mm.h 84 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686
  1. /* SPDX-License-Identifier: GPL-2.0 */
  2. #ifndef _LINUX_MM_H
  3. #define _LINUX_MM_H
  4. #include <linux/errno.h>
  5. #ifdef __KERNEL__
  6. #include <linux/mmdebug.h>
  7. #include <linux/gfp.h>
  8. #include <linux/bug.h>
  9. #include <linux/list.h>
  10. #include <linux/mmzone.h>
  11. #include <linux/rbtree.h>
  12. #include <linux/atomic.h>
  13. #include <linux/debug_locks.h>
  14. #include <linux/mm_types.h>
  15. #include <linux/range.h>
  16. #include <linux/pfn.h>
  17. #include <linux/percpu-refcount.h>
  18. #include <linux/bit_spinlock.h>
  19. #include <linux/shrinker.h>
  20. #include <linux/resource.h>
  21. #include <linux/page_ext.h>
  22. #include <linux/err.h>
  23. #include <linux/page_ref.h>
  24. #include <linux/memremap.h>
  25. struct mempolicy;
  26. struct anon_vma;
  27. struct anon_vma_chain;
  28. struct file_ra_state;
  29. struct user_struct;
  30. struct writeback_control;
  31. struct bdi_writeback;
  32. void init_mm_internals(void);
  33. #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
  34. extern unsigned long max_mapnr;
  35. static inline void set_max_mapnr(unsigned long limit)
  36. {
  37. max_mapnr = limit;
  38. }
  39. #else
  40. static inline void set_max_mapnr(unsigned long limit) { }
  41. #endif
  42. extern unsigned long totalram_pages;
  43. extern void * high_memory;
  44. extern int page_cluster;
  45. #ifdef CONFIG_SYSCTL
  46. extern int sysctl_legacy_va_layout;
  47. #else
  48. #define sysctl_legacy_va_layout 0
  49. #endif
  50. #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
  51. extern const int mmap_rnd_bits_min;
  52. extern const int mmap_rnd_bits_max;
  53. extern int mmap_rnd_bits __read_mostly;
  54. #endif
  55. #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
  56. extern const int mmap_rnd_compat_bits_min;
  57. extern const int mmap_rnd_compat_bits_max;
  58. extern int mmap_rnd_compat_bits __read_mostly;
  59. #endif
  60. #include <asm/page.h>
  61. #include <asm/pgtable.h>
  62. #include <asm/processor.h>
  63. #ifndef __pa_symbol
  64. #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
  65. #endif
  66. #ifndef page_to_virt
  67. #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
  68. #endif
  69. #ifndef lm_alias
  70. #define lm_alias(x) __va(__pa_symbol(x))
  71. #endif
  72. /*
  73. * To prevent common memory management code establishing
  74. * a zero page mapping on a read fault.
  75. * This macro should be defined within <asm/pgtable.h>.
  76. * s390 does this to prevent multiplexing of hardware bits
  77. * related to the physical page in case of virtualization.
  78. */
  79. #ifndef mm_forbids_zeropage
  80. #define mm_forbids_zeropage(X) (0)
  81. #endif
  82. /*
  83. * On some architectures it is expensive to call memset() for small sizes.
  84. * Those architectures should provide their own implementation of "struct page"
  85. * zeroing by defining this macro in <asm/pgtable.h>.
  86. */
  87. #ifndef mm_zero_struct_page
  88. #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
  89. #endif
  90. /*
  91. * Default maximum number of active map areas, this limits the number of vmas
  92. * per mm struct. Users can overwrite this number by sysctl but there is a
  93. * problem.
  94. *
  95. * When a program's coredump is generated as ELF format, a section is created
  96. * per a vma. In ELF, the number of sections is represented in unsigned short.
  97. * This means the number of sections should be smaller than 65535 at coredump.
  98. * Because the kernel adds some informative sections to a image of program at
  99. * generating coredump, we need some margin. The number of extra sections is
  100. * 1-3 now and depends on arch. We use "5" as safe margin, here.
  101. *
  102. * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
  103. * not a hard limit any more. Although some userspace tools can be surprised by
  104. * that.
  105. */
  106. #define MAPCOUNT_ELF_CORE_MARGIN (5)
  107. #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
  108. extern int sysctl_max_map_count;
  109. extern unsigned long sysctl_user_reserve_kbytes;
  110. extern unsigned long sysctl_admin_reserve_kbytes;
  111. extern int sysctl_overcommit_memory;
  112. extern int sysctl_overcommit_ratio;
  113. extern unsigned long sysctl_overcommit_kbytes;
  114. extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
  115. size_t *, loff_t *);
  116. extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
  117. size_t *, loff_t *);
  118. #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
  119. /* to align the pointer to the (next) page boundary */
  120. #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
  121. /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
  122. #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
  123. /*
  124. * Linux kernel virtual memory manager primitives.
  125. * The idea being to have a "virtual" mm in the same way
  126. * we have a virtual fs - giving a cleaner interface to the
  127. * mm details, and allowing different kinds of memory mappings
  128. * (from shared memory to executable loading to arbitrary
  129. * mmap() functions).
  130. */
  131. extern struct kmem_cache *vm_area_cachep;
  132. #ifndef CONFIG_MMU
  133. extern struct rb_root nommu_region_tree;
  134. extern struct rw_semaphore nommu_region_sem;
  135. extern unsigned int kobjsize(const void *objp);
  136. #endif
  137. /*
  138. * vm_flags in vm_area_struct, see mm_types.h.
  139. * When changing, update also include/trace/events/mmflags.h
  140. */
  141. #define VM_NONE 0x00000000
  142. #define VM_READ 0x00000001 /* currently active flags */
  143. #define VM_WRITE 0x00000002
  144. #define VM_EXEC 0x00000004
  145. #define VM_SHARED 0x00000008
  146. /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
  147. #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
  148. #define VM_MAYWRITE 0x00000020
  149. #define VM_MAYEXEC 0x00000040
  150. #define VM_MAYSHARE 0x00000080
  151. #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
  152. #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
  153. #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
  154. #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
  155. #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
  156. #define VM_LOCKED 0x00002000
  157. #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
  158. /* Used by sys_madvise() */
  159. #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
  160. #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
  161. #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
  162. #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
  163. #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
  164. #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
  165. #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
  166. #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
  167. #define VM_SYNC 0x00800000 /* Synchronous page faults */
  168. #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
  169. #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
  170. #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
  171. #ifdef CONFIG_MEM_SOFT_DIRTY
  172. # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
  173. #else
  174. # define VM_SOFTDIRTY 0
  175. #endif
  176. #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
  177. #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
  178. #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
  179. #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
  180. #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
  181. #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
  182. #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
  183. #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
  184. #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
  185. #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
  186. #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
  187. #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
  188. #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
  189. #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
  190. #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
  191. #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
  192. #if defined(CONFIG_X86)
  193. # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
  194. #if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
  195. # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
  196. # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
  197. # define VM_PKEY_BIT1 VM_HIGH_ARCH_1
  198. # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
  199. # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
  200. #endif
  201. #elif defined(CONFIG_PPC)
  202. # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
  203. #elif defined(CONFIG_PARISC)
  204. # define VM_GROWSUP VM_ARCH_1
  205. #elif defined(CONFIG_IA64)
  206. # define VM_GROWSUP VM_ARCH_1
  207. #elif defined(CONFIG_SPARC64)
  208. # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
  209. # define VM_ARCH_CLEAR VM_SPARC_ADI
  210. #elif !defined(CONFIG_MMU)
  211. # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
  212. #endif
  213. #if defined(CONFIG_X86_INTEL_MPX)
  214. /* MPX specific bounds table or bounds directory */
  215. # define VM_MPX VM_HIGH_ARCH_4
  216. #else
  217. # define VM_MPX VM_NONE
  218. #endif
  219. #ifndef VM_GROWSUP
  220. # define VM_GROWSUP VM_NONE
  221. #endif
  222. /* Bits set in the VMA until the stack is in its final location */
  223. #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
  224. #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
  225. #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
  226. #endif
  227. #ifdef CONFIG_STACK_GROWSUP
  228. #define VM_STACK VM_GROWSUP
  229. #else
  230. #define VM_STACK VM_GROWSDOWN
  231. #endif
  232. #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  233. /*
  234. * Special vmas that are non-mergable, non-mlock()able.
  235. * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
  236. */
  237. #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
  238. /* This mask defines which mm->def_flags a process can inherit its parent */
  239. #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
  240. /* This mask is used to clear all the VMA flags used by mlock */
  241. #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
  242. /* Arch-specific flags to clear when updating VM flags on protection change */
  243. #ifndef VM_ARCH_CLEAR
  244. # define VM_ARCH_CLEAR VM_NONE
  245. #endif
  246. #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
  247. /*
  248. * mapping from the currently active vm_flags protection bits (the
  249. * low four bits) to a page protection mask..
  250. */
  251. extern pgprot_t protection_map[16];
  252. #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
  253. #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
  254. #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
  255. #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
  256. #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
  257. #define FAULT_FLAG_TRIED 0x20 /* Second try */
  258. #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
  259. #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
  260. #define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
  261. #define FAULT_FLAG_TRACE \
  262. { FAULT_FLAG_WRITE, "WRITE" }, \
  263. { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
  264. { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
  265. { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
  266. { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
  267. { FAULT_FLAG_TRIED, "TRIED" }, \
  268. { FAULT_FLAG_USER, "USER" }, \
  269. { FAULT_FLAG_REMOTE, "REMOTE" }, \
  270. { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
  271. /*
  272. * vm_fault is filled by the the pagefault handler and passed to the vma's
  273. * ->fault function. The vma's ->fault is responsible for returning a bitmask
  274. * of VM_FAULT_xxx flags that give details about how the fault was handled.
  275. *
  276. * MM layer fills up gfp_mask for page allocations but fault handler might
  277. * alter it if its implementation requires a different allocation context.
  278. *
  279. * pgoff should be used in favour of virtual_address, if possible.
  280. */
  281. struct vm_fault {
  282. struct vm_area_struct *vma; /* Target VMA */
  283. unsigned int flags; /* FAULT_FLAG_xxx flags */
  284. gfp_t gfp_mask; /* gfp mask to be used for allocations */
  285. pgoff_t pgoff; /* Logical page offset based on vma */
  286. unsigned long address; /* Faulting virtual address */
  287. pmd_t *pmd; /* Pointer to pmd entry matching
  288. * the 'address' */
  289. pud_t *pud; /* Pointer to pud entry matching
  290. * the 'address'
  291. */
  292. pte_t orig_pte; /* Value of PTE at the time of fault */
  293. struct page *cow_page; /* Page handler may use for COW fault */
  294. struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
  295. struct page *page; /* ->fault handlers should return a
  296. * page here, unless VM_FAULT_NOPAGE
  297. * is set (which is also implied by
  298. * VM_FAULT_ERROR).
  299. */
  300. /* These three entries are valid only while holding ptl lock */
  301. pte_t *pte; /* Pointer to pte entry matching
  302. * the 'address'. NULL if the page
  303. * table hasn't been allocated.
  304. */
  305. spinlock_t *ptl; /* Page table lock.
  306. * Protects pte page table if 'pte'
  307. * is not NULL, otherwise pmd.
  308. */
  309. pgtable_t prealloc_pte; /* Pre-allocated pte page table.
  310. * vm_ops->map_pages() calls
  311. * alloc_set_pte() from atomic context.
  312. * do_fault_around() pre-allocates
  313. * page table to avoid allocation from
  314. * atomic context.
  315. */
  316. };
  317. /* page entry size for vm->huge_fault() */
  318. enum page_entry_size {
  319. PE_SIZE_PTE = 0,
  320. PE_SIZE_PMD,
  321. PE_SIZE_PUD,
  322. };
  323. /*
  324. * These are the virtual MM functions - opening of an area, closing and
  325. * unmapping it (needed to keep files on disk up-to-date etc), pointer
  326. * to the functions called when a no-page or a wp-page exception occurs.
  327. */
  328. struct vm_operations_struct {
  329. void (*open)(struct vm_area_struct * area);
  330. void (*close)(struct vm_area_struct * area);
  331. int (*split)(struct vm_area_struct * area, unsigned long addr);
  332. int (*mremap)(struct vm_area_struct * area);
  333. int (*fault)(struct vm_fault *vmf);
  334. int (*huge_fault)(struct vm_fault *vmf, enum page_entry_size pe_size);
  335. void (*map_pages)(struct vm_fault *vmf,
  336. pgoff_t start_pgoff, pgoff_t end_pgoff);
  337. /* notification that a previously read-only page is about to become
  338. * writable, if an error is returned it will cause a SIGBUS */
  339. int (*page_mkwrite)(struct vm_fault *vmf);
  340. /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
  341. int (*pfn_mkwrite)(struct vm_fault *vmf);
  342. /* called by access_process_vm when get_user_pages() fails, typically
  343. * for use by special VMAs that can switch between memory and hardware
  344. */
  345. int (*access)(struct vm_area_struct *vma, unsigned long addr,
  346. void *buf, int len, int write);
  347. /* Called by the /proc/PID/maps code to ask the vma whether it
  348. * has a special name. Returning non-NULL will also cause this
  349. * vma to be dumped unconditionally. */
  350. const char *(*name)(struct vm_area_struct *vma);
  351. #ifdef CONFIG_NUMA
  352. /*
  353. * set_policy() op must add a reference to any non-NULL @new mempolicy
  354. * to hold the policy upon return. Caller should pass NULL @new to
  355. * remove a policy and fall back to surrounding context--i.e. do not
  356. * install a MPOL_DEFAULT policy, nor the task or system default
  357. * mempolicy.
  358. */
  359. int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
  360. /*
  361. * get_policy() op must add reference [mpol_get()] to any policy at
  362. * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
  363. * in mm/mempolicy.c will do this automatically.
  364. * get_policy() must NOT add a ref if the policy at (vma,addr) is not
  365. * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
  366. * If no [shared/vma] mempolicy exists at the addr, get_policy() op
  367. * must return NULL--i.e., do not "fallback" to task or system default
  368. * policy.
  369. */
  370. struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
  371. unsigned long addr);
  372. #endif
  373. /*
  374. * Called by vm_normal_page() for special PTEs to find the
  375. * page for @addr. This is useful if the default behavior
  376. * (using pte_page()) would not find the correct page.
  377. */
  378. struct page *(*find_special_page)(struct vm_area_struct *vma,
  379. unsigned long addr);
  380. };
  381. struct mmu_gather;
  382. struct inode;
  383. #define page_private(page) ((page)->private)
  384. #define set_page_private(page, v) ((page)->private = (v))
  385. #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
  386. static inline int pmd_devmap(pmd_t pmd)
  387. {
  388. return 0;
  389. }
  390. static inline int pud_devmap(pud_t pud)
  391. {
  392. return 0;
  393. }
  394. static inline int pgd_devmap(pgd_t pgd)
  395. {
  396. return 0;
  397. }
  398. #endif
  399. /*
  400. * FIXME: take this include out, include page-flags.h in
  401. * files which need it (119 of them)
  402. */
  403. #include <linux/page-flags.h>
  404. #include <linux/huge_mm.h>
  405. /*
  406. * Methods to modify the page usage count.
  407. *
  408. * What counts for a page usage:
  409. * - cache mapping (page->mapping)
  410. * - private data (page->private)
  411. * - page mapped in a task's page tables, each mapping
  412. * is counted separately
  413. *
  414. * Also, many kernel routines increase the page count before a critical
  415. * routine so they can be sure the page doesn't go away from under them.
  416. */
  417. /*
  418. * Drop a ref, return true if the refcount fell to zero (the page has no users)
  419. */
  420. static inline int put_page_testzero(struct page *page)
  421. {
  422. VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
  423. return page_ref_dec_and_test(page);
  424. }
  425. /*
  426. * Try to grab a ref unless the page has a refcount of zero, return false if
  427. * that is the case.
  428. * This can be called when MMU is off so it must not access
  429. * any of the virtual mappings.
  430. */
  431. static inline int get_page_unless_zero(struct page *page)
  432. {
  433. return page_ref_add_unless(page, 1, 0);
  434. }
  435. extern int page_is_ram(unsigned long pfn);
  436. enum {
  437. REGION_INTERSECTS,
  438. REGION_DISJOINT,
  439. REGION_MIXED,
  440. };
  441. int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
  442. unsigned long desc);
  443. /* Support for virtually mapped pages */
  444. struct page *vmalloc_to_page(const void *addr);
  445. unsigned long vmalloc_to_pfn(const void *addr);
  446. /*
  447. * Determine if an address is within the vmalloc range
  448. *
  449. * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
  450. * is no special casing required.
  451. */
  452. static inline bool is_vmalloc_addr(const void *x)
  453. {
  454. #ifdef CONFIG_MMU
  455. unsigned long addr = (unsigned long)x;
  456. return addr >= VMALLOC_START && addr < VMALLOC_END;
  457. #else
  458. return false;
  459. #endif
  460. }
  461. #ifdef CONFIG_MMU
  462. extern int is_vmalloc_or_module_addr(const void *x);
  463. #else
  464. static inline int is_vmalloc_or_module_addr(const void *x)
  465. {
  466. return 0;
  467. }
  468. #endif
  469. extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
  470. static inline void *kvmalloc(size_t size, gfp_t flags)
  471. {
  472. return kvmalloc_node(size, flags, NUMA_NO_NODE);
  473. }
  474. static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
  475. {
  476. return kvmalloc_node(size, flags | __GFP_ZERO, node);
  477. }
  478. static inline void *kvzalloc(size_t size, gfp_t flags)
  479. {
  480. return kvmalloc(size, flags | __GFP_ZERO);
  481. }
  482. static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
  483. {
  484. if (size != 0 && n > SIZE_MAX / size)
  485. return NULL;
  486. return kvmalloc(n * size, flags);
  487. }
  488. extern void kvfree(const void *addr);
  489. static inline atomic_t *compound_mapcount_ptr(struct page *page)
  490. {
  491. return &page[1].compound_mapcount;
  492. }
  493. static inline int compound_mapcount(struct page *page)
  494. {
  495. VM_BUG_ON_PAGE(!PageCompound(page), page);
  496. page = compound_head(page);
  497. return atomic_read(compound_mapcount_ptr(page)) + 1;
  498. }
  499. /*
  500. * The atomic page->_mapcount, starts from -1: so that transitions
  501. * both from it and to it can be tracked, using atomic_inc_and_test
  502. * and atomic_add_negative(-1).
  503. */
  504. static inline void page_mapcount_reset(struct page *page)
  505. {
  506. atomic_set(&(page)->_mapcount, -1);
  507. }
  508. int __page_mapcount(struct page *page);
  509. static inline int page_mapcount(struct page *page)
  510. {
  511. VM_BUG_ON_PAGE(PageSlab(page), page);
  512. if (unlikely(PageCompound(page)))
  513. return __page_mapcount(page);
  514. return atomic_read(&page->_mapcount) + 1;
  515. }
  516. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  517. int total_mapcount(struct page *page);
  518. int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
  519. #else
  520. static inline int total_mapcount(struct page *page)
  521. {
  522. return page_mapcount(page);
  523. }
  524. static inline int page_trans_huge_mapcount(struct page *page,
  525. int *total_mapcount)
  526. {
  527. int mapcount = page_mapcount(page);
  528. if (total_mapcount)
  529. *total_mapcount = mapcount;
  530. return mapcount;
  531. }
  532. #endif
  533. static inline struct page *virt_to_head_page(const void *x)
  534. {
  535. struct page *page = virt_to_page(x);
  536. return compound_head(page);
  537. }
  538. void __put_page(struct page *page);
  539. void put_pages_list(struct list_head *pages);
  540. void split_page(struct page *page, unsigned int order);
  541. /*
  542. * Compound pages have a destructor function. Provide a
  543. * prototype for that function and accessor functions.
  544. * These are _only_ valid on the head of a compound page.
  545. */
  546. typedef void compound_page_dtor(struct page *);
  547. /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
  548. enum compound_dtor_id {
  549. NULL_COMPOUND_DTOR,
  550. COMPOUND_PAGE_DTOR,
  551. #ifdef CONFIG_HUGETLB_PAGE
  552. HUGETLB_PAGE_DTOR,
  553. #endif
  554. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  555. TRANSHUGE_PAGE_DTOR,
  556. #endif
  557. NR_COMPOUND_DTORS,
  558. };
  559. extern compound_page_dtor * const compound_page_dtors[];
  560. static inline void set_compound_page_dtor(struct page *page,
  561. enum compound_dtor_id compound_dtor)
  562. {
  563. VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
  564. page[1].compound_dtor = compound_dtor;
  565. }
  566. static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
  567. {
  568. VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
  569. return compound_page_dtors[page[1].compound_dtor];
  570. }
  571. static inline unsigned int compound_order(struct page *page)
  572. {
  573. if (!PageHead(page))
  574. return 0;
  575. return page[1].compound_order;
  576. }
  577. static inline void set_compound_order(struct page *page, unsigned int order)
  578. {
  579. page[1].compound_order = order;
  580. }
  581. void free_compound_page(struct page *page);
  582. #ifdef CONFIG_MMU
  583. /*
  584. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  585. * servicing faults for write access. In the normal case, do always want
  586. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  587. * that do not have writing enabled, when used by access_process_vm.
  588. */
  589. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  590. {
  591. if (likely(vma->vm_flags & VM_WRITE))
  592. pte = pte_mkwrite(pte);
  593. return pte;
  594. }
  595. int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
  596. struct page *page);
  597. int finish_fault(struct vm_fault *vmf);
  598. int finish_mkwrite_fault(struct vm_fault *vmf);
  599. #endif
  600. /*
  601. * Multiple processes may "see" the same page. E.g. for untouched
  602. * mappings of /dev/null, all processes see the same page full of
  603. * zeroes, and text pages of executables and shared libraries have
  604. * only one copy in memory, at most, normally.
  605. *
  606. * For the non-reserved pages, page_count(page) denotes a reference count.
  607. * page_count() == 0 means the page is free. page->lru is then used for
  608. * freelist management in the buddy allocator.
  609. * page_count() > 0 means the page has been allocated.
  610. *
  611. * Pages are allocated by the slab allocator in order to provide memory
  612. * to kmalloc and kmem_cache_alloc. In this case, the management of the
  613. * page, and the fields in 'struct page' are the responsibility of mm/slab.c
  614. * unless a particular usage is carefully commented. (the responsibility of
  615. * freeing the kmalloc memory is the caller's, of course).
  616. *
  617. * A page may be used by anyone else who does a __get_free_page().
  618. * In this case, page_count still tracks the references, and should only
  619. * be used through the normal accessor functions. The top bits of page->flags
  620. * and page->virtual store page management information, but all other fields
  621. * are unused and could be used privately, carefully. The management of this
  622. * page is the responsibility of the one who allocated it, and those who have
  623. * subsequently been given references to it.
  624. *
  625. * The other pages (we may call them "pagecache pages") are completely
  626. * managed by the Linux memory manager: I/O, buffers, swapping etc.
  627. * The following discussion applies only to them.
  628. *
  629. * A pagecache page contains an opaque `private' member, which belongs to the
  630. * page's address_space. Usually, this is the address of a circular list of
  631. * the page's disk buffers. PG_private must be set to tell the VM to call
  632. * into the filesystem to release these pages.
  633. *
  634. * A page may belong to an inode's memory mapping. In this case, page->mapping
  635. * is the pointer to the inode, and page->index is the file offset of the page,
  636. * in units of PAGE_SIZE.
  637. *
  638. * If pagecache pages are not associated with an inode, they are said to be
  639. * anonymous pages. These may become associated with the swapcache, and in that
  640. * case PG_swapcache is set, and page->private is an offset into the swapcache.
  641. *
  642. * In either case (swapcache or inode backed), the pagecache itself holds one
  643. * reference to the page. Setting PG_private should also increment the
  644. * refcount. The each user mapping also has a reference to the page.
  645. *
  646. * The pagecache pages are stored in a per-mapping radix tree, which is
  647. * rooted at mapping->page_tree, and indexed by offset.
  648. * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
  649. * lists, we instead now tag pages as dirty/writeback in the radix tree.
  650. *
  651. * All pagecache pages may be subject to I/O:
  652. * - inode pages may need to be read from disk,
  653. * - inode pages which have been modified and are MAP_SHARED may need
  654. * to be written back to the inode on disk,
  655. * - anonymous pages (including MAP_PRIVATE file mappings) which have been
  656. * modified may need to be swapped out to swap space and (later) to be read
  657. * back into memory.
  658. */
  659. /*
  660. * The zone field is never updated after free_area_init_core()
  661. * sets it, so none of the operations on it need to be atomic.
  662. */
  663. /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
  664. #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
  665. #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
  666. #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
  667. #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
  668. /*
  669. * Define the bit shifts to access each section. For non-existent
  670. * sections we define the shift as 0; that plus a 0 mask ensures
  671. * the compiler will optimise away reference to them.
  672. */
  673. #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
  674. #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
  675. #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
  676. #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
  677. /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
  678. #ifdef NODE_NOT_IN_PAGE_FLAGS
  679. #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
  680. #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
  681. SECTIONS_PGOFF : ZONES_PGOFF)
  682. #else
  683. #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
  684. #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
  685. NODES_PGOFF : ZONES_PGOFF)
  686. #endif
  687. #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
  688. #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  689. #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  690. #endif
  691. #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
  692. #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
  693. #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
  694. #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
  695. #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
  696. static inline enum zone_type page_zonenum(const struct page *page)
  697. {
  698. return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
  699. }
  700. #ifdef CONFIG_ZONE_DEVICE
  701. static inline bool is_zone_device_page(const struct page *page)
  702. {
  703. return page_zonenum(page) == ZONE_DEVICE;
  704. }
  705. #else
  706. static inline bool is_zone_device_page(const struct page *page)
  707. {
  708. return false;
  709. }
  710. #endif
  711. #if defined(CONFIG_DEVICE_PRIVATE) || defined(CONFIG_DEVICE_PUBLIC)
  712. void put_zone_device_private_or_public_page(struct page *page);
  713. DECLARE_STATIC_KEY_FALSE(device_private_key);
  714. #define IS_HMM_ENABLED static_branch_unlikely(&device_private_key)
  715. static inline bool is_device_private_page(const struct page *page);
  716. static inline bool is_device_public_page(const struct page *page);
  717. #else /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
  718. static inline void put_zone_device_private_or_public_page(struct page *page)
  719. {
  720. }
  721. #define IS_HMM_ENABLED 0
  722. static inline bool is_device_private_page(const struct page *page)
  723. {
  724. return false;
  725. }
  726. static inline bool is_device_public_page(const struct page *page)
  727. {
  728. return false;
  729. }
  730. #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
  731. static inline void get_page(struct page *page)
  732. {
  733. page = compound_head(page);
  734. /*
  735. * Getting a normal page or the head of a compound page
  736. * requires to already have an elevated page->_refcount.
  737. */
  738. VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
  739. page_ref_inc(page);
  740. }
  741. static inline void put_page(struct page *page)
  742. {
  743. page = compound_head(page);
  744. /*
  745. * For private device pages we need to catch refcount transition from
  746. * 2 to 1, when refcount reach one it means the private device page is
  747. * free and we need to inform the device driver through callback. See
  748. * include/linux/memremap.h and HMM for details.
  749. */
  750. if (IS_HMM_ENABLED && unlikely(is_device_private_page(page) ||
  751. unlikely(is_device_public_page(page)))) {
  752. put_zone_device_private_or_public_page(page);
  753. return;
  754. }
  755. if (put_page_testzero(page))
  756. __put_page(page);
  757. }
  758. #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
  759. #define SECTION_IN_PAGE_FLAGS
  760. #endif
  761. /*
  762. * The identification function is mainly used by the buddy allocator for
  763. * determining if two pages could be buddies. We are not really identifying
  764. * the zone since we could be using the section number id if we do not have
  765. * node id available in page flags.
  766. * We only guarantee that it will return the same value for two combinable
  767. * pages in a zone.
  768. */
  769. static inline int page_zone_id(struct page *page)
  770. {
  771. return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
  772. }
  773. static inline int zone_to_nid(struct zone *zone)
  774. {
  775. #ifdef CONFIG_NUMA
  776. return zone->node;
  777. #else
  778. return 0;
  779. #endif
  780. }
  781. #ifdef NODE_NOT_IN_PAGE_FLAGS
  782. extern int page_to_nid(const struct page *page);
  783. #else
  784. static inline int page_to_nid(const struct page *page)
  785. {
  786. struct page *p = (struct page *)page;
  787. return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
  788. }
  789. #endif
  790. #ifdef CONFIG_NUMA_BALANCING
  791. static inline int cpu_pid_to_cpupid(int cpu, int pid)
  792. {
  793. return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
  794. }
  795. static inline int cpupid_to_pid(int cpupid)
  796. {
  797. return cpupid & LAST__PID_MASK;
  798. }
  799. static inline int cpupid_to_cpu(int cpupid)
  800. {
  801. return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
  802. }
  803. static inline int cpupid_to_nid(int cpupid)
  804. {
  805. return cpu_to_node(cpupid_to_cpu(cpupid));
  806. }
  807. static inline bool cpupid_pid_unset(int cpupid)
  808. {
  809. return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
  810. }
  811. static inline bool cpupid_cpu_unset(int cpupid)
  812. {
  813. return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
  814. }
  815. static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
  816. {
  817. return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
  818. }
  819. #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
  820. #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
  821. static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
  822. {
  823. return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
  824. }
  825. static inline int page_cpupid_last(struct page *page)
  826. {
  827. return page->_last_cpupid;
  828. }
  829. static inline void page_cpupid_reset_last(struct page *page)
  830. {
  831. page->_last_cpupid = -1 & LAST_CPUPID_MASK;
  832. }
  833. #else
  834. static inline int page_cpupid_last(struct page *page)
  835. {
  836. return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
  837. }
  838. extern int page_cpupid_xchg_last(struct page *page, int cpupid);
  839. static inline void page_cpupid_reset_last(struct page *page)
  840. {
  841. page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
  842. }
  843. #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
  844. #else /* !CONFIG_NUMA_BALANCING */
  845. static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
  846. {
  847. return page_to_nid(page); /* XXX */
  848. }
  849. static inline int page_cpupid_last(struct page *page)
  850. {
  851. return page_to_nid(page); /* XXX */
  852. }
  853. static inline int cpupid_to_nid(int cpupid)
  854. {
  855. return -1;
  856. }
  857. static inline int cpupid_to_pid(int cpupid)
  858. {
  859. return -1;
  860. }
  861. static inline int cpupid_to_cpu(int cpupid)
  862. {
  863. return -1;
  864. }
  865. static inline int cpu_pid_to_cpupid(int nid, int pid)
  866. {
  867. return -1;
  868. }
  869. static inline bool cpupid_pid_unset(int cpupid)
  870. {
  871. return 1;
  872. }
  873. static inline void page_cpupid_reset_last(struct page *page)
  874. {
  875. }
  876. static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
  877. {
  878. return false;
  879. }
  880. #endif /* CONFIG_NUMA_BALANCING */
  881. static inline struct zone *page_zone(const struct page *page)
  882. {
  883. return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
  884. }
  885. static inline pg_data_t *page_pgdat(const struct page *page)
  886. {
  887. return NODE_DATA(page_to_nid(page));
  888. }
  889. #ifdef SECTION_IN_PAGE_FLAGS
  890. static inline void set_page_section(struct page *page, unsigned long section)
  891. {
  892. page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
  893. page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
  894. }
  895. static inline unsigned long page_to_section(const struct page *page)
  896. {
  897. return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
  898. }
  899. #endif
  900. static inline void set_page_zone(struct page *page, enum zone_type zone)
  901. {
  902. page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
  903. page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
  904. }
  905. static inline void set_page_node(struct page *page, unsigned long node)
  906. {
  907. page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
  908. page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
  909. }
  910. static inline void set_page_links(struct page *page, enum zone_type zone,
  911. unsigned long node, unsigned long pfn)
  912. {
  913. set_page_zone(page, zone);
  914. set_page_node(page, node);
  915. #ifdef SECTION_IN_PAGE_FLAGS
  916. set_page_section(page, pfn_to_section_nr(pfn));
  917. #endif
  918. }
  919. #ifdef CONFIG_MEMCG
  920. static inline struct mem_cgroup *page_memcg(struct page *page)
  921. {
  922. return page->mem_cgroup;
  923. }
  924. static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
  925. {
  926. WARN_ON_ONCE(!rcu_read_lock_held());
  927. return READ_ONCE(page->mem_cgroup);
  928. }
  929. #else
  930. static inline struct mem_cgroup *page_memcg(struct page *page)
  931. {
  932. return NULL;
  933. }
  934. static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
  935. {
  936. WARN_ON_ONCE(!rcu_read_lock_held());
  937. return NULL;
  938. }
  939. #endif
  940. /*
  941. * Some inline functions in vmstat.h depend on page_zone()
  942. */
  943. #include <linux/vmstat.h>
  944. static __always_inline void *lowmem_page_address(const struct page *page)
  945. {
  946. return page_to_virt(page);
  947. }
  948. #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
  949. #define HASHED_PAGE_VIRTUAL
  950. #endif
  951. #if defined(WANT_PAGE_VIRTUAL)
  952. static inline void *page_address(const struct page *page)
  953. {
  954. return page->virtual;
  955. }
  956. static inline void set_page_address(struct page *page, void *address)
  957. {
  958. page->virtual = address;
  959. }
  960. #define page_address_init() do { } while(0)
  961. #endif
  962. #if defined(HASHED_PAGE_VIRTUAL)
  963. void *page_address(const struct page *page);
  964. void set_page_address(struct page *page, void *virtual);
  965. void page_address_init(void);
  966. #endif
  967. #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
  968. #define page_address(page) lowmem_page_address(page)
  969. #define set_page_address(page, address) do { } while(0)
  970. #define page_address_init() do { } while(0)
  971. #endif
  972. extern void *page_rmapping(struct page *page);
  973. extern struct anon_vma *page_anon_vma(struct page *page);
  974. extern struct address_space *page_mapping(struct page *page);
  975. extern struct address_space *__page_file_mapping(struct page *);
  976. static inline
  977. struct address_space *page_file_mapping(struct page *page)
  978. {
  979. if (unlikely(PageSwapCache(page)))
  980. return __page_file_mapping(page);
  981. return page->mapping;
  982. }
  983. extern pgoff_t __page_file_index(struct page *page);
  984. /*
  985. * Return the pagecache index of the passed page. Regular pagecache pages
  986. * use ->index whereas swapcache pages use swp_offset(->private)
  987. */
  988. static inline pgoff_t page_index(struct page *page)
  989. {
  990. if (unlikely(PageSwapCache(page)))
  991. return __page_file_index(page);
  992. return page->index;
  993. }
  994. bool page_mapped(struct page *page);
  995. struct address_space *page_mapping(struct page *page);
  996. /*
  997. * Return true only if the page has been allocated with
  998. * ALLOC_NO_WATERMARKS and the low watermark was not
  999. * met implying that the system is under some pressure.
  1000. */
  1001. static inline bool page_is_pfmemalloc(struct page *page)
  1002. {
  1003. /*
  1004. * Page index cannot be this large so this must be
  1005. * a pfmemalloc page.
  1006. */
  1007. return page->index == -1UL;
  1008. }
  1009. /*
  1010. * Only to be called by the page allocator on a freshly allocated
  1011. * page.
  1012. */
  1013. static inline void set_page_pfmemalloc(struct page *page)
  1014. {
  1015. page->index = -1UL;
  1016. }
  1017. static inline void clear_page_pfmemalloc(struct page *page)
  1018. {
  1019. page->index = 0;
  1020. }
  1021. /*
  1022. * Different kinds of faults, as returned by handle_mm_fault().
  1023. * Used to decide whether a process gets delivered SIGBUS or
  1024. * just gets major/minor fault counters bumped up.
  1025. */
  1026. #define VM_FAULT_OOM 0x0001
  1027. #define VM_FAULT_SIGBUS 0x0002
  1028. #define VM_FAULT_MAJOR 0x0004
  1029. #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
  1030. #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
  1031. #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
  1032. #define VM_FAULT_SIGSEGV 0x0040
  1033. #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
  1034. #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
  1035. #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
  1036. #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
  1037. #define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */
  1038. #define VM_FAULT_NEEDDSYNC 0x2000 /* ->fault did not modify page tables
  1039. * and needs fsync() to complete (for
  1040. * synchronous page faults in DAX) */
  1041. #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
  1042. VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
  1043. VM_FAULT_FALLBACK)
  1044. #define VM_FAULT_RESULT_TRACE \
  1045. { VM_FAULT_OOM, "OOM" }, \
  1046. { VM_FAULT_SIGBUS, "SIGBUS" }, \
  1047. { VM_FAULT_MAJOR, "MAJOR" }, \
  1048. { VM_FAULT_WRITE, "WRITE" }, \
  1049. { VM_FAULT_HWPOISON, "HWPOISON" }, \
  1050. { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
  1051. { VM_FAULT_SIGSEGV, "SIGSEGV" }, \
  1052. { VM_FAULT_NOPAGE, "NOPAGE" }, \
  1053. { VM_FAULT_LOCKED, "LOCKED" }, \
  1054. { VM_FAULT_RETRY, "RETRY" }, \
  1055. { VM_FAULT_FALLBACK, "FALLBACK" }, \
  1056. { VM_FAULT_DONE_COW, "DONE_COW" }, \
  1057. { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" }
  1058. /* Encode hstate index for a hwpoisoned large page */
  1059. #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
  1060. #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
  1061. /*
  1062. * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
  1063. */
  1064. extern void pagefault_out_of_memory(void);
  1065. #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
  1066. /*
  1067. * Flags passed to show_mem() and show_free_areas() to suppress output in
  1068. * various contexts.
  1069. */
  1070. #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
  1071. extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
  1072. extern bool can_do_mlock(void);
  1073. extern int user_shm_lock(size_t, struct user_struct *);
  1074. extern void user_shm_unlock(size_t, struct user_struct *);
  1075. /*
  1076. * Parameter block passed down to zap_pte_range in exceptional cases.
  1077. */
  1078. struct zap_details {
  1079. struct address_space *check_mapping; /* Check page->mapping if set */
  1080. pgoff_t first_index; /* Lowest page->index to unmap */
  1081. pgoff_t last_index; /* Highest page->index to unmap */
  1082. };
  1083. struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  1084. pte_t pte, bool with_public_device);
  1085. #define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false)
  1086. struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
  1087. pmd_t pmd);
  1088. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  1089. unsigned long size);
  1090. void zap_page_range(struct vm_area_struct *vma, unsigned long address,
  1091. unsigned long size);
  1092. void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
  1093. unsigned long start, unsigned long end);
  1094. /**
  1095. * mm_walk - callbacks for walk_page_range
  1096. * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
  1097. * this handler should only handle pud_trans_huge() puds.
  1098. * the pmd_entry or pte_entry callbacks will be used for
  1099. * regular PUDs.
  1100. * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
  1101. * this handler is required to be able to handle
  1102. * pmd_trans_huge() pmds. They may simply choose to
  1103. * split_huge_page() instead of handling it explicitly.
  1104. * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
  1105. * @pte_hole: if set, called for each hole at all levels
  1106. * @hugetlb_entry: if set, called for each hugetlb entry
  1107. * @test_walk: caller specific callback function to determine whether
  1108. * we walk over the current vma or not. Returning 0
  1109. * value means "do page table walk over the current vma,"
  1110. * and a negative one means "abort current page table walk
  1111. * right now." 1 means "skip the current vma."
  1112. * @mm: mm_struct representing the target process of page table walk
  1113. * @vma: vma currently walked (NULL if walking outside vmas)
  1114. * @private: private data for callbacks' usage
  1115. *
  1116. * (see the comment on walk_page_range() for more details)
  1117. */
  1118. struct mm_walk {
  1119. int (*pud_entry)(pud_t *pud, unsigned long addr,
  1120. unsigned long next, struct mm_walk *walk);
  1121. int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
  1122. unsigned long next, struct mm_walk *walk);
  1123. int (*pte_entry)(pte_t *pte, unsigned long addr,
  1124. unsigned long next, struct mm_walk *walk);
  1125. int (*pte_hole)(unsigned long addr, unsigned long next,
  1126. struct mm_walk *walk);
  1127. int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
  1128. unsigned long addr, unsigned long next,
  1129. struct mm_walk *walk);
  1130. int (*test_walk)(unsigned long addr, unsigned long next,
  1131. struct mm_walk *walk);
  1132. struct mm_struct *mm;
  1133. struct vm_area_struct *vma;
  1134. void *private;
  1135. };
  1136. int walk_page_range(unsigned long addr, unsigned long end,
  1137. struct mm_walk *walk);
  1138. int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
  1139. void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
  1140. unsigned long end, unsigned long floor, unsigned long ceiling);
  1141. int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
  1142. struct vm_area_struct *vma);
  1143. int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
  1144. unsigned long *start, unsigned long *end,
  1145. pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
  1146. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  1147. unsigned long *pfn);
  1148. int follow_phys(struct vm_area_struct *vma, unsigned long address,
  1149. unsigned int flags, unsigned long *prot, resource_size_t *phys);
  1150. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  1151. void *buf, int len, int write);
  1152. extern void truncate_pagecache(struct inode *inode, loff_t new);
  1153. extern void truncate_setsize(struct inode *inode, loff_t newsize);
  1154. void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
  1155. void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
  1156. int truncate_inode_page(struct address_space *mapping, struct page *page);
  1157. int generic_error_remove_page(struct address_space *mapping, struct page *page);
  1158. int invalidate_inode_page(struct page *page);
  1159. #ifdef CONFIG_MMU
  1160. extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
  1161. unsigned int flags);
  1162. extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
  1163. unsigned long address, unsigned int fault_flags,
  1164. bool *unlocked);
  1165. void unmap_mapping_pages(struct address_space *mapping,
  1166. pgoff_t start, pgoff_t nr, bool even_cows);
  1167. void unmap_mapping_range(struct address_space *mapping,
  1168. loff_t const holebegin, loff_t const holelen, int even_cows);
  1169. #else
  1170. static inline int handle_mm_fault(struct vm_area_struct *vma,
  1171. unsigned long address, unsigned int flags)
  1172. {
  1173. /* should never happen if there's no MMU */
  1174. BUG();
  1175. return VM_FAULT_SIGBUS;
  1176. }
  1177. static inline int fixup_user_fault(struct task_struct *tsk,
  1178. struct mm_struct *mm, unsigned long address,
  1179. unsigned int fault_flags, bool *unlocked)
  1180. {
  1181. /* should never happen if there's no MMU */
  1182. BUG();
  1183. return -EFAULT;
  1184. }
  1185. static inline void unmap_mapping_pages(struct address_space *mapping,
  1186. pgoff_t start, pgoff_t nr, bool even_cows) { }
  1187. static inline void unmap_mapping_range(struct address_space *mapping,
  1188. loff_t const holebegin, loff_t const holelen, int even_cows) { }
  1189. #endif
  1190. static inline void unmap_shared_mapping_range(struct address_space *mapping,
  1191. loff_t const holebegin, loff_t const holelen)
  1192. {
  1193. unmap_mapping_range(mapping, holebegin, holelen, 0);
  1194. }
  1195. extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
  1196. void *buf, int len, unsigned int gup_flags);
  1197. extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
  1198. void *buf, int len, unsigned int gup_flags);
  1199. extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
  1200. unsigned long addr, void *buf, int len, unsigned int gup_flags);
  1201. long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
  1202. unsigned long start, unsigned long nr_pages,
  1203. unsigned int gup_flags, struct page **pages,
  1204. struct vm_area_struct **vmas, int *locked);
  1205. long get_user_pages(unsigned long start, unsigned long nr_pages,
  1206. unsigned int gup_flags, struct page **pages,
  1207. struct vm_area_struct **vmas);
  1208. long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
  1209. unsigned int gup_flags, struct page **pages, int *locked);
  1210. long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
  1211. struct page **pages, unsigned int gup_flags);
  1212. #ifdef CONFIG_FS_DAX
  1213. long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
  1214. unsigned int gup_flags, struct page **pages,
  1215. struct vm_area_struct **vmas);
  1216. #else
  1217. static inline long get_user_pages_longterm(unsigned long start,
  1218. unsigned long nr_pages, unsigned int gup_flags,
  1219. struct page **pages, struct vm_area_struct **vmas)
  1220. {
  1221. return get_user_pages(start, nr_pages, gup_flags, pages, vmas);
  1222. }
  1223. #endif /* CONFIG_FS_DAX */
  1224. int get_user_pages_fast(unsigned long start, int nr_pages, int write,
  1225. struct page **pages);
  1226. /* Container for pinned pfns / pages */
  1227. struct frame_vector {
  1228. unsigned int nr_allocated; /* Number of frames we have space for */
  1229. unsigned int nr_frames; /* Number of frames stored in ptrs array */
  1230. bool got_ref; /* Did we pin pages by getting page ref? */
  1231. bool is_pfns; /* Does array contain pages or pfns? */
  1232. void *ptrs[0]; /* Array of pinned pfns / pages. Use
  1233. * pfns_vector_pages() or pfns_vector_pfns()
  1234. * for access */
  1235. };
  1236. struct frame_vector *frame_vector_create(unsigned int nr_frames);
  1237. void frame_vector_destroy(struct frame_vector *vec);
  1238. int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
  1239. unsigned int gup_flags, struct frame_vector *vec);
  1240. void put_vaddr_frames(struct frame_vector *vec);
  1241. int frame_vector_to_pages(struct frame_vector *vec);
  1242. void frame_vector_to_pfns(struct frame_vector *vec);
  1243. static inline unsigned int frame_vector_count(struct frame_vector *vec)
  1244. {
  1245. return vec->nr_frames;
  1246. }
  1247. static inline struct page **frame_vector_pages(struct frame_vector *vec)
  1248. {
  1249. if (vec->is_pfns) {
  1250. int err = frame_vector_to_pages(vec);
  1251. if (err)
  1252. return ERR_PTR(err);
  1253. }
  1254. return (struct page **)(vec->ptrs);
  1255. }
  1256. static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
  1257. {
  1258. if (!vec->is_pfns)
  1259. frame_vector_to_pfns(vec);
  1260. return (unsigned long *)(vec->ptrs);
  1261. }
  1262. struct kvec;
  1263. int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
  1264. struct page **pages);
  1265. int get_kernel_page(unsigned long start, int write, struct page **pages);
  1266. struct page *get_dump_page(unsigned long addr);
  1267. extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
  1268. extern void do_invalidatepage(struct page *page, unsigned int offset,
  1269. unsigned int length);
  1270. int __set_page_dirty_nobuffers(struct page *page);
  1271. int __set_page_dirty_no_writeback(struct page *page);
  1272. int redirty_page_for_writepage(struct writeback_control *wbc,
  1273. struct page *page);
  1274. void account_page_dirtied(struct page *page, struct address_space *mapping);
  1275. void account_page_cleaned(struct page *page, struct address_space *mapping,
  1276. struct bdi_writeback *wb);
  1277. int set_page_dirty(struct page *page);
  1278. int set_page_dirty_lock(struct page *page);
  1279. void __cancel_dirty_page(struct page *page);
  1280. static inline void cancel_dirty_page(struct page *page)
  1281. {
  1282. /* Avoid atomic ops, locking, etc. when not actually needed. */
  1283. if (PageDirty(page))
  1284. __cancel_dirty_page(page);
  1285. }
  1286. int clear_page_dirty_for_io(struct page *page);
  1287. int get_cmdline(struct task_struct *task, char *buffer, int buflen);
  1288. static inline bool vma_is_anonymous(struct vm_area_struct *vma)
  1289. {
  1290. return !vma->vm_ops;
  1291. }
  1292. #ifdef CONFIG_SHMEM
  1293. /*
  1294. * The vma_is_shmem is not inline because it is used only by slow
  1295. * paths in userfault.
  1296. */
  1297. bool vma_is_shmem(struct vm_area_struct *vma);
  1298. #else
  1299. static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
  1300. #endif
  1301. int vma_is_stack_for_current(struct vm_area_struct *vma);
  1302. extern unsigned long move_page_tables(struct vm_area_struct *vma,
  1303. unsigned long old_addr, struct vm_area_struct *new_vma,
  1304. unsigned long new_addr, unsigned long len,
  1305. bool need_rmap_locks);
  1306. extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
  1307. unsigned long end, pgprot_t newprot,
  1308. int dirty_accountable, int prot_numa);
  1309. extern int mprotect_fixup(struct vm_area_struct *vma,
  1310. struct vm_area_struct **pprev, unsigned long start,
  1311. unsigned long end, unsigned long newflags);
  1312. /*
  1313. * doesn't attempt to fault and will return short.
  1314. */
  1315. int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
  1316. struct page **pages);
  1317. /*
  1318. * per-process(per-mm_struct) statistics.
  1319. */
  1320. static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
  1321. {
  1322. long val = atomic_long_read(&mm->rss_stat.count[member]);
  1323. #ifdef SPLIT_RSS_COUNTING
  1324. /*
  1325. * counter is updated in asynchronous manner and may go to minus.
  1326. * But it's never be expected number for users.
  1327. */
  1328. if (val < 0)
  1329. val = 0;
  1330. #endif
  1331. return (unsigned long)val;
  1332. }
  1333. static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
  1334. {
  1335. atomic_long_add(value, &mm->rss_stat.count[member]);
  1336. }
  1337. static inline void inc_mm_counter(struct mm_struct *mm, int member)
  1338. {
  1339. atomic_long_inc(&mm->rss_stat.count[member]);
  1340. }
  1341. static inline void dec_mm_counter(struct mm_struct *mm, int member)
  1342. {
  1343. atomic_long_dec(&mm->rss_stat.count[member]);
  1344. }
  1345. /* Optimized variant when page is already known not to be PageAnon */
  1346. static inline int mm_counter_file(struct page *page)
  1347. {
  1348. if (PageSwapBacked(page))
  1349. return MM_SHMEMPAGES;
  1350. return MM_FILEPAGES;
  1351. }
  1352. static inline int mm_counter(struct page *page)
  1353. {
  1354. if (PageAnon(page))
  1355. return MM_ANONPAGES;
  1356. return mm_counter_file(page);
  1357. }
  1358. static inline unsigned long get_mm_rss(struct mm_struct *mm)
  1359. {
  1360. return get_mm_counter(mm, MM_FILEPAGES) +
  1361. get_mm_counter(mm, MM_ANONPAGES) +
  1362. get_mm_counter(mm, MM_SHMEMPAGES);
  1363. }
  1364. static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
  1365. {
  1366. return max(mm->hiwater_rss, get_mm_rss(mm));
  1367. }
  1368. static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
  1369. {
  1370. return max(mm->hiwater_vm, mm->total_vm);
  1371. }
  1372. static inline void update_hiwater_rss(struct mm_struct *mm)
  1373. {
  1374. unsigned long _rss = get_mm_rss(mm);
  1375. if ((mm)->hiwater_rss < _rss)
  1376. (mm)->hiwater_rss = _rss;
  1377. }
  1378. static inline void update_hiwater_vm(struct mm_struct *mm)
  1379. {
  1380. if (mm->hiwater_vm < mm->total_vm)
  1381. mm->hiwater_vm = mm->total_vm;
  1382. }
  1383. static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
  1384. {
  1385. mm->hiwater_rss = get_mm_rss(mm);
  1386. }
  1387. static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
  1388. struct mm_struct *mm)
  1389. {
  1390. unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
  1391. if (*maxrss < hiwater_rss)
  1392. *maxrss = hiwater_rss;
  1393. }
  1394. #if defined(SPLIT_RSS_COUNTING)
  1395. void sync_mm_rss(struct mm_struct *mm);
  1396. #else
  1397. static inline void sync_mm_rss(struct mm_struct *mm)
  1398. {
  1399. }
  1400. #endif
  1401. #ifndef __HAVE_ARCH_PTE_DEVMAP
  1402. static inline int pte_devmap(pte_t pte)
  1403. {
  1404. return 0;
  1405. }
  1406. #endif
  1407. int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
  1408. extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1409. spinlock_t **ptl);
  1410. static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1411. spinlock_t **ptl)
  1412. {
  1413. pte_t *ptep;
  1414. __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
  1415. return ptep;
  1416. }
  1417. #ifdef __PAGETABLE_P4D_FOLDED
  1418. static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
  1419. unsigned long address)
  1420. {
  1421. return 0;
  1422. }
  1423. #else
  1424. int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
  1425. #endif
  1426. #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
  1427. static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
  1428. unsigned long address)
  1429. {
  1430. return 0;
  1431. }
  1432. static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
  1433. static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
  1434. #else
  1435. int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
  1436. static inline void mm_inc_nr_puds(struct mm_struct *mm)
  1437. {
  1438. atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
  1439. }
  1440. static inline void mm_dec_nr_puds(struct mm_struct *mm)
  1441. {
  1442. atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
  1443. }
  1444. #endif
  1445. #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
  1446. static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
  1447. unsigned long address)
  1448. {
  1449. return 0;
  1450. }
  1451. static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
  1452. static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
  1453. #else
  1454. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
  1455. static inline void mm_inc_nr_pmds(struct mm_struct *mm)
  1456. {
  1457. atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
  1458. }
  1459. static inline void mm_dec_nr_pmds(struct mm_struct *mm)
  1460. {
  1461. atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
  1462. }
  1463. #endif
  1464. #ifdef CONFIG_MMU
  1465. static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
  1466. {
  1467. atomic_long_set(&mm->pgtables_bytes, 0);
  1468. }
  1469. static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
  1470. {
  1471. return atomic_long_read(&mm->pgtables_bytes);
  1472. }
  1473. static inline void mm_inc_nr_ptes(struct mm_struct *mm)
  1474. {
  1475. atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
  1476. }
  1477. static inline void mm_dec_nr_ptes(struct mm_struct *mm)
  1478. {
  1479. atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
  1480. }
  1481. #else
  1482. static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
  1483. static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
  1484. {
  1485. return 0;
  1486. }
  1487. static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
  1488. static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
  1489. #endif
  1490. int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
  1491. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
  1492. /*
  1493. * The following ifdef needed to get the 4level-fixup.h header to work.
  1494. * Remove it when 4level-fixup.h has been removed.
  1495. */
  1496. #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
  1497. #ifndef __ARCH_HAS_5LEVEL_HACK
  1498. static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
  1499. unsigned long address)
  1500. {
  1501. return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
  1502. NULL : p4d_offset(pgd, address);
  1503. }
  1504. static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
  1505. unsigned long address)
  1506. {
  1507. return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
  1508. NULL : pud_offset(p4d, address);
  1509. }
  1510. #endif /* !__ARCH_HAS_5LEVEL_HACK */
  1511. static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  1512. {
  1513. return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
  1514. NULL: pmd_offset(pud, address);
  1515. }
  1516. #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
  1517. #if USE_SPLIT_PTE_PTLOCKS
  1518. #if ALLOC_SPLIT_PTLOCKS
  1519. void __init ptlock_cache_init(void);
  1520. extern bool ptlock_alloc(struct page *page);
  1521. extern void ptlock_free(struct page *page);
  1522. static inline spinlock_t *ptlock_ptr(struct page *page)
  1523. {
  1524. return page->ptl;
  1525. }
  1526. #else /* ALLOC_SPLIT_PTLOCKS */
  1527. static inline void ptlock_cache_init(void)
  1528. {
  1529. }
  1530. static inline bool ptlock_alloc(struct page *page)
  1531. {
  1532. return true;
  1533. }
  1534. static inline void ptlock_free(struct page *page)
  1535. {
  1536. }
  1537. static inline spinlock_t *ptlock_ptr(struct page *page)
  1538. {
  1539. return &page->ptl;
  1540. }
  1541. #endif /* ALLOC_SPLIT_PTLOCKS */
  1542. static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1543. {
  1544. return ptlock_ptr(pmd_page(*pmd));
  1545. }
  1546. static inline bool ptlock_init(struct page *page)
  1547. {
  1548. /*
  1549. * prep_new_page() initialize page->private (and therefore page->ptl)
  1550. * with 0. Make sure nobody took it in use in between.
  1551. *
  1552. * It can happen if arch try to use slab for page table allocation:
  1553. * slab code uses page->slab_cache, which share storage with page->ptl.
  1554. */
  1555. VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
  1556. if (!ptlock_alloc(page))
  1557. return false;
  1558. spin_lock_init(ptlock_ptr(page));
  1559. return true;
  1560. }
  1561. /* Reset page->mapping so free_pages_check won't complain. */
  1562. static inline void pte_lock_deinit(struct page *page)
  1563. {
  1564. page->mapping = NULL;
  1565. ptlock_free(page);
  1566. }
  1567. #else /* !USE_SPLIT_PTE_PTLOCKS */
  1568. /*
  1569. * We use mm->page_table_lock to guard all pagetable pages of the mm.
  1570. */
  1571. static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1572. {
  1573. return &mm->page_table_lock;
  1574. }
  1575. static inline void ptlock_cache_init(void) {}
  1576. static inline bool ptlock_init(struct page *page) { return true; }
  1577. static inline void pte_lock_deinit(struct page *page) {}
  1578. #endif /* USE_SPLIT_PTE_PTLOCKS */
  1579. static inline void pgtable_init(void)
  1580. {
  1581. ptlock_cache_init();
  1582. pgtable_cache_init();
  1583. }
  1584. static inline bool pgtable_page_ctor(struct page *page)
  1585. {
  1586. if (!ptlock_init(page))
  1587. return false;
  1588. inc_zone_page_state(page, NR_PAGETABLE);
  1589. return true;
  1590. }
  1591. static inline void pgtable_page_dtor(struct page *page)
  1592. {
  1593. pte_lock_deinit(page);
  1594. dec_zone_page_state(page, NR_PAGETABLE);
  1595. }
  1596. #define pte_offset_map_lock(mm, pmd, address, ptlp) \
  1597. ({ \
  1598. spinlock_t *__ptl = pte_lockptr(mm, pmd); \
  1599. pte_t *__pte = pte_offset_map(pmd, address); \
  1600. *(ptlp) = __ptl; \
  1601. spin_lock(__ptl); \
  1602. __pte; \
  1603. })
  1604. #define pte_unmap_unlock(pte, ptl) do { \
  1605. spin_unlock(ptl); \
  1606. pte_unmap(pte); \
  1607. } while (0)
  1608. #define pte_alloc(mm, pmd, address) \
  1609. (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
  1610. #define pte_alloc_map(mm, pmd, address) \
  1611. (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
  1612. #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
  1613. (pte_alloc(mm, pmd, address) ? \
  1614. NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
  1615. #define pte_alloc_kernel(pmd, address) \
  1616. ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
  1617. NULL: pte_offset_kernel(pmd, address))
  1618. #if USE_SPLIT_PMD_PTLOCKS
  1619. static struct page *pmd_to_page(pmd_t *pmd)
  1620. {
  1621. unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
  1622. return virt_to_page((void *)((unsigned long) pmd & mask));
  1623. }
  1624. static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1625. {
  1626. return ptlock_ptr(pmd_to_page(pmd));
  1627. }
  1628. static inline bool pgtable_pmd_page_ctor(struct page *page)
  1629. {
  1630. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1631. page->pmd_huge_pte = NULL;
  1632. #endif
  1633. return ptlock_init(page);
  1634. }
  1635. static inline void pgtable_pmd_page_dtor(struct page *page)
  1636. {
  1637. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1638. VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
  1639. #endif
  1640. ptlock_free(page);
  1641. }
  1642. #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
  1643. #else
  1644. static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1645. {
  1646. return &mm->page_table_lock;
  1647. }
  1648. static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
  1649. static inline void pgtable_pmd_page_dtor(struct page *page) {}
  1650. #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
  1651. #endif
  1652. static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
  1653. {
  1654. spinlock_t *ptl = pmd_lockptr(mm, pmd);
  1655. spin_lock(ptl);
  1656. return ptl;
  1657. }
  1658. /*
  1659. * No scalability reason to split PUD locks yet, but follow the same pattern
  1660. * as the PMD locks to make it easier if we decide to. The VM should not be
  1661. * considered ready to switch to split PUD locks yet; there may be places
  1662. * which need to be converted from page_table_lock.
  1663. */
  1664. static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
  1665. {
  1666. return &mm->page_table_lock;
  1667. }
  1668. static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
  1669. {
  1670. spinlock_t *ptl = pud_lockptr(mm, pud);
  1671. spin_lock(ptl);
  1672. return ptl;
  1673. }
  1674. extern void __init pagecache_init(void);
  1675. extern void free_area_init(unsigned long * zones_size);
  1676. extern void free_area_init_node(int nid, unsigned long * zones_size,
  1677. unsigned long zone_start_pfn, unsigned long *zholes_size);
  1678. extern void free_initmem(void);
  1679. /*
  1680. * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
  1681. * into the buddy system. The freed pages will be poisoned with pattern
  1682. * "poison" if it's within range [0, UCHAR_MAX].
  1683. * Return pages freed into the buddy system.
  1684. */
  1685. extern unsigned long free_reserved_area(void *start, void *end,
  1686. int poison, char *s);
  1687. #ifdef CONFIG_HIGHMEM
  1688. /*
  1689. * Free a highmem page into the buddy system, adjusting totalhigh_pages
  1690. * and totalram_pages.
  1691. */
  1692. extern void free_highmem_page(struct page *page);
  1693. #endif
  1694. extern void adjust_managed_page_count(struct page *page, long count);
  1695. extern void mem_init_print_info(const char *str);
  1696. extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
  1697. /* Free the reserved page into the buddy system, so it gets managed. */
  1698. static inline void __free_reserved_page(struct page *page)
  1699. {
  1700. ClearPageReserved(page);
  1701. init_page_count(page);
  1702. __free_page(page);
  1703. }
  1704. static inline void free_reserved_page(struct page *page)
  1705. {
  1706. __free_reserved_page(page);
  1707. adjust_managed_page_count(page, 1);
  1708. }
  1709. static inline void mark_page_reserved(struct page *page)
  1710. {
  1711. SetPageReserved(page);
  1712. adjust_managed_page_count(page, -1);
  1713. }
  1714. /*
  1715. * Default method to free all the __init memory into the buddy system.
  1716. * The freed pages will be poisoned with pattern "poison" if it's within
  1717. * range [0, UCHAR_MAX].
  1718. * Return pages freed into the buddy system.
  1719. */
  1720. static inline unsigned long free_initmem_default(int poison)
  1721. {
  1722. extern char __init_begin[], __init_end[];
  1723. return free_reserved_area(&__init_begin, &__init_end,
  1724. poison, "unused kernel");
  1725. }
  1726. static inline unsigned long get_num_physpages(void)
  1727. {
  1728. int nid;
  1729. unsigned long phys_pages = 0;
  1730. for_each_online_node(nid)
  1731. phys_pages += node_present_pages(nid);
  1732. return phys_pages;
  1733. }
  1734. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  1735. /*
  1736. * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
  1737. * zones, allocate the backing mem_map and account for memory holes in a more
  1738. * architecture independent manner. This is a substitute for creating the
  1739. * zone_sizes[] and zholes_size[] arrays and passing them to
  1740. * free_area_init_node()
  1741. *
  1742. * An architecture is expected to register range of page frames backed by
  1743. * physical memory with memblock_add[_node]() before calling
  1744. * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
  1745. * usage, an architecture is expected to do something like
  1746. *
  1747. * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
  1748. * max_highmem_pfn};
  1749. * for_each_valid_physical_page_range()
  1750. * memblock_add_node(base, size, nid)
  1751. * free_area_init_nodes(max_zone_pfns);
  1752. *
  1753. * free_bootmem_with_active_regions() calls free_bootmem_node() for each
  1754. * registered physical page range. Similarly
  1755. * sparse_memory_present_with_active_regions() calls memory_present() for
  1756. * each range when SPARSEMEM is enabled.
  1757. *
  1758. * See mm/page_alloc.c for more information on each function exposed by
  1759. * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
  1760. */
  1761. extern void free_area_init_nodes(unsigned long *max_zone_pfn);
  1762. unsigned long node_map_pfn_alignment(void);
  1763. unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
  1764. unsigned long end_pfn);
  1765. extern unsigned long absent_pages_in_range(unsigned long start_pfn,
  1766. unsigned long end_pfn);
  1767. extern void get_pfn_range_for_nid(unsigned int nid,
  1768. unsigned long *start_pfn, unsigned long *end_pfn);
  1769. extern unsigned long find_min_pfn_with_active_regions(void);
  1770. extern void free_bootmem_with_active_regions(int nid,
  1771. unsigned long max_low_pfn);
  1772. extern void sparse_memory_present_with_active_regions(int nid);
  1773. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  1774. #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
  1775. !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
  1776. static inline int __early_pfn_to_nid(unsigned long pfn,
  1777. struct mminit_pfnnid_cache *state)
  1778. {
  1779. return 0;
  1780. }
  1781. #else
  1782. /* please see mm/page_alloc.c */
  1783. extern int __meminit early_pfn_to_nid(unsigned long pfn);
  1784. /* there is a per-arch backend function. */
  1785. extern int __meminit __early_pfn_to_nid(unsigned long pfn,
  1786. struct mminit_pfnnid_cache *state);
  1787. #endif
  1788. #ifdef CONFIG_HAVE_MEMBLOCK
  1789. void zero_resv_unavail(void);
  1790. #else
  1791. static inline void zero_resv_unavail(void) {}
  1792. #endif
  1793. extern void set_dma_reserve(unsigned long new_dma_reserve);
  1794. extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
  1795. enum memmap_context, struct vmem_altmap *);
  1796. extern void setup_per_zone_wmarks(void);
  1797. extern int __meminit init_per_zone_wmark_min(void);
  1798. extern void mem_init(void);
  1799. extern void __init mmap_init(void);
  1800. extern void show_mem(unsigned int flags, nodemask_t *nodemask);
  1801. extern long si_mem_available(void);
  1802. extern void si_meminfo(struct sysinfo * val);
  1803. extern void si_meminfo_node(struct sysinfo *val, int nid);
  1804. #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
  1805. extern unsigned long arch_reserved_kernel_pages(void);
  1806. #endif
  1807. extern __printf(3, 4)
  1808. void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
  1809. extern void setup_per_cpu_pageset(void);
  1810. extern void zone_pcp_update(struct zone *zone);
  1811. extern void zone_pcp_reset(struct zone *zone);
  1812. /* page_alloc.c */
  1813. extern int min_free_kbytes;
  1814. extern int watermark_scale_factor;
  1815. /* nommu.c */
  1816. extern atomic_long_t mmap_pages_allocated;
  1817. extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
  1818. /* interval_tree.c */
  1819. void vma_interval_tree_insert(struct vm_area_struct *node,
  1820. struct rb_root_cached *root);
  1821. void vma_interval_tree_insert_after(struct vm_area_struct *node,
  1822. struct vm_area_struct *prev,
  1823. struct rb_root_cached *root);
  1824. void vma_interval_tree_remove(struct vm_area_struct *node,
  1825. struct rb_root_cached *root);
  1826. struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
  1827. unsigned long start, unsigned long last);
  1828. struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
  1829. unsigned long start, unsigned long last);
  1830. #define vma_interval_tree_foreach(vma, root, start, last) \
  1831. for (vma = vma_interval_tree_iter_first(root, start, last); \
  1832. vma; vma = vma_interval_tree_iter_next(vma, start, last))
  1833. void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
  1834. struct rb_root_cached *root);
  1835. void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
  1836. struct rb_root_cached *root);
  1837. struct anon_vma_chain *
  1838. anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
  1839. unsigned long start, unsigned long last);
  1840. struct anon_vma_chain *anon_vma_interval_tree_iter_next(
  1841. struct anon_vma_chain *node, unsigned long start, unsigned long last);
  1842. #ifdef CONFIG_DEBUG_VM_RB
  1843. void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
  1844. #endif
  1845. #define anon_vma_interval_tree_foreach(avc, root, start, last) \
  1846. for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
  1847. avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
  1848. /* mmap.c */
  1849. extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
  1850. extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
  1851. unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
  1852. struct vm_area_struct *expand);
  1853. static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
  1854. unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
  1855. {
  1856. return __vma_adjust(vma, start, end, pgoff, insert, NULL);
  1857. }
  1858. extern struct vm_area_struct *vma_merge(struct mm_struct *,
  1859. struct vm_area_struct *prev, unsigned long addr, unsigned long end,
  1860. unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
  1861. struct mempolicy *, struct vm_userfaultfd_ctx);
  1862. extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
  1863. extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
  1864. unsigned long addr, int new_below);
  1865. extern int split_vma(struct mm_struct *, struct vm_area_struct *,
  1866. unsigned long addr, int new_below);
  1867. extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
  1868. extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
  1869. struct rb_node **, struct rb_node *);
  1870. extern void unlink_file_vma(struct vm_area_struct *);
  1871. extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
  1872. unsigned long addr, unsigned long len, pgoff_t pgoff,
  1873. bool *need_rmap_locks);
  1874. extern void exit_mmap(struct mm_struct *);
  1875. static inline int check_data_rlimit(unsigned long rlim,
  1876. unsigned long new,
  1877. unsigned long start,
  1878. unsigned long end_data,
  1879. unsigned long start_data)
  1880. {
  1881. if (rlim < RLIM_INFINITY) {
  1882. if (((new - start) + (end_data - start_data)) > rlim)
  1883. return -ENOSPC;
  1884. }
  1885. return 0;
  1886. }
  1887. extern int mm_take_all_locks(struct mm_struct *mm);
  1888. extern void mm_drop_all_locks(struct mm_struct *mm);
  1889. extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
  1890. extern struct file *get_mm_exe_file(struct mm_struct *mm);
  1891. extern struct file *get_task_exe_file(struct task_struct *task);
  1892. extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
  1893. extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
  1894. extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
  1895. const struct vm_special_mapping *sm);
  1896. extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
  1897. unsigned long addr, unsigned long len,
  1898. unsigned long flags,
  1899. const struct vm_special_mapping *spec);
  1900. /* This is an obsolete alternative to _install_special_mapping. */
  1901. extern int install_special_mapping(struct mm_struct *mm,
  1902. unsigned long addr, unsigned long len,
  1903. unsigned long flags, struct page **pages);
  1904. extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
  1905. extern unsigned long mmap_region(struct file *file, unsigned long addr,
  1906. unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
  1907. struct list_head *uf);
  1908. extern unsigned long do_mmap(struct file *file, unsigned long addr,
  1909. unsigned long len, unsigned long prot, unsigned long flags,
  1910. vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
  1911. struct list_head *uf);
  1912. extern int do_munmap(struct mm_struct *, unsigned long, size_t,
  1913. struct list_head *uf);
  1914. static inline unsigned long
  1915. do_mmap_pgoff(struct file *file, unsigned long addr,
  1916. unsigned long len, unsigned long prot, unsigned long flags,
  1917. unsigned long pgoff, unsigned long *populate,
  1918. struct list_head *uf)
  1919. {
  1920. return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
  1921. }
  1922. #ifdef CONFIG_MMU
  1923. extern int __mm_populate(unsigned long addr, unsigned long len,
  1924. int ignore_errors);
  1925. static inline void mm_populate(unsigned long addr, unsigned long len)
  1926. {
  1927. /* Ignore errors */
  1928. (void) __mm_populate(addr, len, 1);
  1929. }
  1930. #else
  1931. static inline void mm_populate(unsigned long addr, unsigned long len) {}
  1932. #endif
  1933. /* These take the mm semaphore themselves */
  1934. extern int __must_check vm_brk(unsigned long, unsigned long);
  1935. extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
  1936. extern int vm_munmap(unsigned long, size_t);
  1937. extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
  1938. unsigned long, unsigned long,
  1939. unsigned long, unsigned long);
  1940. struct vm_unmapped_area_info {
  1941. #define VM_UNMAPPED_AREA_TOPDOWN 1
  1942. unsigned long flags;
  1943. unsigned long length;
  1944. unsigned long low_limit;
  1945. unsigned long high_limit;
  1946. unsigned long align_mask;
  1947. unsigned long align_offset;
  1948. };
  1949. extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
  1950. extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
  1951. /*
  1952. * Search for an unmapped address range.
  1953. *
  1954. * We are looking for a range that:
  1955. * - does not intersect with any VMA;
  1956. * - is contained within the [low_limit, high_limit) interval;
  1957. * - is at least the desired size.
  1958. * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
  1959. */
  1960. static inline unsigned long
  1961. vm_unmapped_area(struct vm_unmapped_area_info *info)
  1962. {
  1963. if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
  1964. return unmapped_area_topdown(info);
  1965. else
  1966. return unmapped_area(info);
  1967. }
  1968. /* truncate.c */
  1969. extern void truncate_inode_pages(struct address_space *, loff_t);
  1970. extern void truncate_inode_pages_range(struct address_space *,
  1971. loff_t lstart, loff_t lend);
  1972. extern void truncate_inode_pages_final(struct address_space *);
  1973. /* generic vm_area_ops exported for stackable file systems */
  1974. extern int filemap_fault(struct vm_fault *vmf);
  1975. extern void filemap_map_pages(struct vm_fault *vmf,
  1976. pgoff_t start_pgoff, pgoff_t end_pgoff);
  1977. extern int filemap_page_mkwrite(struct vm_fault *vmf);
  1978. /* mm/page-writeback.c */
  1979. int __must_check write_one_page(struct page *page);
  1980. void task_dirty_inc(struct task_struct *tsk);
  1981. /* readahead.c */
  1982. #define VM_MAX_READAHEAD 128 /* kbytes */
  1983. #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
  1984. int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
  1985. pgoff_t offset, unsigned long nr_to_read);
  1986. void page_cache_sync_readahead(struct address_space *mapping,
  1987. struct file_ra_state *ra,
  1988. struct file *filp,
  1989. pgoff_t offset,
  1990. unsigned long size);
  1991. void page_cache_async_readahead(struct address_space *mapping,
  1992. struct file_ra_state *ra,
  1993. struct file *filp,
  1994. struct page *pg,
  1995. pgoff_t offset,
  1996. unsigned long size);
  1997. extern unsigned long stack_guard_gap;
  1998. /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
  1999. extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
  2000. /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
  2001. extern int expand_downwards(struct vm_area_struct *vma,
  2002. unsigned long address);
  2003. #if VM_GROWSUP
  2004. extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
  2005. #else
  2006. #define expand_upwards(vma, address) (0)
  2007. #endif
  2008. /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
  2009. extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
  2010. extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
  2011. struct vm_area_struct **pprev);
  2012. /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
  2013. NULL if none. Assume start_addr < end_addr. */
  2014. static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
  2015. {
  2016. struct vm_area_struct * vma = find_vma(mm,start_addr);
  2017. if (vma && end_addr <= vma->vm_start)
  2018. vma = NULL;
  2019. return vma;
  2020. }
  2021. static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
  2022. {
  2023. unsigned long vm_start = vma->vm_start;
  2024. if (vma->vm_flags & VM_GROWSDOWN) {
  2025. vm_start -= stack_guard_gap;
  2026. if (vm_start > vma->vm_start)
  2027. vm_start = 0;
  2028. }
  2029. return vm_start;
  2030. }
  2031. static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
  2032. {
  2033. unsigned long vm_end = vma->vm_end;
  2034. if (vma->vm_flags & VM_GROWSUP) {
  2035. vm_end += stack_guard_gap;
  2036. if (vm_end < vma->vm_end)
  2037. vm_end = -PAGE_SIZE;
  2038. }
  2039. return vm_end;
  2040. }
  2041. static inline unsigned long vma_pages(struct vm_area_struct *vma)
  2042. {
  2043. return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
  2044. }
  2045. /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
  2046. static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
  2047. unsigned long vm_start, unsigned long vm_end)
  2048. {
  2049. struct vm_area_struct *vma = find_vma(mm, vm_start);
  2050. if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
  2051. vma = NULL;
  2052. return vma;
  2053. }
  2054. #ifdef CONFIG_MMU
  2055. pgprot_t vm_get_page_prot(unsigned long vm_flags);
  2056. void vma_set_page_prot(struct vm_area_struct *vma);
  2057. #else
  2058. static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
  2059. {
  2060. return __pgprot(0);
  2061. }
  2062. static inline void vma_set_page_prot(struct vm_area_struct *vma)
  2063. {
  2064. vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
  2065. }
  2066. #endif
  2067. #ifdef CONFIG_NUMA_BALANCING
  2068. unsigned long change_prot_numa(struct vm_area_struct *vma,
  2069. unsigned long start, unsigned long end);
  2070. #endif
  2071. struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
  2072. int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
  2073. unsigned long pfn, unsigned long size, pgprot_t);
  2074. int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
  2075. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  2076. unsigned long pfn);
  2077. int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
  2078. unsigned long pfn, pgprot_t pgprot);
  2079. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  2080. pfn_t pfn);
  2081. int vm_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr,
  2082. pfn_t pfn);
  2083. int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
  2084. struct page *follow_page_mask(struct vm_area_struct *vma,
  2085. unsigned long address, unsigned int foll_flags,
  2086. unsigned int *page_mask);
  2087. static inline struct page *follow_page(struct vm_area_struct *vma,
  2088. unsigned long address, unsigned int foll_flags)
  2089. {
  2090. unsigned int unused_page_mask;
  2091. return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
  2092. }
  2093. #define FOLL_WRITE 0x01 /* check pte is writable */
  2094. #define FOLL_TOUCH 0x02 /* mark page accessed */
  2095. #define FOLL_GET 0x04 /* do get_page on page */
  2096. #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
  2097. #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
  2098. #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
  2099. * and return without waiting upon it */
  2100. #define FOLL_POPULATE 0x40 /* fault in page */
  2101. #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
  2102. #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
  2103. #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
  2104. #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
  2105. #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
  2106. #define FOLL_MLOCK 0x1000 /* lock present pages */
  2107. #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
  2108. #define FOLL_COW 0x4000 /* internal GUP flag */
  2109. static inline int vm_fault_to_errno(int vm_fault, int foll_flags)
  2110. {
  2111. if (vm_fault & VM_FAULT_OOM)
  2112. return -ENOMEM;
  2113. if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
  2114. return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
  2115. if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
  2116. return -EFAULT;
  2117. return 0;
  2118. }
  2119. typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
  2120. void *data);
  2121. extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
  2122. unsigned long size, pte_fn_t fn, void *data);
  2123. #ifdef CONFIG_PAGE_POISONING
  2124. extern bool page_poisoning_enabled(void);
  2125. extern void kernel_poison_pages(struct page *page, int numpages, int enable);
  2126. extern bool page_is_poisoned(struct page *page);
  2127. #else
  2128. static inline bool page_poisoning_enabled(void) { return false; }
  2129. static inline void kernel_poison_pages(struct page *page, int numpages,
  2130. int enable) { }
  2131. static inline bool page_is_poisoned(struct page *page) { return false; }
  2132. #endif
  2133. #ifdef CONFIG_DEBUG_PAGEALLOC
  2134. extern bool _debug_pagealloc_enabled;
  2135. extern void __kernel_map_pages(struct page *page, int numpages, int enable);
  2136. static inline bool debug_pagealloc_enabled(void)
  2137. {
  2138. return _debug_pagealloc_enabled;
  2139. }
  2140. static inline void
  2141. kernel_map_pages(struct page *page, int numpages, int enable)
  2142. {
  2143. if (!debug_pagealloc_enabled())
  2144. return;
  2145. __kernel_map_pages(page, numpages, enable);
  2146. }
  2147. #ifdef CONFIG_HIBERNATION
  2148. extern bool kernel_page_present(struct page *page);
  2149. #endif /* CONFIG_HIBERNATION */
  2150. #else /* CONFIG_DEBUG_PAGEALLOC */
  2151. static inline void
  2152. kernel_map_pages(struct page *page, int numpages, int enable) {}
  2153. #ifdef CONFIG_HIBERNATION
  2154. static inline bool kernel_page_present(struct page *page) { return true; }
  2155. #endif /* CONFIG_HIBERNATION */
  2156. static inline bool debug_pagealloc_enabled(void)
  2157. {
  2158. return false;
  2159. }
  2160. #endif /* CONFIG_DEBUG_PAGEALLOC */
  2161. #ifdef __HAVE_ARCH_GATE_AREA
  2162. extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
  2163. extern int in_gate_area_no_mm(unsigned long addr);
  2164. extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
  2165. #else
  2166. static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
  2167. {
  2168. return NULL;
  2169. }
  2170. static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
  2171. static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
  2172. {
  2173. return 0;
  2174. }
  2175. #endif /* __HAVE_ARCH_GATE_AREA */
  2176. extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
  2177. #ifdef CONFIG_SYSCTL
  2178. extern int sysctl_drop_caches;
  2179. int drop_caches_sysctl_handler(struct ctl_table *, int,
  2180. void __user *, size_t *, loff_t *);
  2181. #endif
  2182. void drop_slab(void);
  2183. void drop_slab_node(int nid);
  2184. #ifndef CONFIG_MMU
  2185. #define randomize_va_space 0
  2186. #else
  2187. extern int randomize_va_space;
  2188. #endif
  2189. const char * arch_vma_name(struct vm_area_struct *vma);
  2190. void print_vma_addr(char *prefix, unsigned long rip);
  2191. void sparse_mem_maps_populate_node(struct page **map_map,
  2192. unsigned long pnum_begin,
  2193. unsigned long pnum_end,
  2194. unsigned long map_count,
  2195. int nodeid);
  2196. struct page *sparse_mem_map_populate(unsigned long pnum, int nid,
  2197. struct vmem_altmap *altmap);
  2198. pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
  2199. p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
  2200. pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
  2201. pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
  2202. pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
  2203. void *vmemmap_alloc_block(unsigned long size, int node);
  2204. struct vmem_altmap;
  2205. void *vmemmap_alloc_block_buf(unsigned long size, int node);
  2206. void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
  2207. void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
  2208. int vmemmap_populate_basepages(unsigned long start, unsigned long end,
  2209. int node);
  2210. int vmemmap_populate(unsigned long start, unsigned long end, int node,
  2211. struct vmem_altmap *altmap);
  2212. void vmemmap_populate_print_last(void);
  2213. #ifdef CONFIG_MEMORY_HOTPLUG
  2214. void vmemmap_free(unsigned long start, unsigned long end,
  2215. struct vmem_altmap *altmap);
  2216. #endif
  2217. void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
  2218. unsigned long nr_pages);
  2219. enum mf_flags {
  2220. MF_COUNT_INCREASED = 1 << 0,
  2221. MF_ACTION_REQUIRED = 1 << 1,
  2222. MF_MUST_KILL = 1 << 2,
  2223. MF_SOFT_OFFLINE = 1 << 3,
  2224. };
  2225. extern int memory_failure(unsigned long pfn, int flags);
  2226. extern void memory_failure_queue(unsigned long pfn, int flags);
  2227. extern int unpoison_memory(unsigned long pfn);
  2228. extern int get_hwpoison_page(struct page *page);
  2229. #define put_hwpoison_page(page) put_page(page)
  2230. extern int sysctl_memory_failure_early_kill;
  2231. extern int sysctl_memory_failure_recovery;
  2232. extern void shake_page(struct page *p, int access);
  2233. extern atomic_long_t num_poisoned_pages;
  2234. extern int soft_offline_page(struct page *page, int flags);
  2235. /*
  2236. * Error handlers for various types of pages.
  2237. */
  2238. enum mf_result {
  2239. MF_IGNORED, /* Error: cannot be handled */
  2240. MF_FAILED, /* Error: handling failed */
  2241. MF_DELAYED, /* Will be handled later */
  2242. MF_RECOVERED, /* Successfully recovered */
  2243. };
  2244. enum mf_action_page_type {
  2245. MF_MSG_KERNEL,
  2246. MF_MSG_KERNEL_HIGH_ORDER,
  2247. MF_MSG_SLAB,
  2248. MF_MSG_DIFFERENT_COMPOUND,
  2249. MF_MSG_POISONED_HUGE,
  2250. MF_MSG_HUGE,
  2251. MF_MSG_FREE_HUGE,
  2252. MF_MSG_UNMAP_FAILED,
  2253. MF_MSG_DIRTY_SWAPCACHE,
  2254. MF_MSG_CLEAN_SWAPCACHE,
  2255. MF_MSG_DIRTY_MLOCKED_LRU,
  2256. MF_MSG_CLEAN_MLOCKED_LRU,
  2257. MF_MSG_DIRTY_UNEVICTABLE_LRU,
  2258. MF_MSG_CLEAN_UNEVICTABLE_LRU,
  2259. MF_MSG_DIRTY_LRU,
  2260. MF_MSG_CLEAN_LRU,
  2261. MF_MSG_TRUNCATED_LRU,
  2262. MF_MSG_BUDDY,
  2263. MF_MSG_BUDDY_2ND,
  2264. MF_MSG_UNKNOWN,
  2265. };
  2266. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
  2267. extern void clear_huge_page(struct page *page,
  2268. unsigned long addr_hint,
  2269. unsigned int pages_per_huge_page);
  2270. extern void copy_user_huge_page(struct page *dst, struct page *src,
  2271. unsigned long addr, struct vm_area_struct *vma,
  2272. unsigned int pages_per_huge_page);
  2273. extern long copy_huge_page_from_user(struct page *dst_page,
  2274. const void __user *usr_src,
  2275. unsigned int pages_per_huge_page,
  2276. bool allow_pagefault);
  2277. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
  2278. extern struct page_ext_operations debug_guardpage_ops;
  2279. #ifdef CONFIG_DEBUG_PAGEALLOC
  2280. extern unsigned int _debug_guardpage_minorder;
  2281. extern bool _debug_guardpage_enabled;
  2282. static inline unsigned int debug_guardpage_minorder(void)
  2283. {
  2284. return _debug_guardpage_minorder;
  2285. }
  2286. static inline bool debug_guardpage_enabled(void)
  2287. {
  2288. return _debug_guardpage_enabled;
  2289. }
  2290. static inline bool page_is_guard(struct page *page)
  2291. {
  2292. struct page_ext *page_ext;
  2293. if (!debug_guardpage_enabled())
  2294. return false;
  2295. page_ext = lookup_page_ext(page);
  2296. if (unlikely(!page_ext))
  2297. return false;
  2298. return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  2299. }
  2300. #else
  2301. static inline unsigned int debug_guardpage_minorder(void) { return 0; }
  2302. static inline bool debug_guardpage_enabled(void) { return false; }
  2303. static inline bool page_is_guard(struct page *page) { return false; }
  2304. #endif /* CONFIG_DEBUG_PAGEALLOC */
  2305. #if MAX_NUMNODES > 1
  2306. void __init setup_nr_node_ids(void);
  2307. #else
  2308. static inline void setup_nr_node_ids(void) {}
  2309. #endif
  2310. #endif /* __KERNEL__ */
  2311. #endif /* _LINUX_MM_H */