_addr_t offset = paddr & ~PAGE_MASK;
  1957. dma_addr_t address, start, ret;
  1958. unsigned int pages;
  1959. unsigned long align_mask = 0;
  1960. int i;
  1961. pages = iommu_num_pages(paddr, size, PAGE_SIZE);
  1962. paddr &= PAGE_MASK;
  1963. INC_STATS_COUNTER(total_map_requests);
  1964. if (pages > 1)
  1965. INC_STATS_COUNTER(cross_page);
  1966. if (align)
  1967. align_mask = (1UL << get_order(size)) - 1;
  1968. retry:
  1969. address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
  1970. dma_mask);
  1971. if (unlikely(address == DMA_ERROR_CODE)) {
  1972. /*
  1973. * setting next_address here will let the address
  1974. * allocator only scan the new allocated range in the
  1975. * first run. This is a small optimization.
  1976. */
  1977. dma_dom->next_address = dma_dom->aperture_size;
  1978. if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
  1979. goto out;
  1980. /*
  1981. * aperture was successfully enlarged by 128 MB, try
  1982. * allocation again
  1983. */
  1984. goto retry;
  1985. }
  1986. start = address;
  1987. for (i = 0; i < pages; ++i) {
  1988. ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
  1989. if (ret == DMA_ERROR_CODE)
  1990. goto out_unmap;
  1991. paddr += PAGE_SIZE;
  1992. start += PAGE_SIZE;
  1993. }
  1994. address += offset;
  1995. ADD_STATS_COUNTER(alloced_io_mem, size);
  1996. if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
  1997. domain_flush_tlb(&dma_dom->domain);
  1998. dma_dom->need_flush = false;
  1999. } else if (unlikely(amd_iommu_np_cache))
  2000. domain_flush_pages(&dma_dom->domain, address, size);
  2001. out:
  2002. return address;
  2003. out_unmap:
  2004. for (--i; i >= 0; --i) {
  2005. start -= PAGE_SIZE;
  2006. dma_ops_domain_unmap(dma_dom, start);
  2007. }
  2008. dma_ops_free_addresses(dma_dom, address, pages);
  2009. return DMA_ERROR_CODE;
  2010. }
  2011. /*
  2012. * Does the reverse of the __map_single function. Must be called with
  2013. * the domain lock held too
  2014. */
  2015. static void __unmap_single(struct dma_ops_domain *dma_dom,
  2016. dma_addr_t dma_addr,
  2017. size_t size,
  2018. int dir)
  2019. {
  2020. dma_addr_t flush_addr;
  2021. dma_addr_t i, start;
  2022. unsigned int pages;
  2023. if ((dma_addr == DMA_ERROR_CODE) ||
  2024. (dma_addr + size > dma_dom->aperture_size))
  2025. return;
  2026. flush_addr = dma_addr;
  2027. pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
  2028. dma_addr &= PAGE_MASK;
  2029. start = dma_addr;
  2030. for (i = 0; i < pages; ++i) {
  2031. dma_ops_domain_unmap(dma_dom, start);
  2032. start += PAGE_SIZE;
  2033. }
  2034. SUB_STATS_COUNTER(alloced_io_mem, size);
  2035. dma_ops_free_addresses(dma_dom, dma_addr, pages);
  2036. if (amd_iommu_unmap_flush || dma_dom->need_flush) {
  2037. domain_flush_pages(&dma_dom->domain, flush_addr, size);
  2038. dma_dom->need_flush = false;
  2039. }
  2040. }
  2041. /*
  2042. * The exported map_single function for dma_ops.
  2043. */
  2044. static dma_addr_t map_page(struct device *dev, struct page *page,
  2045. unsigned long offset, size_t size,
  2046. enum dma_data_direction dir,
  2047. struct dma_attrs *attrs)
  2048. {
  2049. unsigned long flags;
  2050. struct protection_domain *domain;
  2051. dma_addr_t addr;
  2052. u64 dma_mask;
  2053. phys_addr_t paddr = page_to_phys(page) + offset;
  2054. INC_STATS_COUNTER(cnt_map_single);
  2055. domain = get_domain(dev);
  2056. if (PTR_ERR(domain) == -EINVAL)
  2057. return (dma_addr_t)paddr;
  2058. else if (IS_ERR(domain))
  2059. return DMA_ERROR_CODE;
  2060. dma_mask = *dev->dma_mask;
  2061. spin_lock_irqsave(&domain->lock, flags);
  2062. addr = __map_single(dev, domain->priv, paddr, size, dir, false,
  2063. dma_mask);
  2064. if (addr == DMA_ERROR_CODE)
  2065. goto out;
  2066. domain_flush_complete(domain);
  2067. out:
  2068. spin_unlock_irqrestore(&domain->lock, flags);
  2069. return addr;
  2070. }
  2071. /*
  2072. * The exported unmap_single function for dma_ops.
  2073. */
  2074. static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
  2075. enum dma_data_direction dir, struct dma_attrs *attrs)
  2076. {
  2077. unsigned long flags;
  2078. struct protection_domain *domain;
  2079. INC_STATS_COUNTER(cnt_unmap_single);
  2080. domain = get_domain(dev);
  2081. if (IS_ERR(domain))
  2082. return;
  2083. spin_lock_irqsave(&domain->lock, flags);
  2084. __unmap_single(domain->priv, dma_addr, size, dir);
  2085. domain_flush_complete(domain);
  2086. spin_unlock_irqrestore(&domain->lock, flags);
  2087. }
  2088. /*
  2089. * The exported map_sg function for dma_ops (handles scatter-gather
  2090. * lists).
  2091. */
  2092. static int map_sg(struct device *dev, struct scatterlist *sglist,
  2093. int nelems, enum dma_data_direction dir,
  2094. struct dma_attrs *attrs)
  2095. {
  2096. unsigned long flags;
  2097. struct protection_domain *domain;
  2098. int i;
  2099. struct scatterlist *s;
  2100. phys_addr_t paddr;
  2101. int mapped_elems = 0;
  2102. u64 dma_mask;
  2103. INC_STATS_COUNTER(cnt_map_sg);
  2104. domain = get_domain(dev);
  2105. if (IS_ERR(domain))
  2106. return 0;
  2107. dma_mask = *dev->dma_mask;
  2108. spin_lock_irqsave(&domain->lock, flags);
  2109. for_each_sg(sglist, s, nelems, i) {
  2110. paddr = sg_phys(s);
  2111. s->dma_address = __map_single(dev, domain->priv,
  2112. paddr, s->length, dir, false,
  2113. dma_mask);
  2114. if (s->dma_address) {
  2115. s->dma_length = s->length;
  2116. mapped_elems++;
  2117. } else
  2118. goto unmap;
  2119. }
  2120. domain_flush_complete(domain);
  2121. out:
  2122. spin_unlock_irqrestore(&domain->lock, flags);
  2123. return mapped_elems;
  2124. unmap:
  2125. for_each_sg(sglist, s, mapped_elems, i) {
  2126. if (s->dma_address)
  2127. __unmap_single(domain->priv, s->dma_address,
  2128. s->dma_length, dir);
  2129. s->dma_address = s->dma_length = 0;
  2130. }
  2131. mapped_elems = 0;
  2132. goto out;
  2133. }
  2134. /*
  2135. * The exported map_sg function for dma_ops (handles scatter-gather
  2136. * lists).
  2137. */
  2138. static void unmap_sg(struct device *dev, struct scatterlist *sglist,
  2139. int nelems, enum dma_data_direction dir,
  2140. struct dma_attrs *attrs)
  2141. {
  2142. unsigned long flags;
  2143. struct protection_domain *domain;
  2144. struct scatterlist *s;
  2145. int i;
  2146. INC_STATS_COUNTER(cnt_unmap_sg);
  2147. domain = get_domain(dev);
  2148. if (IS_ERR(domain))
  2149. return;
  2150. spin_lock_irqsave(&domain->lock, flags);
  2151. for_each_sg(sglist, s, nelems, i) {
  2152. __unmap_single(domain->priv, s->dma_address,
  2153. s->dma_length, dir);
  2154. s->dma_address = s->dma_length = 0;
  2155. }
  2156. domain_flush_complete(domain);
  2157. spin_unlock_irqrestore(&domain->lock, flags);
  2158. }
  2159. /*
  2160. * The exported alloc_coherent function for dma_ops.
  2161. */
  2162. static void *alloc_coherent(struct device *dev, size_t size,
  2163. dma_addr_t *dma_addr, gfp_t flag,
  2164. struct dma_attrs *attrs)
  2165. {
  2166. u64 dma_mask = dev->coherent_dma_mask;
  2167. struct protection_domain *domain;
  2168. unsigned long flags;
  2169. struct page *page;
  2170. INC_STATS_COUNTER(cnt_alloc_coherent);
  2171. domain = get_domain(dev);
  2172. if (PTR_ERR(domain) == -EINVAL) {
  2173. page = alloc_pages(flag, get_order(size));
  2174. *dma_addr = page_to_phys(page);
  2175. return page_address(page);
  2176. } else if (IS_ERR(domain))
  2177. return NULL;
  2178. size = PAGE_ALIGN(size);
  2179. dma_mask = dev->coherent_dma_mask;
  2180. flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
  2181. flag |= __GFP_ZERO;
  2182. page = alloc_pages(flag | __GFP_NOWARN, get_order(size));
  2183. if (!page) {
  2184. if (!(flag & __GFP_WAIT))
  2185. return NULL;
  2186. page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
  2187. get_order(size));
  2188. if (!page)
  2189. return NULL;
  2190. }
  2191. if (!dma_mask)
  2192. dma_mask = *dev->dma_mask;
  2193. spin_lock_irqsave(&domain->lock, flags);
  2194. *dma_addr = __map_single(dev, domain->priv, page_to_phys(page),
  2195. size, DMA_BIDIRECTIONAL, true, dma_mask);
  2196. if (*dma_addr == DMA_ERROR_CODE) {
  2197. spin_unlock_irqrestore(&domain->lock, flags);
  2198. goto out_free;
  2199. }
  2200. domain_flush_complete(domain);
  2201. spin_unlock_irqrestore(&domain->lock, flags);
  2202. return page_address(page);
  2203. out_free:
  2204. if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
  2205. __free_pages(page, get_order(size));
  2206. return NULL;
  2207. }
  2208. /*
  2209. * The exported free_coherent function for dma_ops.
  2210. */
  2211. static void free_coherent(struct device *dev, size_t size,
  2212. void *virt_addr, dma_addr_t dma_addr,
  2213. struct dma_attrs *attrs)
  2214. {
  2215. struct protection_domain *domain;
  2216. unsigned long flags;
  2217. struct page *page;
  2218. INC_STATS_COUNTER(cnt_free_coherent);
  2219. page = virt_to_page(virt_addr);
  2220. size = PAGE_ALIGN(size);
  2221. domain = get_domain(dev);
  2222. if (IS_ERR(domain))
  2223. goto free_mem;
  2224. spin_lock_irqsave(&domain->lock, flags);
  2225. __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
  2226. domain_flush_complete(domain);
  2227. spin_unlock_irqrestore(&domain->lock, flags);
  2228. free_mem:
  2229. if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
  2230. __free_pages(page, get_order(size));
  2231. }
  2232. /*
  2233. * This function is called by the DMA layer to find out if we can handle a
  2234. * particular device. It is part of the dma_ops.
  2235. */
  2236. static int amd_iommu_dma_supported(struct device *dev, u64 mask)
  2237. {
  2238. return check_device(dev);
  2239. }
  2240. static struct dma_map_ops amd_iommu_dma_ops = {
  2241. .alloc = alloc_coherent,
  2242. .free = free_coherent,
  2243. .map_page = map_page,
  2244. .unmap_page = unmap_page,
  2245. .map_sg = map_sg,
  2246. .unmap_sg = unmap_sg,
  2247. .dma_supported = amd_iommu_dma_supported,
  2248. };
  2249. int __init amd_iommu_init_api(void)
  2250. {
  2251. return bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
  2252. }
  2253. int __init amd_iommu_init_dma_ops(void)
  2254. {
  2255. swiotlb = iommu_pass_through ? 1 : 0;
  2256. iommu_detected = 1;
  2257. /*
  2258. * In case we don't initialize SWIOTLB (actually the common case
  2259. * when AMD IOMMU is enabled), make sure there are global
  2260. * dma_ops set as a fall-back for devices not handled by this
  2261. * driver (for example non-PCI devices).
  2262. */
  2263. if (!swiotlb)
  2264. dma_ops = &nommu_dma_ops;
  2265. amd_iommu_stats_init();
  2266. if (amd_iommu_unmap_flush)
  2267. pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
  2268. else
  2269. pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
  2270. return 0;
  2271. }
  2272. /*****************************************************************************
  2273. *
  2274. * The following functions belong to the exported interface of AMD IOMMU
  2275. *
  2276. * This interface allows access to lower level functions of the IOMMU
  2277. * like protection domain handling and assignement of devices to domains
  2278. * which is not possible with the dma_ops interface.
  2279. *
  2280. *****************************************************************************/
  2281. static void cleanup_domain(struct protection_domain *domain)
  2282. {
  2283. struct iommu_dev_data *entry;
  2284. unsigned long flags;
  2285. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  2286. while (!list_empty(&domain->dev_list)) {
  2287. entry = list_first_entry(&domain->dev_list,
  2288. struct iommu_dev_data, list);
  2289. __detach_device(entry);
  2290. }
  2291. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  2292. }
  2293. static void protection_domain_free(struct protection_domain *domain)
  2294. {
  2295. if (!domain)
  2296. return;
  2297. del_domain_from_list(domain);
  2298. if (domain->id)
  2299. domain_id_free(domain->id);
  2300. kfree(domain);
  2301. }
  2302. static int protection_domain_init(struct protection_domain *domain)
  2303. {
  2304. spin_lock_init(&domain->lock);
  2305. mutex_init(&domain->api_lock);
  2306. domain->id = domain_id_alloc();
  2307. if (!domain->id)
  2308. return -ENOMEM;
  2309. INIT_LIST_HEAD(&domain->dev_list);
  2310. return 0;
  2311. }
  2312. static struct protection_domain *protection_domain_alloc(void)
  2313. {
  2314. struct protection_domain *domain;
  2315. domain = kzalloc(sizeof(*domain), GFP_KERNEL);
  2316. if (!domain)
  2317. return NULL;
  2318. if (protection_domain_init(domain))
  2319. goto out_err;
  2320. add_domain_to_list(domain);
  2321. return domain;
  2322. out_err:
  2323. kfree(domain);
  2324. return NULL;
  2325. }
  2326. static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
  2327. {
  2328. struct protection_domain *pdomain;
  2329. struct dma_ops_domain *dma_domain;
  2330. switch (type) {
  2331. case IOMMU_DOMAIN_UNMANAGED:
  2332. pdomain = protection_domain_alloc();
  2333. if (!pdomain)
  2334. return NULL;
  2335. pdomain->mode = PAGE_MODE_3_LEVEL;
  2336. pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
  2337. if (!pdomain->pt_root) {
  2338. protection_domain_free(pdomain);
  2339. return NULL;
  2340. }
  2341. pdomain->domain.geometry.aperture_start = 0;
  2342. pdomain->domain.geometry.aperture_end = ~0ULL;
  2343. pdomain->domain.geometry.force_aperture = true;
  2344. break;
  2345. case IOMMU_DOMAIN_DMA:
  2346. dma_domain = dma_ops_domain_alloc();
  2347. if (!dma_domain) {
  2348. pr_err("AMD-Vi: Failed to allocate\n");
  2349. return NULL;
  2350. }
  2351. pdomain = &dma_domain->domain;
  2352. break;
  2353. case IOMMU_DOMAIN_IDENTITY:
  2354. pdomain = protection_domain_alloc();
  2355. if (!pdomain)
  2356. return NULL;
  2357. pdomain->mode = PAGE_MODE_NONE;
  2358. break;
  2359. default:
  2360. return NULL;
  2361. }
  2362. return &pdomain->domain;
  2363. }
  2364. static void amd_iommu_domain_free(struct iommu_domain *dom)
  2365. {
  2366. struct protection_domain *domain;
  2367. if (!dom)
  2368. return;
  2369. domain = to_pdomain(dom);
  2370. if (domain->dev_cnt > 0)
  2371. cleanup_domain(domain);
  2372. BUG_ON(domain->dev_cnt != 0);
  2373. if (domain->mode != PAGE_MODE_NONE)
  2374. free_pagetable(domain);
  2375. if (domain->flags & PD_IOMMUV2_MASK)
  2376. free_gcr3_table(domain);
  2377. protection_domain_free(domain);
  2378. }
  2379. static void amd_iommu_detach_device(struct iommu_domain *dom,
  2380. struct device *dev)
  2381. {
  2382. struct iommu_dev_data *dev_data = dev->archdata.iommu;
  2383. struct amd_iommu *iommu;
  2384. u16 devid;
  2385. if (!check_device(dev))
  2386. return;
  2387. devid = get_device_id(dev);
  2388. if (dev_data->domain != NULL)
  2389. detach_device(dev);
  2390. iommu = amd_iommu_rlookup_table[devid];
  2391. if (!iommu)
  2392. return;
  2393. iommu_completion_wait(iommu);
  2394. }
  2395. static int amd_iommu_attach_device(struct iommu_domain *dom,
  2396. struct device *dev)
  2397. {
  2398. struct protection_domain *domain = to_pdomain(dom);
  2399. struct iommu_dev_data *dev_data;
  2400. struct amd_iommu *iommu;
  2401. int ret;
  2402. if (!check_device(dev))
  2403. return -EINVAL;
  2404. dev_data = dev->archdata.iommu;
  2405. iommu = amd_iommu_rlookup_table[dev_data->devid];
  2406. if (!iommu)
  2407. return -EINVAL;
  2408. if (dev_data->domain)
  2409. detach_device(dev);
  2410. ret = attach_device(dev, domain);
  2411. iommu_completion_wait(iommu);
  2412. return ret;
  2413. }
  2414. static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
  2415. phys_addr_t paddr, size_t page_size, int iommu_prot)
  2416. {
  2417. struct protection_domain *domain = to_pdomain(dom);
  2418. int prot = 0;
  2419. int ret;
  2420. if (domain->mode == PAGE_MODE_NONE)
  2421. return -EINVAL;
  2422. if (iommu_prot & IOMMU_READ)
  2423. prot |= IOMMU_PROT_IR;
  2424. if (iommu_prot & IOMMU_WRITE)
  2425. prot |= IOMMU_PROT_IW;
  2426. mutex_lock(&domain->api_lock);
  2427. ret = iommu_map_page(domain, iova, paddr, prot, page_size);
  2428. mutex_unlock(&domain->api_lock);
  2429. return ret;
  2430. }
  2431. static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
  2432. size_t page_size)
  2433. {
  2434. struct protection_domain *domain = to_pdomain(dom);
  2435. size_t unmap_size;
  2436. if (domain->mode == PAGE_MODE_NONE)
  2437. return -EINVAL;
  2438. mutex_lock(&domain->api_lock);
  2439. unmap_size = iommu_unmap_page(domain, iova, page_size);
  2440. mutex_unlock(&domain->api_lock);
  2441. domain_flush_tlb_pde(domain);
  2442. return unmap_size;
  2443. }
  2444. static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
  2445. dma_addr_t iova)
  2446. {
  2447. struct protection_domain *domain = to_pdomain(dom);
  2448. unsigned long offset_mask, pte_pgsize;
  2449. u64 *pte, __pte;
  2450. if (domain->mode == PAGE_MODE_NONE)
  2451. return iova;
  2452. pte = fetch_pte(domain, iova, &pte_pgsize);
  2453. if (!pte || !IOMMU_PTE_PRESENT(*pte))
  2454. return 0;
  2455. offset_mask = pte_pgsize - 1;
  2456. __pte = *pte & PM_ADDR_MASK;
  2457. return (__pte & ~offset_mask) | (iova & offset_mask);
  2458. }
  2459. static bool amd_iommu_capable(enum iommu_cap cap)
  2460. {
  2461. switch (cap) {
  2462. case IOMMU_CAP_CACHE_COHERENCY:
  2463. return true;
  2464. case IOMMU_CAP_INTR_REMAP:
  2465. return (irq_remapping_enabled == 1);
  2466. case IOMMU_CAP_NOEXEC:
  2467. return false;
  2468. }
  2469. return false;
  2470. }
  2471. static void amd_iommu_get_dm_regions(struct device *dev,
  2472. struct list_head *head)
  2473. {
  2474. struct unity_map_entry *entry;
  2475. u16 devid;
  2476. devid = get_device_id(dev);
  2477. list_for_each_entry(entry, &amd_iommu_unity_map, list) {
  2478. struct iommu_dm_region *region;
  2479. if (devid < entry->devid_start || devid > entry->devid_end)
  2480. continue;
  2481. region = kzalloc(sizeof(*region), GFP_KERNEL);
  2482. if (!region) {
  2483. pr_err("Out of memory allocating dm-regions for %s\n",
  2484. dev_name(dev));
  2485. return;
  2486. }
  2487. region->start = entry->address_start;
  2488. region->length = entry->address_end - entry->address_start;
  2489. if (entry->prot & IOMMU_PROT_IR)
  2490. region->prot |= IOMMU_READ;
  2491. if (entry->prot & IOMMU_PROT_IW)
  2492. region->prot |= IOMMU_WRITE;
  2493. list_add_tail(&region->list, head);
  2494. }
  2495. }
  2496. static void amd_iommu_put_dm_regions(struct device *dev,
  2497. struct list_head *head)
  2498. {
  2499. struct iommu_dm_region *entry, *next;
  2500. list_for_each_entry_safe(entry, next, head, list)
  2501. kfree(entry);
  2502. }
  2503. static const struct iommu_ops amd_iommu_ops = {
  2504. .capable = amd_iommu_capable,
  2505. .domain_alloc = amd_iommu_domain_alloc,
  2506. .domain_free = amd_iommu_domain_free,
  2507. .attach_dev = amd_iommu_attach_device,
  2508. .detach_dev = amd_iommu_detach_device,
  2509. .map = amd_iommu_map,
  2510. .unmap = amd_iommu_unmap,
  2511. .map_sg = default_iommu_map_sg,
  2512. .iova_to_phys = amd_iommu_iova_to_phys,
  2513. .add_device = amd_iommu_add_device,
  2514. .remove_device = amd_iommu_remove_device,
  2515. .get_dm_regions = amd_iommu_get_dm_regions,
  2516. .put_dm_regions = amd_iommu_put_dm_regions,
  2517. .pgsize_bitmap = AMD_IOMMU_PGSIZES,
  2518. };
  2519. /*****************************************************************************
  2520. *
  2521. * The next functions do a basic initialization of IOMMU for pass through
  2522. * mode
  2523. *
  2524. * In passthrough mode the IOMMU is initialized and enabled but not used for
  2525. * DMA-API translation.
  2526. *
  2527. *****************************************************************************/
  2528. /* IOMMUv2 specific functions */
  2529. int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
  2530. {
  2531. return atomic_notifier_chain_register(&ppr_notifier, nb);
  2532. }
  2533. EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
  2534. int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
  2535. {
  2536. return atomic_notifier_chain_unregister(&ppr_notifier, nb);
  2537. }
  2538. EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
  2539. void amd_iommu_domain_direct_map(struct iommu_domain *dom)
  2540. {
  2541. struct protection_domain *domain = to_pdomain(dom);
  2542. unsigned long flags;
  2543. spin_lock_irqsave(&domain->lock, flags);
  2544. /* Update data structure */
  2545. domain->mode = PAGE_MODE_NONE;
  2546. domain->updated = true;
  2547. /* Make changes visible to IOMMUs */
  2548. update_domain(domain);
  2549. /* Page-table is not visible to IOMMU anymore, so free it */
  2550. free_pagetable(domain);
  2551. spin_unlock_irqrestore(&domain->lock, flags);
  2552. }
  2553. EXPORT_SYMBOL(amd_iommu_domain_direct_map);
  2554. int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
  2555. {
  2556. struct protection_domain *domain = to_pdomain(dom);
  2557. unsigned long flags;
  2558. int levels, ret;
  2559. if (pasids <= 0 || pasids > (PASID_MASK + 1))
  2560. return -EINVAL;
  2561. /* Number of GCR3 table levels required */
  2562. for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
  2563. levels += 1;
  2564. if (levels > amd_iommu_max_glx_val)
  2565. return -EINVAL;
  2566. spin_lock_irqsave(&domain->lock, flags);
  2567. /*
  2568. * Save us all sanity checks whether devices already in the
  2569. * domain support IOMMUv2. Just force that the domain has no
  2570. * devices attached when it is switched into IOMMUv2 mode.
  2571. */
  2572. ret = -EBUSY;
  2573. if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
  2574. goto out;
  2575. ret = -ENOMEM;
  2576. domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
  2577. if (domain->gcr3_tbl == NULL)
  2578. goto out;
  2579. domain->glx = levels;
  2580. domain->flags |= PD_IOMMUV2_MASK;
  2581. domain->updated = true;
  2582. update_domain(domain);
  2583. ret = 0;
  2584. out:
  2585. spin_unlock_irqrestore(&domain->lock, flags);
  2586. return ret;
  2587. }
  2588. EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
  2589. static int __flush_pasid(struct protection_domain *domain, int pasid,
  2590. u64 address, bool size)
  2591. {
  2592. struct iommu_dev_data *dev_data;
  2593. struct iommu_cmd cmd;
  2594. int i, ret;
  2595. if (!(domain->flags & PD_IOMMUV2_MASK))
  2596. return -EINVAL;
  2597. build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
  2598. /*
  2599. * IOMMU TLB needs to be flushed before Device TLB to
  2600. * prevent device TLB refill from IOMMU TLB
  2601. */
  2602. for (i = 0; i < amd_iommus_present; ++i) {
  2603. if (domain->dev_iommu[i] == 0)
  2604. continue;
  2605. ret = iommu_queue_command(amd_iommus[i], &cmd);
  2606. if (ret != 0)
  2607. goto out;
  2608. }
  2609. /* Wait until IOMMU TLB flushes are complete */
  2610. domain_flush_complete(domain);
  2611. /* Now flush device TLBs */
  2612. list_for_each_entry(dev_data, &domain->dev_list, list) {
  2613. struct amd_iommu *iommu;
  2614. int qdep;
  2615. /*
  2616. There might be non-IOMMUv2 capable devices in an IOMMUv2
  2617. * domain.
  2618. */
  2619. if (!dev_data->ats.enabled)
  2620. continue;
  2621. qdep = dev_data->ats.qdep;
  2622. iommu = amd_iommu_rlookup_table[dev_data->devid];
  2623. build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
  2624. qdep, address, size);
  2625. ret = iommu_queue_command(iommu, &cmd);
  2626. if (ret != 0)
  2627. goto out;
  2628. }
  2629. /* Wait until all device TLBs are flushed */
  2630. domain_flush_complete(domain);
  2631. ret = 0;
  2632. out:
  2633. return ret;
  2634. }
  2635. static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
  2636. u64 address)
  2637. {
  2638. INC_STATS_COUNTER(invalidate_iotlb);
  2639. return __flush_pasid(domain, pasid, address, false);
  2640. }
  2641. int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
  2642. u64 address)
  2643. {
  2644. struct protection_domain *domain = to_pdomain(dom);
  2645. unsigned long flags;
  2646. int ret;
  2647. spin_lock_irqsave(&domain->lock, flags);
  2648. ret = __amd_iommu_flush_page(domain, pasid, address);
  2649. spin_unlock_irqrestore(&domain->lock, flags);
  2650. return ret;
  2651. }
  2652. EXPORT_SYMBOL(amd_iommu_flush_page);
  2653. static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
  2654. {
  2655. INC_STATS_COUNTER(invalidate_iotlb_all);
  2656. return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
  2657. true);
  2658. }
  2659. int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
  2660. {
  2661. struct protection_domain *domain = to_pdomain(dom);
  2662. unsigned long flags;
  2663. int ret;
  2664. spin_lock_irqsave(&domain->lock, flags);
  2665. ret = __amd_iommu_flush_tlb(domain, pasid);
  2666. spin_unlock_irqrestore(&domain->lock, flags);
  2667. return ret;
  2668. }
  2669. EXPORT_SYMBOL(amd_iommu_flush_tlb);
  2670. static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
  2671. {
  2672. int index;
  2673. u64 *pte;
  2674. while (true) {
  2675. index = (pasid >> (9 * level)) & 0x1ff;
  2676. pte = &root[index];
  2677. if (level == 0)
  2678. break;
  2679. if (!(*pte & GCR3_VALID)) {
  2680. if (!alloc)
  2681. return NULL;
  2682. root = (void *)get_zeroed_page(GFP_ATOMIC);
  2683. if (root == NULL)
  2684. return NULL;
  2685. *pte = __pa(root) | GCR3_VALID;
  2686. }
  2687. root = __va(*pte & PAGE_MASK);
  2688. level -= 1;
  2689. }
  2690. return pte;
  2691. }
  2692. static int __set_gcr3(struct protection_domain *domain, int pasid,
  2693. unsigned long cr3)
  2694. {
  2695. u64 *pte;
  2696. if (domain->mode != PAGE_MODE_NONE)
  2697. return -EINVAL;
  2698. pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
  2699. if (pte == NULL)
  2700. return -ENOMEM;
  2701. *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
  2702. return __amd_iommu_flush_tlb(domain, pasid);
  2703. }
  2704. static int __clear_gcr3(struct protection_domain *domain, int pasid)
  2705. {
  2706. u64 *pte;
  2707. if (domain->mode != PAGE_MODE_NONE)
  2708. return -EINVAL;
  2709. pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
  2710. if (pte == NULL)
  2711. return 0;
  2712. *pte = 0;
  2713. return __amd_iommu_flush_tlb(domain, pasid);
  2714. }
  2715. int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
  2716. unsigned long cr3)
  2717. {
  2718. struct protection_domain *domain = to_pdomain(dom);
  2719. unsigned long flags;
  2720. int ret;
  2721. spin_lock_irqsave(&domain->lock, flags);
  2722. ret = __set_gcr3(domain, pasid, cr3);
  2723. spin_unlock_irqrestore(&domain->lock, flags);
  2724. return ret;
  2725. }
  2726. EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
  2727. int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
  2728. {
  2729. struct protection_domain *domain = to_pdomain(dom);
  2730. unsigned long flags;
  2731. int ret;
  2732. spin_lock_irqsave(&domain->lock, flags);
  2733. ret = __clear_gcr3(domain, pasid);
  2734. spin_unlock_irqrestore(&domain->lock, flags);
  2735. return ret;
  2736. }
  2737. EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
  2738. int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
  2739. int status, int tag)
  2740. {
  2741. struct iommu_dev_data *dev_data;
  2742. struct amd_iommu *iommu;
  2743. struct iommu_cmd cmd;
  2744. INC_STATS_COUNTER(complete_ppr);
  2745. dev_data = get_dev_data(&pdev->dev);
  2746. iommu = amd_iommu_rlookup_table[dev_data->devid];
  2747. build_complete_ppr(&cmd, dev_data->devid, pasid, status,
  2748. tag, dev_data->pri_tlp);
  2749. return iommu_queue_command(iommu, &cmd);
  2750. }
  2751. EXPORT_SYMBOL(amd_iommu_complete_ppr);
  2752. struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
  2753. {
  2754. struct protection_domain *pdomain;
  2755. pdomain = get_domain(&pdev->dev);
  2756. if (IS_ERR(pdomain))
  2757. return NULL;
  2758. /* Only return IOMMUv2 domains */
  2759. if (!(pdomain->flags & PD_IOMMUV2_MASK))
  2760. return NULL;
  2761. return &pdomain->domain;
  2762. }
  2763. EXPORT_SYMBOL(amd_iommu_get_v2_domain);
  2764. void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
  2765. {
  2766. struct iommu_dev_data *dev_data;
  2767. if (!amd_iommu_v2_supported())
  2768. return;
  2769. dev_data = get_dev_data(&pdev->dev);
  2770. dev_data->errata |= (1 << erratum);
  2771. }
  2772. EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
  2773. int amd_iommu_device_info(struct pci_dev *pdev,
  2774. struct amd_iommu_device_info *info)
  2775. {
  2776. int max_pasids;
  2777. int pos;
  2778. if (pdev == NULL || info == NULL)
  2779. return -EINVAL;
  2780. if (!amd_iommu_v2_supported())
  2781. return -EINVAL;
  2782. memset(info, 0, sizeof(*info));
  2783. pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
  2784. if (pos)
  2785. info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
  2786. pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
  2787. if (pos)
  2788. info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
  2789. pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
  2790. if (pos) {
  2791. int features;
  2792. max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
  2793. max_pasids = min(max_pasids, (1 << 20));
  2794. info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
  2795. info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
  2796. features = pci_pasid_features(pdev);
  2797. if (features & PCI_PASID_CAP_EXEC)
  2798. info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
  2799. if (features & PCI_PASID_CAP_PRIV)
  2800. info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
  2801. }
  2802. return 0;
  2803. }
  2804. EXPORT_SYMBOL(amd_iommu_device_info);
  2805. #ifdef CONFIG_IRQ_REMAP
  2806. /*****************************************************************************
  2807. *
  2808. * Interrupt Remapping Implementation
  2809. *
  2810. *****************************************************************************/
  2811. union irte {
  2812. u32 val;
  2813. struct {
  2814. u32 valid : 1,
  2815. no_fault : 1,
  2816. int_type : 3,
  2817. rq_eoi : 1,
  2818. dm : 1,
  2819. rsvd_1 : 1,
  2820. destination : 8,
  2821. vector : 8,
  2822. rsvd_2 : 8;
  2823. } fields;
  2824. };
  2825. struct irq_2_irte {
  2826. u16 devid; /* Device ID for IRTE table */
  2827. u16 index; /* Index into IRTE table*/
  2828. };
  2829. struct amd_ir_data {
  2830. struct irq_2_irte irq_2_irte;
  2831. union irte irte_entry;
  2832. union {
  2833. struct msi_msg msi_entry;
  2834. };
  2835. };
  2836. static struct irq_chip amd_ir_chip;
  2837. #define DTE_IRQ_PHYS_ADDR_MASK (((1ULL << 45)-1) << 6)
  2838. #define DTE_IRQ_REMAP_INTCTL (2ULL << 60)
  2839. #define DTE_IRQ_TABLE_LEN (8ULL << 1)
  2840. #define DTE_IRQ_REMAP_ENABLE 1ULL
  2841. static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
  2842. {
  2843. u64 dte;
  2844. dte = amd_iommu_dev_table[devid].data[2];
  2845. dte &= ~DTE_IRQ_PHYS_ADDR_MASK;
  2846. dte |= virt_to_phys(table->table);
  2847. dte |= DTE_IRQ_REMAP_INTCTL;
  2848. dte |= DTE_IRQ_TABLE_LEN;
  2849. dte |= DTE_IRQ_REMAP_ENABLE;
  2850. amd_iommu_dev_table[devid].data[2] = dte;
  2851. }
  2852. #define IRTE_ALLOCATED (~1U)
  2853. static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
  2854. {
  2855. struct irq_remap_table *table = NULL;
  2856. struct amd_iommu *iommu;
  2857. unsigned long flags;
  2858. u16 alias;
  2859. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  2860. iommu = amd_iommu_rlookup_table[devid];
  2861. if (!iommu)
  2862. goto out_unlock;
  2863. table = irq_lookup_table[devid];
  2864. if (table)
  2865. goto out;
  2866. alias = amd_iommu_alias_table[devid];
  2867. table = irq_lookup_table[alias];
  2868. if (table) {
  2869. irq_lookup_table[devid] = table;
  2870. set_dte_irq_entry(devid, table);
  2871. iommu_flush_dte(iommu, devid);
  2872. goto out;
  2873. }
  2874. /* Nothing there yet, allocate new irq remapping table */
  2875. table = kzalloc(sizeof(*table), GFP_ATOMIC);
  2876. if (!table)
  2877. goto out;
  2878. /* Initialize table spin-lock */
  2879. spin_lock_init(&table->lock);
  2880. if (ioapic)
  2881. /* Keep the first 32 indexes free for IOAPIC interrupts */
  2882. table->min_index = 32;
  2883. table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
  2884. if (!table->table) {
  2885. kfree(table);
  2886. table = NULL;
  2887. goto out;
  2888. }
  2889. memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));
  2890. if (ioapic) {
  2891. int i;
  2892. for (i = 0; i < 32; ++i)
  2893. table->table[i] = IRTE_ALLOCATED;
  2894. }
  2895. irq_lookup_table[devid] = table;
  2896. set_dte_irq_entry(devid, table);
  2897. iommu_flush_dte(iommu, devid);
  2898. if (devid != alias) {
  2899. irq_lookup_table[alias] = table;
  2900. set_dte_irq_entry(alias, table);
  2901. iommu_flush_dte(iommu, alias);
  2902. }
  2903. out:
  2904. iommu_completion_wait(iommu);
  2905. out_unlock:
  2906. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  2907. return table;
  2908. }
  2909. static int alloc_irq_index(u16 devid, int count)
  2910. {
  2911. struct irq_remap_table *table;
  2912. unsigned long flags;
  2913. int index, c;
  2914. table = get_irq_table(devid, false);
  2915. if (!table)
  2916. return -ENODEV;
  2917. spin_lock_irqsave(&table->lock, flags);
  2918. /* Scan table for free entries */
  2919. for (c = 0, index = table->min_index;
  2920. index < MAX_IRQS_PER_TABLE;
  2921. ++index) {
  2922. if (table->table[index] == 0)
  2923. c += 1;
  2924. else
  2925. c = 0;
  2926. if (c == count) {
  2927. for (; c != 0; --c)
  2928. table->table[index - c + 1] = IRTE_ALLOCATED;
  2929. index -= count - 1;
  2930. goto out;
  2931. }
  2932. }
  2933. index = -ENOSPC;
  2934. out:
  2935. spin_unlock_irqrestore(&table->lock, flags);
  2936. return index;
  2937. }
  2938. static int modify_irte(u16 devid, int index, union irte irte)
  2939. {
  2940. struct irq_remap_table *table;
  2941. struct amd_iommu *iommu;
  2942. unsigned long flags;
  2943. iommu = amd_iommu_rlookup_table[devid];
  2944. if (iommu == NULL)
  2945. return -EINVAL;
  2946. table = get_irq_table(devid, false);
  2947. if (!table)
  2948. return -ENOMEM;
  2949. spin_lock_irqsave(&table->lock, flags);
  2950. table->table[index] = irte.val;
  2951. spin_unlock_irqrestore(&table->lock, flags);
  2952. iommu_flush_irt(iommu, devid);
  2953. iommu_completion_wait(iommu);
  2954. return 0;
  2955. }
  2956. static void free_irte(u16 devid, int index)
  2957. {
  2958. struct irq_remap_table *table;
  2959. struct amd_iommu *iommu;
  2960. unsigned long flags;
  2961. iommu = amd_iommu_rlookup_table[devid];
  2962. if (iommu == NULL)
  2963. return;
  2964. table = get_irq_table(devid, false);
  2965. if (!table)
  2966. return;
  2967. spin_lock_irqsave(&table->lock, flags);
  2968. table->table[index] = 0;
  2969. spin_unlock_irqrestore(&table->lock, flags);
  2970. iommu_flush_irt(iommu, devid);
  2971. iommu_completion_wait(iommu);
  2972. }
  2973. static int get_devid(struct irq_alloc_info *info)
  2974. {
  2975. int devid = -1;
  2976. switch (info->type) {
  2977. case X86_IRQ_ALLOC_TYPE_IOAPIC:
  2978. devid = get_ioapic_devid(info->ioapic_id);
  2979. break;
  2980. case X86_IRQ_ALLOC_TYPE_HPET:
  2981. devid = get_hpet_devid(info->hpet_id);
  2982. break;
  2983. case X86_IRQ_ALLOC_TYPE_MSI:
  2984. case X86_IRQ_ALLOC_TYPE_MSIX:
  2985. devid = get_device_id(&info->msi_dev->dev);
  2986. break;
  2987. default:
  2988. BUG_ON(1);
  2989. break;
  2990. }
  2991. return devid;
  2992. }
  2993. static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
  2994. {
  2995. struct amd_iommu *iommu;
  2996. int devid;
  2997. if (!info)
  2998. return NULL;
  2999. devid = get_devid(info);
  3000. if (devid >= 0) {
  3001. iommu = amd_iommu_rlookup_table[devid];
  3002. if (iommu)
  3003. return iommu->ir_domain;
  3004. }
  3005. return NULL;
  3006. }
  3007. static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
  3008. {
  3009. struct amd_iommu *iommu;
  3010. int devid;
  3011. if (!info)
  3012. return NULL;
  3013. switch (info->type) {
  3014. case X86_IRQ_ALLOC_TYPE_MSI:
  3015. case X86_IRQ_ALLOC_TYPE_MSIX:
  3016. devid = get_device_id(&info->msi_dev->dev);
  3017. if (devid >= 0) {
  3018. iommu = amd_iommu_rlookup_table[devid];
  3019. if (iommu)
  3020. return iommu->msi_domain;
  3021. }
  3022. break;
  3023. default:
  3024. break;
  3025. }
  3026. return NULL;
  3027. }
  3028. struct irq_remap_ops amd_iommu_irq_ops = {
  3029. .prepare = amd_iommu_prepare,
  3030. .enable = amd_iommu_enable,
  3031. .disable = amd_iommu_disable,
  3032. .reenable = amd_iommu_reenable,
  3033. .enable_faulting = amd_iommu_enable_faulting,
  3034. .get_ir_irq_domain = get_ir_irq_domain,
  3035. .get_irq_domain = get_irq_domain,
  3036. };
  3037. static void irq_remapping_prepare_irte(struct amd_ir_data *data,
  3038. struct irq_cfg *irq_cfg,
  3039. struct irq_alloc_info *info,
  3040. int devid, int index, int sub_handle)
  3041. {
  3042. struct irq_2_irte *irte_info = &data->irq_2_irte;
  3043. struct msi_msg *msg = &data->msi_entry;
  3044. union irte *irte = &data->irte_entry;
  3045. struct IO_APIC_route_entry *entry;
  3046. data->irq_2_irte.devid = devid;
  3047. data->irq_2_irte.index = index + sub_handle;
  3048. /* Setup IRTE for IOMMU */
  3049. irte->val = 0;
  3050. irte->fields.vector = irq_cfg->vector;
  3051. irte->fields.int_type = apic->irq_delivery_mode;
  3052. irte->fields.destination = irq_cfg->dest_apicid;
  3053. irte->fields.dm = apic->irq_dest_mode;
  3054. irte->fields.valid = 1;
  3055. switch (info->type) {
  3056. case X86_IRQ_ALLOC_TYPE_IOAPIC:
  3057. /* Setup IOAPIC entry */
  3058. entry = info->ioapic_entry;
  3059. info->ioapic_entry = NULL;
  3060. memset(entry, 0, sizeof(*entry));
  3061. entry->vector = index;
  3062. entry->mask = 0;
  3063. entry->trigger = info->ioapic_trigger;
  3064. entry->polarity = info->ioapic_polarity;
  3065. /* Mask level triggered irqs. */
  3066. if (info->ioapic_trigger)
  3067. entry->mask = 1;
  3068. break;
  3069. case X86_IRQ_ALLOC_TYPE_HPET:
  3070. case X86_IRQ_ALLOC_TYPE_MSI:
  3071. case X86_IRQ_ALLOC_TYPE_MSIX:
  3072. msg->address_hi = MSI_ADDR_BASE_HI;
  3073. msg->address_lo = MSI_ADDR_BASE_LO;
  3074. msg->data = irte_info->index;
  3075. break;
  3076. default:
  3077. BUG_ON(1);
  3078. break;
  3079. }
  3080. }
  3081. static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
  3082. unsigned int nr_irqs, void *arg)
  3083. {
  3084. struct irq_alloc_info *info = arg;
  3085. struct irq_data *irq_data;
  3086. struct amd_ir_data *data;
  3087. struct irq_cfg *cfg;
  3088. int i, ret, devid;
  3089. int index = -1;
  3090. if (!info)
  3091. return -EINVAL;
  3092. if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
  3093. info->type != X86_IRQ_ALLOC_TYPE_MSIX)
  3094. return -EINVAL;
  3095. /*
  3096. * With IRQ remapping enabled, don't need contiguous CPU vectors
  3097. * to support multiple MSI interrupts.
  3098. */
  3099. if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
  3100. info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
  3101. devid = get_devid(info);
  3102. if (devid < 0)
  3103. return -EINVAL;
  3104. ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
  3105. if (ret < 0)
  3106. return ret;
  3107. if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
  3108. if (get_irq_table(devid, true))
  3109. index = info->ioapic_pin;
  3110. else
  3111. ret = -ENOMEM;
  3112. } else {
  3113. index = alloc_irq_index(devid, nr_irqs);
  3114. }
  3115. if (index < 0) {
  3116. pr_warn("Failed to allocate IRTE\n");
  3117. goto out_free_parent;
  3118. }
  3119. for (i = 0; i < nr_irqs; i++) {
  3120. irq_data = irq_domain_get_irq_data(domain, virq + i);
  3121. cfg = irqd_cfg(irq_data);
  3122. if (!irq_data || !cfg) {
  3123. ret = -EINVAL;
  3124. goto out_free_data;
  3125. }
  3126. ret = -ENOMEM;
  3127. data = kzalloc(sizeof(*data), GFP_KERNEL);
  3128. if (!data)
  3129. goto out_free_data;
  3130. irq_data->hwirq = (devid << 16) + i;
  3131. irq_data->chip_data = data;
  3132. irq_data->chip = &amd_ir_chip;
  3133. irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
  3134. irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
  3135. }
  3136. return 0;
  3137. out_free_data:
  3138. for (i--; i >= 0; i--) {
  3139. irq_data = irq_domain_get_irq_data(domain, virq + i);
  3140. if (irq_data)
  3141. kfree(irq_data->chip_data);
  3142. }
  3143. for (i = 0; i < nr_irqs; i++)
  3144. free_irte(devid, index + i);
  3145. out_free_parent:
  3146. irq_domain_free_irqs_common(domain, virq, nr_irqs);
  3147. return ret;
  3148. }
  3149. static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
  3150. unsigned int nr_irqs)
  3151. {
  3152. struct irq_2_irte *irte_info;
  3153. struct irq_data *irq_data;
  3154. struct amd_ir_data *data;
  3155. int i;
  3156. for (i = 0; i < nr_irqs; i++) {
  3157. irq_data = irq_domain_get_irq_data(domain, virq + i);
  3158. if (irq_data && irq_data->chip_data) {
  3159. data = irq_data->chip_data;
  3160. irte_info = &data->irq_2_irte;
  3161. free_irte(irte_info->devid, irte_info->index);
  3162. kfree(data);
  3163. }
  3164. }
  3165. irq_domain_free_irqs_common(domain, virq, nr_irqs);
  3166. }
  3167. static void irq_remapping_activate(struct irq_domain *domain,
  3168. struct irq_data *irq_data)
  3169. {
  3170. struct amd_ir_data *data = irq_data->chip_data;
  3171. struct irq_2_irte *irte_info = &data->irq_2_irte;
  3172. modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
  3173. }
  3174. static void irq_remapping_deactivate(struct irq_domain *domain,
  3175. struct irq_data *irq_data)
  3176. {
  3177. struct amd_ir_data *data = irq_data->chip_data;
  3178. struct irq_2_irte *irte_info = &data->irq_2_irte;
  3179. union irte entry;
  3180. entry.val = 0;
  3181. modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
  3182. }
  3183. static struct irq_domain_ops amd_ir_domain_ops = {
  3184. .alloc = irq_remapping_alloc,
  3185. .free = irq_remapping_free,
  3186. .activate = irq_remapping_activate,
  3187. .deactivate = irq_remapping_deactivate,
  3188. };
  3189. static int amd_ir_set_affinity(struct irq_data *data,
  3190. const struct cpumask *mask, bool force)
  3191. {
  3192. struct amd_ir_data *ir_data = data->chip_data;
  3193. struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
  3194. struct irq_cfg *cfg = irqd_cfg(data);
  3195. struct irq_data *parent = data->parent_data;
  3196. int ret;
  3197. ret = parent->chip->irq_set_affinity(parent, mask, force);
  3198. if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
  3199. return ret;
  3200. /*
  3201. * Atomically updates the IRTE with the new destination, vector
  3202. * and flushes the interrupt entry cache.
  3203. */
  3204. ir_data->irte_entry.fields.vector = cfg->vector;
  3205. ir_data->irte_entry.fields.destination = cfg->dest_apicid;
  3206. modify_irte(irte_info->devid, irte_info->index, ir_data->irte_entry);
  3207. /*
  3208. * After this point, all the interrupts will start arriving
  3209. * at the new destination. So, time to cleanup the previous
  3210. * vector allocation.
  3211. */
  3212. send_cleanup_vector(cfg);
  3213. return IRQ_SET_MASK_OK_DONE;
  3214. }
  3215. static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
  3216. {
  3217. struct amd_ir_data *ir_data = irq_data->chip_data;
  3218. *msg = ir_data->msi_entry;
  3219. }
  3220. static struct irq_chip amd_ir_chip = {
  3221. .irq_ack = ir_ack_apic_edge,
  3222. .irq_set_affinity = amd_ir_set_affinity,
  3223. .irq_compose_msi_msg = ir_compose_msi_msg,
  3224. };
  3225. int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
  3226. {
  3227. iommu->ir_domain = irq_domain_add_tree(NULL, &amd_ir_domain_ops, iommu);
  3228. if (!iommu->ir_domain)
  3229. return -ENOMEM;
  3230. iommu->ir_domain->parent = arch_get_ir_parent_domain();
  3231. iommu->msi_domain = arch_create_msi_irq_domain(iommu->ir_domain);
  3232. return 0;
  3233. }
  3234. #endif