disk-io.c 126 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/slab.h>
  28. #include <linux/migrate.h>
  29. #include <linux/ratelimit.h>
  30. #include <linux/uuid.h>
  31. #include <linux/semaphore.h>
  32. #include <asm/unaligned.h>
  33. #include "ctree.h"
  34. #include "disk-io.h"
  35. #include "hash.h"
  36. #include "transaction.h"
  37. #include "btrfs_inode.h"
  38. #include "volumes.h"
  39. #include "print-tree.h"
  40. #include "locking.h"
  41. #include "tree-log.h"
  42. #include "free-space-cache.h"
  43. #include "free-space-tree.h"
  44. #include "inode-map.h"
  45. #include "check-integrity.h"
  46. #include "rcu-string.h"
  47. #include "dev-replace.h"
  48. #include "raid56.h"
  49. #include "sysfs.h"
  50. #include "qgroup.h"
  51. #include "compression.h"
  52. #ifdef CONFIG_X86
  53. #include <asm/cpufeature.h>
  54. #endif
  55. #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
  56. BTRFS_HEADER_FLAG_RELOC |\
  57. BTRFS_SUPER_FLAG_ERROR |\
  58. BTRFS_SUPER_FLAG_SEEDING |\
  59. BTRFS_SUPER_FLAG_METADUMP)
  60. static const struct extent_io_ops btree_extent_io_ops;
  61. static void end_workqueue_fn(struct btrfs_work *work);
  62. static void free_fs_root(struct btrfs_root *root);
  63. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  64. int read_only);
  65. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  66. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  67. struct btrfs_root *root);
  68. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  69. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  70. struct extent_io_tree *dirty_pages,
  71. int mark);
  72. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  73. struct extent_io_tree *pinned_extents);
  74. static int btrfs_cleanup_transaction(struct btrfs_root *root);
  75. static void btrfs_error_commit_super(struct btrfs_root *root);
  76. /*
  77. * btrfs_end_io_wq structs are used to do processing in task context when an IO
  78. * is complete. This is used during reads to verify checksums, and it is used
  79. * by writes to insert metadata for new file extents after IO is complete.
  80. */
  81. struct btrfs_end_io_wq {
  82. struct bio *bio;
  83. bio_end_io_t *end_io;
  84. void *private;
  85. struct btrfs_fs_info *info;
  86. int error;
  87. enum btrfs_wq_endio_type metadata;
  88. struct list_head list;
  89. struct btrfs_work work;
  90. };
  91. static struct kmem_cache *btrfs_end_io_wq_cache;
  92. int __init btrfs_end_io_wq_init(void)
  93. {
  94. btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
  95. sizeof(struct btrfs_end_io_wq),
  96. 0,
  97. SLAB_MEM_SPREAD,
  98. NULL);
  99. if (!btrfs_end_io_wq_cache)
  100. return -ENOMEM;
  101. return 0;
  102. }
  103. void btrfs_end_io_wq_exit(void)
  104. {
  105. kmem_cache_destroy(btrfs_end_io_wq_cache);
  106. }
  107. /*
  108. * async submit bios are used to offload expensive checksumming
  109. * onto the worker threads. They checksum file and metadata bios
  110. * just before they are sent down the IO stack.
  111. */
  112. struct async_submit_bio {
  113. struct inode *inode;
  114. struct bio *bio;
  115. struct list_head list;
  116. extent_submit_bio_hook_t *submit_bio_start;
  117. extent_submit_bio_hook_t *submit_bio_done;
  118. int mirror_num;
  119. unsigned long bio_flags;
  120. /*
  121. * bio_offset is optional, can be used if the pages in the bio
  122. * can't tell us where in the file the bio should go
  123. */
  124. u64 bio_offset;
  125. struct btrfs_work work;
  126. int error;
  127. };
  128. /*
  129. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  130. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  131. * the level the eb occupies in the tree.
  132. *
  133. * Different roots are used for different purposes and may nest inside each
  134. * other and they require separate keysets. As lockdep keys should be
  135. * static, assign keysets according to the purpose of the root as indicated
  136. * by btrfs_root->objectid. This ensures that all special purpose roots
  137. * have separate keysets.
  138. *
  139. * Lock-nesting across peer nodes is always done with the immediate parent
  140. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  141. * subclass to avoid triggering lockdep warning in such cases.
  142. *
  143. * The key is set by the readpage_end_io_hook after the buffer has passed
  144. * csum validation but before the pages are unlocked. It is also set by
  145. * btrfs_init_new_buffer on freshly allocated blocks.
  146. *
  147. * We also add a check to make sure the highest level of the tree is the
  148. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  149. * needs update as well.
  150. */
  151. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  152. # if BTRFS_MAX_LEVEL != 8
  153. # error
  154. # endif
  155. static struct btrfs_lockdep_keyset {
  156. u64 id; /* root objectid */
  157. const char *name_stem; /* lock name stem */
  158. char names[BTRFS_MAX_LEVEL + 1][20];
  159. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  160. } btrfs_lockdep_keysets[] = {
  161. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  162. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  163. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  164. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  165. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  166. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  167. { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
  168. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  169. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  170. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  171. { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
  172. { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
  173. { .id = 0, .name_stem = "tree" },
  174. };
  175. void __init btrfs_init_lockdep(void)
  176. {
  177. int i, j;
  178. /* initialize lockdep class names */
  179. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  180. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  181. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  182. snprintf(ks->names[j], sizeof(ks->names[j]),
  183. "btrfs-%s-%02d", ks->name_stem, j);
  184. }
  185. }
  186. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  187. int level)
  188. {
  189. struct btrfs_lockdep_keyset *ks;
  190. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  191. /* find the matching keyset, id 0 is the default entry */
  192. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  193. if (ks->id == objectid)
  194. break;
  195. lockdep_set_class_and_name(&eb->lock,
  196. &ks->keys[level], ks->names[level]);
  197. }
  198. #endif
  199. /*
  200. * extents on the btree inode are pretty simple, there's one extent
  201. * that covers the entire device
  202. */
  203. static struct extent_map *btree_get_extent(struct inode *inode,
  204. struct page *page, size_t pg_offset, u64 start, u64 len,
  205. int create)
  206. {
  207. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  208. struct extent_map *em;
  209. int ret;
  210. read_lock(&em_tree->lock);
  211. em = lookup_extent_mapping(em_tree, start, len);
  212. if (em) {
  213. em->bdev =
  214. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  215. read_unlock(&em_tree->lock);
  216. goto out;
  217. }
  218. read_unlock(&em_tree->lock);
  219. em = alloc_extent_map();
  220. if (!em) {
  221. em = ERR_PTR(-ENOMEM);
  222. goto out;
  223. }
  224. em->start = 0;
  225. em->len = (u64)-1;
  226. em->block_len = (u64)-1;
  227. em->block_start = 0;
  228. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  229. write_lock(&em_tree->lock);
  230. ret = add_extent_mapping(em_tree, em, 0);
  231. if (ret == -EEXIST) {
  232. free_extent_map(em);
  233. em = lookup_extent_mapping(em_tree, start, len);
  234. if (!em)
  235. em = ERR_PTR(-EIO);
  236. } else if (ret) {
  237. free_extent_map(em);
  238. em = ERR_PTR(ret);
  239. }
  240. write_unlock(&em_tree->lock);
  241. out:
  242. return em;
  243. }
  244. u32 btrfs_csum_data(char *data, u32 seed, size_t len)
  245. {
  246. return btrfs_crc32c(seed, data, len);
  247. }
  248. void btrfs_csum_final(u32 crc, char *result)
  249. {
  250. put_unaligned_le32(~crc, result);
  251. }
  252. /*
  253. * compute the csum for a btree block, and either verify it or write it
  254. * into the csum field of the block.
  255. */
  256. static int csum_tree_block(struct btrfs_fs_info *fs_info,
  257. struct extent_buffer *buf,
  258. int verify)
  259. {
  260. u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
  261. char *result = NULL;
  262. unsigned long len;
  263. unsigned long cur_len;
  264. unsigned long offset = BTRFS_CSUM_SIZE;
  265. char *kaddr;
  266. unsigned long map_start;
  267. unsigned long map_len;
  268. int err;
  269. u32 crc = ~(u32)0;
  270. unsigned long inline_result;
  271. len = buf->len - offset;
  272. while (len > 0) {
  273. err = map_private_extent_buffer(buf, offset, 32,
  274. &kaddr, &map_start, &map_len);
  275. if (err)
  276. return err;
  277. cur_len = min(len, map_len - (offset - map_start));
  278. crc = btrfs_csum_data(kaddr + offset - map_start,
  279. crc, cur_len);
  280. len -= cur_len;
  281. offset += cur_len;
  282. }
  283. if (csum_size > sizeof(inline_result)) {
  284. result = kzalloc(csum_size, GFP_NOFS);
  285. if (!result)
  286. return -ENOMEM;
  287. } else {
  288. result = (char *)&inline_result;
  289. }
  290. btrfs_csum_final(crc, result);
  291. if (verify) {
  292. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  293. u32 val;
  294. u32 found = 0;
  295. memcpy(&found, result, csum_size);
  296. read_extent_buffer(buf, &val, 0, csum_size);
  297. btrfs_warn_rl(fs_info,
  298. "%s checksum verify failed on %llu wanted %X found %X level %d",
  299. fs_info->sb->s_id, buf->start,
  300. val, found, btrfs_header_level(buf));
  301. if (result != (char *)&inline_result)
  302. kfree(result);
  303. return -EUCLEAN;
  304. }
  305. } else {
  306. write_extent_buffer(buf, result, 0, csum_size);
  307. }
  308. if (result != (char *)&inline_result)
  309. kfree(result);
  310. return 0;
  311. }
  312. /*
  313. * we can't consider a given block up to date unless the transid of the
  314. * block matches the transid in the parent node's pointer. This is how we
  315. * detect blocks that either didn't get written at all or got written
  316. * in the wrong place.
  317. */
  318. static int verify_parent_transid(struct extent_io_tree *io_tree,
  319. struct extent_buffer *eb, u64 parent_transid,
  320. int atomic)
  321. {
  322. struct extent_state *cached_state = NULL;
  323. int ret;
  324. bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
  325. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  326. return 0;
  327. if (atomic)
  328. return -EAGAIN;
  329. if (need_lock) {
  330. btrfs_tree_read_lock(eb);
  331. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  332. }
  333. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  334. &cached_state);
  335. if (extent_buffer_uptodate(eb) &&
  336. btrfs_header_generation(eb) == parent_transid) {
  337. ret = 0;
  338. goto out;
  339. }
  340. btrfs_err_rl(eb->fs_info,
  341. "parent transid verify failed on %llu wanted %llu found %llu",
  342. eb->start,
  343. parent_transid, btrfs_header_generation(eb));
  344. ret = 1;
  345. /*
  346. * Things reading via commit roots that don't have normal protection,
  347. * like send, can have a really old block in cache that may point at a
  348. * block that has been freed and re-allocated. So don't clear uptodate
  349. * if we find an eb that is under IO (dirty/writeback) because we could
  350. * end up reading in the stale data and then writing it back out and
  351. * making everybody very sad.
  352. */
  353. if (!extent_buffer_under_io(eb))
  354. clear_extent_buffer_uptodate(eb);
  355. out:
  356. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  357. &cached_state, GFP_NOFS);
  358. if (need_lock)
  359. btrfs_tree_read_unlock_blocking(eb);
  360. return ret;
  361. }
  362. /*
  363. * Return 0 if the superblock checksum type matches the checksum value of that
  364. * algorithm. Pass the raw disk superblock data.
  365. */
  366. static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
  367. char *raw_disk_sb)
  368. {
  369. struct btrfs_super_block *disk_sb =
  370. (struct btrfs_super_block *)raw_disk_sb;
  371. u16 csum_type = btrfs_super_csum_type(disk_sb);
  372. int ret = 0;
  373. if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
  374. u32 crc = ~(u32)0;
  375. const int csum_size = sizeof(crc);
  376. char result[csum_size];
  377. /*
  378. * The super_block structure does not span the whole
  379. * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
  380. * is filled with zeros and is included in the checksum.
  381. */
  382. crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
  383. crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
  384. btrfs_csum_final(crc, result);
  385. if (memcmp(raw_disk_sb, result, csum_size))
  386. ret = 1;
  387. }
  388. if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
  389. btrfs_err(fs_info, "unsupported checksum algorithm %u",
  390. csum_type);
  391. ret = 1;
  392. }
  393. return ret;
  394. }
  395. /*
  396. * helper to read a given tree block, doing retries as required when
  397. * the checksums don't match and we have alternate mirrors to try.
  398. */
  399. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  400. struct extent_buffer *eb,
  401. u64 parent_transid)
  402. {
  403. struct extent_io_tree *io_tree;
  404. int failed = 0;
  405. int ret;
  406. int num_copies = 0;
  407. int mirror_num = 0;
  408. int failed_mirror = 0;
  409. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  410. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  411. while (1) {
  412. ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
  413. btree_get_extent, mirror_num);
  414. if (!ret) {
  415. if (!verify_parent_transid(io_tree, eb,
  416. parent_transid, 0))
  417. break;
  418. else
  419. ret = -EIO;
  420. }
  421. /*
  422. * This buffer's crc is fine, but its contents are corrupted, so
  423. * there is no reason to read the other copies, they won't be
  424. * any less wrong.
  425. */
  426. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  427. break;
  428. num_copies = btrfs_num_copies(root->fs_info,
  429. eb->start, eb->len);
  430. if (num_copies == 1)
  431. break;
  432. if (!failed_mirror) {
  433. failed = 1;
  434. failed_mirror = eb->read_mirror;
  435. }
  436. mirror_num++;
  437. if (mirror_num == failed_mirror)
  438. mirror_num++;
  439. if (mirror_num > num_copies)
  440. break;
  441. }
  442. if (failed && !ret && failed_mirror)
  443. repair_eb_io_failure(root, eb, failed_mirror);
  444. return ret;
  445. }
  446. /*
  447. * checksum a dirty tree block before IO. This has extra checks to make sure
  448. * we only fill in the checksum field in the first page of a multi-page block
  449. */
  450. static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
  451. {
  452. u64 start = page_offset(page);
  453. u64 found_start;
  454. struct extent_buffer *eb;
  455. eb = (struct extent_buffer *)page->private;
  456. if (page != eb->pages[0])
  457. return 0;
  458. found_start = btrfs_header_bytenr(eb);
  459. /*
  460. * Please do not consolidate these warnings into a single if.
  461. * It is useful to know what went wrong.
  462. */
  463. if (WARN_ON(found_start != start))
  464. return -EUCLEAN;
  465. if (WARN_ON(!PageUptodate(page)))
  466. return -EUCLEAN;
  467. ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
  468. btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
  469. return csum_tree_block(fs_info, eb, 0);
  470. }
  471. static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
  472. struct extent_buffer *eb)
  473. {
  474. struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
  475. u8 fsid[BTRFS_UUID_SIZE];
  476. int ret = 1;
  477. read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
  478. while (fs_devices) {
  479. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  480. ret = 0;
  481. break;
  482. }
  483. fs_devices = fs_devices->seed;
  484. }
  485. return ret;
  486. }
  487. #define CORRUPT(reason, eb, root, slot) \
  488. btrfs_crit(root->fs_info, "corrupt %s, %s: block=%llu," \
  489. " root=%llu, slot=%d", \
  490. btrfs_header_level(eb) == 0 ? "leaf" : "node",\
  491. reason, btrfs_header_bytenr(eb), root->objectid, slot)
  492. static noinline int check_leaf(struct btrfs_root *root,
  493. struct extent_buffer *leaf)
  494. {
  495. struct btrfs_key key;
  496. struct btrfs_key leaf_key;
  497. u32 nritems = btrfs_header_nritems(leaf);
  498. int slot;
  499. if (nritems == 0) {
  500. struct btrfs_root *check_root;
  501. key.objectid = btrfs_header_owner(leaf);
  502. key.type = BTRFS_ROOT_ITEM_KEY;
  503. key.offset = (u64)-1;
  504. check_root = btrfs_get_fs_root(root->fs_info, &key, false);
  505. /*
  506. * The only reason we also check NULL here is that during
  507. * open_ctree() some roots has not yet been set up.
  508. */
  509. if (!IS_ERR_OR_NULL(check_root)) {
  510. /* if leaf is the root, then it's fine */
  511. if (leaf->start !=
  512. btrfs_root_bytenr(&check_root->root_item)) {
  513. CORRUPT("non-root leaf's nritems is 0",
  514. leaf, root, 0);
  515. return -EIO;
  516. }
  517. }
  518. return 0;
  519. }
  520. /* Check the 0 item */
  521. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  522. BTRFS_LEAF_DATA_SIZE(root)) {
  523. CORRUPT("invalid item offset size pair", leaf, root, 0);
  524. return -EIO;
  525. }
  526. /*
  527. * Check to make sure each items keys are in the correct order and their
  528. * offsets make sense. We only have to loop through nritems-1 because
  529. * we check the current slot against the next slot, which verifies the
  530. * next slot's offset+size makes sense and that the current's slot
  531. * offset is correct.
  532. */
  533. for (slot = 0; slot < nritems - 1; slot++) {
  534. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  535. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  536. /* Make sure the keys are in the right order */
  537. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  538. CORRUPT("bad key order", leaf, root, slot);
  539. return -EIO;
  540. }
  541. /*
  542. * Make sure the offset and ends are right, remember that the
  543. * item data starts at the end of the leaf and grows towards the
  544. * front.
  545. */
  546. if (btrfs_item_offset_nr(leaf, slot) !=
  547. btrfs_item_end_nr(leaf, slot + 1)) {
  548. CORRUPT("slot offset bad", leaf, root, slot);
  549. return -EIO;
  550. }
  551. /*
  552. * Check to make sure that we don't point outside of the leaf,
  553. * just in case all the items are consistent to each other, but
  554. * all point outside of the leaf.
  555. */
  556. if (btrfs_item_end_nr(leaf, slot) >
  557. BTRFS_LEAF_DATA_SIZE(root)) {
  558. CORRUPT("slot end outside of leaf", leaf, root, slot);
  559. return -EIO;
  560. }
  561. }
  562. return 0;
  563. }
  564. static int check_node(struct btrfs_root *root, struct extent_buffer *node)
  565. {
  566. unsigned long nr = btrfs_header_nritems(node);
  567. struct btrfs_key key, next_key;
  568. int slot;
  569. u64 bytenr;
  570. int ret = 0;
  571. if (nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(root)) {
  572. btrfs_crit(root->fs_info,
  573. "corrupt node: block %llu root %llu nritems %lu",
  574. node->start, root->objectid, nr);
  575. return -EIO;
  576. }
  577. for (slot = 0; slot < nr - 1; slot++) {
  578. bytenr = btrfs_node_blockptr(node, slot);
  579. btrfs_node_key_to_cpu(node, &key, slot);
  580. btrfs_node_key_to_cpu(node, &next_key, slot + 1);
  581. if (!bytenr) {
  582. CORRUPT("invalid item slot", node, root, slot);
  583. ret = -EIO;
  584. goto out;
  585. }
  586. if (btrfs_comp_cpu_keys(&key, &next_key) >= 0) {
  587. CORRUPT("bad key order", node, root, slot);
  588. ret = -EIO;
  589. goto out;
  590. }
  591. }
  592. out:
  593. return ret;
  594. }
  595. static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
  596. u64 phy_offset, struct page *page,
  597. u64 start, u64 end, int mirror)
  598. {
  599. u64 found_start;
  600. int found_level;
  601. struct extent_buffer *eb;
  602. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  603. struct btrfs_fs_info *fs_info = root->fs_info;
  604. int ret = 0;
  605. int reads_done;
  606. if (!page->private)
  607. goto out;
  608. eb = (struct extent_buffer *)page->private;
  609. /* the pending IO might have been the only thing that kept this buffer
  610. * in memory. Make sure we have a ref for all this other checks
  611. */
  612. extent_buffer_get(eb);
  613. reads_done = atomic_dec_and_test(&eb->io_pages);
  614. if (!reads_done)
  615. goto err;
  616. eb->read_mirror = mirror;
  617. if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
  618. ret = -EIO;
  619. goto err;
  620. }
  621. found_start = btrfs_header_bytenr(eb);
  622. if (found_start != eb->start) {
  623. btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
  624. found_start, eb->start);
  625. ret = -EIO;
  626. goto err;
  627. }
  628. if (check_tree_block_fsid(fs_info, eb)) {
  629. btrfs_err_rl(fs_info, "bad fsid on block %llu",
  630. eb->start);
  631. ret = -EIO;
  632. goto err;
  633. }
  634. found_level = btrfs_header_level(eb);
  635. if (found_level >= BTRFS_MAX_LEVEL) {
  636. btrfs_err(fs_info, "bad tree block level %d",
  637. (int)btrfs_header_level(eb));
  638. ret = -EIO;
  639. goto err;
  640. }
  641. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  642. eb, found_level);
  643. ret = csum_tree_block(fs_info, eb, 1);
  644. if (ret)
  645. goto err;
  646. /*
  647. * If this is a leaf block and it is corrupt, set the corrupt bit so
  648. * that we don't try and read the other copies of this block, just
  649. * return -EIO.
  650. */
  651. if (found_level == 0 && check_leaf(root, eb)) {
  652. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  653. ret = -EIO;
  654. }
  655. if (found_level > 0 && check_node(root, eb))
  656. ret = -EIO;
  657. if (!ret)
  658. set_extent_buffer_uptodate(eb);
  659. err:
  660. if (reads_done &&
  661. test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  662. btree_readahead_hook(fs_info, eb, eb->start, ret);
  663. if (ret) {
  664. /*
  665. * our io error hook is going to dec the io pages
  666. * again, we have to make sure it has something
  667. * to decrement
  668. */
  669. atomic_inc(&eb->io_pages);
  670. clear_extent_buffer_uptodate(eb);
  671. }
  672. free_extent_buffer(eb);
  673. out:
  674. return ret;
  675. }
  676. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  677. {
  678. struct extent_buffer *eb;
  679. eb = (struct extent_buffer *)page->private;
  680. set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
  681. eb->read_mirror = failed_mirror;
  682. atomic_dec(&eb->io_pages);
  683. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  684. btree_readahead_hook(eb->fs_info, eb, eb->start, -EIO);
  685. return -EIO; /* we fixed nothing */
  686. }
  687. static void end_workqueue_bio(struct bio *bio)
  688. {
  689. struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
  690. struct btrfs_fs_info *fs_info;
  691. struct btrfs_workqueue *wq;
  692. btrfs_work_func_t func;
  693. fs_info = end_io_wq->info;
  694. end_io_wq->error = bio->bi_error;
  695. if (bio_op(bio) == REQ_OP_WRITE) {
  696. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
  697. wq = fs_info->endio_meta_write_workers;
  698. func = btrfs_endio_meta_write_helper;
  699. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
  700. wq = fs_info->endio_freespace_worker;
  701. func = btrfs_freespace_write_helper;
  702. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
  703. wq = fs_info->endio_raid56_workers;
  704. func = btrfs_endio_raid56_helper;
  705. } else {
  706. wq = fs_info->endio_write_workers;
  707. func = btrfs_endio_write_helper;
  708. }
  709. } else {
  710. if (unlikely(end_io_wq->metadata ==
  711. BTRFS_WQ_ENDIO_DIO_REPAIR)) {
  712. wq = fs_info->endio_repair_workers;
  713. func = btrfs_endio_repair_helper;
  714. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
  715. wq = fs_info->endio_raid56_workers;
  716. func = btrfs_endio_raid56_helper;
  717. } else if (end_io_wq->metadata) {
  718. wq = fs_info->endio_meta_workers;
  719. func = btrfs_endio_meta_helper;
  720. } else {
  721. wq = fs_info->endio_workers;
  722. func = btrfs_endio_helper;
  723. }
  724. }
  725. btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
  726. btrfs_queue_work(wq, &end_io_wq->work);
  727. }
  728. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  729. enum btrfs_wq_endio_type metadata)
  730. {
  731. struct btrfs_end_io_wq *end_io_wq;
  732. end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
  733. if (!end_io_wq)
  734. return -ENOMEM;
  735. end_io_wq->private = bio->bi_private;
  736. end_io_wq->end_io = bio->bi_end_io;
  737. end_io_wq->info = info;
  738. end_io_wq->error = 0;
  739. end_io_wq->bio = bio;
  740. end_io_wq->metadata = metadata;
  741. bio->bi_private = end_io_wq;
  742. bio->bi_end_io = end_workqueue_bio;
  743. return 0;
  744. }
  745. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  746. {
  747. unsigned long limit = min_t(unsigned long,
  748. info->thread_pool_size,
  749. info->fs_devices->open_devices);
  750. return 256 * limit;
  751. }
  752. static void run_one_async_start(struct btrfs_work *work)
  753. {
  754. struct async_submit_bio *async;
  755. int ret;
  756. async = container_of(work, struct async_submit_bio, work);
  757. ret = async->submit_bio_start(async->inode, async->bio,
  758. async->mirror_num, async->bio_flags,
  759. async->bio_offset);
  760. if (ret)
  761. async->error = ret;
  762. }
  763. static void run_one_async_done(struct btrfs_work *work)
  764. {
  765. struct btrfs_fs_info *fs_info;
  766. struct async_submit_bio *async;
  767. int limit;
  768. async = container_of(work, struct async_submit_bio, work);
  769. fs_info = BTRFS_I(async->inode)->root->fs_info;
  770. limit = btrfs_async_submit_limit(fs_info);
  771. limit = limit * 2 / 3;
  772. /*
  773. * atomic_dec_return implies a barrier for waitqueue_active
  774. */
  775. if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
  776. waitqueue_active(&fs_info->async_submit_wait))
  777. wake_up(&fs_info->async_submit_wait);
  778. /* If an error occurred we just want to clean up the bio and move on */
  779. if (async->error) {
  780. async->bio->bi_error = async->error;
  781. bio_endio(async->bio);
  782. return;
  783. }
  784. async->submit_bio_done(async->inode, async->bio, async->mirror_num,
  785. async->bio_flags, async->bio_offset);
  786. }
  787. static void run_one_async_free(struct btrfs_work *work)
  788. {
  789. struct async_submit_bio *async;
  790. async = container_of(work, struct async_submit_bio, work);
  791. kfree(async);
  792. }
  793. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  794. struct bio *bio, int mirror_num,
  795. unsigned long bio_flags,
  796. u64 bio_offset,
  797. extent_submit_bio_hook_t *submit_bio_start,
  798. extent_submit_bio_hook_t *submit_bio_done)
  799. {
  800. struct async_submit_bio *async;
  801. async = kmalloc(sizeof(*async), GFP_NOFS);
  802. if (!async)
  803. return -ENOMEM;
  804. async->inode = inode;
  805. async->bio = bio;
  806. async->mirror_num = mirror_num;
  807. async->submit_bio_start = submit_bio_start;
  808. async->submit_bio_done = submit_bio_done;
  809. btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
  810. run_one_async_done, run_one_async_free);
  811. async->bio_flags = bio_flags;
  812. async->bio_offset = bio_offset;
  813. async->error = 0;
  814. atomic_inc(&fs_info->nr_async_submits);
  815. if (bio->bi_opf & REQ_SYNC)
  816. btrfs_set_work_high_priority(&async->work);
  817. btrfs_queue_work(fs_info->workers, &async->work);
  818. while (atomic_read(&fs_info->async_submit_draining) &&
  819. atomic_read(&fs_info->nr_async_submits)) {
  820. wait_event(fs_info->async_submit_wait,
  821. (atomic_read(&fs_info->nr_async_submits) == 0));
  822. }
  823. return 0;
  824. }
  825. static int btree_csum_one_bio(struct bio *bio)
  826. {
  827. struct bio_vec *bvec;
  828. struct btrfs_root *root;
  829. int i, ret = 0;
  830. bio_for_each_segment_all(bvec, bio, i) {
  831. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  832. ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
  833. if (ret)
  834. break;
  835. }
  836. return ret;
  837. }
  838. static int __btree_submit_bio_start(struct inode *inode, struct bio *bio,
  839. int mirror_num, unsigned long bio_flags,
  840. u64 bio_offset)
  841. {
  842. /*
  843. * when we're called for a write, we're already in the async
  844. * submission context. Just jump into btrfs_map_bio
  845. */
  846. return btree_csum_one_bio(bio);
  847. }
  848. static int __btree_submit_bio_done(struct inode *inode, struct bio *bio,
  849. int mirror_num, unsigned long bio_flags,
  850. u64 bio_offset)
  851. {
  852. int ret;
  853. /*
  854. * when we're called for a write, we're already in the async
  855. * submission context. Just jump into btrfs_map_bio
  856. */
  857. ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 1);
  858. if (ret) {
  859. bio->bi_error = ret;
  860. bio_endio(bio);
  861. }
  862. return ret;
  863. }
  864. static int check_async_write(struct inode *inode, unsigned long bio_flags)
  865. {
  866. if (bio_flags & EXTENT_BIO_TREE_LOG)
  867. return 0;
  868. #ifdef CONFIG_X86
  869. if (static_cpu_has(X86_FEATURE_XMM4_2))
  870. return 0;
  871. #endif
  872. return 1;
  873. }
  874. static int btree_submit_bio_hook(struct inode *inode, struct bio *bio,
  875. int mirror_num, unsigned long bio_flags,
  876. u64 bio_offset)
  877. {
  878. int async = check_async_write(inode, bio_flags);
  879. int ret;
  880. if (bio_op(bio) != REQ_OP_WRITE) {
  881. /*
  882. * called for a read, do the setup so that checksum validation
  883. * can happen in the async kernel threads
  884. */
  885. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  886. bio, BTRFS_WQ_ENDIO_METADATA);
  887. if (ret)
  888. goto out_w_error;
  889. ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 0);
  890. } else if (!async) {
  891. ret = btree_csum_one_bio(bio);
  892. if (ret)
  893. goto out_w_error;
  894. ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 0);
  895. } else {
  896. /*
  897. * kthread helpers are used to submit writes so that
  898. * checksumming can happen in parallel across all CPUs
  899. */
  900. ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  901. inode, bio, mirror_num, 0,
  902. bio_offset,
  903. __btree_submit_bio_start,
  904. __btree_submit_bio_done);
  905. }
  906. if (ret)
  907. goto out_w_error;
  908. return 0;
  909. out_w_error:
  910. bio->bi_error = ret;
  911. bio_endio(bio);
  912. return ret;
  913. }
  914. #ifdef CONFIG_MIGRATION
  915. static int btree_migratepage(struct address_space *mapping,
  916. struct page *newpage, struct page *page,
  917. enum migrate_mode mode)
  918. {
  919. /*
  920. * we can't safely write a btree page from here,
  921. * we haven't done the locking hook
  922. */
  923. if (PageDirty(page))
  924. return -EAGAIN;
  925. /*
  926. * Buffers may be managed in a filesystem specific way.
  927. * We must have no buffers or drop them.
  928. */
  929. if (page_has_private(page) &&
  930. !try_to_release_page(page, GFP_KERNEL))
  931. return -EAGAIN;
  932. return migrate_page(mapping, newpage, page, mode);
  933. }
  934. #endif
  935. static int btree_writepages(struct address_space *mapping,
  936. struct writeback_control *wbc)
  937. {
  938. struct btrfs_fs_info *fs_info;
  939. int ret;
  940. if (wbc->sync_mode == WB_SYNC_NONE) {
  941. if (wbc->for_kupdate)
  942. return 0;
  943. fs_info = BTRFS_I(mapping->host)->root->fs_info;
  944. /* this is a bit racy, but that's ok */
  945. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  946. BTRFS_DIRTY_METADATA_THRESH);
  947. if (ret < 0)
  948. return 0;
  949. }
  950. return btree_write_cache_pages(mapping, wbc);
  951. }
  952. static int btree_readpage(struct file *file, struct page *page)
  953. {
  954. struct extent_io_tree *tree;
  955. tree = &BTRFS_I(page->mapping->host)->io_tree;
  956. return extent_read_full_page(tree, page, btree_get_extent, 0);
  957. }
  958. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  959. {
  960. if (PageWriteback(page) || PageDirty(page))
  961. return 0;
  962. return try_release_extent_buffer(page);
  963. }
  964. static void btree_invalidatepage(struct page *page, unsigned int offset,
  965. unsigned int length)
  966. {
  967. struct extent_io_tree *tree;
  968. tree = &BTRFS_I(page->mapping->host)->io_tree;
  969. extent_invalidatepage(tree, page, offset);
  970. btree_releasepage(page, GFP_NOFS);
  971. if (PagePrivate(page)) {
  972. btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
  973. "page private not zero on page %llu",
  974. (unsigned long long)page_offset(page));
  975. ClearPagePrivate(page);
  976. set_page_private(page, 0);
  977. put_page(page);
  978. }
  979. }
  980. static int btree_set_page_dirty(struct page *page)
  981. {
  982. #ifdef DEBUG
  983. struct extent_buffer *eb;
  984. BUG_ON(!PagePrivate(page));
  985. eb = (struct extent_buffer *)page->private;
  986. BUG_ON(!eb);
  987. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  988. BUG_ON(!atomic_read(&eb->refs));
  989. btrfs_assert_tree_locked(eb);
  990. #endif
  991. return __set_page_dirty_nobuffers(page);
  992. }
  993. static const struct address_space_operations btree_aops = {
  994. .readpage = btree_readpage,
  995. .writepages = btree_writepages,
  996. .releasepage = btree_releasepage,
  997. .invalidatepage = btree_invalidatepage,
  998. #ifdef CONFIG_MIGRATION
  999. .migratepage = btree_migratepage,
  1000. #endif
  1001. .set_page_dirty = btree_set_page_dirty,
  1002. };
  1003. void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
  1004. {
  1005. struct extent_buffer *buf = NULL;
  1006. struct inode *btree_inode = root->fs_info->btree_inode;
  1007. buf = btrfs_find_create_tree_block(root, bytenr);
  1008. if (IS_ERR(buf))
  1009. return;
  1010. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  1011. buf, WAIT_NONE, btree_get_extent, 0);
  1012. free_extent_buffer(buf);
  1013. }
  1014. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
  1015. int mirror_num, struct extent_buffer **eb)
  1016. {
  1017. struct extent_buffer *buf = NULL;
  1018. struct inode *btree_inode = root->fs_info->btree_inode;
  1019. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  1020. int ret;
  1021. buf = btrfs_find_create_tree_block(root, bytenr);
  1022. if (IS_ERR(buf))
  1023. return 0;
  1024. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  1025. ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
  1026. btree_get_extent, mirror_num);
  1027. if (ret) {
  1028. free_extent_buffer(buf);
  1029. return ret;
  1030. }
  1031. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  1032. free_extent_buffer(buf);
  1033. return -EIO;
  1034. } else if (extent_buffer_uptodate(buf)) {
  1035. *eb = buf;
  1036. } else {
  1037. free_extent_buffer(buf);
  1038. }
  1039. return 0;
  1040. }
  1041. struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
  1042. u64 bytenr)
  1043. {
  1044. return find_extent_buffer(fs_info, bytenr);
  1045. }
  1046. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  1047. u64 bytenr)
  1048. {
  1049. if (btrfs_is_testing(root->fs_info))
  1050. return alloc_test_extent_buffer(root->fs_info, bytenr,
  1051. root->nodesize);
  1052. return alloc_extent_buffer(root->fs_info, bytenr);
  1053. }
  1054. int btrfs_write_tree_block(struct extent_buffer *buf)
  1055. {
  1056. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  1057. buf->start + buf->len - 1);
  1058. }
  1059. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  1060. {
  1061. return filemap_fdatawait_range(buf->pages[0]->mapping,
  1062. buf->start, buf->start + buf->len - 1);
  1063. }
  1064. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  1065. u64 parent_transid)
  1066. {
  1067. struct extent_buffer *buf = NULL;
  1068. int ret;
  1069. buf = btrfs_find_create_tree_block(root, bytenr);
  1070. if (IS_ERR(buf))
  1071. return buf;
  1072. ret = btree_read_extent_buffer_pages(root, buf, parent_transid);
  1073. if (ret) {
  1074. free_extent_buffer(buf);
  1075. return ERR_PTR(ret);
  1076. }
  1077. return buf;
  1078. }
  1079. void clean_tree_block(struct btrfs_trans_handle *trans,
  1080. struct btrfs_fs_info *fs_info,
  1081. struct extent_buffer *buf)
  1082. {
  1083. if (btrfs_header_generation(buf) ==
  1084. fs_info->running_transaction->transid) {
  1085. btrfs_assert_tree_locked(buf);
  1086. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  1087. __percpu_counter_add(&fs_info->dirty_metadata_bytes,
  1088. -buf->len,
  1089. fs_info->dirty_metadata_batch);
  1090. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  1091. btrfs_set_lock_blocking(buf);
  1092. clear_extent_buffer_dirty(buf);
  1093. }
  1094. }
  1095. }
  1096. static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
  1097. {
  1098. struct btrfs_subvolume_writers *writers;
  1099. int ret;
  1100. writers = kmalloc(sizeof(*writers), GFP_NOFS);
  1101. if (!writers)
  1102. return ERR_PTR(-ENOMEM);
  1103. ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
  1104. if (ret < 0) {
  1105. kfree(writers);
  1106. return ERR_PTR(ret);
  1107. }
  1108. init_waitqueue_head(&writers->wait);
  1109. return writers;
  1110. }
  1111. static void
  1112. btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
  1113. {
  1114. percpu_counter_destroy(&writers->counter);
  1115. kfree(writers);
  1116. }
  1117. static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
  1118. struct btrfs_root *root, struct btrfs_fs_info *fs_info,
  1119. u64 objectid)
  1120. {
  1121. bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
  1122. root->node = NULL;
  1123. root->commit_root = NULL;
  1124. root->sectorsize = sectorsize;
  1125. root->nodesize = nodesize;
  1126. root->stripesize = stripesize;
  1127. root->state = 0;
  1128. root->orphan_cleanup_state = 0;
  1129. root->objectid = objectid;
  1130. root->last_trans = 0;
  1131. root->highest_objectid = 0;
  1132. root->nr_delalloc_inodes = 0;
  1133. root->nr_ordered_extents = 0;
  1134. root->name = NULL;
  1135. root->inode_tree = RB_ROOT;
  1136. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1137. root->block_rsv = NULL;
  1138. root->orphan_block_rsv = NULL;
  1139. INIT_LIST_HEAD(&root->dirty_list);
  1140. INIT_LIST_HEAD(&root->root_list);
  1141. INIT_LIST_HEAD(&root->delalloc_inodes);
  1142. INIT_LIST_HEAD(&root->delalloc_root);
  1143. INIT_LIST_HEAD(&root->ordered_extents);
  1144. INIT_LIST_HEAD(&root->ordered_root);
  1145. INIT_LIST_HEAD(&root->logged_list[0]);
  1146. INIT_LIST_HEAD(&root->logged_list[1]);
  1147. spin_lock_init(&root->orphan_lock);
  1148. spin_lock_init(&root->inode_lock);
  1149. spin_lock_init(&root->delalloc_lock);
  1150. spin_lock_init(&root->ordered_extent_lock);
  1151. spin_lock_init(&root->accounting_lock);
  1152. spin_lock_init(&root->log_extents_lock[0]);
  1153. spin_lock_init(&root->log_extents_lock[1]);
  1154. mutex_init(&root->objectid_mutex);
  1155. mutex_init(&root->log_mutex);
  1156. mutex_init(&root->ordered_extent_mutex);
  1157. mutex_init(&root->delalloc_mutex);
  1158. init_waitqueue_head(&root->log_writer_wait);
  1159. init_waitqueue_head(&root->log_commit_wait[0]);
  1160. init_waitqueue_head(&root->log_commit_wait[1]);
  1161. INIT_LIST_HEAD(&root->log_ctxs[0]);
  1162. INIT_LIST_HEAD(&root->log_ctxs[1]);
  1163. atomic_set(&root->log_commit[0], 0);
  1164. atomic_set(&root->log_commit[1], 0);
  1165. atomic_set(&root->log_writers, 0);
  1166. atomic_set(&root->log_batch, 0);
  1167. atomic_set(&root->orphan_inodes, 0);
  1168. atomic_set(&root->refs, 1);
  1169. atomic_set(&root->will_be_snapshoted, 0);
  1170. atomic_set(&root->qgroup_meta_rsv, 0);
  1171. root->log_transid = 0;
  1172. root->log_transid_committed = -1;
  1173. root->last_log_commit = 0;
  1174. if (!dummy)
  1175. extent_io_tree_init(&root->dirty_log_pages,
  1176. fs_info->btree_inode->i_mapping);
  1177. memset(&root->root_key, 0, sizeof(root->root_key));
  1178. memset(&root->root_item, 0, sizeof(root->root_item));
  1179. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1180. if (!dummy)
  1181. root->defrag_trans_start = fs_info->generation;
  1182. else
  1183. root->defrag_trans_start = 0;
  1184. root->root_key.objectid = objectid;
  1185. root->anon_dev = 0;
  1186. spin_lock_init(&root->root_item_lock);
  1187. }
  1188. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
  1189. gfp_t flags)
  1190. {
  1191. struct btrfs_root *root = kzalloc(sizeof(*root), flags);
  1192. if (root)
  1193. root->fs_info = fs_info;
  1194. return root;
  1195. }
  1196. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  1197. /* Should only be used by the testing infrastructure */
  1198. struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info,
  1199. u32 sectorsize, u32 nodesize)
  1200. {
  1201. struct btrfs_root *root;
  1202. if (!fs_info)
  1203. return ERR_PTR(-EINVAL);
  1204. root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  1205. if (!root)
  1206. return ERR_PTR(-ENOMEM);
  1207. /* We don't use the stripesize in selftest, set it as sectorsize */
  1208. __setup_root(nodesize, sectorsize, sectorsize, root, fs_info,
  1209. BTRFS_ROOT_TREE_OBJECTID);
  1210. root->alloc_bytenr = 0;
  1211. return root;
  1212. }
  1213. #endif
  1214. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1215. struct btrfs_fs_info *fs_info,
  1216. u64 objectid)
  1217. {
  1218. struct extent_buffer *leaf;
  1219. struct btrfs_root *tree_root = fs_info->tree_root;
  1220. struct btrfs_root *root;
  1221. struct btrfs_key key;
  1222. int ret = 0;
  1223. uuid_le uuid;
  1224. root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  1225. if (!root)
  1226. return ERR_PTR(-ENOMEM);
  1227. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  1228. tree_root->stripesize, root, fs_info, objectid);
  1229. root->root_key.objectid = objectid;
  1230. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1231. root->root_key.offset = 0;
  1232. leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
  1233. if (IS_ERR(leaf)) {
  1234. ret = PTR_ERR(leaf);
  1235. leaf = NULL;
  1236. goto fail;
  1237. }
  1238. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1239. btrfs_set_header_bytenr(leaf, leaf->start);
  1240. btrfs_set_header_generation(leaf, trans->transid);
  1241. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1242. btrfs_set_header_owner(leaf, objectid);
  1243. root->node = leaf;
  1244. write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
  1245. BTRFS_FSID_SIZE);
  1246. write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
  1247. btrfs_header_chunk_tree_uuid(leaf),
  1248. BTRFS_UUID_SIZE);
  1249. btrfs_mark_buffer_dirty(leaf);
  1250. root->commit_root = btrfs_root_node(root);
  1251. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  1252. root->root_item.flags = 0;
  1253. root->root_item.byte_limit = 0;
  1254. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1255. btrfs_set_root_generation(&root->root_item, trans->transid);
  1256. btrfs_set_root_level(&root->root_item, 0);
  1257. btrfs_set_root_refs(&root->root_item, 1);
  1258. btrfs_set_root_used(&root->root_item, leaf->len);
  1259. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1260. btrfs_set_root_dirid(&root->root_item, 0);
  1261. uuid_le_gen(&uuid);
  1262. memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
  1263. root->root_item.drop_level = 0;
  1264. key.objectid = objectid;
  1265. key.type = BTRFS_ROOT_ITEM_KEY;
  1266. key.offset = 0;
  1267. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1268. if (ret)
  1269. goto fail;
  1270. btrfs_tree_unlock(leaf);
  1271. return root;
  1272. fail:
  1273. if (leaf) {
  1274. btrfs_tree_unlock(leaf);
  1275. free_extent_buffer(root->commit_root);
  1276. free_extent_buffer(leaf);
  1277. }
  1278. kfree(root);
  1279. return ERR_PTR(ret);
  1280. }
  1281. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1282. struct btrfs_fs_info *fs_info)
  1283. {
  1284. struct btrfs_root *root;
  1285. struct btrfs_root *tree_root = fs_info->tree_root;
  1286. struct extent_buffer *leaf;
  1287. root = btrfs_alloc_root(fs_info, GFP_NOFS);
  1288. if (!root)
  1289. return ERR_PTR(-ENOMEM);
  1290. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  1291. tree_root->stripesize, root, fs_info,
  1292. BTRFS_TREE_LOG_OBJECTID);
  1293. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1294. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1295. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1296. /*
  1297. * DON'T set REF_COWS for log trees
  1298. *
  1299. * log trees do not get reference counted because they go away
  1300. * before a real commit is actually done. They do store pointers
  1301. * to file data extents, and those reference counts still get
  1302. * updated (along with back refs to the log tree).
  1303. */
  1304. leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
  1305. NULL, 0, 0, 0);
  1306. if (IS_ERR(leaf)) {
  1307. kfree(root);
  1308. return ERR_CAST(leaf);
  1309. }
  1310. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1311. btrfs_set_header_bytenr(leaf, leaf->start);
  1312. btrfs_set_header_generation(leaf, trans->transid);
  1313. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1314. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1315. root->node = leaf;
  1316. write_extent_buffer(root->node, root->fs_info->fsid,
  1317. btrfs_header_fsid(), BTRFS_FSID_SIZE);
  1318. btrfs_mark_buffer_dirty(root->node);
  1319. btrfs_tree_unlock(root->node);
  1320. return root;
  1321. }
  1322. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1323. struct btrfs_fs_info *fs_info)
  1324. {
  1325. struct btrfs_root *log_root;
  1326. log_root = alloc_log_tree(trans, fs_info);
  1327. if (IS_ERR(log_root))
  1328. return PTR_ERR(log_root);
  1329. WARN_ON(fs_info->log_root_tree);
  1330. fs_info->log_root_tree = log_root;
  1331. return 0;
  1332. }
  1333. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1334. struct btrfs_root *root)
  1335. {
  1336. struct btrfs_root *log_root;
  1337. struct btrfs_inode_item *inode_item;
  1338. log_root = alloc_log_tree(trans, root->fs_info);
  1339. if (IS_ERR(log_root))
  1340. return PTR_ERR(log_root);
  1341. log_root->last_trans = trans->transid;
  1342. log_root->root_key.offset = root->root_key.objectid;
  1343. inode_item = &log_root->root_item.inode;
  1344. btrfs_set_stack_inode_generation(inode_item, 1);
  1345. btrfs_set_stack_inode_size(inode_item, 3);
  1346. btrfs_set_stack_inode_nlink(inode_item, 1);
  1347. btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
  1348. btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
  1349. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1350. WARN_ON(root->log_root);
  1351. root->log_root = log_root;
  1352. root->log_transid = 0;
  1353. root->log_transid_committed = -1;
  1354. root->last_log_commit = 0;
  1355. return 0;
  1356. }
  1357. static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
  1358. struct btrfs_key *key)
  1359. {
  1360. struct btrfs_root *root;
  1361. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1362. struct btrfs_path *path;
  1363. u64 generation;
  1364. int ret;
  1365. path = btrfs_alloc_path();
  1366. if (!path)
  1367. return ERR_PTR(-ENOMEM);
  1368. root = btrfs_alloc_root(fs_info, GFP_NOFS);
  1369. if (!root) {
  1370. ret = -ENOMEM;
  1371. goto alloc_fail;
  1372. }
  1373. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  1374. tree_root->stripesize, root, fs_info, key->objectid);
  1375. ret = btrfs_find_root(tree_root, key, path,
  1376. &root->root_item, &root->root_key);
  1377. if (ret) {
  1378. if (ret > 0)
  1379. ret = -ENOENT;
  1380. goto find_fail;
  1381. }
  1382. generation = btrfs_root_generation(&root->root_item);
  1383. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1384. generation);
  1385. if (IS_ERR(root->node)) {
  1386. ret = PTR_ERR(root->node);
  1387. goto find_fail;
  1388. } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
  1389. ret = -EIO;
  1390. free_extent_buffer(root->node);
  1391. goto find_fail;
  1392. }
  1393. root->commit_root = btrfs_root_node(root);
  1394. out:
  1395. btrfs_free_path(path);
  1396. return root;
  1397. find_fail:
  1398. kfree(root);
  1399. alloc_fail:
  1400. root = ERR_PTR(ret);
  1401. goto out;
  1402. }
  1403. struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
  1404. struct btrfs_key *location)
  1405. {
  1406. struct btrfs_root *root;
  1407. root = btrfs_read_tree_root(tree_root, location);
  1408. if (IS_ERR(root))
  1409. return root;
  1410. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  1411. set_bit(BTRFS_ROOT_REF_COWS, &root->state);
  1412. btrfs_check_and_init_root_item(&root->root_item);
  1413. }
  1414. return root;
  1415. }
  1416. int btrfs_init_fs_root(struct btrfs_root *root)
  1417. {
  1418. int ret;
  1419. struct btrfs_subvolume_writers *writers;
  1420. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1421. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1422. GFP_NOFS);
  1423. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1424. ret = -ENOMEM;
  1425. goto fail;
  1426. }
  1427. writers = btrfs_alloc_subvolume_writers();
  1428. if (IS_ERR(writers)) {
  1429. ret = PTR_ERR(writers);
  1430. goto fail;
  1431. }
  1432. root->subv_writers = writers;
  1433. btrfs_init_free_ino_ctl(root);
  1434. spin_lock_init(&root->ino_cache_lock);
  1435. init_waitqueue_head(&root->ino_cache_wait);
  1436. ret = get_anon_bdev(&root->anon_dev);
  1437. if (ret)
  1438. goto fail;
  1439. mutex_lock(&root->objectid_mutex);
  1440. ret = btrfs_find_highest_objectid(root,
  1441. &root->highest_objectid);
  1442. if (ret) {
  1443. mutex_unlock(&root->objectid_mutex);
  1444. goto fail;
  1445. }
  1446. ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
  1447. mutex_unlock(&root->objectid_mutex);
  1448. return 0;
  1449. fail:
  1450. /* the caller is responsible to call free_fs_root */
  1451. return ret;
  1452. }
  1453. struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  1454. u64 root_id)
  1455. {
  1456. struct btrfs_root *root;
  1457. spin_lock(&fs_info->fs_roots_radix_lock);
  1458. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1459. (unsigned long)root_id);
  1460. spin_unlock(&fs_info->fs_roots_radix_lock);
  1461. return root;
  1462. }
  1463. int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
  1464. struct btrfs_root *root)
  1465. {
  1466. int ret;
  1467. ret = radix_tree_preload(GFP_NOFS);
  1468. if (ret)
  1469. return ret;
  1470. spin_lock(&fs_info->fs_roots_radix_lock);
  1471. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1472. (unsigned long)root->root_key.objectid,
  1473. root);
  1474. if (ret == 0)
  1475. set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
  1476. spin_unlock(&fs_info->fs_roots_radix_lock);
  1477. radix_tree_preload_end();
  1478. return ret;
  1479. }
  1480. struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
  1481. struct btrfs_key *location,
  1482. bool check_ref)
  1483. {
  1484. struct btrfs_root *root;
  1485. struct btrfs_path *path;
  1486. struct btrfs_key key;
  1487. int ret;
  1488. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1489. return fs_info->tree_root;
  1490. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1491. return fs_info->extent_root;
  1492. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1493. return fs_info->chunk_root;
  1494. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1495. return fs_info->dev_root;
  1496. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1497. return fs_info->csum_root;
  1498. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1499. return fs_info->quota_root ? fs_info->quota_root :
  1500. ERR_PTR(-ENOENT);
  1501. if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
  1502. return fs_info->uuid_root ? fs_info->uuid_root :
  1503. ERR_PTR(-ENOENT);
  1504. if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
  1505. return fs_info->free_space_root ? fs_info->free_space_root :
  1506. ERR_PTR(-ENOENT);
  1507. again:
  1508. root = btrfs_lookup_fs_root(fs_info, location->objectid);
  1509. if (root) {
  1510. if (check_ref && btrfs_root_refs(&root->root_item) == 0)
  1511. return ERR_PTR(-ENOENT);
  1512. return root;
  1513. }
  1514. root = btrfs_read_fs_root(fs_info->tree_root, location);
  1515. if (IS_ERR(root))
  1516. return root;
  1517. if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
  1518. ret = -ENOENT;
  1519. goto fail;
  1520. }
  1521. ret = btrfs_init_fs_root(root);
  1522. if (ret)
  1523. goto fail;
  1524. path = btrfs_alloc_path();
  1525. if (!path) {
  1526. ret = -ENOMEM;
  1527. goto fail;
  1528. }
  1529. key.objectid = BTRFS_ORPHAN_OBJECTID;
  1530. key.type = BTRFS_ORPHAN_ITEM_KEY;
  1531. key.offset = location->objectid;
  1532. ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
  1533. btrfs_free_path(path);
  1534. if (ret < 0)
  1535. goto fail;
  1536. if (ret == 0)
  1537. set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
  1538. ret = btrfs_insert_fs_root(fs_info, root);
  1539. if (ret) {
  1540. if (ret == -EEXIST) {
  1541. free_fs_root(root);
  1542. goto again;
  1543. }
  1544. goto fail;
  1545. }
  1546. return root;
  1547. fail:
  1548. free_fs_root(root);
  1549. return ERR_PTR(ret);
  1550. }
  1551. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1552. {
  1553. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1554. int ret = 0;
  1555. struct btrfs_device *device;
  1556. struct backing_dev_info *bdi;
  1557. rcu_read_lock();
  1558. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1559. if (!device->bdev)
  1560. continue;
  1561. bdi = blk_get_backing_dev_info(device->bdev);
  1562. if (bdi_congested(bdi, bdi_bits)) {
  1563. ret = 1;
  1564. break;
  1565. }
  1566. }
  1567. rcu_read_unlock();
  1568. return ret;
  1569. }
  1570. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1571. {
  1572. int err;
  1573. err = bdi_setup_and_register(bdi, "btrfs");
  1574. if (err)
  1575. return err;
  1576. bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
  1577. bdi->congested_fn = btrfs_congested_fn;
  1578. bdi->congested_data = info;
  1579. bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
  1580. return 0;
  1581. }
  1582. /*
  1583. * called by the kthread helper functions to finally call the bio end_io
  1584. * functions. This is where read checksum verification actually happens
  1585. */
  1586. static void end_workqueue_fn(struct btrfs_work *work)
  1587. {
  1588. struct bio *bio;
  1589. struct btrfs_end_io_wq *end_io_wq;
  1590. end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
  1591. bio = end_io_wq->bio;
  1592. bio->bi_error = end_io_wq->error;
  1593. bio->bi_private = end_io_wq->private;
  1594. bio->bi_end_io = end_io_wq->end_io;
  1595. kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
  1596. bio_endio(bio);
  1597. }
  1598. static int cleaner_kthread(void *arg)
  1599. {
  1600. struct btrfs_root *root = arg;
  1601. int again;
  1602. struct btrfs_trans_handle *trans;
  1603. do {
  1604. again = 0;
  1605. /* Make the cleaner go to sleep early. */
  1606. if (btrfs_need_cleaner_sleep(root))
  1607. goto sleep;
  1608. /*
  1609. * Do not do anything if we might cause open_ctree() to block
  1610. * before we have finished mounting the filesystem.
  1611. */
  1612. if (!test_bit(BTRFS_FS_OPEN, &root->fs_info->flags))
  1613. goto sleep;
  1614. if (!mutex_trylock(&root->fs_info->cleaner_mutex))
  1615. goto sleep;
  1616. /*
  1617. * Avoid the problem that we change the status of the fs
  1618. * during the above check and trylock.
  1619. */
  1620. if (btrfs_need_cleaner_sleep(root)) {
  1621. mutex_unlock(&root->fs_info->cleaner_mutex);
  1622. goto sleep;
  1623. }
  1624. mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
  1625. btrfs_run_delayed_iputs(root);
  1626. mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
  1627. again = btrfs_clean_one_deleted_snapshot(root);
  1628. mutex_unlock(&root->fs_info->cleaner_mutex);
  1629. /*
  1630. * The defragger has dealt with the R/O remount and umount,
  1631. * needn't do anything special here.
  1632. */
  1633. btrfs_run_defrag_inodes(root->fs_info);
  1634. /*
  1635. * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
  1636. * with relocation (btrfs_relocate_chunk) and relocation
  1637. * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
  1638. * after acquiring fs_info->delete_unused_bgs_mutex. So we
  1639. * can't hold, nor need to, fs_info->cleaner_mutex when deleting
  1640. * unused block groups.
  1641. */
  1642. btrfs_delete_unused_bgs(root->fs_info);
  1643. sleep:
  1644. if (!again) {
  1645. set_current_state(TASK_INTERRUPTIBLE);
  1646. if (!kthread_should_stop())
  1647. schedule();
  1648. __set_current_state(TASK_RUNNING);
  1649. }
  1650. } while (!kthread_should_stop());
  1651. /*
  1652. * Transaction kthread is stopped before us and wakes us up.
  1653. * However we might have started a new transaction and COWed some
  1654. * tree blocks when deleting unused block groups for example. So
  1655. * make sure we commit the transaction we started to have a clean
  1656. * shutdown when evicting the btree inode - if it has dirty pages
  1657. * when we do the final iput() on it, eviction will trigger a
  1658. * writeback for it which will fail with null pointer dereferences
  1659. * since work queues and other resources were already released and
  1660. * destroyed by the time the iput/eviction/writeback is made.
  1661. */
  1662. trans = btrfs_attach_transaction(root);
  1663. if (IS_ERR(trans)) {
  1664. if (PTR_ERR(trans) != -ENOENT)
  1665. btrfs_err(root->fs_info,
  1666. "cleaner transaction attach returned %ld",
  1667. PTR_ERR(trans));
  1668. } else {
  1669. int ret;
  1670. ret = btrfs_commit_transaction(trans, root);
  1671. if (ret)
  1672. btrfs_err(root->fs_info,
  1673. "cleaner open transaction commit returned %d",
  1674. ret);
  1675. }
  1676. return 0;
  1677. }
  1678. static int transaction_kthread(void *arg)
  1679. {
  1680. struct btrfs_root *root = arg;
  1681. struct btrfs_trans_handle *trans;
  1682. struct btrfs_transaction *cur;
  1683. u64 transid;
  1684. unsigned long now;
  1685. unsigned long delay;
  1686. bool cannot_commit;
  1687. do {
  1688. cannot_commit = false;
  1689. delay = HZ * root->fs_info->commit_interval;
  1690. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1691. spin_lock(&root->fs_info->trans_lock);
  1692. cur = root->fs_info->running_transaction;
  1693. if (!cur) {
  1694. spin_unlock(&root->fs_info->trans_lock);
  1695. goto sleep;
  1696. }
  1697. now = get_seconds();
  1698. if (cur->state < TRANS_STATE_BLOCKED &&
  1699. (now < cur->start_time ||
  1700. now - cur->start_time < root->fs_info->commit_interval)) {
  1701. spin_unlock(&root->fs_info->trans_lock);
  1702. delay = HZ * 5;
  1703. goto sleep;
  1704. }
  1705. transid = cur->transid;
  1706. spin_unlock(&root->fs_info->trans_lock);
  1707. /* If the file system is aborted, this will always fail. */
  1708. trans = btrfs_attach_transaction(root);
  1709. if (IS_ERR(trans)) {
  1710. if (PTR_ERR(trans) != -ENOENT)
  1711. cannot_commit = true;
  1712. goto sleep;
  1713. }
  1714. if (transid == trans->transid) {
  1715. btrfs_commit_transaction(trans, root);
  1716. } else {
  1717. btrfs_end_transaction(trans, root);
  1718. }
  1719. sleep:
  1720. wake_up_process(root->fs_info->cleaner_kthread);
  1721. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1722. if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
  1723. &root->fs_info->fs_state)))
  1724. btrfs_cleanup_transaction(root);
  1725. set_current_state(TASK_INTERRUPTIBLE);
  1726. if (!kthread_should_stop() &&
  1727. (!btrfs_transaction_blocked(root->fs_info) ||
  1728. cannot_commit))
  1729. schedule_timeout(delay);
  1730. __set_current_state(TASK_RUNNING);
  1731. } while (!kthread_should_stop());
  1732. return 0;
  1733. }
  1734. /*
  1735. * this will find the highest generation in the array of
  1736. * root backups. The index of the highest array is returned,
  1737. * or -1 if we can't find anything.
  1738. *
  1739. * We check to make sure the array is valid by comparing the
  1740. * generation of the latest root in the array with the generation
  1741. * in the super block. If they don't match we pitch it.
  1742. */
  1743. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1744. {
  1745. u64 cur;
  1746. int newest_index = -1;
  1747. struct btrfs_root_backup *root_backup;
  1748. int i;
  1749. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1750. root_backup = info->super_copy->super_roots + i;
  1751. cur = btrfs_backup_tree_root_gen(root_backup);
  1752. if (cur == newest_gen)
  1753. newest_index = i;
  1754. }
  1755. /* check to see if we actually wrapped around */
  1756. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1757. root_backup = info->super_copy->super_roots;
  1758. cur = btrfs_backup_tree_root_gen(root_backup);
  1759. if (cur == newest_gen)
  1760. newest_index = 0;
  1761. }
  1762. return newest_index;
  1763. }
  1764. /*
  1765. * find the oldest backup so we know where to store new entries
  1766. * in the backup array. This will set the backup_root_index
  1767. * field in the fs_info struct
  1768. */
  1769. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1770. u64 newest_gen)
  1771. {
  1772. int newest_index = -1;
  1773. newest_index = find_newest_super_backup(info, newest_gen);
  1774. /* if there was garbage in there, just move along */
  1775. if (newest_index == -1) {
  1776. info->backup_root_index = 0;
  1777. } else {
  1778. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1779. }
  1780. }
  1781. /*
  1782. * copy all the root pointers into the super backup array.
  1783. * this will bump the backup pointer by one when it is
  1784. * done
  1785. */
  1786. static void backup_super_roots(struct btrfs_fs_info *info)
  1787. {
  1788. int next_backup;
  1789. struct btrfs_root_backup *root_backup;
  1790. int last_backup;
  1791. next_backup = info->backup_root_index;
  1792. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1793. BTRFS_NUM_BACKUP_ROOTS;
  1794. /*
  1795. * just overwrite the last backup if we're at the same generation
  1796. * this happens only at umount
  1797. */
  1798. root_backup = info->super_for_commit->super_roots + last_backup;
  1799. if (btrfs_backup_tree_root_gen(root_backup) ==
  1800. btrfs_header_generation(info->tree_root->node))
  1801. next_backup = last_backup;
  1802. root_backup = info->super_for_commit->super_roots + next_backup;
  1803. /*
  1804. * make sure all of our padding and empty slots get zero filled
  1805. * regardless of which ones we use today
  1806. */
  1807. memset(root_backup, 0, sizeof(*root_backup));
  1808. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1809. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1810. btrfs_set_backup_tree_root_gen(root_backup,
  1811. btrfs_header_generation(info->tree_root->node));
  1812. btrfs_set_backup_tree_root_level(root_backup,
  1813. btrfs_header_level(info->tree_root->node));
  1814. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1815. btrfs_set_backup_chunk_root_gen(root_backup,
  1816. btrfs_header_generation(info->chunk_root->node));
  1817. btrfs_set_backup_chunk_root_level(root_backup,
  1818. btrfs_header_level(info->chunk_root->node));
  1819. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1820. btrfs_set_backup_extent_root_gen(root_backup,
  1821. btrfs_header_generation(info->extent_root->node));
  1822. btrfs_set_backup_extent_root_level(root_backup,
  1823. btrfs_header_level(info->extent_root->node));
  1824. /*
  1825. * we might commit during log recovery, which happens before we set
  1826. * the fs_root. Make sure it is valid before we fill it in.
  1827. */
  1828. if (info->fs_root && info->fs_root->node) {
  1829. btrfs_set_backup_fs_root(root_backup,
  1830. info->fs_root->node->start);
  1831. btrfs_set_backup_fs_root_gen(root_backup,
  1832. btrfs_header_generation(info->fs_root->node));
  1833. btrfs_set_backup_fs_root_level(root_backup,
  1834. btrfs_header_level(info->fs_root->node));
  1835. }
  1836. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1837. btrfs_set_backup_dev_root_gen(root_backup,
  1838. btrfs_header_generation(info->dev_root->node));
  1839. btrfs_set_backup_dev_root_level(root_backup,
  1840. btrfs_header_level(info->dev_root->node));
  1841. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1842. btrfs_set_backup_csum_root_gen(root_backup,
  1843. btrfs_header_generation(info->csum_root->node));
  1844. btrfs_set_backup_csum_root_level(root_backup,
  1845. btrfs_header_level(info->csum_root->node));
  1846. btrfs_set_backup_total_bytes(root_backup,
  1847. btrfs_super_total_bytes(info->super_copy));
  1848. btrfs_set_backup_bytes_used(root_backup,
  1849. btrfs_super_bytes_used(info->super_copy));
  1850. btrfs_set_backup_num_devices(root_backup,
  1851. btrfs_super_num_devices(info->super_copy));
  1852. /*
  1853. * if we don't copy this out to the super_copy, it won't get remembered
  1854. * for the next commit
  1855. */
  1856. memcpy(&info->super_copy->super_roots,
  1857. &info->super_for_commit->super_roots,
  1858. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1859. }
  1860. /*
  1861. * this copies info out of the root backup array and back into
  1862. * the in-memory super block. It is meant to help iterate through
  1863. * the array, so you send it the number of backups you've already
  1864. * tried and the last backup index you used.
  1865. *
  1866. * this returns -1 when it has tried all the backups
  1867. */
  1868. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1869. struct btrfs_super_block *super,
  1870. int *num_backups_tried, int *backup_index)
  1871. {
  1872. struct btrfs_root_backup *root_backup;
  1873. int newest = *backup_index;
  1874. if (*num_backups_tried == 0) {
  1875. u64 gen = btrfs_super_generation(super);
  1876. newest = find_newest_super_backup(info, gen);
  1877. if (newest == -1)
  1878. return -1;
  1879. *backup_index = newest;
  1880. *num_backups_tried = 1;
  1881. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1882. /* we've tried all the backups, all done */
  1883. return -1;
  1884. } else {
  1885. /* jump to the next oldest backup */
  1886. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1887. BTRFS_NUM_BACKUP_ROOTS;
  1888. *backup_index = newest;
  1889. *num_backups_tried += 1;
  1890. }
  1891. root_backup = super->super_roots + newest;
  1892. btrfs_set_super_generation(super,
  1893. btrfs_backup_tree_root_gen(root_backup));
  1894. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1895. btrfs_set_super_root_level(super,
  1896. btrfs_backup_tree_root_level(root_backup));
  1897. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1898. /*
  1899. * fixme: the total bytes and num_devices need to match or we should
  1900. * need a fsck
  1901. */
  1902. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1903. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1904. return 0;
  1905. }
  1906. /* helper to cleanup workers */
  1907. static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
  1908. {
  1909. btrfs_destroy_workqueue(fs_info->fixup_workers);
  1910. btrfs_destroy_workqueue(fs_info->delalloc_workers);
  1911. btrfs_destroy_workqueue(fs_info->workers);
  1912. btrfs_destroy_workqueue(fs_info->endio_workers);
  1913. btrfs_destroy_workqueue(fs_info->endio_meta_workers);
  1914. btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
  1915. btrfs_destroy_workqueue(fs_info->endio_repair_workers);
  1916. btrfs_destroy_workqueue(fs_info->rmw_workers);
  1917. btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
  1918. btrfs_destroy_workqueue(fs_info->endio_write_workers);
  1919. btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
  1920. btrfs_destroy_workqueue(fs_info->submit_workers);
  1921. btrfs_destroy_workqueue(fs_info->delayed_workers);
  1922. btrfs_destroy_workqueue(fs_info->caching_workers);
  1923. btrfs_destroy_workqueue(fs_info->readahead_workers);
  1924. btrfs_destroy_workqueue(fs_info->flush_workers);
  1925. btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
  1926. btrfs_destroy_workqueue(fs_info->extent_workers);
  1927. }
  1928. static void free_root_extent_buffers(struct btrfs_root *root)
  1929. {
  1930. if (root) {
  1931. free_extent_buffer(root->node);
  1932. free_extent_buffer(root->commit_root);
  1933. root->node = NULL;
  1934. root->commit_root = NULL;
  1935. }
  1936. }
  1937. /* helper to cleanup tree roots */
  1938. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1939. {
  1940. free_root_extent_buffers(info->tree_root);
  1941. free_root_extent_buffers(info->dev_root);
  1942. free_root_extent_buffers(info->extent_root);
  1943. free_root_extent_buffers(info->csum_root);
  1944. free_root_extent_buffers(info->quota_root);
  1945. free_root_extent_buffers(info->uuid_root);
  1946. if (chunk_root)
  1947. free_root_extent_buffers(info->chunk_root);
  1948. free_root_extent_buffers(info->free_space_root);
  1949. }
  1950. void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
  1951. {
  1952. int ret;
  1953. struct btrfs_root *gang[8];
  1954. int i;
  1955. while (!list_empty(&fs_info->dead_roots)) {
  1956. gang[0] = list_entry(fs_info->dead_roots.next,
  1957. struct btrfs_root, root_list);
  1958. list_del(&gang[0]->root_list);
  1959. if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
  1960. btrfs_drop_and_free_fs_root(fs_info, gang[0]);
  1961. } else {
  1962. free_extent_buffer(gang[0]->node);
  1963. free_extent_buffer(gang[0]->commit_root);
  1964. btrfs_put_fs_root(gang[0]);
  1965. }
  1966. }
  1967. while (1) {
  1968. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1969. (void **)gang, 0,
  1970. ARRAY_SIZE(gang));
  1971. if (!ret)
  1972. break;
  1973. for (i = 0; i < ret; i++)
  1974. btrfs_drop_and_free_fs_root(fs_info, gang[i]);
  1975. }
  1976. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  1977. btrfs_free_log_root_tree(NULL, fs_info);
  1978. btrfs_destroy_pinned_extent(fs_info->tree_root,
  1979. fs_info->pinned_extents);
  1980. }
  1981. }
  1982. static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
  1983. {
  1984. mutex_init(&fs_info->scrub_lock);
  1985. atomic_set(&fs_info->scrubs_running, 0);
  1986. atomic_set(&fs_info->scrub_pause_req, 0);
  1987. atomic_set(&fs_info->scrubs_paused, 0);
  1988. atomic_set(&fs_info->scrub_cancel_req, 0);
  1989. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1990. fs_info->scrub_workers_refcnt = 0;
  1991. }
  1992. static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
  1993. {
  1994. spin_lock_init(&fs_info->balance_lock);
  1995. mutex_init(&fs_info->balance_mutex);
  1996. atomic_set(&fs_info->balance_running, 0);
  1997. atomic_set(&fs_info->balance_pause_req, 0);
  1998. atomic_set(&fs_info->balance_cancel_req, 0);
  1999. fs_info->balance_ctl = NULL;
  2000. init_waitqueue_head(&fs_info->balance_wait_q);
  2001. }
  2002. static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
  2003. struct btrfs_root *tree_root)
  2004. {
  2005. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  2006. set_nlink(fs_info->btree_inode, 1);
  2007. /*
  2008. * we set the i_size on the btree inode to the max possible int.
  2009. * the real end of the address space is determined by all of
  2010. * the devices in the system
  2011. */
  2012. fs_info->btree_inode->i_size = OFFSET_MAX;
  2013. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  2014. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  2015. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  2016. fs_info->btree_inode->i_mapping);
  2017. BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
  2018. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  2019. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  2020. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  2021. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  2022. sizeof(struct btrfs_key));
  2023. set_bit(BTRFS_INODE_DUMMY,
  2024. &BTRFS_I(fs_info->btree_inode)->runtime_flags);
  2025. btrfs_insert_inode_hash(fs_info->btree_inode);
  2026. }
  2027. static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
  2028. {
  2029. fs_info->dev_replace.lock_owner = 0;
  2030. atomic_set(&fs_info->dev_replace.nesting_level, 0);
  2031. mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
  2032. rwlock_init(&fs_info->dev_replace.lock);
  2033. atomic_set(&fs_info->dev_replace.read_locks, 0);
  2034. atomic_set(&fs_info->dev_replace.blocking_readers, 0);
  2035. init_waitqueue_head(&fs_info->replace_wait);
  2036. init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
  2037. }
  2038. static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
  2039. {
  2040. spin_lock_init(&fs_info->qgroup_lock);
  2041. mutex_init(&fs_info->qgroup_ioctl_lock);
  2042. fs_info->qgroup_tree = RB_ROOT;
  2043. fs_info->qgroup_op_tree = RB_ROOT;
  2044. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  2045. fs_info->qgroup_seq = 1;
  2046. fs_info->qgroup_ulist = NULL;
  2047. fs_info->qgroup_rescan_running = false;
  2048. mutex_init(&fs_info->qgroup_rescan_lock);
  2049. }
  2050. static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
  2051. struct btrfs_fs_devices *fs_devices)
  2052. {
  2053. int max_active = fs_info->thread_pool_size;
  2054. unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
  2055. fs_info->workers =
  2056. btrfs_alloc_workqueue(fs_info, "worker",
  2057. flags | WQ_HIGHPRI, max_active, 16);
  2058. fs_info->delalloc_workers =
  2059. btrfs_alloc_workqueue(fs_info, "delalloc",
  2060. flags, max_active, 2);
  2061. fs_info->flush_workers =
  2062. btrfs_alloc_workqueue(fs_info, "flush_delalloc",
  2063. flags, max_active, 0);
  2064. fs_info->caching_workers =
  2065. btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
  2066. /*
  2067. * a higher idle thresh on the submit workers makes it much more
  2068. * likely that bios will be send down in a sane order to the
  2069. * devices
  2070. */
  2071. fs_info->submit_workers =
  2072. btrfs_alloc_workqueue(fs_info, "submit", flags,
  2073. min_t(u64, fs_devices->num_devices,
  2074. max_active), 64);
  2075. fs_info->fixup_workers =
  2076. btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
  2077. /*
  2078. * endios are largely parallel and should have a very
  2079. * low idle thresh
  2080. */
  2081. fs_info->endio_workers =
  2082. btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
  2083. fs_info->endio_meta_workers =
  2084. btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
  2085. max_active, 4);
  2086. fs_info->endio_meta_write_workers =
  2087. btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
  2088. max_active, 2);
  2089. fs_info->endio_raid56_workers =
  2090. btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
  2091. max_active, 4);
  2092. fs_info->endio_repair_workers =
  2093. btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
  2094. fs_info->rmw_workers =
  2095. btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
  2096. fs_info->endio_write_workers =
  2097. btrfs_alloc_workqueue(fs_info, "endio-write", flags,
  2098. max_active, 2);
  2099. fs_info->endio_freespace_worker =
  2100. btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
  2101. max_active, 0);
  2102. fs_info->delayed_workers =
  2103. btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
  2104. max_active, 0);
  2105. fs_info->readahead_workers =
  2106. btrfs_alloc_workqueue(fs_info, "readahead", flags,
  2107. max_active, 2);
  2108. fs_info->qgroup_rescan_workers =
  2109. btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
  2110. fs_info->extent_workers =
  2111. btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
  2112. min_t(u64, fs_devices->num_devices,
  2113. max_active), 8);
  2114. if (!(fs_info->workers && fs_info->delalloc_workers &&
  2115. fs_info->submit_workers && fs_info->flush_workers &&
  2116. fs_info->endio_workers && fs_info->endio_meta_workers &&
  2117. fs_info->endio_meta_write_workers &&
  2118. fs_info->endio_repair_workers &&
  2119. fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
  2120. fs_info->endio_freespace_worker && fs_info->rmw_workers &&
  2121. fs_info->caching_workers && fs_info->readahead_workers &&
  2122. fs_info->fixup_workers && fs_info->delayed_workers &&
  2123. fs_info->extent_workers &&
  2124. fs_info->qgroup_rescan_workers)) {
  2125. return -ENOMEM;
  2126. }
  2127. return 0;
  2128. }
  2129. static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
  2130. struct btrfs_fs_devices *fs_devices)
  2131. {
  2132. int ret;
  2133. struct btrfs_root *tree_root = fs_info->tree_root;
  2134. struct btrfs_root *log_tree_root;
  2135. struct btrfs_super_block *disk_super = fs_info->super_copy;
  2136. u64 bytenr = btrfs_super_log_root(disk_super);
  2137. if (fs_devices->rw_devices == 0) {
  2138. btrfs_warn(fs_info, "log replay required on RO media");
  2139. return -EIO;
  2140. }
  2141. log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  2142. if (!log_tree_root)
  2143. return -ENOMEM;
  2144. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  2145. tree_root->stripesize, log_tree_root, fs_info,
  2146. BTRFS_TREE_LOG_OBJECTID);
  2147. log_tree_root->node = read_tree_block(tree_root, bytenr,
  2148. fs_info->generation + 1);
  2149. if (IS_ERR(log_tree_root->node)) {
  2150. btrfs_warn(fs_info, "failed to read log tree");
  2151. ret = PTR_ERR(log_tree_root->node);
  2152. kfree(log_tree_root);
  2153. return ret;
  2154. } else if (!extent_buffer_uptodate(log_tree_root->node)) {
  2155. btrfs_err(fs_info, "failed to read log tree");
  2156. free_extent_buffer(log_tree_root->node);
  2157. kfree(log_tree_root);
  2158. return -EIO;
  2159. }
  2160. /* returns with log_tree_root freed on success */
  2161. ret = btrfs_recover_log_trees(log_tree_root);
  2162. if (ret) {
  2163. btrfs_handle_fs_error(tree_root->fs_info, ret,
  2164. "Failed to recover log tree");
  2165. free_extent_buffer(log_tree_root->node);
  2166. kfree(log_tree_root);
  2167. return ret;
  2168. }
  2169. if (fs_info->sb->s_flags & MS_RDONLY) {
  2170. ret = btrfs_commit_super(tree_root);
  2171. if (ret)
  2172. return ret;
  2173. }
  2174. return 0;
  2175. }
  2176. static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
  2177. struct btrfs_root *tree_root)
  2178. {
  2179. struct btrfs_root *root;
  2180. struct btrfs_key location;
  2181. int ret;
  2182. location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
  2183. location.type = BTRFS_ROOT_ITEM_KEY;
  2184. location.offset = 0;
  2185. root = btrfs_read_tree_root(tree_root, &location);
  2186. if (IS_ERR(root))
  2187. return PTR_ERR(root);
  2188. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2189. fs_info->extent_root = root;
  2190. location.objectid = BTRFS_DEV_TREE_OBJECTID;
  2191. root = btrfs_read_tree_root(tree_root, &location);
  2192. if (IS_ERR(root))
  2193. return PTR_ERR(root);
  2194. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2195. fs_info->dev_root = root;
  2196. btrfs_init_devices_late(fs_info);
  2197. location.objectid = BTRFS_CSUM_TREE_OBJECTID;
  2198. root = btrfs_read_tree_root(tree_root, &location);
  2199. if (IS_ERR(root))
  2200. return PTR_ERR(root);
  2201. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2202. fs_info->csum_root = root;
  2203. location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
  2204. root = btrfs_read_tree_root(tree_root, &location);
  2205. if (!IS_ERR(root)) {
  2206. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2207. set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
  2208. fs_info->quota_root = root;
  2209. }
  2210. location.objectid = BTRFS_UUID_TREE_OBJECTID;
  2211. root = btrfs_read_tree_root(tree_root, &location);
  2212. if (IS_ERR(root)) {
  2213. ret = PTR_ERR(root);
  2214. if (ret != -ENOENT)
  2215. return ret;
  2216. } else {
  2217. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2218. fs_info->uuid_root = root;
  2219. }
  2220. if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2221. location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
  2222. root = btrfs_read_tree_root(tree_root, &location);
  2223. if (IS_ERR(root))
  2224. return PTR_ERR(root);
  2225. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2226. fs_info->free_space_root = root;
  2227. }
  2228. return 0;
  2229. }
  2230. int open_ctree(struct super_block *sb,
  2231. struct btrfs_fs_devices *fs_devices,
  2232. char *options)
  2233. {
  2234. u32 sectorsize;
  2235. u32 nodesize;
  2236. u32 stripesize;
  2237. u64 generation;
  2238. u64 features;
  2239. struct btrfs_key location;
  2240. struct buffer_head *bh;
  2241. struct btrfs_super_block *disk_super;
  2242. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  2243. struct btrfs_root *tree_root;
  2244. struct btrfs_root *chunk_root;
  2245. int ret;
  2246. int err = -EINVAL;
  2247. int num_backups_tried = 0;
  2248. int backup_index = 0;
  2249. int max_active;
  2250. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  2251. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  2252. if (!tree_root || !chunk_root) {
  2253. err = -ENOMEM;
  2254. goto fail;
  2255. }
  2256. ret = init_srcu_struct(&fs_info->subvol_srcu);
  2257. if (ret) {
  2258. err = ret;
  2259. goto fail;
  2260. }
  2261. ret = setup_bdi(fs_info, &fs_info->bdi);
  2262. if (ret) {
  2263. err = ret;
  2264. goto fail_srcu;
  2265. }
  2266. ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
  2267. if (ret) {
  2268. err = ret;
  2269. goto fail_bdi;
  2270. }
  2271. fs_info->dirty_metadata_batch = PAGE_SIZE *
  2272. (1 + ilog2(nr_cpu_ids));
  2273. ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
  2274. if (ret) {
  2275. err = ret;
  2276. goto fail_dirty_metadata_bytes;
  2277. }
  2278. ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
  2279. if (ret) {
  2280. err = ret;
  2281. goto fail_delalloc_bytes;
  2282. }
  2283. fs_info->btree_inode = new_inode(sb);
  2284. if (!fs_info->btree_inode) {
  2285. err = -ENOMEM;
  2286. goto fail_bio_counter;
  2287. }
  2288. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  2289. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  2290. INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
  2291. INIT_LIST_HEAD(&fs_info->trans_list);
  2292. INIT_LIST_HEAD(&fs_info->dead_roots);
  2293. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  2294. INIT_LIST_HEAD(&fs_info->delalloc_roots);
  2295. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  2296. spin_lock_init(&fs_info->delalloc_root_lock);
  2297. spin_lock_init(&fs_info->trans_lock);
  2298. spin_lock_init(&fs_info->fs_roots_radix_lock);
  2299. spin_lock_init(&fs_info->delayed_iput_lock);
  2300. spin_lock_init(&fs_info->defrag_inodes_lock);
  2301. spin_lock_init(&fs_info->free_chunk_lock);
  2302. spin_lock_init(&fs_info->tree_mod_seq_lock);
  2303. spin_lock_init(&fs_info->super_lock);
  2304. spin_lock_init(&fs_info->qgroup_op_lock);
  2305. spin_lock_init(&fs_info->buffer_lock);
  2306. spin_lock_init(&fs_info->unused_bgs_lock);
  2307. rwlock_init(&fs_info->tree_mod_log_lock);
  2308. mutex_init(&fs_info->unused_bg_unpin_mutex);
  2309. mutex_init(&fs_info->delete_unused_bgs_mutex);
  2310. mutex_init(&fs_info->reloc_mutex);
  2311. mutex_init(&fs_info->delalloc_root_mutex);
  2312. mutex_init(&fs_info->cleaner_delayed_iput_mutex);
  2313. seqlock_init(&fs_info->profiles_lock);
  2314. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  2315. INIT_LIST_HEAD(&fs_info->space_info);
  2316. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  2317. INIT_LIST_HEAD(&fs_info->unused_bgs);
  2318. btrfs_mapping_init(&fs_info->mapping_tree);
  2319. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  2320. BTRFS_BLOCK_RSV_GLOBAL);
  2321. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
  2322. BTRFS_BLOCK_RSV_DELALLOC);
  2323. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  2324. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  2325. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  2326. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  2327. BTRFS_BLOCK_RSV_DELOPS);
  2328. atomic_set(&fs_info->nr_async_submits, 0);
  2329. atomic_set(&fs_info->async_delalloc_pages, 0);
  2330. atomic_set(&fs_info->async_submit_draining, 0);
  2331. atomic_set(&fs_info->nr_async_bios, 0);
  2332. atomic_set(&fs_info->defrag_running, 0);
  2333. atomic_set(&fs_info->qgroup_op_seq, 0);
  2334. atomic_set(&fs_info->reada_works_cnt, 0);
  2335. atomic64_set(&fs_info->tree_mod_seq, 0);
  2336. fs_info->fs_frozen = 0;
  2337. fs_info->sb = sb;
  2338. fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
  2339. fs_info->metadata_ratio = 0;
  2340. fs_info->defrag_inodes = RB_ROOT;
  2341. fs_info->free_chunk_space = 0;
  2342. fs_info->tree_mod_log = RB_ROOT;
  2343. fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
  2344. fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
  2345. /* readahead state */
  2346. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
  2347. spin_lock_init(&fs_info->reada_lock);
  2348. fs_info->thread_pool_size = min_t(unsigned long,
  2349. num_online_cpus() + 2, 8);
  2350. INIT_LIST_HEAD(&fs_info->ordered_roots);
  2351. spin_lock_init(&fs_info->ordered_root_lock);
  2352. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  2353. GFP_KERNEL);
  2354. if (!fs_info->delayed_root) {
  2355. err = -ENOMEM;
  2356. goto fail_iput;
  2357. }
  2358. btrfs_init_delayed_root(fs_info->delayed_root);
  2359. btrfs_init_scrub(fs_info);
  2360. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2361. fs_info->check_integrity_print_mask = 0;
  2362. #endif
  2363. btrfs_init_balance(fs_info);
  2364. btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
  2365. sb->s_blocksize = 4096;
  2366. sb->s_blocksize_bits = blksize_bits(4096);
  2367. sb->s_bdi = &fs_info->bdi;
  2368. btrfs_init_btree_inode(fs_info, tree_root);
  2369. spin_lock_init(&fs_info->block_group_cache_lock);
  2370. fs_info->block_group_cache_tree = RB_ROOT;
  2371. fs_info->first_logical_byte = (u64)-1;
  2372. extent_io_tree_init(&fs_info->freed_extents[0],
  2373. fs_info->btree_inode->i_mapping);
  2374. extent_io_tree_init(&fs_info->freed_extents[1],
  2375. fs_info->btree_inode->i_mapping);
  2376. fs_info->pinned_extents = &fs_info->freed_extents[0];
  2377. set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
  2378. mutex_init(&fs_info->ordered_operations_mutex);
  2379. mutex_init(&fs_info->tree_log_mutex);
  2380. mutex_init(&fs_info->chunk_mutex);
  2381. mutex_init(&fs_info->transaction_kthread_mutex);
  2382. mutex_init(&fs_info->cleaner_mutex);
  2383. mutex_init(&fs_info->volume_mutex);
  2384. mutex_init(&fs_info->ro_block_group_mutex);
  2385. init_rwsem(&fs_info->commit_root_sem);
  2386. init_rwsem(&fs_info->cleanup_work_sem);
  2387. init_rwsem(&fs_info->subvol_sem);
  2388. sema_init(&fs_info->uuid_tree_rescan_sem, 1);
  2389. btrfs_init_dev_replace_locks(fs_info);
  2390. btrfs_init_qgroup(fs_info);
  2391. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  2392. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  2393. init_waitqueue_head(&fs_info->transaction_throttle);
  2394. init_waitqueue_head(&fs_info->transaction_wait);
  2395. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  2396. init_waitqueue_head(&fs_info->async_submit_wait);
  2397. INIT_LIST_HEAD(&fs_info->pinned_chunks);
  2398. ret = btrfs_alloc_stripe_hash_table(fs_info);
  2399. if (ret) {
  2400. err = ret;
  2401. goto fail_alloc;
  2402. }
  2403. __setup_root(4096, 4096, 4096, tree_root,
  2404. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  2405. invalidate_bdev(fs_devices->latest_bdev);
  2406. /*
  2407. * Read super block and check the signature bytes only
  2408. */
  2409. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  2410. if (IS_ERR(bh)) {
  2411. err = PTR_ERR(bh);
  2412. goto fail_alloc;
  2413. }
  2414. /*
  2415. * We want to check superblock checksum, the type is stored inside.
  2416. * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
  2417. */
  2418. if (btrfs_check_super_csum(fs_info, bh->b_data)) {
  2419. btrfs_err(fs_info, "superblock checksum mismatch");
  2420. err = -EINVAL;
  2421. brelse(bh);
  2422. goto fail_alloc;
  2423. }
  2424. /*
  2425. * super_copy is zeroed at allocation time and we never touch the
  2426. * following bytes up to INFO_SIZE, the checksum is calculated from
  2427. * the whole block of INFO_SIZE
  2428. */
  2429. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  2430. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  2431. sizeof(*fs_info->super_for_commit));
  2432. brelse(bh);
  2433. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  2434. ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  2435. if (ret) {
  2436. btrfs_err(fs_info, "superblock contains fatal errors");
  2437. err = -EINVAL;
  2438. goto fail_alloc;
  2439. }
  2440. disk_super = fs_info->super_copy;
  2441. if (!btrfs_super_root(disk_super))
  2442. goto fail_alloc;
  2443. /* check FS state, whether FS is broken. */
  2444. if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
  2445. set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
  2446. /*
  2447. * run through our array of backup supers and setup
  2448. * our ring pointer to the oldest one
  2449. */
  2450. generation = btrfs_super_generation(disk_super);
  2451. find_oldest_super_backup(fs_info, generation);
  2452. /*
  2453. * In the long term, we'll store the compression type in the super
  2454. * block, and it'll be used for per file compression control.
  2455. */
  2456. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  2457. ret = btrfs_parse_options(tree_root, options, sb->s_flags);
  2458. if (ret) {
  2459. err = ret;
  2460. goto fail_alloc;
  2461. }
  2462. features = btrfs_super_incompat_flags(disk_super) &
  2463. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  2464. if (features) {
  2465. btrfs_err(fs_info,
  2466. "cannot mount because of unsupported optional features (%llx)",
  2467. features);
  2468. err = -EINVAL;
  2469. goto fail_alloc;
  2470. }
  2471. features = btrfs_super_incompat_flags(disk_super);
  2472. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  2473. if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
  2474. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  2475. if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
  2476. btrfs_info(fs_info, "has skinny extents");
  2477. /*
  2478. * flag our filesystem as having big metadata blocks if
  2479. * they are bigger than the page size
  2480. */
  2481. if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
  2482. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  2483. btrfs_info(fs_info,
  2484. "flagging fs with big metadata feature");
  2485. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  2486. }
  2487. nodesize = btrfs_super_nodesize(disk_super);
  2488. sectorsize = btrfs_super_sectorsize(disk_super);
  2489. stripesize = sectorsize;
  2490. fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
  2491. fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
  2492. /*
  2493. * mixed block groups end up with duplicate but slightly offset
  2494. * extent buffers for the same range. It leads to corruptions
  2495. */
  2496. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  2497. (sectorsize != nodesize)) {
  2498. btrfs_err(fs_info,
  2499. "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
  2500. nodesize, sectorsize);
  2501. goto fail_alloc;
  2502. }
  2503. /*
  2504. * Needn't use the lock because there is no other task which will
  2505. * update the flag.
  2506. */
  2507. btrfs_set_super_incompat_flags(disk_super, features);
  2508. features = btrfs_super_compat_ro_flags(disk_super) &
  2509. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  2510. if (!(sb->s_flags & MS_RDONLY) && features) {
  2511. btrfs_err(fs_info,
  2512. "cannot mount read-write because of unsupported optional features (%llx)",
  2513. features);
  2514. err = -EINVAL;
  2515. goto fail_alloc;
  2516. }
  2517. max_active = fs_info->thread_pool_size;
  2518. ret = btrfs_init_workqueues(fs_info, fs_devices);
  2519. if (ret) {
  2520. err = ret;
  2521. goto fail_sb_buffer;
  2522. }
  2523. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  2524. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  2525. SZ_4M / PAGE_SIZE);
  2526. tree_root->nodesize = nodesize;
  2527. tree_root->sectorsize = sectorsize;
  2528. tree_root->stripesize = stripesize;
  2529. sb->s_blocksize = sectorsize;
  2530. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2531. mutex_lock(&fs_info->chunk_mutex);
  2532. ret = btrfs_read_sys_array(tree_root);
  2533. mutex_unlock(&fs_info->chunk_mutex);
  2534. if (ret) {
  2535. btrfs_err(fs_info, "failed to read the system array: %d", ret);
  2536. goto fail_sb_buffer;
  2537. }
  2538. generation = btrfs_super_chunk_root_generation(disk_super);
  2539. __setup_root(nodesize, sectorsize, stripesize, chunk_root,
  2540. fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2541. chunk_root->node = read_tree_block(chunk_root,
  2542. btrfs_super_chunk_root(disk_super),
  2543. generation);
  2544. if (IS_ERR(chunk_root->node) ||
  2545. !extent_buffer_uptodate(chunk_root->node)) {
  2546. btrfs_err(fs_info, "failed to read chunk root");
  2547. if (!IS_ERR(chunk_root->node))
  2548. free_extent_buffer(chunk_root->node);
  2549. chunk_root->node = NULL;
  2550. goto fail_tree_roots;
  2551. }
  2552. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2553. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2554. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2555. btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
  2556. ret = btrfs_read_chunk_tree(chunk_root);
  2557. if (ret) {
  2558. btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
  2559. goto fail_tree_roots;
  2560. }
  2561. /*
  2562. * keep the device that is marked to be the target device for the
  2563. * dev_replace procedure
  2564. */
  2565. btrfs_close_extra_devices(fs_devices, 0);
  2566. if (!fs_devices->latest_bdev) {
  2567. btrfs_err(fs_info, "failed to read devices");
  2568. goto fail_tree_roots;
  2569. }
  2570. retry_root_backup:
  2571. generation = btrfs_super_generation(disk_super);
  2572. tree_root->node = read_tree_block(tree_root,
  2573. btrfs_super_root(disk_super),
  2574. generation);
  2575. if (IS_ERR(tree_root->node) ||
  2576. !extent_buffer_uptodate(tree_root->node)) {
  2577. btrfs_warn(fs_info, "failed to read tree root");
  2578. if (!IS_ERR(tree_root->node))
  2579. free_extent_buffer(tree_root->node);
  2580. tree_root->node = NULL;
  2581. goto recovery_tree_root;
  2582. }
  2583. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2584. tree_root->commit_root = btrfs_root_node(tree_root);
  2585. btrfs_set_root_refs(&tree_root->root_item, 1);
  2586. mutex_lock(&tree_root->objectid_mutex);
  2587. ret = btrfs_find_highest_objectid(tree_root,
  2588. &tree_root->highest_objectid);
  2589. if (ret) {
  2590. mutex_unlock(&tree_root->objectid_mutex);
  2591. goto recovery_tree_root;
  2592. }
  2593. ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
  2594. mutex_unlock(&tree_root->objectid_mutex);
  2595. ret = btrfs_read_roots(fs_info, tree_root);
  2596. if (ret)
  2597. goto recovery_tree_root;
  2598. fs_info->generation = generation;
  2599. fs_info->last_trans_committed = generation;
  2600. ret = btrfs_recover_balance(fs_info);
  2601. if (ret) {
  2602. btrfs_err(fs_info, "failed to recover balance: %d", ret);
  2603. goto fail_block_groups;
  2604. }
  2605. ret = btrfs_init_dev_stats(fs_info);
  2606. if (ret) {
  2607. btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
  2608. goto fail_block_groups;
  2609. }
  2610. ret = btrfs_init_dev_replace(fs_info);
  2611. if (ret) {
  2612. btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
  2613. goto fail_block_groups;
  2614. }
  2615. btrfs_close_extra_devices(fs_devices, 1);
  2616. ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
  2617. if (ret) {
  2618. btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
  2619. ret);
  2620. goto fail_block_groups;
  2621. }
  2622. ret = btrfs_sysfs_add_device(fs_devices);
  2623. if (ret) {
  2624. btrfs_err(fs_info, "failed to init sysfs device interface: %d",
  2625. ret);
  2626. goto fail_fsdev_sysfs;
  2627. }
  2628. ret = btrfs_sysfs_add_mounted(fs_info);
  2629. if (ret) {
  2630. btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
  2631. goto fail_fsdev_sysfs;
  2632. }
  2633. ret = btrfs_init_space_info(fs_info);
  2634. if (ret) {
  2635. btrfs_err(fs_info, "failed to initialize space info: %d", ret);
  2636. goto fail_sysfs;
  2637. }
  2638. ret = btrfs_read_block_groups(fs_info->extent_root);
  2639. if (ret) {
  2640. btrfs_err(fs_info, "failed to read block groups: %d", ret);
  2641. goto fail_sysfs;
  2642. }
  2643. fs_info->num_tolerated_disk_barrier_failures =
  2644. btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
  2645. if (fs_info->fs_devices->missing_devices >
  2646. fs_info->num_tolerated_disk_barrier_failures &&
  2647. !(sb->s_flags & MS_RDONLY)) {
  2648. btrfs_warn(fs_info,
  2649. "missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
  2650. fs_info->fs_devices->missing_devices,
  2651. fs_info->num_tolerated_disk_barrier_failures);
  2652. goto fail_sysfs;
  2653. }
  2654. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2655. "btrfs-cleaner");
  2656. if (IS_ERR(fs_info->cleaner_kthread))
  2657. goto fail_sysfs;
  2658. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2659. tree_root,
  2660. "btrfs-transaction");
  2661. if (IS_ERR(fs_info->transaction_kthread))
  2662. goto fail_cleaner;
  2663. if (!btrfs_test_opt(tree_root->fs_info, SSD) &&
  2664. !btrfs_test_opt(tree_root->fs_info, NOSSD) &&
  2665. !fs_info->fs_devices->rotating) {
  2666. btrfs_info(fs_info, "detected SSD devices, enabling SSD mode");
  2667. btrfs_set_opt(fs_info->mount_opt, SSD);
  2668. }
  2669. /*
  2670. * Mount does not set all options immediately, we can do it now and do
  2671. * not have to wait for transaction commit
  2672. */
  2673. btrfs_apply_pending_changes(fs_info);
  2674. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2675. if (btrfs_test_opt(tree_root->fs_info, CHECK_INTEGRITY)) {
  2676. ret = btrfsic_mount(tree_root, fs_devices,
  2677. btrfs_test_opt(tree_root->fs_info,
  2678. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2679. 1 : 0,
  2680. fs_info->check_integrity_print_mask);
  2681. if (ret)
  2682. btrfs_warn(fs_info,
  2683. "failed to initialize integrity check module: %d",
  2684. ret);
  2685. }
  2686. #endif
  2687. ret = btrfs_read_qgroup_config(fs_info);
  2688. if (ret)
  2689. goto fail_trans_kthread;
  2690. /* do not make disk changes in broken FS or nologreplay is given */
  2691. if (btrfs_super_log_root(disk_super) != 0 &&
  2692. !btrfs_test_opt(tree_root->fs_info, NOLOGREPLAY)) {
  2693. ret = btrfs_replay_log(fs_info, fs_devices);
  2694. if (ret) {
  2695. err = ret;
  2696. goto fail_qgroup;
  2697. }
  2698. }
  2699. ret = btrfs_find_orphan_roots(tree_root);
  2700. if (ret)
  2701. goto fail_qgroup;
  2702. if (!(sb->s_flags & MS_RDONLY)) {
  2703. ret = btrfs_cleanup_fs_roots(fs_info);
  2704. if (ret)
  2705. goto fail_qgroup;
  2706. mutex_lock(&fs_info->cleaner_mutex);
  2707. ret = btrfs_recover_relocation(tree_root);
  2708. mutex_unlock(&fs_info->cleaner_mutex);
  2709. if (ret < 0) {
  2710. btrfs_warn(fs_info, "failed to recover relocation: %d",
  2711. ret);
  2712. err = -EINVAL;
  2713. goto fail_qgroup;
  2714. }
  2715. }
  2716. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2717. location.type = BTRFS_ROOT_ITEM_KEY;
  2718. location.offset = 0;
  2719. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2720. if (IS_ERR(fs_info->fs_root)) {
  2721. err = PTR_ERR(fs_info->fs_root);
  2722. goto fail_qgroup;
  2723. }
  2724. if (sb->s_flags & MS_RDONLY)
  2725. return 0;
  2726. if (btrfs_test_opt(tree_root->fs_info, FREE_SPACE_TREE) &&
  2727. !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2728. btrfs_info(fs_info, "creating free space tree");
  2729. ret = btrfs_create_free_space_tree(fs_info);
  2730. if (ret) {
  2731. btrfs_warn(fs_info,
  2732. "failed to create free space tree: %d", ret);
  2733. close_ctree(tree_root);
  2734. return ret;
  2735. }
  2736. }
  2737. down_read(&fs_info->cleanup_work_sem);
  2738. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2739. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2740. up_read(&fs_info->cleanup_work_sem);
  2741. close_ctree(tree_root);
  2742. return ret;
  2743. }
  2744. up_read(&fs_info->cleanup_work_sem);
  2745. ret = btrfs_resume_balance_async(fs_info);
  2746. if (ret) {
  2747. btrfs_warn(fs_info, "failed to resume balance: %d", ret);
  2748. close_ctree(tree_root);
  2749. return ret;
  2750. }
  2751. ret = btrfs_resume_dev_replace_async(fs_info);
  2752. if (ret) {
  2753. btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
  2754. close_ctree(tree_root);
  2755. return ret;
  2756. }
  2757. btrfs_qgroup_rescan_resume(fs_info);
  2758. if (btrfs_test_opt(tree_root->fs_info, CLEAR_CACHE) &&
  2759. btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2760. btrfs_info(fs_info, "clearing free space tree");
  2761. ret = btrfs_clear_free_space_tree(fs_info);
  2762. if (ret) {
  2763. btrfs_warn(fs_info,
  2764. "failed to clear free space tree: %d", ret);
  2765. close_ctree(tree_root);
  2766. return ret;
  2767. }
  2768. }
  2769. if (!fs_info->uuid_root) {
  2770. btrfs_info(fs_info, "creating UUID tree");
  2771. ret = btrfs_create_uuid_tree(fs_info);
  2772. if (ret) {
  2773. btrfs_warn(fs_info,
  2774. "failed to create the UUID tree: %d", ret);
  2775. close_ctree(tree_root);
  2776. return ret;
  2777. }
  2778. } else if (btrfs_test_opt(tree_root->fs_info, RESCAN_UUID_TREE) ||
  2779. fs_info->generation !=
  2780. btrfs_super_uuid_tree_generation(disk_super)) {
  2781. btrfs_info(fs_info, "checking UUID tree");
  2782. ret = btrfs_check_uuid_tree(fs_info);
  2783. if (ret) {
  2784. btrfs_warn(fs_info,
  2785. "failed to check the UUID tree: %d", ret);
  2786. close_ctree(tree_root);
  2787. return ret;
  2788. }
  2789. } else {
  2790. set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
  2791. }
  2792. set_bit(BTRFS_FS_OPEN, &fs_info->flags);
  2793. /*
  2794. * backuproot only affect mount behavior, and if open_ctree succeeded,
  2795. * no need to keep the flag
  2796. */
  2797. btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
  2798. return 0;
  2799. fail_qgroup:
  2800. btrfs_free_qgroup_config(fs_info);
  2801. fail_trans_kthread:
  2802. kthread_stop(fs_info->transaction_kthread);
  2803. btrfs_cleanup_transaction(fs_info->tree_root);
  2804. btrfs_free_fs_roots(fs_info);
  2805. fail_cleaner:
  2806. kthread_stop(fs_info->cleaner_kthread);
  2807. /*
  2808. * make sure we're done with the btree inode before we stop our
  2809. * kthreads
  2810. */
  2811. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2812. fail_sysfs:
  2813. btrfs_sysfs_remove_mounted(fs_info);
  2814. fail_fsdev_sysfs:
  2815. btrfs_sysfs_remove_fsid(fs_info->fs_devices);
  2816. fail_block_groups:
  2817. btrfs_put_block_group_cache(fs_info);
  2818. btrfs_free_block_groups(fs_info);
  2819. fail_tree_roots:
  2820. free_root_pointers(fs_info, 1);
  2821. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2822. fail_sb_buffer:
  2823. btrfs_stop_all_workers(fs_info);
  2824. fail_alloc:
  2825. fail_iput:
  2826. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2827. iput(fs_info->btree_inode);
  2828. fail_bio_counter:
  2829. percpu_counter_destroy(&fs_info->bio_counter);
  2830. fail_delalloc_bytes:
  2831. percpu_counter_destroy(&fs_info->delalloc_bytes);
  2832. fail_dirty_metadata_bytes:
  2833. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  2834. fail_bdi:
  2835. bdi_destroy(&fs_info->bdi);
  2836. fail_srcu:
  2837. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2838. fail:
  2839. btrfs_free_stripe_hash_table(fs_info);
  2840. btrfs_close_devices(fs_info->fs_devices);
  2841. return err;
  2842. recovery_tree_root:
  2843. if (!btrfs_test_opt(tree_root->fs_info, USEBACKUPROOT))
  2844. goto fail_tree_roots;
  2845. free_root_pointers(fs_info, 0);
  2846. /* don't use the log in recovery mode, it won't be valid */
  2847. btrfs_set_super_log_root(disk_super, 0);
  2848. /* we can't trust the free space cache either */
  2849. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2850. ret = next_root_backup(fs_info, fs_info->super_copy,
  2851. &num_backups_tried, &backup_index);
  2852. if (ret == -1)
  2853. goto fail_block_groups;
  2854. goto retry_root_backup;
  2855. }
  2856. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2857. {
  2858. if (uptodate) {
  2859. set_buffer_uptodate(bh);
  2860. } else {
  2861. struct btrfs_device *device = (struct btrfs_device *)
  2862. bh->b_private;
  2863. btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
  2864. "lost page write due to IO error on %s",
  2865. rcu_str_deref(device->name));
  2866. /* note, we don't set_buffer_write_io_error because we have
  2867. * our own ways of dealing with the IO errors
  2868. */
  2869. clear_buffer_uptodate(bh);
  2870. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2871. }
  2872. unlock_buffer(bh);
  2873. put_bh(bh);
  2874. }
  2875. int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
  2876. struct buffer_head **bh_ret)
  2877. {
  2878. struct buffer_head *bh;
  2879. struct btrfs_super_block *super;
  2880. u64 bytenr;
  2881. bytenr = btrfs_sb_offset(copy_num);
  2882. if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
  2883. return -EINVAL;
  2884. bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
  2885. /*
  2886. * If we fail to read from the underlying devices, as of now
  2887. * the best option we have is to mark it EIO.
  2888. */
  2889. if (!bh)
  2890. return -EIO;
  2891. super = (struct btrfs_super_block *)bh->b_data;
  2892. if (btrfs_super_bytenr(super) != bytenr ||
  2893. btrfs_super_magic(super) != BTRFS_MAGIC) {
  2894. brelse(bh);
  2895. return -EINVAL;
  2896. }
  2897. *bh_ret = bh;
  2898. return 0;
  2899. }
  2900. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2901. {
  2902. struct buffer_head *bh;
  2903. struct buffer_head *latest = NULL;
  2904. struct btrfs_super_block *super;
  2905. int i;
  2906. u64 transid = 0;
  2907. int ret = -EINVAL;
  2908. /* we would like to check all the supers, but that would make
  2909. * a btrfs mount succeed after a mkfs from a different FS.
  2910. * So, we need to add a special mount option to scan for
  2911. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2912. */
  2913. for (i = 0; i < 1; i++) {
  2914. ret = btrfs_read_dev_one_super(bdev, i, &bh);
  2915. if (ret)
  2916. continue;
  2917. super = (struct btrfs_super_block *)bh->b_data;
  2918. if (!latest || btrfs_super_generation(super) > transid) {
  2919. brelse(latest);
  2920. latest = bh;
  2921. transid = btrfs_super_generation(super);
  2922. } else {
  2923. brelse(bh);
  2924. }
  2925. }
  2926. if (!latest)
  2927. return ERR_PTR(ret);
  2928. return latest;
  2929. }
  2930. /*
  2931. * this should be called twice, once with wait == 0 and
  2932. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2933. * we write are pinned.
  2934. *
  2935. * They are released when wait == 1 is done.
  2936. * max_mirrors must be the same for both runs, and it indicates how
  2937. * many supers on this one device should be written.
  2938. *
  2939. * max_mirrors == 0 means to write them all.
  2940. */
  2941. static int write_dev_supers(struct btrfs_device *device,
  2942. struct btrfs_super_block *sb,
  2943. int do_barriers, int wait, int max_mirrors)
  2944. {
  2945. struct buffer_head *bh;
  2946. int i;
  2947. int ret;
  2948. int errors = 0;
  2949. u32 crc;
  2950. u64 bytenr;
  2951. if (max_mirrors == 0)
  2952. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2953. for (i = 0; i < max_mirrors; i++) {
  2954. bytenr = btrfs_sb_offset(i);
  2955. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  2956. device->commit_total_bytes)
  2957. break;
  2958. if (wait) {
  2959. bh = __find_get_block(device->bdev, bytenr / 4096,
  2960. BTRFS_SUPER_INFO_SIZE);
  2961. if (!bh) {
  2962. errors++;
  2963. continue;
  2964. }
  2965. wait_on_buffer(bh);
  2966. if (!buffer_uptodate(bh))
  2967. errors++;
  2968. /* drop our reference */
  2969. brelse(bh);
  2970. /* drop the reference from the wait == 0 run */
  2971. brelse(bh);
  2972. continue;
  2973. } else {
  2974. btrfs_set_super_bytenr(sb, bytenr);
  2975. crc = ~(u32)0;
  2976. crc = btrfs_csum_data((char *)sb +
  2977. BTRFS_CSUM_SIZE, crc,
  2978. BTRFS_SUPER_INFO_SIZE -
  2979. BTRFS_CSUM_SIZE);
  2980. btrfs_csum_final(crc, sb->csum);
  2981. /*
  2982. * one reference for us, and we leave it for the
  2983. * caller
  2984. */
  2985. bh = __getblk(device->bdev, bytenr / 4096,
  2986. BTRFS_SUPER_INFO_SIZE);
  2987. if (!bh) {
  2988. btrfs_err(device->dev_root->fs_info,
  2989. "couldn't get super buffer head for bytenr %llu",
  2990. bytenr);
  2991. errors++;
  2992. continue;
  2993. }
  2994. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2995. /* one reference for submit_bh */
  2996. get_bh(bh);
  2997. set_buffer_uptodate(bh);
  2998. lock_buffer(bh);
  2999. bh->b_end_io = btrfs_end_buffer_write_sync;
  3000. bh->b_private = device;
  3001. }
  3002. /*
  3003. * we fua the first super. The others we allow
  3004. * to go down lazy.
  3005. */
  3006. if (i == 0)
  3007. ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_FUA, bh);
  3008. else
  3009. ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_SYNC, bh);
  3010. if (ret)
  3011. errors++;
  3012. }
  3013. return errors < i ? 0 : -1;
  3014. }
  3015. /*
  3016. * endio for the write_dev_flush, this will wake anyone waiting
  3017. * for the barrier when it is done
  3018. */
  3019. static void btrfs_end_empty_barrier(struct bio *bio)
  3020. {
  3021. if (bio->bi_private)
  3022. complete(bio->bi_private);
  3023. bio_put(bio);
  3024. }
  3025. /*
  3026. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  3027. * sent down. With wait == 1, it waits for the previous flush.
  3028. *
  3029. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  3030. * capable
  3031. */
  3032. static int write_dev_flush(struct btrfs_device *device, int wait)
  3033. {
  3034. struct bio *bio;
  3035. int ret = 0;
  3036. if (device->nobarriers)
  3037. return 0;
  3038. if (wait) {
  3039. bio = device->flush_bio;
  3040. if (!bio)
  3041. return 0;
  3042. wait_for_completion(&device->flush_wait);
  3043. if (bio->bi_error) {
  3044. ret = bio->bi_error;
  3045. btrfs_dev_stat_inc_and_print(device,
  3046. BTRFS_DEV_STAT_FLUSH_ERRS);
  3047. }
  3048. /* drop the reference from the wait == 0 run */
  3049. bio_put(bio);
  3050. device->flush_bio = NULL;
  3051. return ret;
  3052. }
  3053. /*
  3054. * one reference for us, and we leave it for the
  3055. * caller
  3056. */
  3057. device->flush_bio = NULL;
  3058. bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
  3059. if (!bio)
  3060. return -ENOMEM;
  3061. bio->bi_end_io = btrfs_end_empty_barrier;
  3062. bio->bi_bdev = device->bdev;
  3063. bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH);
  3064. init_completion(&device->flush_wait);
  3065. bio->bi_private = &device->flush_wait;
  3066. device->flush_bio = bio;
  3067. bio_get(bio);
  3068. btrfsic_submit_bio(bio);
  3069. return 0;
  3070. }
  3071. /*
  3072. * send an empty flush down to each device in parallel,
  3073. * then wait for them
  3074. */
  3075. static int barrier_all_devices(struct btrfs_fs_info *info)
  3076. {
  3077. struct list_head *head;
  3078. struct btrfs_device *dev;
  3079. int errors_send = 0;
  3080. int errors_wait = 0;
  3081. int ret;
  3082. /* send down all the barriers */
  3083. head = &info->fs_devices->devices;
  3084. list_for_each_entry_rcu(dev, head, dev_list) {
  3085. if (dev->missing)
  3086. continue;
  3087. if (!dev->bdev) {
  3088. errors_send++;
  3089. continue;
  3090. }
  3091. if (!dev->in_fs_metadata || !dev->writeable)
  3092. continue;
  3093. ret = write_dev_flush(dev, 0);
  3094. if (ret)
  3095. errors_send++;
  3096. }
  3097. /* wait for all the barriers */
  3098. list_for_each_entry_rcu(dev, head, dev_list) {
  3099. if (dev->missing)
  3100. continue;
  3101. if (!dev->bdev) {
  3102. errors_wait++;
  3103. continue;
  3104. }
  3105. if (!dev->in_fs_metadata || !dev->writeable)
  3106. continue;
  3107. ret = write_dev_flush(dev, 1);
  3108. if (ret)
  3109. errors_wait++;
  3110. }
  3111. if (errors_send > info->num_tolerated_disk_barrier_failures ||
  3112. errors_wait > info->num_tolerated_disk_barrier_failures)
  3113. return -EIO;
  3114. return 0;
  3115. }
  3116. int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
  3117. {
  3118. int raid_type;
  3119. int min_tolerated = INT_MAX;
  3120. if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
  3121. (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
  3122. min_tolerated = min(min_tolerated,
  3123. btrfs_raid_array[BTRFS_RAID_SINGLE].
  3124. tolerated_failures);
  3125. for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
  3126. if (raid_type == BTRFS_RAID_SINGLE)
  3127. continue;
  3128. if (!(flags & btrfs_raid_group[raid_type]))
  3129. continue;
  3130. min_tolerated = min(min_tolerated,
  3131. btrfs_raid_array[raid_type].
  3132. tolerated_failures);
  3133. }
  3134. if (min_tolerated == INT_MAX) {
  3135. pr_warn("BTRFS: unknown raid flag: %llu", flags);
  3136. min_tolerated = 0;
  3137. }
  3138. return min_tolerated;
  3139. }
  3140. int btrfs_calc_num_tolerated_disk_barrier_failures(
  3141. struct btrfs_fs_info *fs_info)
  3142. {
  3143. struct btrfs_ioctl_space_info space;
  3144. struct btrfs_space_info *sinfo;
  3145. u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
  3146. BTRFS_BLOCK_GROUP_SYSTEM,
  3147. BTRFS_BLOCK_GROUP_METADATA,
  3148. BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
  3149. int i;
  3150. int c;
  3151. int num_tolerated_disk_barrier_failures =
  3152. (int)fs_info->fs_devices->num_devices;
  3153. for (i = 0; i < ARRAY_SIZE(types); i++) {
  3154. struct btrfs_space_info *tmp;
  3155. sinfo = NULL;
  3156. rcu_read_lock();
  3157. list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
  3158. if (tmp->flags == types[i]) {
  3159. sinfo = tmp;
  3160. break;
  3161. }
  3162. }
  3163. rcu_read_unlock();
  3164. if (!sinfo)
  3165. continue;
  3166. down_read(&sinfo->groups_sem);
  3167. for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
  3168. u64 flags;
  3169. if (list_empty(&sinfo->block_groups[c]))
  3170. continue;
  3171. btrfs_get_block_group_info(&sinfo->block_groups[c],
  3172. &space);
  3173. if (space.total_bytes == 0 || space.used_bytes == 0)
  3174. continue;
  3175. flags = space.flags;
  3176. num_tolerated_disk_barrier_failures = min(
  3177. num_tolerated_disk_barrier_failures,
  3178. btrfs_get_num_tolerated_disk_barrier_failures(
  3179. flags));
  3180. }
  3181. up_read(&sinfo->groups_sem);
  3182. }
  3183. return num_tolerated_disk_barrier_failures;
  3184. }
  3185. static int write_all_supers(struct btrfs_root *root, int max_mirrors)
  3186. {
  3187. struct list_head *head;
  3188. struct btrfs_device *dev;
  3189. struct btrfs_super_block *sb;
  3190. struct btrfs_dev_item *dev_item;
  3191. int ret;
  3192. int do_barriers;
  3193. int max_errors;
  3194. int total_errors = 0;
  3195. u64 flags;
  3196. do_barriers = !btrfs_test_opt(root->fs_info, NOBARRIER);
  3197. backup_super_roots(root->fs_info);
  3198. sb = root->fs_info->super_for_commit;
  3199. dev_item = &sb->dev_item;
  3200. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  3201. head = &root->fs_info->fs_devices->devices;
  3202. max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
  3203. if (do_barriers) {
  3204. ret = barrier_all_devices(root->fs_info);
  3205. if (ret) {
  3206. mutex_unlock(
  3207. &root->fs_info->fs_devices->device_list_mutex);
  3208. btrfs_handle_fs_error(root->fs_info, ret,
  3209. "errors while submitting device barriers.");
  3210. return ret;
  3211. }
  3212. }
  3213. list_for_each_entry_rcu(dev, head, dev_list) {
  3214. if (!dev->bdev) {
  3215. total_errors++;
  3216. continue;
  3217. }
  3218. if (!dev->in_fs_metadata || !dev->writeable)
  3219. continue;
  3220. btrfs_set_stack_device_generation(dev_item, 0);
  3221. btrfs_set_stack_device_type(dev_item, dev->type);
  3222. btrfs_set_stack_device_id(dev_item, dev->devid);
  3223. btrfs_set_stack_device_total_bytes(dev_item,
  3224. dev->commit_total_bytes);
  3225. btrfs_set_stack_device_bytes_used(dev_item,
  3226. dev->commit_bytes_used);
  3227. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  3228. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  3229. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  3230. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  3231. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  3232. flags = btrfs_super_flags(sb);
  3233. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  3234. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  3235. if (ret)
  3236. total_errors++;
  3237. }
  3238. if (total_errors > max_errors) {
  3239. btrfs_err(root->fs_info, "%d errors while writing supers",
  3240. total_errors);
  3241. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  3242. /* FUA is masked off if unsupported and can't be the reason */
  3243. btrfs_handle_fs_error(root->fs_info, -EIO,
  3244. "%d errors while writing supers", total_errors);
  3245. return -EIO;
  3246. }
  3247. total_errors = 0;
  3248. list_for_each_entry_rcu(dev, head, dev_list) {
  3249. if (!dev->bdev)
  3250. continue;
  3251. if (!dev->in_fs_metadata || !dev->writeable)
  3252. continue;
  3253. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  3254. if (ret)
  3255. total_errors++;
  3256. }
  3257. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  3258. if (total_errors > max_errors) {
  3259. btrfs_handle_fs_error(root->fs_info, -EIO,
  3260. "%d errors while writing supers", total_errors);
  3261. return -EIO;
  3262. }
  3263. return 0;
  3264. }
  3265. int write_ctree_super(struct btrfs_trans_handle *trans,
  3266. struct btrfs_root *root, int max_mirrors)
  3267. {
  3268. return write_all_supers(root, max_mirrors);
  3269. }
  3270. /* Drop a fs root from the radix tree and free it. */
  3271. void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
  3272. struct btrfs_root *root)
  3273. {
  3274. spin_lock(&fs_info->fs_roots_radix_lock);
  3275. radix_tree_delete(&fs_info->fs_roots_radix,
  3276. (unsigned long)root->root_key.objectid);
  3277. spin_unlock(&fs_info->fs_roots_radix_lock);
  3278. if (btrfs_root_refs(&root->root_item) == 0)
  3279. synchronize_srcu(&fs_info->subvol_srcu);
  3280. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  3281. btrfs_free_log(NULL, root);
  3282. if (root->reloc_root) {
  3283. free_extent_buffer(root->reloc_root->node);
  3284. free_extent_buffer(root->reloc_root->commit_root);
  3285. btrfs_put_fs_root(root->reloc_root);
  3286. root->reloc_root = NULL;
  3287. }
  3288. }
  3289. if (root->free_ino_pinned)
  3290. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  3291. if (root->free_ino_ctl)
  3292. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  3293. free_fs_root(root);
  3294. }
  3295. static void free_fs_root(struct btrfs_root *root)
  3296. {
  3297. iput(root->ino_cache_inode);
  3298. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  3299. btrfs_free_block_rsv(root, root->orphan_block_rsv);
  3300. root->orphan_block_rsv = NULL;
  3301. if (root->anon_dev)
  3302. free_anon_bdev(root->anon_dev);
  3303. if (root->subv_writers)
  3304. btrfs_free_subvolume_writers(root->subv_writers);
  3305. free_extent_buffer(root->node);
  3306. free_extent_buffer(root->commit_root);
  3307. kfree(root->free_ino_ctl);
  3308. kfree(root->free_ino_pinned);
  3309. kfree(root->name);
  3310. btrfs_put_fs_root(root);
  3311. }
  3312. void btrfs_free_fs_root(struct btrfs_root *root)
  3313. {
  3314. free_fs_root(root);
  3315. }
  3316. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  3317. {
  3318. u64 root_objectid = 0;
  3319. struct btrfs_root *gang[8];
  3320. int i = 0;
  3321. int err = 0;
  3322. unsigned int ret = 0;
  3323. int index;
  3324. while (1) {
  3325. index = srcu_read_lock(&fs_info->subvol_srcu);
  3326. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  3327. (void **)gang, root_objectid,
  3328. ARRAY_SIZE(gang));
  3329. if (!ret) {
  3330. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3331. break;
  3332. }
  3333. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  3334. for (i = 0; i < ret; i++) {
  3335. /* Avoid to grab roots in dead_roots */
  3336. if (btrfs_root_refs(&gang[i]->root_item) == 0) {
  3337. gang[i] = NULL;
  3338. continue;
  3339. }
  3340. /* grab all the search result for later use */
  3341. gang[i] = btrfs_grab_fs_root(gang[i]);
  3342. }
  3343. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3344. for (i = 0; i < ret; i++) {
  3345. if (!gang[i])
  3346. continue;
  3347. root_objectid = gang[i]->root_key.objectid;
  3348. err = btrfs_orphan_cleanup(gang[i]);
  3349. if (err)
  3350. break;
  3351. btrfs_put_fs_root(gang[i]);
  3352. }
  3353. root_objectid++;
  3354. }
  3355. /* release the uncleaned roots due to error */
  3356. for (; i < ret; i++) {
  3357. if (gang[i])
  3358. btrfs_put_fs_root(gang[i]);
  3359. }
  3360. return err;
  3361. }
  3362. int btrfs_commit_super(struct btrfs_root *root)
  3363. {
  3364. struct btrfs_trans_handle *trans;
  3365. mutex_lock(&root->fs_info->cleaner_mutex);
  3366. btrfs_run_delayed_iputs(root);
  3367. mutex_unlock(&root->fs_info->cleaner_mutex);
  3368. wake_up_process(root->fs_info->cleaner_kthread);
  3369. /* wait until ongoing cleanup work done */
  3370. down_write(&root->fs_info->cleanup_work_sem);
  3371. up_write(&root->fs_info->cleanup_work_sem);
  3372. trans = btrfs_join_transaction(root);
  3373. if (IS_ERR(trans))
  3374. return PTR_ERR(trans);
  3375. return btrfs_commit_transaction(trans, root);
  3376. }
  3377. void close_ctree(struct btrfs_root *root)
  3378. {
  3379. struct btrfs_fs_info *fs_info = root->fs_info;
  3380. int ret;
  3381. set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
  3382. /* wait for the qgroup rescan worker to stop */
  3383. btrfs_qgroup_wait_for_completion(fs_info, false);
  3384. /* wait for the uuid_scan task to finish */
  3385. down(&fs_info->uuid_tree_rescan_sem);
  3386. /* avoid complains from lockdep et al., set sem back to initial state */
  3387. up(&fs_info->uuid_tree_rescan_sem);
  3388. /* pause restriper - we want to resume on mount */
  3389. btrfs_pause_balance(fs_info);
  3390. btrfs_dev_replace_suspend_for_unmount(fs_info);
  3391. btrfs_scrub_cancel(fs_info);
  3392. /* wait for any defraggers to finish */
  3393. wait_event(fs_info->transaction_wait,
  3394. (atomic_read(&fs_info->defrag_running) == 0));
  3395. /* clear out the rbtree of defraggable inodes */
  3396. btrfs_cleanup_defrag_inodes(fs_info);
  3397. cancel_work_sync(&fs_info->async_reclaim_work);
  3398. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  3399. /*
  3400. * If the cleaner thread is stopped and there are
  3401. * block groups queued for removal, the deletion will be
  3402. * skipped when we quit the cleaner thread.
  3403. */
  3404. btrfs_delete_unused_bgs(root->fs_info);
  3405. ret = btrfs_commit_super(root);
  3406. if (ret)
  3407. btrfs_err(fs_info, "commit super ret %d", ret);
  3408. }
  3409. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3410. btrfs_error_commit_super(root);
  3411. kthread_stop(fs_info->transaction_kthread);
  3412. kthread_stop(fs_info->cleaner_kthread);
  3413. set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
  3414. btrfs_free_qgroup_config(fs_info);
  3415. if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
  3416. btrfs_info(fs_info, "at unmount delalloc count %lld",
  3417. percpu_counter_sum(&fs_info->delalloc_bytes));
  3418. }
  3419. btrfs_sysfs_remove_mounted(fs_info);
  3420. btrfs_sysfs_remove_fsid(fs_info->fs_devices);
  3421. btrfs_free_fs_roots(fs_info);
  3422. btrfs_put_block_group_cache(fs_info);
  3423. btrfs_free_block_groups(fs_info);
  3424. /*
  3425. * we must make sure there is not any read request to
  3426. * submit after we stopping all workers.
  3427. */
  3428. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  3429. btrfs_stop_all_workers(fs_info);
  3430. clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
  3431. free_root_pointers(fs_info, 1);
  3432. iput(fs_info->btree_inode);
  3433. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3434. if (btrfs_test_opt(root->fs_info, CHECK_INTEGRITY))
  3435. btrfsic_unmount(root, fs_info->fs_devices);
  3436. #endif
  3437. btrfs_close_devices(fs_info->fs_devices);
  3438. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  3439. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  3440. percpu_counter_destroy(&fs_info->delalloc_bytes);
  3441. percpu_counter_destroy(&fs_info->bio_counter);
  3442. bdi_destroy(&fs_info->bdi);
  3443. cleanup_srcu_struct(&fs_info->subvol_srcu);
  3444. btrfs_free_stripe_hash_table(fs_info);
  3445. __btrfs_free_block_rsv(root->orphan_block_rsv);
  3446. root->orphan_block_rsv = NULL;
  3447. lock_chunks(root);
  3448. while (!list_empty(&fs_info->pinned_chunks)) {
  3449. struct extent_map *em;
  3450. em = list_first_entry(&fs_info->pinned_chunks,
  3451. struct extent_map, list);
  3452. list_del_init(&em->list);
  3453. free_extent_map(em);
  3454. }
  3455. unlock_chunks(root);
  3456. }
  3457. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  3458. int atomic)
  3459. {
  3460. int ret;
  3461. struct inode *btree_inode = buf->pages[0]->mapping->host;
  3462. ret = extent_buffer_uptodate(buf);
  3463. if (!ret)
  3464. return ret;
  3465. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  3466. parent_transid, atomic);
  3467. if (ret == -EAGAIN)
  3468. return ret;
  3469. return !ret;
  3470. }
  3471. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  3472. {
  3473. struct btrfs_root *root;
  3474. u64 transid = btrfs_header_generation(buf);
  3475. int was_dirty;
  3476. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  3477. /*
  3478. * This is a fast path so only do this check if we have sanity tests
  3479. * enabled. Normal people shouldn't be marking dummy buffers as dirty
  3480. * outside of the sanity tests.
  3481. */
  3482. if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
  3483. return;
  3484. #endif
  3485. root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3486. btrfs_assert_tree_locked(buf);
  3487. if (transid != root->fs_info->generation)
  3488. WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
  3489. buf->start, transid, root->fs_info->generation);
  3490. was_dirty = set_extent_buffer_dirty(buf);
  3491. if (!was_dirty)
  3492. __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
  3493. buf->len,
  3494. root->fs_info->dirty_metadata_batch);
  3495. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3496. if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
  3497. btrfs_print_leaf(root, buf);
  3498. ASSERT(0);
  3499. }
  3500. #endif
  3501. }
  3502. static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
  3503. int flush_delayed)
  3504. {
  3505. /*
  3506. * looks as though older kernels can get into trouble with
  3507. * this code, they end up stuck in balance_dirty_pages forever
  3508. */
  3509. int ret;
  3510. if (current->flags & PF_MEMALLOC)
  3511. return;
  3512. if (flush_delayed)
  3513. btrfs_balance_delayed_items(root);
  3514. ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
  3515. BTRFS_DIRTY_METADATA_THRESH);
  3516. if (ret > 0) {
  3517. balance_dirty_pages_ratelimited(
  3518. root->fs_info->btree_inode->i_mapping);
  3519. }
  3520. }
  3521. void btrfs_btree_balance_dirty(struct btrfs_root *root)
  3522. {
  3523. __btrfs_btree_balance_dirty(root, 1);
  3524. }
  3525. void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
  3526. {
  3527. __btrfs_btree_balance_dirty(root, 0);
  3528. }
  3529. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  3530. {
  3531. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3532. return btree_read_extent_buffer_pages(root, buf, parent_transid);
  3533. }
  3534. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  3535. int read_only)
  3536. {
  3537. struct btrfs_super_block *sb = fs_info->super_copy;
  3538. u64 nodesize = btrfs_super_nodesize(sb);
  3539. u64 sectorsize = btrfs_super_sectorsize(sb);
  3540. int ret = 0;
  3541. if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
  3542. btrfs_err(fs_info, "no valid FS found");
  3543. ret = -EINVAL;
  3544. }
  3545. if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
  3546. btrfs_warn(fs_info, "unrecognized super flag: %llu",
  3547. btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
  3548. if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3549. btrfs_err(fs_info, "tree_root level too big: %d >= %d",
  3550. btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
  3551. ret = -EINVAL;
  3552. }
  3553. if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3554. btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
  3555. btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
  3556. ret = -EINVAL;
  3557. }
  3558. if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3559. btrfs_err(fs_info, "log_root level too big: %d >= %d",
  3560. btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
  3561. ret = -EINVAL;
  3562. }
  3563. /*
  3564. * Check sectorsize and nodesize first, other check will need it.
  3565. * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
  3566. */
  3567. if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
  3568. sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
  3569. btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
  3570. ret = -EINVAL;
  3571. }
  3572. /* Only PAGE SIZE is supported yet */
  3573. if (sectorsize != PAGE_SIZE) {
  3574. btrfs_err(fs_info,
  3575. "sectorsize %llu not supported yet, only support %lu",
  3576. sectorsize, PAGE_SIZE);
  3577. ret = -EINVAL;
  3578. }
  3579. if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
  3580. nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
  3581. btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
  3582. ret = -EINVAL;
  3583. }
  3584. if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
  3585. btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
  3586. le32_to_cpu(sb->__unused_leafsize), nodesize);
  3587. ret = -EINVAL;
  3588. }
  3589. /* Root alignment check */
  3590. if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
  3591. btrfs_warn(fs_info, "tree_root block unaligned: %llu",
  3592. btrfs_super_root(sb));
  3593. ret = -EINVAL;
  3594. }
  3595. if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
  3596. btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
  3597. btrfs_super_chunk_root(sb));
  3598. ret = -EINVAL;
  3599. }
  3600. if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
  3601. btrfs_warn(fs_info, "log_root block unaligned: %llu",
  3602. btrfs_super_log_root(sb));
  3603. ret = -EINVAL;
  3604. }
  3605. if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
  3606. btrfs_err(fs_info,
  3607. "dev_item UUID does not match fsid: %pU != %pU",
  3608. fs_info->fsid, sb->dev_item.fsid);
  3609. ret = -EINVAL;
  3610. }
  3611. /*
  3612. * Hint to catch really bogus numbers, bitflips or so, more exact checks are
  3613. * done later
  3614. */
  3615. if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
  3616. btrfs_err(fs_info, "bytes_used is too small %llu",
  3617. btrfs_super_bytes_used(sb));
  3618. ret = -EINVAL;
  3619. }
  3620. if (!is_power_of_2(btrfs_super_stripesize(sb))) {
  3621. btrfs_err(fs_info, "invalid stripesize %u",
  3622. btrfs_super_stripesize(sb));
  3623. ret = -EINVAL;
  3624. }
  3625. if (btrfs_super_num_devices(sb) > (1UL << 31))
  3626. btrfs_warn(fs_info, "suspicious number of devices: %llu",
  3627. btrfs_super_num_devices(sb));
  3628. if (btrfs_super_num_devices(sb) == 0) {
  3629. btrfs_err(fs_info, "number of devices is 0");
  3630. ret = -EINVAL;
  3631. }
  3632. if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
  3633. btrfs_err(fs_info, "super offset mismatch %llu != %u",
  3634. btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
  3635. ret = -EINVAL;
  3636. }
  3637. /*
  3638. * Obvious sys_chunk_array corruptions, it must hold at least one key
  3639. * and one chunk
  3640. */
  3641. if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
  3642. btrfs_err(fs_info, "system chunk array too big %u > %u",
  3643. btrfs_super_sys_array_size(sb),
  3644. BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
  3645. ret = -EINVAL;
  3646. }
  3647. if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
  3648. + sizeof(struct btrfs_chunk)) {
  3649. btrfs_err(fs_info, "system chunk array too small %u < %zu",
  3650. btrfs_super_sys_array_size(sb),
  3651. sizeof(struct btrfs_disk_key)
  3652. + sizeof(struct btrfs_chunk));
  3653. ret = -EINVAL;
  3654. }
  3655. /*
  3656. * The generation is a global counter, we'll trust it more than the others
  3657. * but it's still possible that it's the one that's wrong.
  3658. */
  3659. if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
  3660. btrfs_warn(fs_info,
  3661. "suspicious: generation < chunk_root_generation: %llu < %llu",
  3662. btrfs_super_generation(sb),
  3663. btrfs_super_chunk_root_generation(sb));
  3664. if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
  3665. && btrfs_super_cache_generation(sb) != (u64)-1)
  3666. btrfs_warn(fs_info,
  3667. "suspicious: generation < cache_generation: %llu < %llu",
  3668. btrfs_super_generation(sb),
  3669. btrfs_super_cache_generation(sb));
  3670. return ret;
  3671. }
  3672. static void btrfs_error_commit_super(struct btrfs_root *root)
  3673. {
  3674. mutex_lock(&root->fs_info->cleaner_mutex);
  3675. btrfs_run_delayed_iputs(root);
  3676. mutex_unlock(&root->fs_info->cleaner_mutex);
  3677. down_write(&root->fs_info->cleanup_work_sem);
  3678. up_write(&root->fs_info->cleanup_work_sem);
  3679. /* cleanup FS via transaction */
  3680. btrfs_cleanup_transaction(root);
  3681. }
  3682. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3683. {
  3684. struct btrfs_ordered_extent *ordered;
  3685. spin_lock(&root->ordered_extent_lock);
  3686. /*
  3687. * This will just short circuit the ordered completion stuff which will
  3688. * make sure the ordered extent gets properly cleaned up.
  3689. */
  3690. list_for_each_entry(ordered, &root->ordered_extents,
  3691. root_extent_list)
  3692. set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
  3693. spin_unlock(&root->ordered_extent_lock);
  3694. }
  3695. static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
  3696. {
  3697. struct btrfs_root *root;
  3698. struct list_head splice;
  3699. INIT_LIST_HEAD(&splice);
  3700. spin_lock(&fs_info->ordered_root_lock);
  3701. list_splice_init(&fs_info->ordered_roots, &splice);
  3702. while (!list_empty(&splice)) {
  3703. root = list_first_entry(&splice, struct btrfs_root,
  3704. ordered_root);
  3705. list_move_tail(&root->ordered_root,
  3706. &fs_info->ordered_roots);
  3707. spin_unlock(&fs_info->ordered_root_lock);
  3708. btrfs_destroy_ordered_extents(root);
  3709. cond_resched();
  3710. spin_lock(&fs_info->ordered_root_lock);
  3711. }
  3712. spin_unlock(&fs_info->ordered_root_lock);
  3713. }
  3714. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3715. struct btrfs_root *root)
  3716. {
  3717. struct rb_node *node;
  3718. struct btrfs_delayed_ref_root *delayed_refs;
  3719. struct btrfs_delayed_ref_node *ref;
  3720. int ret = 0;
  3721. delayed_refs = &trans->delayed_refs;
  3722. spin_lock(&delayed_refs->lock);
  3723. if (atomic_read(&delayed_refs->num_entries) == 0) {
  3724. spin_unlock(&delayed_refs->lock);
  3725. btrfs_info(root->fs_info, "delayed_refs has NO entry");
  3726. return ret;
  3727. }
  3728. while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
  3729. struct btrfs_delayed_ref_head *head;
  3730. struct btrfs_delayed_ref_node *tmp;
  3731. bool pin_bytes = false;
  3732. head = rb_entry(node, struct btrfs_delayed_ref_head,
  3733. href_node);
  3734. if (!mutex_trylock(&head->mutex)) {
  3735. atomic_inc(&head->node.refs);
  3736. spin_unlock(&delayed_refs->lock);
  3737. mutex_lock(&head->mutex);
  3738. mutex_unlock(&head->mutex);
  3739. btrfs_put_delayed_ref(&head->node);
  3740. spin_lock(&delayed_refs->lock);
  3741. continue;
  3742. }
  3743. spin_lock(&head->lock);
  3744. list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
  3745. list) {
  3746. ref->in_tree = 0;
  3747. list_del(&ref->list);
  3748. atomic_dec(&delayed_refs->num_entries);
  3749. btrfs_put_delayed_ref(ref);
  3750. }
  3751. if (head->must_insert_reserved)
  3752. pin_bytes = true;
  3753. btrfs_free_delayed_extent_op(head->extent_op);
  3754. delayed_refs->num_heads--;
  3755. if (head->processing == 0)
  3756. delayed_refs->num_heads_ready--;
  3757. atomic_dec(&delayed_refs->num_entries);
  3758. head->node.in_tree = 0;
  3759. rb_erase(&head->href_node, &delayed_refs->href_root);
  3760. spin_unlock(&head->lock);
  3761. spin_unlock(&delayed_refs->lock);
  3762. mutex_unlock(&head->mutex);
  3763. if (pin_bytes)
  3764. btrfs_pin_extent(root, head->node.bytenr,
  3765. head->node.num_bytes, 1);
  3766. btrfs_put_delayed_ref(&head->node);
  3767. cond_resched();
  3768. spin_lock(&delayed_refs->lock);
  3769. }
  3770. spin_unlock(&delayed_refs->lock);
  3771. return ret;
  3772. }
  3773. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3774. {
  3775. struct btrfs_inode *btrfs_inode;
  3776. struct list_head splice;
  3777. INIT_LIST_HEAD(&splice);
  3778. spin_lock(&root->delalloc_lock);
  3779. list_splice_init(&root->delalloc_inodes, &splice);
  3780. while (!list_empty(&splice)) {
  3781. btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
  3782. delalloc_inodes);
  3783. list_del_init(&btrfs_inode->delalloc_inodes);
  3784. clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  3785. &btrfs_inode->runtime_flags);
  3786. spin_unlock(&root->delalloc_lock);
  3787. btrfs_invalidate_inodes(btrfs_inode->root);
  3788. spin_lock(&root->delalloc_lock);
  3789. }
  3790. spin_unlock(&root->delalloc_lock);
  3791. }
  3792. static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
  3793. {
  3794. struct btrfs_root *root;
  3795. struct list_head splice;
  3796. INIT_LIST_HEAD(&splice);
  3797. spin_lock(&fs_info->delalloc_root_lock);
  3798. list_splice_init(&fs_info->delalloc_roots, &splice);
  3799. while (!list_empty(&splice)) {
  3800. root = list_first_entry(&splice, struct btrfs_root,
  3801. delalloc_root);
  3802. list_del_init(&root->delalloc_root);
  3803. root = btrfs_grab_fs_root(root);
  3804. BUG_ON(!root);
  3805. spin_unlock(&fs_info->delalloc_root_lock);
  3806. btrfs_destroy_delalloc_inodes(root);
  3807. btrfs_put_fs_root(root);
  3808. spin_lock(&fs_info->delalloc_root_lock);
  3809. }
  3810. spin_unlock(&fs_info->delalloc_root_lock);
  3811. }
  3812. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  3813. struct extent_io_tree *dirty_pages,
  3814. int mark)
  3815. {
  3816. int ret;
  3817. struct extent_buffer *eb;
  3818. u64 start = 0;
  3819. u64 end;
  3820. while (1) {
  3821. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3822. mark, NULL);
  3823. if (ret)
  3824. break;
  3825. clear_extent_bits(dirty_pages, start, end, mark);
  3826. while (start <= end) {
  3827. eb = btrfs_find_tree_block(root->fs_info, start);
  3828. start += root->nodesize;
  3829. if (!eb)
  3830. continue;
  3831. wait_on_extent_buffer_writeback(eb);
  3832. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3833. &eb->bflags))
  3834. clear_extent_buffer_dirty(eb);
  3835. free_extent_buffer_stale(eb);
  3836. }
  3837. }
  3838. return ret;
  3839. }
  3840. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  3841. struct extent_io_tree *pinned_extents)
  3842. {
  3843. struct extent_io_tree *unpin;
  3844. u64 start;
  3845. u64 end;
  3846. int ret;
  3847. bool loop = true;
  3848. unpin = pinned_extents;
  3849. again:
  3850. while (1) {
  3851. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3852. EXTENT_DIRTY, NULL);
  3853. if (ret)
  3854. break;
  3855. clear_extent_dirty(unpin, start, end);
  3856. btrfs_error_unpin_extent_range(root, start, end);
  3857. cond_resched();
  3858. }
  3859. if (loop) {
  3860. if (unpin == &root->fs_info->freed_extents[0])
  3861. unpin = &root->fs_info->freed_extents[1];
  3862. else
  3863. unpin = &root->fs_info->freed_extents[0];
  3864. loop = false;
  3865. goto again;
  3866. }
  3867. return 0;
  3868. }
  3869. static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
  3870. {
  3871. struct inode *inode;
  3872. inode = cache->io_ctl.inode;
  3873. if (inode) {
  3874. invalidate_inode_pages2(inode->i_mapping);
  3875. BTRFS_I(inode)->generation = 0;
  3876. cache->io_ctl.inode = NULL;
  3877. iput(inode);
  3878. }
  3879. btrfs_put_block_group(cache);
  3880. }
  3881. void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
  3882. struct btrfs_root *root)
  3883. {
  3884. struct btrfs_block_group_cache *cache;
  3885. spin_lock(&cur_trans->dirty_bgs_lock);
  3886. while (!list_empty(&cur_trans->dirty_bgs)) {
  3887. cache = list_first_entry(&cur_trans->dirty_bgs,
  3888. struct btrfs_block_group_cache,
  3889. dirty_list);
  3890. if (!cache) {
  3891. btrfs_err(root->fs_info,
  3892. "orphan block group dirty_bgs list");
  3893. spin_unlock(&cur_trans->dirty_bgs_lock);
  3894. return;
  3895. }
  3896. if (!list_empty(&cache->io_list)) {
  3897. spin_unlock(&cur_trans->dirty_bgs_lock);
  3898. list_del_init(&cache->io_list);
  3899. btrfs_cleanup_bg_io(cache);
  3900. spin_lock(&cur_trans->dirty_bgs_lock);
  3901. }
  3902. list_del_init(&cache->dirty_list);
  3903. spin_lock(&cache->lock);
  3904. cache->disk_cache_state = BTRFS_DC_ERROR;
  3905. spin_unlock(&cache->lock);
  3906. spin_unlock(&cur_trans->dirty_bgs_lock);
  3907. btrfs_put_block_group(cache);
  3908. spin_lock(&cur_trans->dirty_bgs_lock);
  3909. }
  3910. spin_unlock(&cur_trans->dirty_bgs_lock);
  3911. while (!list_empty(&cur_trans->io_bgs)) {
  3912. cache = list_first_entry(&cur_trans->io_bgs,
  3913. struct btrfs_block_group_cache,
  3914. io_list);
  3915. if (!cache) {
  3916. btrfs_err(root->fs_info,
  3917. "orphan block group on io_bgs list");
  3918. return;
  3919. }
  3920. list_del_init(&cache->io_list);
  3921. spin_lock(&cache->lock);
  3922. cache->disk_cache_state = BTRFS_DC_ERROR;
  3923. spin_unlock(&cache->lock);
  3924. btrfs_cleanup_bg_io(cache);
  3925. }
  3926. }
  3927. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3928. struct btrfs_root *root)
  3929. {
  3930. btrfs_cleanup_dirty_bgs(cur_trans, root);
  3931. ASSERT(list_empty(&cur_trans->dirty_bgs));
  3932. ASSERT(list_empty(&cur_trans->io_bgs));
  3933. btrfs_destroy_delayed_refs(cur_trans, root);
  3934. cur_trans->state = TRANS_STATE_COMMIT_START;
  3935. wake_up(&root->fs_info->transaction_blocked_wait);
  3936. cur_trans->state = TRANS_STATE_UNBLOCKED;
  3937. wake_up(&root->fs_info->transaction_wait);
  3938. btrfs_destroy_delayed_inodes(root);
  3939. btrfs_assert_delayed_root_empty(root);
  3940. btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
  3941. EXTENT_DIRTY);
  3942. btrfs_destroy_pinned_extent(root,
  3943. root->fs_info->pinned_extents);
  3944. cur_trans->state =TRANS_STATE_COMPLETED;
  3945. wake_up(&cur_trans->commit_wait);
  3946. /*
  3947. memset(cur_trans, 0, sizeof(*cur_trans));
  3948. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  3949. */
  3950. }
  3951. static int btrfs_cleanup_transaction(struct btrfs_root *root)
  3952. {
  3953. struct btrfs_transaction *t;
  3954. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  3955. spin_lock(&root->fs_info->trans_lock);
  3956. while (!list_empty(&root->fs_info->trans_list)) {
  3957. t = list_first_entry(&root->fs_info->trans_list,
  3958. struct btrfs_transaction, list);
  3959. if (t->state >= TRANS_STATE_COMMIT_START) {
  3960. atomic_inc(&t->use_count);
  3961. spin_unlock(&root->fs_info->trans_lock);
  3962. btrfs_wait_for_commit(root, t->transid);
  3963. btrfs_put_transaction(t);
  3964. spin_lock(&root->fs_info->trans_lock);
  3965. continue;
  3966. }
  3967. if (t == root->fs_info->running_transaction) {
  3968. t->state = TRANS_STATE_COMMIT_DOING;
  3969. spin_unlock(&root->fs_info->trans_lock);
  3970. /*
  3971. * We wait for 0 num_writers since we don't hold a trans
  3972. * handle open currently for this transaction.
  3973. */
  3974. wait_event(t->writer_wait,
  3975. atomic_read(&t->num_writers) == 0);
  3976. } else {
  3977. spin_unlock(&root->fs_info->trans_lock);
  3978. }
  3979. btrfs_cleanup_one_transaction(t, root);
  3980. spin_lock(&root->fs_info->trans_lock);
  3981. if (t == root->fs_info->running_transaction)
  3982. root->fs_info->running_transaction = NULL;
  3983. list_del_init(&t->list);
  3984. spin_unlock(&root->fs_info->trans_lock);
  3985. btrfs_put_transaction(t);
  3986. trace_btrfs_transaction_commit(root);
  3987. spin_lock(&root->fs_info->trans_lock);
  3988. }
  3989. spin_unlock(&root->fs_info->trans_lock);
  3990. btrfs_destroy_all_ordered_extents(root->fs_info);
  3991. btrfs_destroy_delayed_inodes(root);
  3992. btrfs_assert_delayed_root_empty(root);
  3993. btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
  3994. btrfs_destroy_all_delalloc_inodes(root->fs_info);
  3995. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  3996. return 0;
  3997. }
  3998. static const struct extent_io_ops btree_extent_io_ops = {
  3999. .readpage_end_io_hook = btree_readpage_end_io_hook,
  4000. .readpage_io_failed_hook = btree_io_failed_hook,
  4001. .submit_bio_hook = btree_submit_bio_hook,
  4002. /* note we're sharing with inode.c for the merge bio hook */
  4003. .merge_bio_hook = btrfs_merge_bio_hook,
  4004. };