intel_ringbuffer.c 84 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <drm/drmP.h>
  30. #include "i915_drv.h"
  31. #include <drm/i915_drm.h>
  32. #include "i915_trace.h"
  33. #include "intel_drv.h"
  34. bool
  35. intel_ring_initialized(struct intel_engine_cs *ring)
  36. {
  37. struct drm_device *dev = ring->dev;
  38. if (!dev)
  39. return false;
  40. if (i915.enable_execlists) {
  41. struct intel_context *dctx = ring->default_context;
  42. struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
  43. return ringbuf->obj;
  44. } else
  45. return ring->buffer && ring->buffer->obj;
  46. }
  47. int __intel_ring_space(int head, int tail, int size)
  48. {
  49. int space = head - tail;
  50. if (space <= 0)
  51. space += size;
  52. return space - I915_RING_FREE_SPACE;
  53. }
  54. void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
  55. {
  56. if (ringbuf->last_retired_head != -1) {
  57. ringbuf->head = ringbuf->last_retired_head;
  58. ringbuf->last_retired_head = -1;
  59. }
  60. ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
  61. ringbuf->tail, ringbuf->size);
  62. }
  63. int intel_ring_space(struct intel_ringbuffer *ringbuf)
  64. {
  65. intel_ring_update_space(ringbuf);
  66. return ringbuf->space;
  67. }
  68. bool intel_ring_stopped(struct intel_engine_cs *ring)
  69. {
  70. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  71. return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
  72. }
  73. static void __intel_ring_advance(struct intel_engine_cs *ring)
  74. {
  75. struct intel_ringbuffer *ringbuf = ring->buffer;
  76. ringbuf->tail &= ringbuf->size - 1;
  77. if (intel_ring_stopped(ring))
  78. return;
  79. ring->write_tail(ring, ringbuf->tail);
  80. }
  81. static int
  82. gen2_render_ring_flush(struct drm_i915_gem_request *req,
  83. u32 invalidate_domains,
  84. u32 flush_domains)
  85. {
  86. struct intel_engine_cs *ring = req->ring;
  87. u32 cmd;
  88. int ret;
  89. cmd = MI_FLUSH;
  90. if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
  91. cmd |= MI_NO_WRITE_FLUSH;
  92. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  93. cmd |= MI_READ_FLUSH;
  94. ret = intel_ring_begin(req, 2);
  95. if (ret)
  96. return ret;
  97. intel_ring_emit(ring, cmd);
  98. intel_ring_emit(ring, MI_NOOP);
  99. intel_ring_advance(ring);
  100. return 0;
  101. }
  102. static int
  103. gen4_render_ring_flush(struct drm_i915_gem_request *req,
  104. u32 invalidate_domains,
  105. u32 flush_domains)
  106. {
  107. struct intel_engine_cs *ring = req->ring;
  108. struct drm_device *dev = ring->dev;
  109. u32 cmd;
  110. int ret;
  111. /*
  112. * read/write caches:
  113. *
  114. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  115. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  116. * also flushed at 2d versus 3d pipeline switches.
  117. *
  118. * read-only caches:
  119. *
  120. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  121. * MI_READ_FLUSH is set, and is always flushed on 965.
  122. *
  123. * I915_GEM_DOMAIN_COMMAND may not exist?
  124. *
  125. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  126. * invalidated when MI_EXE_FLUSH is set.
  127. *
  128. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  129. * invalidated with every MI_FLUSH.
  130. *
  131. * TLBs:
  132. *
  133. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  134. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  135. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  136. * are flushed at any MI_FLUSH.
  137. */
  138. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  139. if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
  140. cmd &= ~MI_NO_WRITE_FLUSH;
  141. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  142. cmd |= MI_EXE_FLUSH;
  143. if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
  144. (IS_G4X(dev) || IS_GEN5(dev)))
  145. cmd |= MI_INVALIDATE_ISP;
  146. ret = intel_ring_begin(req, 2);
  147. if (ret)
  148. return ret;
  149. intel_ring_emit(ring, cmd);
  150. intel_ring_emit(ring, MI_NOOP);
  151. intel_ring_advance(ring);
  152. return 0;
  153. }
  154. /**
  155. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  156. * implementing two workarounds on gen6. From section 1.4.7.1
  157. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  158. *
  159. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  160. * produced by non-pipelined state commands), software needs to first
  161. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  162. * 0.
  163. *
  164. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  165. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  166. *
  167. * And the workaround for these two requires this workaround first:
  168. *
  169. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  170. * BEFORE the pipe-control with a post-sync op and no write-cache
  171. * flushes.
  172. *
  173. * And this last workaround is tricky because of the requirements on
  174. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  175. * volume 2 part 1:
  176. *
  177. * "1 of the following must also be set:
  178. * - Render Target Cache Flush Enable ([12] of DW1)
  179. * - Depth Cache Flush Enable ([0] of DW1)
  180. * - Stall at Pixel Scoreboard ([1] of DW1)
  181. * - Depth Stall ([13] of DW1)
  182. * - Post-Sync Operation ([13] of DW1)
  183. * - Notify Enable ([8] of DW1)"
  184. *
  185. * The cache flushes require the workaround flush that triggered this
  186. * one, so we can't use it. Depth stall would trigger the same.
  187. * Post-sync nonzero is what triggered this second workaround, so we
  188. * can't use that one either. Notify enable is IRQs, which aren't
  189. * really our business. That leaves only stall at scoreboard.
  190. */
  191. static int
  192. intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
  193. {
  194. struct intel_engine_cs *ring = req->ring;
  195. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  196. int ret;
  197. ret = intel_ring_begin(req, 6);
  198. if (ret)
  199. return ret;
  200. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  201. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  202. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  203. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  204. intel_ring_emit(ring, 0); /* low dword */
  205. intel_ring_emit(ring, 0); /* high dword */
  206. intel_ring_emit(ring, MI_NOOP);
  207. intel_ring_advance(ring);
  208. ret = intel_ring_begin(req, 6);
  209. if (ret)
  210. return ret;
  211. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  212. intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
  213. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  214. intel_ring_emit(ring, 0);
  215. intel_ring_emit(ring, 0);
  216. intel_ring_emit(ring, MI_NOOP);
  217. intel_ring_advance(ring);
  218. return 0;
  219. }
  220. static int
  221. gen6_render_ring_flush(struct drm_i915_gem_request *req,
  222. u32 invalidate_domains, u32 flush_domains)
  223. {
  224. struct intel_engine_cs *ring = req->ring;
  225. u32 flags = 0;
  226. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  227. int ret;
  228. /* Force SNB workarounds for PIPE_CONTROL flushes */
  229. ret = intel_emit_post_sync_nonzero_flush(req);
  230. if (ret)
  231. return ret;
  232. /* Just flush everything. Experiments have shown that reducing the
  233. * number of bits based on the write domains has little performance
  234. * impact.
  235. */
  236. if (flush_domains) {
  237. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  238. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  239. /*
  240. * Ensure that any following seqno writes only happen
  241. * when the render cache is indeed flushed.
  242. */
  243. flags |= PIPE_CONTROL_CS_STALL;
  244. }
  245. if (invalidate_domains) {
  246. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  247. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  248. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  249. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  250. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  251. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  252. /*
  253. * TLB invalidate requires a post-sync write.
  254. */
  255. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  256. }
  257. ret = intel_ring_begin(req, 4);
  258. if (ret)
  259. return ret;
  260. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  261. intel_ring_emit(ring, flags);
  262. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  263. intel_ring_emit(ring, 0);
  264. intel_ring_advance(ring);
  265. return 0;
  266. }
  267. static int
  268. gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
  269. {
  270. struct intel_engine_cs *ring = req->ring;
  271. int ret;
  272. ret = intel_ring_begin(req, 4);
  273. if (ret)
  274. return ret;
  275. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  276. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  277. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  278. intel_ring_emit(ring, 0);
  279. intel_ring_emit(ring, 0);
  280. intel_ring_advance(ring);
  281. return 0;
  282. }
  283. static int
  284. gen7_render_ring_flush(struct drm_i915_gem_request *req,
  285. u32 invalidate_domains, u32 flush_domains)
  286. {
  287. struct intel_engine_cs *ring = req->ring;
  288. u32 flags = 0;
  289. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  290. int ret;
  291. /*
  292. * Ensure that any following seqno writes only happen when the render
  293. * cache is indeed flushed.
  294. *
  295. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  296. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  297. * don't try to be clever and just set it unconditionally.
  298. */
  299. flags |= PIPE_CONTROL_CS_STALL;
  300. /* Just flush everything. Experiments have shown that reducing the
  301. * number of bits based on the write domains has little performance
  302. * impact.
  303. */
  304. if (flush_domains) {
  305. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  306. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  307. }
  308. if (invalidate_domains) {
  309. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  310. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  311. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  312. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  313. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  314. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  315. flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
  316. /*
  317. * TLB invalidate requires a post-sync write.
  318. */
  319. flags |= PIPE_CONTROL_QW_WRITE;
  320. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  321. flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
  322. /* Workaround: we must issue a pipe_control with CS-stall bit
  323. * set before a pipe_control command that has the state cache
  324. * invalidate bit set. */
  325. gen7_render_ring_cs_stall_wa(req);
  326. }
  327. ret = intel_ring_begin(req, 4);
  328. if (ret)
  329. return ret;
  330. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  331. intel_ring_emit(ring, flags);
  332. intel_ring_emit(ring, scratch_addr);
  333. intel_ring_emit(ring, 0);
  334. intel_ring_advance(ring);
  335. return 0;
  336. }
  337. static int
  338. gen8_emit_pipe_control(struct drm_i915_gem_request *req,
  339. u32 flags, u32 scratch_addr)
  340. {
  341. struct intel_engine_cs *ring = req->ring;
  342. int ret;
  343. ret = intel_ring_begin(req, 6);
  344. if (ret)
  345. return ret;
  346. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
  347. intel_ring_emit(ring, flags);
  348. intel_ring_emit(ring, scratch_addr);
  349. intel_ring_emit(ring, 0);
  350. intel_ring_emit(ring, 0);
  351. intel_ring_emit(ring, 0);
  352. intel_ring_advance(ring);
  353. return 0;
  354. }
  355. static int
  356. gen8_render_ring_flush(struct drm_i915_gem_request *req,
  357. u32 invalidate_domains, u32 flush_domains)
  358. {
  359. u32 flags = 0;
  360. u32 scratch_addr = req->ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  361. int ret;
  362. flags |= PIPE_CONTROL_CS_STALL;
  363. if (flush_domains) {
  364. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  365. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  366. }
  367. if (invalidate_domains) {
  368. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  369. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  370. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  371. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  372. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  373. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  374. flags |= PIPE_CONTROL_QW_WRITE;
  375. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  376. /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
  377. ret = gen8_emit_pipe_control(req,
  378. PIPE_CONTROL_CS_STALL |
  379. PIPE_CONTROL_STALL_AT_SCOREBOARD,
  380. 0);
  381. if (ret)
  382. return ret;
  383. }
  384. return gen8_emit_pipe_control(req, flags, scratch_addr);
  385. }
  386. static void ring_write_tail(struct intel_engine_cs *ring,
  387. u32 value)
  388. {
  389. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  390. I915_WRITE_TAIL(ring, value);
  391. }
  392. u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
  393. {
  394. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  395. u64 acthd;
  396. if (INTEL_INFO(ring->dev)->gen >= 8)
  397. acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
  398. RING_ACTHD_UDW(ring->mmio_base));
  399. else if (INTEL_INFO(ring->dev)->gen >= 4)
  400. acthd = I915_READ(RING_ACTHD(ring->mmio_base));
  401. else
  402. acthd = I915_READ(ACTHD);
  403. return acthd;
  404. }
  405. static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
  406. {
  407. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  408. u32 addr;
  409. addr = dev_priv->status_page_dmah->busaddr;
  410. if (INTEL_INFO(ring->dev)->gen >= 4)
  411. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  412. I915_WRITE(HWS_PGA, addr);
  413. }
  414. static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
  415. {
  416. struct drm_device *dev = ring->dev;
  417. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  418. i915_reg_t mmio;
  419. /* The ring status page addresses are no longer next to the rest of
  420. * the ring registers as of gen7.
  421. */
  422. if (IS_GEN7(dev)) {
  423. switch (ring->id) {
  424. case RCS:
  425. mmio = RENDER_HWS_PGA_GEN7;
  426. break;
  427. case BCS:
  428. mmio = BLT_HWS_PGA_GEN7;
  429. break;
  430. /*
  431. * VCS2 actually doesn't exist on Gen7. Only shut up
  432. * gcc switch check warning
  433. */
  434. case VCS2:
  435. case VCS:
  436. mmio = BSD_HWS_PGA_GEN7;
  437. break;
  438. case VECS:
  439. mmio = VEBOX_HWS_PGA_GEN7;
  440. break;
  441. }
  442. } else if (IS_GEN6(ring->dev)) {
  443. mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
  444. } else {
  445. /* XXX: gen8 returns to sanity */
  446. mmio = RING_HWS_PGA(ring->mmio_base);
  447. }
  448. I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
  449. POSTING_READ(mmio);
  450. /*
  451. * Flush the TLB for this page
  452. *
  453. * FIXME: These two bits have disappeared on gen8, so a question
  454. * arises: do we still need this and if so how should we go about
  455. * invalidating the TLB?
  456. */
  457. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
  458. i915_reg_t reg = RING_INSTPM(ring->mmio_base);
  459. /* ring should be idle before issuing a sync flush*/
  460. WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
  461. I915_WRITE(reg,
  462. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  463. INSTPM_SYNC_FLUSH));
  464. if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
  465. 1000))
  466. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  467. ring->name);
  468. }
  469. }
  470. static bool stop_ring(struct intel_engine_cs *ring)
  471. {
  472. struct drm_i915_private *dev_priv = to_i915(ring->dev);
  473. if (!IS_GEN2(ring->dev)) {
  474. I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
  475. if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
  476. DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
  477. /* Sometimes we observe that the idle flag is not
  478. * set even though the ring is empty. So double
  479. * check before giving up.
  480. */
  481. if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
  482. return false;
  483. }
  484. }
  485. I915_WRITE_CTL(ring, 0);
  486. I915_WRITE_HEAD(ring, 0);
  487. ring->write_tail(ring, 0);
  488. if (!IS_GEN2(ring->dev)) {
  489. (void)I915_READ_CTL(ring);
  490. I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
  491. }
  492. return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
  493. }
  494. static int init_ring_common(struct intel_engine_cs *ring)
  495. {
  496. struct drm_device *dev = ring->dev;
  497. struct drm_i915_private *dev_priv = dev->dev_private;
  498. struct intel_ringbuffer *ringbuf = ring->buffer;
  499. struct drm_i915_gem_object *obj = ringbuf->obj;
  500. int ret = 0;
  501. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  502. if (!stop_ring(ring)) {
  503. /* G45 ring initialization often fails to reset head to zero */
  504. DRM_DEBUG_KMS("%s head not reset to zero "
  505. "ctl %08x head %08x tail %08x start %08x\n",
  506. ring->name,
  507. I915_READ_CTL(ring),
  508. I915_READ_HEAD(ring),
  509. I915_READ_TAIL(ring),
  510. I915_READ_START(ring));
  511. if (!stop_ring(ring)) {
  512. DRM_ERROR("failed to set %s head to zero "
  513. "ctl %08x head %08x tail %08x start %08x\n",
  514. ring->name,
  515. I915_READ_CTL(ring),
  516. I915_READ_HEAD(ring),
  517. I915_READ_TAIL(ring),
  518. I915_READ_START(ring));
  519. ret = -EIO;
  520. goto out;
  521. }
  522. }
  523. if (I915_NEED_GFX_HWS(dev))
  524. intel_ring_setup_status_page(ring);
  525. else
  526. ring_setup_phys_status_page(ring);
  527. /* Enforce ordering by reading HEAD register back */
  528. I915_READ_HEAD(ring);
  529. /* Initialize the ring. This must happen _after_ we've cleared the ring
  530. * registers with the above sequence (the readback of the HEAD registers
  531. * also enforces ordering), otherwise the hw might lose the new ring
  532. * register values. */
  533. I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
  534. /* WaClearRingBufHeadRegAtInit:ctg,elk */
  535. if (I915_READ_HEAD(ring))
  536. DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
  537. ring->name, I915_READ_HEAD(ring));
  538. I915_WRITE_HEAD(ring, 0);
  539. (void)I915_READ_HEAD(ring);
  540. I915_WRITE_CTL(ring,
  541. ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
  542. | RING_VALID);
  543. /* If the head is still not zero, the ring is dead */
  544. if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
  545. I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
  546. (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
  547. DRM_ERROR("%s initialization failed "
  548. "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
  549. ring->name,
  550. I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
  551. I915_READ_HEAD(ring), I915_READ_TAIL(ring),
  552. I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
  553. ret = -EIO;
  554. goto out;
  555. }
  556. ringbuf->last_retired_head = -1;
  557. ringbuf->head = I915_READ_HEAD(ring);
  558. ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
  559. intel_ring_update_space(ringbuf);
  560. memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
  561. out:
  562. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  563. return ret;
  564. }
  565. void
  566. intel_fini_pipe_control(struct intel_engine_cs *ring)
  567. {
  568. struct drm_device *dev = ring->dev;
  569. if (ring->scratch.obj == NULL)
  570. return;
  571. if (INTEL_INFO(dev)->gen >= 5) {
  572. kunmap(sg_page(ring->scratch.obj->pages->sgl));
  573. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  574. }
  575. drm_gem_object_unreference(&ring->scratch.obj->base);
  576. ring->scratch.obj = NULL;
  577. }
  578. int
  579. intel_init_pipe_control(struct intel_engine_cs *ring)
  580. {
  581. int ret;
  582. WARN_ON(ring->scratch.obj);
  583. ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
  584. if (ring->scratch.obj == NULL) {
  585. DRM_ERROR("Failed to allocate seqno page\n");
  586. ret = -ENOMEM;
  587. goto err;
  588. }
  589. ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
  590. if (ret)
  591. goto err_unref;
  592. ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
  593. if (ret)
  594. goto err_unref;
  595. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
  596. ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
  597. if (ring->scratch.cpu_page == NULL) {
  598. ret = -ENOMEM;
  599. goto err_unpin;
  600. }
  601. DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
  602. ring->name, ring->scratch.gtt_offset);
  603. return 0;
  604. err_unpin:
  605. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  606. err_unref:
  607. drm_gem_object_unreference(&ring->scratch.obj->base);
  608. err:
  609. return ret;
  610. }
  611. static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
  612. {
  613. int ret, i;
  614. struct intel_engine_cs *ring = req->ring;
  615. struct drm_device *dev = ring->dev;
  616. struct drm_i915_private *dev_priv = dev->dev_private;
  617. struct i915_workarounds *w = &dev_priv->workarounds;
  618. if (w->count == 0)
  619. return 0;
  620. ring->gpu_caches_dirty = true;
  621. ret = intel_ring_flush_all_caches(req);
  622. if (ret)
  623. return ret;
  624. ret = intel_ring_begin(req, (w->count * 2 + 2));
  625. if (ret)
  626. return ret;
  627. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
  628. for (i = 0; i < w->count; i++) {
  629. intel_ring_emit_reg(ring, w->reg[i].addr);
  630. intel_ring_emit(ring, w->reg[i].value);
  631. }
  632. intel_ring_emit(ring, MI_NOOP);
  633. intel_ring_advance(ring);
  634. ring->gpu_caches_dirty = true;
  635. ret = intel_ring_flush_all_caches(req);
  636. if (ret)
  637. return ret;
  638. DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
  639. return 0;
  640. }
  641. static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
  642. {
  643. int ret;
  644. ret = intel_ring_workarounds_emit(req);
  645. if (ret != 0)
  646. return ret;
  647. ret = i915_gem_render_state_init(req);
  648. if (ret)
  649. DRM_ERROR("init render state: %d\n", ret);
  650. return ret;
  651. }
  652. static int wa_add(struct drm_i915_private *dev_priv,
  653. i915_reg_t addr,
  654. const u32 mask, const u32 val)
  655. {
  656. const u32 idx = dev_priv->workarounds.count;
  657. if (WARN_ON(idx >= I915_MAX_WA_REGS))
  658. return -ENOSPC;
  659. dev_priv->workarounds.reg[idx].addr = addr;
  660. dev_priv->workarounds.reg[idx].value = val;
  661. dev_priv->workarounds.reg[idx].mask = mask;
  662. dev_priv->workarounds.count++;
  663. return 0;
  664. }
  665. #define WA_REG(addr, mask, val) do { \
  666. const int r = wa_add(dev_priv, (addr), (mask), (val)); \
  667. if (r) \
  668. return r; \
  669. } while (0)
  670. #define WA_SET_BIT_MASKED(addr, mask) \
  671. WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
  672. #define WA_CLR_BIT_MASKED(addr, mask) \
  673. WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
  674. #define WA_SET_FIELD_MASKED(addr, mask, value) \
  675. WA_REG(addr, mask, _MASKED_FIELD(mask, value))
  676. #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
  677. #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
  678. #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
  679. static int gen8_init_workarounds(struct intel_engine_cs *ring)
  680. {
  681. struct drm_device *dev = ring->dev;
  682. struct drm_i915_private *dev_priv = dev->dev_private;
  683. WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
  684. /* WaDisableAsyncFlipPerfMode:bdw,chv */
  685. WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
  686. /* WaDisablePartialInstShootdown:bdw,chv */
  687. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  688. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  689. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  690. * workaround for for a possible hang in the unlikely event a TLB
  691. * invalidation occurs during a PSD flush.
  692. */
  693. /* WaForceEnableNonCoherent:bdw,chv */
  694. /* WaHdcDisableFetchWhenMasked:bdw,chv */
  695. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  696. HDC_DONOT_FETCH_MEM_WHEN_MASKED |
  697. HDC_FORCE_NON_COHERENT);
  698. /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
  699. * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
  700. * polygons in the same 8x4 pixel/sample area to be processed without
  701. * stalling waiting for the earlier ones to write to Hierarchical Z
  702. * buffer."
  703. *
  704. * This optimization is off by default for BDW and CHV; turn it on.
  705. */
  706. WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
  707. /* Wa4x4STCOptimizationDisable:bdw,chv */
  708. WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  709. /*
  710. * BSpec recommends 8x4 when MSAA is used,
  711. * however in practice 16x4 seems fastest.
  712. *
  713. * Note that PS/WM thread counts depend on the WIZ hashing
  714. * disable bit, which we don't touch here, but it's good
  715. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  716. */
  717. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  718. GEN6_WIZ_HASHING_MASK,
  719. GEN6_WIZ_HASHING_16x4);
  720. return 0;
  721. }
  722. static int bdw_init_workarounds(struct intel_engine_cs *ring)
  723. {
  724. int ret;
  725. struct drm_device *dev = ring->dev;
  726. struct drm_i915_private *dev_priv = dev->dev_private;
  727. ret = gen8_init_workarounds(ring);
  728. if (ret)
  729. return ret;
  730. /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
  731. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
  732. /* WaDisableDopClockGating:bdw */
  733. WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
  734. DOP_CLOCK_GATING_DISABLE);
  735. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  736. GEN8_SAMPLER_POWER_BYPASS_DIS);
  737. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  738. /* WaForceContextSaveRestoreNonCoherent:bdw */
  739. HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
  740. /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
  741. (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
  742. return 0;
  743. }
  744. static int chv_init_workarounds(struct intel_engine_cs *ring)
  745. {
  746. int ret;
  747. struct drm_device *dev = ring->dev;
  748. struct drm_i915_private *dev_priv = dev->dev_private;
  749. ret = gen8_init_workarounds(ring);
  750. if (ret)
  751. return ret;
  752. /* WaDisableThreadStallDopClockGating:chv */
  753. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
  754. /* Improve HiZ throughput on CHV. */
  755. WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
  756. return 0;
  757. }
  758. static int gen9_init_workarounds(struct intel_engine_cs *ring)
  759. {
  760. struct drm_device *dev = ring->dev;
  761. struct drm_i915_private *dev_priv = dev->dev_private;
  762. uint32_t tmp;
  763. /* WaEnableLbsSlaRetryTimerDecrement:skl */
  764. I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
  765. GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
  766. /* WaDisableKillLogic:bxt,skl */
  767. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
  768. ECOCHK_DIS_TLB);
  769. /* WaDisablePartialInstShootdown:skl,bxt */
  770. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  771. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  772. /* Syncing dependencies between camera and graphics:skl,bxt */
  773. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  774. GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
  775. /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
  776. if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
  777. IS_BXT_REVID(dev, 0, BXT_REVID_A1))
  778. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  779. GEN9_DG_MIRROR_FIX_ENABLE);
  780. /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
  781. if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
  782. IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
  783. WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
  784. GEN9_RHWO_OPTIMIZATION_DISABLE);
  785. /*
  786. * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
  787. * but we do that in per ctx batchbuffer as there is an issue
  788. * with this register not getting restored on ctx restore
  789. */
  790. }
  791. /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
  792. if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER) || IS_BROXTON(dev))
  793. WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
  794. GEN9_ENABLE_YV12_BUGFIX);
  795. /* Wa4x4STCOptimizationDisable:skl,bxt */
  796. /* WaDisablePartialResolveInVc:skl,bxt */
  797. WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
  798. GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
  799. /* WaCcsTlbPrefetchDisable:skl,bxt */
  800. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  801. GEN9_CCS_TLB_PREFETCH_ENABLE);
  802. /* WaDisableMaskBasedCammingInRCC:skl,bxt */
  803. if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_C0) ||
  804. IS_BXT_REVID(dev, 0, BXT_REVID_A1))
  805. WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
  806. PIXEL_MASK_CAMMING_DISABLE);
  807. /* WaForceContextSaveRestoreNonCoherent:skl,bxt */
  808. tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
  809. if (IS_SKL_REVID(dev, SKL_REVID_F0, SKL_REVID_F0) ||
  810. IS_BXT_REVID(dev, BXT_REVID_B0, REVID_FOREVER))
  811. tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
  812. WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
  813. /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt */
  814. if (IS_SKYLAKE(dev) || IS_BXT_REVID(dev, 0, BXT_REVID_B0))
  815. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  816. GEN8_SAMPLER_POWER_BYPASS_DIS);
  817. /* WaDisableSTUnitPowerOptimization:skl,bxt */
  818. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
  819. return 0;
  820. }
  821. static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
  822. {
  823. struct drm_device *dev = ring->dev;
  824. struct drm_i915_private *dev_priv = dev->dev_private;
  825. u8 vals[3] = { 0, 0, 0 };
  826. unsigned int i;
  827. for (i = 0; i < 3; i++) {
  828. u8 ss;
  829. /*
  830. * Only consider slices where one, and only one, subslice has 7
  831. * EUs
  832. */
  833. if (hweight8(dev_priv->info.subslice_7eu[i]) != 1)
  834. continue;
  835. /*
  836. * subslice_7eu[i] != 0 (because of the check above) and
  837. * ss_max == 4 (maximum number of subslices possible per slice)
  838. *
  839. * -> 0 <= ss <= 3;
  840. */
  841. ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
  842. vals[i] = 3 - ss;
  843. }
  844. if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
  845. return 0;
  846. /* Tune IZ hashing. See intel_device_info_runtime_init() */
  847. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  848. GEN9_IZ_HASHING_MASK(2) |
  849. GEN9_IZ_HASHING_MASK(1) |
  850. GEN9_IZ_HASHING_MASK(0),
  851. GEN9_IZ_HASHING(2, vals[2]) |
  852. GEN9_IZ_HASHING(1, vals[1]) |
  853. GEN9_IZ_HASHING(0, vals[0]));
  854. return 0;
  855. }
  856. static int skl_init_workarounds(struct intel_engine_cs *ring)
  857. {
  858. int ret;
  859. struct drm_device *dev = ring->dev;
  860. struct drm_i915_private *dev_priv = dev->dev_private;
  861. ret = gen9_init_workarounds(ring);
  862. if (ret)
  863. return ret;
  864. if (IS_SKL_REVID(dev, 0, SKL_REVID_D0)) {
  865. /* WaDisableHDCInvalidation:skl */
  866. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
  867. BDW_DISABLE_HDC_INVALIDATION);
  868. /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
  869. I915_WRITE(FF_SLICE_CS_CHICKEN2,
  870. _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
  871. }
  872. /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
  873. * involving this register should also be added to WA batch as required.
  874. */
  875. if (IS_SKL_REVID(dev, 0, SKL_REVID_E0))
  876. /* WaDisableLSQCROPERFforOCL:skl */
  877. I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
  878. GEN8_LQSC_RO_PERF_DIS);
  879. /* WaEnableGapsTsvCreditFix:skl */
  880. if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER)) {
  881. I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
  882. GEN9_GAPS_TSV_CREDIT_DISABLE));
  883. }
  884. /* WaDisablePowerCompilerClockGating:skl */
  885. if (IS_SKL_REVID(dev, SKL_REVID_B0, SKL_REVID_B0))
  886. WA_SET_BIT_MASKED(HIZ_CHICKEN,
  887. BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
  888. if (IS_SKL_REVID(dev, 0, SKL_REVID_D0)) {
  889. /*
  890. *Use Force Non-Coherent whenever executing a 3D context. This
  891. * is a workaround for a possible hang in the unlikely event
  892. * a TLB invalidation occurs during a PSD flush.
  893. */
  894. /* WaForceEnableNonCoherent:skl */
  895. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  896. HDC_FORCE_NON_COHERENT);
  897. }
  898. /* WaBarrierPerformanceFixDisable:skl */
  899. if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_D0))
  900. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  901. HDC_FENCE_DEST_SLM_DISABLE |
  902. HDC_BARRIER_PERFORMANCE_DISABLE);
  903. /* WaDisableSbeCacheDispatchPortSharing:skl */
  904. if (IS_SKL_REVID(dev, 0, SKL_REVID_F0))
  905. WA_SET_BIT_MASKED(
  906. GEN7_HALF_SLICE_CHICKEN1,
  907. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  908. return skl_tune_iz_hashing(ring);
  909. }
  910. static int bxt_init_workarounds(struct intel_engine_cs *ring)
  911. {
  912. int ret;
  913. struct drm_device *dev = ring->dev;
  914. struct drm_i915_private *dev_priv = dev->dev_private;
  915. ret = gen9_init_workarounds(ring);
  916. if (ret)
  917. return ret;
  918. /* WaStoreMultiplePTEenable:bxt */
  919. /* This is a requirement according to Hardware specification */
  920. if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
  921. I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
  922. /* WaSetClckGatingDisableMedia:bxt */
  923. if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
  924. I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
  925. ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
  926. }
  927. /* WaDisableThreadStallDopClockGating:bxt */
  928. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  929. STALL_DOP_GATING_DISABLE);
  930. /* WaDisableSbeCacheDispatchPortSharing:bxt */
  931. if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
  932. WA_SET_BIT_MASKED(
  933. GEN7_HALF_SLICE_CHICKEN1,
  934. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  935. }
  936. return 0;
  937. }
  938. int init_workarounds_ring(struct intel_engine_cs *ring)
  939. {
  940. struct drm_device *dev = ring->dev;
  941. struct drm_i915_private *dev_priv = dev->dev_private;
  942. WARN_ON(ring->id != RCS);
  943. dev_priv->workarounds.count = 0;
  944. if (IS_BROADWELL(dev))
  945. return bdw_init_workarounds(ring);
  946. if (IS_CHERRYVIEW(dev))
  947. return chv_init_workarounds(ring);
  948. if (IS_SKYLAKE(dev))
  949. return skl_init_workarounds(ring);
  950. if (IS_BROXTON(dev))
  951. return bxt_init_workarounds(ring);
  952. return 0;
  953. }
  954. static int init_render_ring(struct intel_engine_cs *ring)
  955. {
  956. struct drm_device *dev = ring->dev;
  957. struct drm_i915_private *dev_priv = dev->dev_private;
  958. int ret = init_ring_common(ring);
  959. if (ret)
  960. return ret;
  961. /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
  962. if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
  963. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  964. /* We need to disable the AsyncFlip performance optimisations in order
  965. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  966. * programmed to '1' on all products.
  967. *
  968. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
  969. */
  970. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
  971. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  972. /* Required for the hardware to program scanline values for waiting */
  973. /* WaEnableFlushTlbInvalidationMode:snb */
  974. if (INTEL_INFO(dev)->gen == 6)
  975. I915_WRITE(GFX_MODE,
  976. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
  977. /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
  978. if (IS_GEN7(dev))
  979. I915_WRITE(GFX_MODE_GEN7,
  980. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
  981. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  982. if (IS_GEN6(dev)) {
  983. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  984. * "If this bit is set, STCunit will have LRA as replacement
  985. * policy. [...] This bit must be reset. LRA replacement
  986. * policy is not supported."
  987. */
  988. I915_WRITE(CACHE_MODE_0,
  989. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  990. }
  991. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
  992. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  993. if (HAS_L3_DPF(dev))
  994. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  995. return init_workarounds_ring(ring);
  996. }
  997. static void render_ring_cleanup(struct intel_engine_cs *ring)
  998. {
  999. struct drm_device *dev = ring->dev;
  1000. struct drm_i915_private *dev_priv = dev->dev_private;
  1001. if (dev_priv->semaphore_obj) {
  1002. i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
  1003. drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
  1004. dev_priv->semaphore_obj = NULL;
  1005. }
  1006. intel_fini_pipe_control(ring);
  1007. }
  1008. static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
  1009. unsigned int num_dwords)
  1010. {
  1011. #define MBOX_UPDATE_DWORDS 8
  1012. struct intel_engine_cs *signaller = signaller_req->ring;
  1013. struct drm_device *dev = signaller->dev;
  1014. struct drm_i915_private *dev_priv = dev->dev_private;
  1015. struct intel_engine_cs *waiter;
  1016. int i, ret, num_rings;
  1017. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  1018. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  1019. #undef MBOX_UPDATE_DWORDS
  1020. ret = intel_ring_begin(signaller_req, num_dwords);
  1021. if (ret)
  1022. return ret;
  1023. for_each_ring(waiter, dev_priv, i) {
  1024. u32 seqno;
  1025. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  1026. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1027. continue;
  1028. seqno = i915_gem_request_get_seqno(signaller_req);
  1029. intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
  1030. intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
  1031. PIPE_CONTROL_QW_WRITE |
  1032. PIPE_CONTROL_FLUSH_ENABLE);
  1033. intel_ring_emit(signaller, lower_32_bits(gtt_offset));
  1034. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  1035. intel_ring_emit(signaller, seqno);
  1036. intel_ring_emit(signaller, 0);
  1037. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  1038. MI_SEMAPHORE_TARGET(waiter->id));
  1039. intel_ring_emit(signaller, 0);
  1040. }
  1041. return 0;
  1042. }
  1043. static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
  1044. unsigned int num_dwords)
  1045. {
  1046. #define MBOX_UPDATE_DWORDS 6
  1047. struct intel_engine_cs *signaller = signaller_req->ring;
  1048. struct drm_device *dev = signaller->dev;
  1049. struct drm_i915_private *dev_priv = dev->dev_private;
  1050. struct intel_engine_cs *waiter;
  1051. int i, ret, num_rings;
  1052. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  1053. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  1054. #undef MBOX_UPDATE_DWORDS
  1055. ret = intel_ring_begin(signaller_req, num_dwords);
  1056. if (ret)
  1057. return ret;
  1058. for_each_ring(waiter, dev_priv, i) {
  1059. u32 seqno;
  1060. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  1061. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1062. continue;
  1063. seqno = i915_gem_request_get_seqno(signaller_req);
  1064. intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
  1065. MI_FLUSH_DW_OP_STOREDW);
  1066. intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
  1067. MI_FLUSH_DW_USE_GTT);
  1068. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  1069. intel_ring_emit(signaller, seqno);
  1070. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  1071. MI_SEMAPHORE_TARGET(waiter->id));
  1072. intel_ring_emit(signaller, 0);
  1073. }
  1074. return 0;
  1075. }
  1076. static int gen6_signal(struct drm_i915_gem_request *signaller_req,
  1077. unsigned int num_dwords)
  1078. {
  1079. struct intel_engine_cs *signaller = signaller_req->ring;
  1080. struct drm_device *dev = signaller->dev;
  1081. struct drm_i915_private *dev_priv = dev->dev_private;
  1082. struct intel_engine_cs *useless;
  1083. int i, ret, num_rings;
  1084. #define MBOX_UPDATE_DWORDS 3
  1085. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  1086. num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
  1087. #undef MBOX_UPDATE_DWORDS
  1088. ret = intel_ring_begin(signaller_req, num_dwords);
  1089. if (ret)
  1090. return ret;
  1091. for_each_ring(useless, dev_priv, i) {
  1092. i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[i];
  1093. if (i915_mmio_reg_valid(mbox_reg)) {
  1094. u32 seqno = i915_gem_request_get_seqno(signaller_req);
  1095. intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
  1096. intel_ring_emit_reg(signaller, mbox_reg);
  1097. intel_ring_emit(signaller, seqno);
  1098. }
  1099. }
  1100. /* If num_dwords was rounded, make sure the tail pointer is correct */
  1101. if (num_rings % 2 == 0)
  1102. intel_ring_emit(signaller, MI_NOOP);
  1103. return 0;
  1104. }
  1105. /**
  1106. * gen6_add_request - Update the semaphore mailbox registers
  1107. *
  1108. * @request - request to write to the ring
  1109. *
  1110. * Update the mailbox registers in the *other* rings with the current seqno.
  1111. * This acts like a signal in the canonical semaphore.
  1112. */
  1113. static int
  1114. gen6_add_request(struct drm_i915_gem_request *req)
  1115. {
  1116. struct intel_engine_cs *ring = req->ring;
  1117. int ret;
  1118. if (ring->semaphore.signal)
  1119. ret = ring->semaphore.signal(req, 4);
  1120. else
  1121. ret = intel_ring_begin(req, 4);
  1122. if (ret)
  1123. return ret;
  1124. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  1125. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1126. intel_ring_emit(ring, i915_gem_request_get_seqno(req));
  1127. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1128. __intel_ring_advance(ring);
  1129. return 0;
  1130. }
  1131. static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
  1132. u32 seqno)
  1133. {
  1134. struct drm_i915_private *dev_priv = dev->dev_private;
  1135. return dev_priv->last_seqno < seqno;
  1136. }
  1137. /**
  1138. * intel_ring_sync - sync the waiter to the signaller on seqno
  1139. *
  1140. * @waiter - ring that is waiting
  1141. * @signaller - ring which has, or will signal
  1142. * @seqno - seqno which the waiter will block on
  1143. */
  1144. static int
  1145. gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
  1146. struct intel_engine_cs *signaller,
  1147. u32 seqno)
  1148. {
  1149. struct intel_engine_cs *waiter = waiter_req->ring;
  1150. struct drm_i915_private *dev_priv = waiter->dev->dev_private;
  1151. int ret;
  1152. ret = intel_ring_begin(waiter_req, 4);
  1153. if (ret)
  1154. return ret;
  1155. intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
  1156. MI_SEMAPHORE_GLOBAL_GTT |
  1157. MI_SEMAPHORE_POLL |
  1158. MI_SEMAPHORE_SAD_GTE_SDD);
  1159. intel_ring_emit(waiter, seqno);
  1160. intel_ring_emit(waiter,
  1161. lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  1162. intel_ring_emit(waiter,
  1163. upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  1164. intel_ring_advance(waiter);
  1165. return 0;
  1166. }
  1167. static int
  1168. gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
  1169. struct intel_engine_cs *signaller,
  1170. u32 seqno)
  1171. {
  1172. struct intel_engine_cs *waiter = waiter_req->ring;
  1173. u32 dw1 = MI_SEMAPHORE_MBOX |
  1174. MI_SEMAPHORE_COMPARE |
  1175. MI_SEMAPHORE_REGISTER;
  1176. u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
  1177. int ret;
  1178. /* Throughout all of the GEM code, seqno passed implies our current
  1179. * seqno is >= the last seqno executed. However for hardware the
  1180. * comparison is strictly greater than.
  1181. */
  1182. seqno -= 1;
  1183. WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
  1184. ret = intel_ring_begin(waiter_req, 4);
  1185. if (ret)
  1186. return ret;
  1187. /* If seqno wrap happened, omit the wait with no-ops */
  1188. if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
  1189. intel_ring_emit(waiter, dw1 | wait_mbox);
  1190. intel_ring_emit(waiter, seqno);
  1191. intel_ring_emit(waiter, 0);
  1192. intel_ring_emit(waiter, MI_NOOP);
  1193. } else {
  1194. intel_ring_emit(waiter, MI_NOOP);
  1195. intel_ring_emit(waiter, MI_NOOP);
  1196. intel_ring_emit(waiter, MI_NOOP);
  1197. intel_ring_emit(waiter, MI_NOOP);
  1198. }
  1199. intel_ring_advance(waiter);
  1200. return 0;
  1201. }
  1202. #define PIPE_CONTROL_FLUSH(ring__, addr__) \
  1203. do { \
  1204. intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
  1205. PIPE_CONTROL_DEPTH_STALL); \
  1206. intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
  1207. intel_ring_emit(ring__, 0); \
  1208. intel_ring_emit(ring__, 0); \
  1209. } while (0)
  1210. static int
  1211. pc_render_add_request(struct drm_i915_gem_request *req)
  1212. {
  1213. struct intel_engine_cs *ring = req->ring;
  1214. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  1215. int ret;
  1216. /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
  1217. * incoherent with writes to memory, i.e. completely fubar,
  1218. * so we need to use PIPE_NOTIFY instead.
  1219. *
  1220. * However, we also need to workaround the qword write
  1221. * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
  1222. * memory before requesting an interrupt.
  1223. */
  1224. ret = intel_ring_begin(req, 32);
  1225. if (ret)
  1226. return ret;
  1227. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1228. PIPE_CONTROL_WRITE_FLUSH |
  1229. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
  1230. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1231. intel_ring_emit(ring, i915_gem_request_get_seqno(req));
  1232. intel_ring_emit(ring, 0);
  1233. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1234. scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
  1235. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1236. scratch_addr += 2 * CACHELINE_BYTES;
  1237. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1238. scratch_addr += 2 * CACHELINE_BYTES;
  1239. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1240. scratch_addr += 2 * CACHELINE_BYTES;
  1241. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1242. scratch_addr += 2 * CACHELINE_BYTES;
  1243. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1244. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1245. PIPE_CONTROL_WRITE_FLUSH |
  1246. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
  1247. PIPE_CONTROL_NOTIFY);
  1248. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1249. intel_ring_emit(ring, i915_gem_request_get_seqno(req));
  1250. intel_ring_emit(ring, 0);
  1251. __intel_ring_advance(ring);
  1252. return 0;
  1253. }
  1254. static u32
  1255. gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1256. {
  1257. /* Workaround to force correct ordering between irq and seqno writes on
  1258. * ivb (and maybe also on snb) by reading from a CS register (like
  1259. * ACTHD) before reading the status page. */
  1260. if (!lazy_coherency) {
  1261. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1262. POSTING_READ(RING_ACTHD(ring->mmio_base));
  1263. }
  1264. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  1265. }
  1266. static u32
  1267. ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1268. {
  1269. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  1270. }
  1271. static void
  1272. ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  1273. {
  1274. intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
  1275. }
  1276. static u32
  1277. pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1278. {
  1279. return ring->scratch.cpu_page[0];
  1280. }
  1281. static void
  1282. pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  1283. {
  1284. ring->scratch.cpu_page[0] = seqno;
  1285. }
  1286. static bool
  1287. gen5_ring_get_irq(struct intel_engine_cs *ring)
  1288. {
  1289. struct drm_device *dev = ring->dev;
  1290. struct drm_i915_private *dev_priv = dev->dev_private;
  1291. unsigned long flags;
  1292. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1293. return false;
  1294. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1295. if (ring->irq_refcount++ == 0)
  1296. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  1297. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1298. return true;
  1299. }
  1300. static void
  1301. gen5_ring_put_irq(struct intel_engine_cs *ring)
  1302. {
  1303. struct drm_device *dev = ring->dev;
  1304. struct drm_i915_private *dev_priv = dev->dev_private;
  1305. unsigned long flags;
  1306. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1307. if (--ring->irq_refcount == 0)
  1308. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  1309. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1310. }
  1311. static bool
  1312. i9xx_ring_get_irq(struct intel_engine_cs *ring)
  1313. {
  1314. struct drm_device *dev = ring->dev;
  1315. struct drm_i915_private *dev_priv = dev->dev_private;
  1316. unsigned long flags;
  1317. if (!intel_irqs_enabled(dev_priv))
  1318. return false;
  1319. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1320. if (ring->irq_refcount++ == 0) {
  1321. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  1322. I915_WRITE(IMR, dev_priv->irq_mask);
  1323. POSTING_READ(IMR);
  1324. }
  1325. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1326. return true;
  1327. }
  1328. static void
  1329. i9xx_ring_put_irq(struct intel_engine_cs *ring)
  1330. {
  1331. struct drm_device *dev = ring->dev;
  1332. struct drm_i915_private *dev_priv = dev->dev_private;
  1333. unsigned long flags;
  1334. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1335. if (--ring->irq_refcount == 0) {
  1336. dev_priv->irq_mask |= ring->irq_enable_mask;
  1337. I915_WRITE(IMR, dev_priv->irq_mask);
  1338. POSTING_READ(IMR);
  1339. }
  1340. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1341. }
  1342. static bool
  1343. i8xx_ring_get_irq(struct intel_engine_cs *ring)
  1344. {
  1345. struct drm_device *dev = ring->dev;
  1346. struct drm_i915_private *dev_priv = dev->dev_private;
  1347. unsigned long flags;
  1348. if (!intel_irqs_enabled(dev_priv))
  1349. return false;
  1350. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1351. if (ring->irq_refcount++ == 0) {
  1352. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  1353. I915_WRITE16(IMR, dev_priv->irq_mask);
  1354. POSTING_READ16(IMR);
  1355. }
  1356. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1357. return true;
  1358. }
  1359. static void
  1360. i8xx_ring_put_irq(struct intel_engine_cs *ring)
  1361. {
  1362. struct drm_device *dev = ring->dev;
  1363. struct drm_i915_private *dev_priv = dev->dev_private;
  1364. unsigned long flags;
  1365. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1366. if (--ring->irq_refcount == 0) {
  1367. dev_priv->irq_mask |= ring->irq_enable_mask;
  1368. I915_WRITE16(IMR, dev_priv->irq_mask);
  1369. POSTING_READ16(IMR);
  1370. }
  1371. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1372. }
  1373. static int
  1374. bsd_ring_flush(struct drm_i915_gem_request *req,
  1375. u32 invalidate_domains,
  1376. u32 flush_domains)
  1377. {
  1378. struct intel_engine_cs *ring = req->ring;
  1379. int ret;
  1380. ret = intel_ring_begin(req, 2);
  1381. if (ret)
  1382. return ret;
  1383. intel_ring_emit(ring, MI_FLUSH);
  1384. intel_ring_emit(ring, MI_NOOP);
  1385. intel_ring_advance(ring);
  1386. return 0;
  1387. }
  1388. static int
  1389. i9xx_add_request(struct drm_i915_gem_request *req)
  1390. {
  1391. struct intel_engine_cs *ring = req->ring;
  1392. int ret;
  1393. ret = intel_ring_begin(req, 4);
  1394. if (ret)
  1395. return ret;
  1396. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  1397. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1398. intel_ring_emit(ring, i915_gem_request_get_seqno(req));
  1399. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1400. __intel_ring_advance(ring);
  1401. return 0;
  1402. }
  1403. static bool
  1404. gen6_ring_get_irq(struct intel_engine_cs *ring)
  1405. {
  1406. struct drm_device *dev = ring->dev;
  1407. struct drm_i915_private *dev_priv = dev->dev_private;
  1408. unsigned long flags;
  1409. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1410. return false;
  1411. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1412. if (ring->irq_refcount++ == 0) {
  1413. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1414. I915_WRITE_IMR(ring,
  1415. ~(ring->irq_enable_mask |
  1416. GT_PARITY_ERROR(dev)));
  1417. else
  1418. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1419. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  1420. }
  1421. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1422. return true;
  1423. }
  1424. static void
  1425. gen6_ring_put_irq(struct intel_engine_cs *ring)
  1426. {
  1427. struct drm_device *dev = ring->dev;
  1428. struct drm_i915_private *dev_priv = dev->dev_private;
  1429. unsigned long flags;
  1430. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1431. if (--ring->irq_refcount == 0) {
  1432. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1433. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  1434. else
  1435. I915_WRITE_IMR(ring, ~0);
  1436. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  1437. }
  1438. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1439. }
  1440. static bool
  1441. hsw_vebox_get_irq(struct intel_engine_cs *ring)
  1442. {
  1443. struct drm_device *dev = ring->dev;
  1444. struct drm_i915_private *dev_priv = dev->dev_private;
  1445. unsigned long flags;
  1446. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1447. return false;
  1448. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1449. if (ring->irq_refcount++ == 0) {
  1450. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1451. gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
  1452. }
  1453. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1454. return true;
  1455. }
  1456. static void
  1457. hsw_vebox_put_irq(struct intel_engine_cs *ring)
  1458. {
  1459. struct drm_device *dev = ring->dev;
  1460. struct drm_i915_private *dev_priv = dev->dev_private;
  1461. unsigned long flags;
  1462. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1463. if (--ring->irq_refcount == 0) {
  1464. I915_WRITE_IMR(ring, ~0);
  1465. gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
  1466. }
  1467. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1468. }
  1469. static bool
  1470. gen8_ring_get_irq(struct intel_engine_cs *ring)
  1471. {
  1472. struct drm_device *dev = ring->dev;
  1473. struct drm_i915_private *dev_priv = dev->dev_private;
  1474. unsigned long flags;
  1475. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1476. return false;
  1477. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1478. if (ring->irq_refcount++ == 0) {
  1479. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1480. I915_WRITE_IMR(ring,
  1481. ~(ring->irq_enable_mask |
  1482. GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
  1483. } else {
  1484. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1485. }
  1486. POSTING_READ(RING_IMR(ring->mmio_base));
  1487. }
  1488. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1489. return true;
  1490. }
  1491. static void
  1492. gen8_ring_put_irq(struct intel_engine_cs *ring)
  1493. {
  1494. struct drm_device *dev = ring->dev;
  1495. struct drm_i915_private *dev_priv = dev->dev_private;
  1496. unsigned long flags;
  1497. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1498. if (--ring->irq_refcount == 0) {
  1499. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1500. I915_WRITE_IMR(ring,
  1501. ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
  1502. } else {
  1503. I915_WRITE_IMR(ring, ~0);
  1504. }
  1505. POSTING_READ(RING_IMR(ring->mmio_base));
  1506. }
  1507. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1508. }
  1509. static int
  1510. i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1511. u64 offset, u32 length,
  1512. unsigned dispatch_flags)
  1513. {
  1514. struct intel_engine_cs *ring = req->ring;
  1515. int ret;
  1516. ret = intel_ring_begin(req, 2);
  1517. if (ret)
  1518. return ret;
  1519. intel_ring_emit(ring,
  1520. MI_BATCH_BUFFER_START |
  1521. MI_BATCH_GTT |
  1522. (dispatch_flags & I915_DISPATCH_SECURE ?
  1523. 0 : MI_BATCH_NON_SECURE_I965));
  1524. intel_ring_emit(ring, offset);
  1525. intel_ring_advance(ring);
  1526. return 0;
  1527. }
  1528. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  1529. #define I830_BATCH_LIMIT (256*1024)
  1530. #define I830_TLB_ENTRIES (2)
  1531. #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
  1532. static int
  1533. i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1534. u64 offset, u32 len,
  1535. unsigned dispatch_flags)
  1536. {
  1537. struct intel_engine_cs *ring = req->ring;
  1538. u32 cs_offset = ring->scratch.gtt_offset;
  1539. int ret;
  1540. ret = intel_ring_begin(req, 6);
  1541. if (ret)
  1542. return ret;
  1543. /* Evict the invalid PTE TLBs */
  1544. intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
  1545. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
  1546. intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
  1547. intel_ring_emit(ring, cs_offset);
  1548. intel_ring_emit(ring, 0xdeadbeef);
  1549. intel_ring_emit(ring, MI_NOOP);
  1550. intel_ring_advance(ring);
  1551. if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
  1552. if (len > I830_BATCH_LIMIT)
  1553. return -ENOSPC;
  1554. ret = intel_ring_begin(req, 6 + 2);
  1555. if (ret)
  1556. return ret;
  1557. /* Blit the batch (which has now all relocs applied) to the
  1558. * stable batch scratch bo area (so that the CS never
  1559. * stumbles over its tlb invalidation bug) ...
  1560. */
  1561. intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
  1562. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
  1563. intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
  1564. intel_ring_emit(ring, cs_offset);
  1565. intel_ring_emit(ring, 4096);
  1566. intel_ring_emit(ring, offset);
  1567. intel_ring_emit(ring, MI_FLUSH);
  1568. intel_ring_emit(ring, MI_NOOP);
  1569. intel_ring_advance(ring);
  1570. /* ... and execute it. */
  1571. offset = cs_offset;
  1572. }
  1573. ret = intel_ring_begin(req, 4);
  1574. if (ret)
  1575. return ret;
  1576. intel_ring_emit(ring, MI_BATCH_BUFFER);
  1577. intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1578. 0 : MI_BATCH_NON_SECURE));
  1579. intel_ring_emit(ring, offset + len - 8);
  1580. intel_ring_emit(ring, MI_NOOP);
  1581. intel_ring_advance(ring);
  1582. return 0;
  1583. }
  1584. static int
  1585. i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1586. u64 offset, u32 len,
  1587. unsigned dispatch_flags)
  1588. {
  1589. struct intel_engine_cs *ring = req->ring;
  1590. int ret;
  1591. ret = intel_ring_begin(req, 2);
  1592. if (ret)
  1593. return ret;
  1594. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1595. intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1596. 0 : MI_BATCH_NON_SECURE));
  1597. intel_ring_advance(ring);
  1598. return 0;
  1599. }
  1600. static void cleanup_status_page(struct intel_engine_cs *ring)
  1601. {
  1602. struct drm_i915_gem_object *obj;
  1603. obj = ring->status_page.obj;
  1604. if (obj == NULL)
  1605. return;
  1606. kunmap(sg_page(obj->pages->sgl));
  1607. i915_gem_object_ggtt_unpin(obj);
  1608. drm_gem_object_unreference(&obj->base);
  1609. ring->status_page.obj = NULL;
  1610. }
  1611. static int init_status_page(struct intel_engine_cs *ring)
  1612. {
  1613. struct drm_i915_gem_object *obj;
  1614. if ((obj = ring->status_page.obj) == NULL) {
  1615. unsigned flags;
  1616. int ret;
  1617. obj = i915_gem_alloc_object(ring->dev, 4096);
  1618. if (obj == NULL) {
  1619. DRM_ERROR("Failed to allocate status page\n");
  1620. return -ENOMEM;
  1621. }
  1622. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1623. if (ret)
  1624. goto err_unref;
  1625. flags = 0;
  1626. if (!HAS_LLC(ring->dev))
  1627. /* On g33, we cannot place HWS above 256MiB, so
  1628. * restrict its pinning to the low mappable arena.
  1629. * Though this restriction is not documented for
  1630. * gen4, gen5, or byt, they also behave similarly
  1631. * and hang if the HWS is placed at the top of the
  1632. * GTT. To generalise, it appears that all !llc
  1633. * platforms have issues with us placing the HWS
  1634. * above the mappable region (even though we never
  1635. * actualy map it).
  1636. */
  1637. flags |= PIN_MAPPABLE;
  1638. ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
  1639. if (ret) {
  1640. err_unref:
  1641. drm_gem_object_unreference(&obj->base);
  1642. return ret;
  1643. }
  1644. ring->status_page.obj = obj;
  1645. }
  1646. ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
  1647. ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
  1648. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1649. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1650. ring->name, ring->status_page.gfx_addr);
  1651. return 0;
  1652. }
  1653. static int init_phys_status_page(struct intel_engine_cs *ring)
  1654. {
  1655. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1656. if (!dev_priv->status_page_dmah) {
  1657. dev_priv->status_page_dmah =
  1658. drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
  1659. if (!dev_priv->status_page_dmah)
  1660. return -ENOMEM;
  1661. }
  1662. ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1663. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1664. return 0;
  1665. }
  1666. void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1667. {
  1668. if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
  1669. vunmap(ringbuf->virtual_start);
  1670. else
  1671. iounmap(ringbuf->virtual_start);
  1672. ringbuf->virtual_start = NULL;
  1673. i915_gem_object_ggtt_unpin(ringbuf->obj);
  1674. }
  1675. static u32 *vmap_obj(struct drm_i915_gem_object *obj)
  1676. {
  1677. struct sg_page_iter sg_iter;
  1678. struct page **pages;
  1679. void *addr;
  1680. int i;
  1681. pages = drm_malloc_ab(obj->base.size >> PAGE_SHIFT, sizeof(*pages));
  1682. if (pages == NULL)
  1683. return NULL;
  1684. i = 0;
  1685. for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0)
  1686. pages[i++] = sg_page_iter_page(&sg_iter);
  1687. addr = vmap(pages, i, 0, PAGE_KERNEL);
  1688. drm_free_large(pages);
  1689. return addr;
  1690. }
  1691. int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
  1692. struct intel_ringbuffer *ringbuf)
  1693. {
  1694. struct drm_i915_private *dev_priv = to_i915(dev);
  1695. struct drm_i915_gem_object *obj = ringbuf->obj;
  1696. int ret;
  1697. if (HAS_LLC(dev_priv) && !obj->stolen) {
  1698. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, 0);
  1699. if (ret)
  1700. return ret;
  1701. ret = i915_gem_object_set_to_cpu_domain(obj, true);
  1702. if (ret) {
  1703. i915_gem_object_ggtt_unpin(obj);
  1704. return ret;
  1705. }
  1706. ringbuf->virtual_start = vmap_obj(obj);
  1707. if (ringbuf->virtual_start == NULL) {
  1708. i915_gem_object_ggtt_unpin(obj);
  1709. return -ENOMEM;
  1710. }
  1711. } else {
  1712. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
  1713. if (ret)
  1714. return ret;
  1715. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  1716. if (ret) {
  1717. i915_gem_object_ggtt_unpin(obj);
  1718. return ret;
  1719. }
  1720. ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
  1721. i915_gem_obj_ggtt_offset(obj), ringbuf->size);
  1722. if (ringbuf->virtual_start == NULL) {
  1723. i915_gem_object_ggtt_unpin(obj);
  1724. return -EINVAL;
  1725. }
  1726. }
  1727. return 0;
  1728. }
  1729. static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1730. {
  1731. drm_gem_object_unreference(&ringbuf->obj->base);
  1732. ringbuf->obj = NULL;
  1733. }
  1734. static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
  1735. struct intel_ringbuffer *ringbuf)
  1736. {
  1737. struct drm_i915_gem_object *obj;
  1738. obj = NULL;
  1739. if (!HAS_LLC(dev))
  1740. obj = i915_gem_object_create_stolen(dev, ringbuf->size);
  1741. if (obj == NULL)
  1742. obj = i915_gem_alloc_object(dev, ringbuf->size);
  1743. if (obj == NULL)
  1744. return -ENOMEM;
  1745. /* mark ring buffers as read-only from GPU side by default */
  1746. obj->gt_ro = 1;
  1747. ringbuf->obj = obj;
  1748. return 0;
  1749. }
  1750. struct intel_ringbuffer *
  1751. intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
  1752. {
  1753. struct intel_ringbuffer *ring;
  1754. int ret;
  1755. ring = kzalloc(sizeof(*ring), GFP_KERNEL);
  1756. if (ring == NULL) {
  1757. DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
  1758. engine->name);
  1759. return ERR_PTR(-ENOMEM);
  1760. }
  1761. ring->ring = engine;
  1762. list_add(&ring->link, &engine->buffers);
  1763. ring->size = size;
  1764. /* Workaround an erratum on the i830 which causes a hang if
  1765. * the TAIL pointer points to within the last 2 cachelines
  1766. * of the buffer.
  1767. */
  1768. ring->effective_size = size;
  1769. if (IS_I830(engine->dev) || IS_845G(engine->dev))
  1770. ring->effective_size -= 2 * CACHELINE_BYTES;
  1771. ring->last_retired_head = -1;
  1772. intel_ring_update_space(ring);
  1773. ret = intel_alloc_ringbuffer_obj(engine->dev, ring);
  1774. if (ret) {
  1775. DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
  1776. engine->name, ret);
  1777. list_del(&ring->link);
  1778. kfree(ring);
  1779. return ERR_PTR(ret);
  1780. }
  1781. return ring;
  1782. }
  1783. void
  1784. intel_ringbuffer_free(struct intel_ringbuffer *ring)
  1785. {
  1786. intel_destroy_ringbuffer_obj(ring);
  1787. list_del(&ring->link);
  1788. kfree(ring);
  1789. }
  1790. static int intel_init_ring_buffer(struct drm_device *dev,
  1791. struct intel_engine_cs *ring)
  1792. {
  1793. struct intel_ringbuffer *ringbuf;
  1794. int ret;
  1795. WARN_ON(ring->buffer);
  1796. ring->dev = dev;
  1797. INIT_LIST_HEAD(&ring->active_list);
  1798. INIT_LIST_HEAD(&ring->request_list);
  1799. INIT_LIST_HEAD(&ring->execlist_queue);
  1800. INIT_LIST_HEAD(&ring->buffers);
  1801. i915_gem_batch_pool_init(dev, &ring->batch_pool);
  1802. memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
  1803. init_waitqueue_head(&ring->irq_queue);
  1804. ringbuf = intel_engine_create_ringbuffer(ring, 32 * PAGE_SIZE);
  1805. if (IS_ERR(ringbuf))
  1806. return PTR_ERR(ringbuf);
  1807. ring->buffer = ringbuf;
  1808. if (I915_NEED_GFX_HWS(dev)) {
  1809. ret = init_status_page(ring);
  1810. if (ret)
  1811. goto error;
  1812. } else {
  1813. BUG_ON(ring->id != RCS);
  1814. ret = init_phys_status_page(ring);
  1815. if (ret)
  1816. goto error;
  1817. }
  1818. ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
  1819. if (ret) {
  1820. DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
  1821. ring->name, ret);
  1822. intel_destroy_ringbuffer_obj(ringbuf);
  1823. goto error;
  1824. }
  1825. ret = i915_cmd_parser_init_ring(ring);
  1826. if (ret)
  1827. goto error;
  1828. return 0;
  1829. error:
  1830. intel_ringbuffer_free(ringbuf);
  1831. ring->buffer = NULL;
  1832. return ret;
  1833. }
  1834. void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
  1835. {
  1836. struct drm_i915_private *dev_priv;
  1837. if (!intel_ring_initialized(ring))
  1838. return;
  1839. dev_priv = to_i915(ring->dev);
  1840. intel_stop_ring_buffer(ring);
  1841. WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
  1842. intel_unpin_ringbuffer_obj(ring->buffer);
  1843. intel_ringbuffer_free(ring->buffer);
  1844. ring->buffer = NULL;
  1845. if (ring->cleanup)
  1846. ring->cleanup(ring);
  1847. cleanup_status_page(ring);
  1848. i915_cmd_parser_fini_ring(ring);
  1849. i915_gem_batch_pool_fini(&ring->batch_pool);
  1850. }
  1851. static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
  1852. {
  1853. struct intel_ringbuffer *ringbuf = ring->buffer;
  1854. struct drm_i915_gem_request *request;
  1855. unsigned space;
  1856. int ret;
  1857. if (intel_ring_space(ringbuf) >= n)
  1858. return 0;
  1859. /* The whole point of reserving space is to not wait! */
  1860. WARN_ON(ringbuf->reserved_in_use);
  1861. list_for_each_entry(request, &ring->request_list, list) {
  1862. space = __intel_ring_space(request->postfix, ringbuf->tail,
  1863. ringbuf->size);
  1864. if (space >= n)
  1865. break;
  1866. }
  1867. if (WARN_ON(&request->list == &ring->request_list))
  1868. return -ENOSPC;
  1869. ret = i915_wait_request(request);
  1870. if (ret)
  1871. return ret;
  1872. ringbuf->space = space;
  1873. return 0;
  1874. }
  1875. static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
  1876. {
  1877. uint32_t __iomem *virt;
  1878. int rem = ringbuf->size - ringbuf->tail;
  1879. virt = ringbuf->virtual_start + ringbuf->tail;
  1880. rem /= 4;
  1881. while (rem--)
  1882. iowrite32(MI_NOOP, virt++);
  1883. ringbuf->tail = 0;
  1884. intel_ring_update_space(ringbuf);
  1885. }
  1886. int intel_ring_idle(struct intel_engine_cs *ring)
  1887. {
  1888. struct drm_i915_gem_request *req;
  1889. /* Wait upon the last request to be completed */
  1890. if (list_empty(&ring->request_list))
  1891. return 0;
  1892. req = list_entry(ring->request_list.prev,
  1893. struct drm_i915_gem_request,
  1894. list);
  1895. /* Make sure we do not trigger any retires */
  1896. return __i915_wait_request(req,
  1897. atomic_read(&to_i915(ring->dev)->gpu_error.reset_counter),
  1898. to_i915(ring->dev)->mm.interruptible,
  1899. NULL, NULL);
  1900. }
  1901. int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
  1902. {
  1903. request->ringbuf = request->ring->buffer;
  1904. return 0;
  1905. }
  1906. int intel_ring_reserve_space(struct drm_i915_gem_request *request)
  1907. {
  1908. /*
  1909. * The first call merely notes the reserve request and is common for
  1910. * all back ends. The subsequent localised _begin() call actually
  1911. * ensures that the reservation is available. Without the begin, if
  1912. * the request creator immediately submitted the request without
  1913. * adding any commands to it then there might not actually be
  1914. * sufficient room for the submission commands.
  1915. */
  1916. intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
  1917. return intel_ring_begin(request, 0);
  1918. }
  1919. void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
  1920. {
  1921. WARN_ON(ringbuf->reserved_size);
  1922. WARN_ON(ringbuf->reserved_in_use);
  1923. ringbuf->reserved_size = size;
  1924. }
  1925. void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
  1926. {
  1927. WARN_ON(ringbuf->reserved_in_use);
  1928. ringbuf->reserved_size = 0;
  1929. ringbuf->reserved_in_use = false;
  1930. }
  1931. void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
  1932. {
  1933. WARN_ON(ringbuf->reserved_in_use);
  1934. ringbuf->reserved_in_use = true;
  1935. ringbuf->reserved_tail = ringbuf->tail;
  1936. }
  1937. void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
  1938. {
  1939. WARN_ON(!ringbuf->reserved_in_use);
  1940. if (ringbuf->tail > ringbuf->reserved_tail) {
  1941. WARN(ringbuf->tail > ringbuf->reserved_tail + ringbuf->reserved_size,
  1942. "request reserved size too small: %d vs %d!\n",
  1943. ringbuf->tail - ringbuf->reserved_tail, ringbuf->reserved_size);
  1944. } else {
  1945. /*
  1946. * The ring was wrapped while the reserved space was in use.
  1947. * That means that some unknown amount of the ring tail was
  1948. * no-op filled and skipped. Thus simply adding the ring size
  1949. * to the tail and doing the above space check will not work.
  1950. * Rather than attempt to track how much tail was skipped,
  1951. * it is much simpler to say that also skipping the sanity
  1952. * check every once in a while is not a big issue.
  1953. */
  1954. }
  1955. ringbuf->reserved_size = 0;
  1956. ringbuf->reserved_in_use = false;
  1957. }
  1958. static int __intel_ring_prepare(struct intel_engine_cs *ring, int bytes)
  1959. {
  1960. struct intel_ringbuffer *ringbuf = ring->buffer;
  1961. int remain_usable = ringbuf->effective_size - ringbuf->tail;
  1962. int remain_actual = ringbuf->size - ringbuf->tail;
  1963. int ret, total_bytes, wait_bytes = 0;
  1964. bool need_wrap = false;
  1965. if (ringbuf->reserved_in_use)
  1966. total_bytes = bytes;
  1967. else
  1968. total_bytes = bytes + ringbuf->reserved_size;
  1969. if (unlikely(bytes > remain_usable)) {
  1970. /*
  1971. * Not enough space for the basic request. So need to flush
  1972. * out the remainder and then wait for base + reserved.
  1973. */
  1974. wait_bytes = remain_actual + total_bytes;
  1975. need_wrap = true;
  1976. } else {
  1977. if (unlikely(total_bytes > remain_usable)) {
  1978. /*
  1979. * The base request will fit but the reserved space
  1980. * falls off the end. So only need to to wait for the
  1981. * reserved size after flushing out the remainder.
  1982. */
  1983. wait_bytes = remain_actual + ringbuf->reserved_size;
  1984. need_wrap = true;
  1985. } else if (total_bytes > ringbuf->space) {
  1986. /* No wrapping required, just waiting. */
  1987. wait_bytes = total_bytes;
  1988. }
  1989. }
  1990. if (wait_bytes) {
  1991. ret = ring_wait_for_space(ring, wait_bytes);
  1992. if (unlikely(ret))
  1993. return ret;
  1994. if (need_wrap)
  1995. __wrap_ring_buffer(ringbuf);
  1996. }
  1997. return 0;
  1998. }
  1999. int intel_ring_begin(struct drm_i915_gem_request *req,
  2000. int num_dwords)
  2001. {
  2002. struct intel_engine_cs *ring;
  2003. struct drm_i915_private *dev_priv;
  2004. int ret;
  2005. WARN_ON(req == NULL);
  2006. ring = req->ring;
  2007. dev_priv = ring->dev->dev_private;
  2008. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  2009. dev_priv->mm.interruptible);
  2010. if (ret)
  2011. return ret;
  2012. ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
  2013. if (ret)
  2014. return ret;
  2015. ring->buffer->space -= num_dwords * sizeof(uint32_t);
  2016. return 0;
  2017. }
  2018. /* Align the ring tail to a cacheline boundary */
  2019. int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
  2020. {
  2021. struct intel_engine_cs *ring = req->ring;
  2022. int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
  2023. int ret;
  2024. if (num_dwords == 0)
  2025. return 0;
  2026. num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
  2027. ret = intel_ring_begin(req, num_dwords);
  2028. if (ret)
  2029. return ret;
  2030. while (num_dwords--)
  2031. intel_ring_emit(ring, MI_NOOP);
  2032. intel_ring_advance(ring);
  2033. return 0;
  2034. }
  2035. void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
  2036. {
  2037. struct drm_device *dev = ring->dev;
  2038. struct drm_i915_private *dev_priv = dev->dev_private;
  2039. if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
  2040. I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
  2041. I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
  2042. if (HAS_VEBOX(dev))
  2043. I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
  2044. }
  2045. ring->set_seqno(ring, seqno);
  2046. ring->hangcheck.seqno = seqno;
  2047. }
  2048. static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
  2049. u32 value)
  2050. {
  2051. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  2052. /* Every tail move must follow the sequence below */
  2053. /* Disable notification that the ring is IDLE. The GT
  2054. * will then assume that it is busy and bring it out of rc6.
  2055. */
  2056. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  2057. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  2058. /* Clear the context id. Here be magic! */
  2059. I915_WRITE64(GEN6_BSD_RNCID, 0x0);
  2060. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  2061. if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
  2062. GEN6_BSD_SLEEP_INDICATOR) == 0,
  2063. 50))
  2064. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  2065. /* Now that the ring is fully powered up, update the tail */
  2066. I915_WRITE_TAIL(ring, value);
  2067. POSTING_READ(RING_TAIL(ring->mmio_base));
  2068. /* Let the ring send IDLE messages to the GT again,
  2069. * and so let it sleep to conserve power when idle.
  2070. */
  2071. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  2072. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  2073. }
  2074. static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
  2075. u32 invalidate, u32 flush)
  2076. {
  2077. struct intel_engine_cs *ring = req->ring;
  2078. uint32_t cmd;
  2079. int ret;
  2080. ret = intel_ring_begin(req, 4);
  2081. if (ret)
  2082. return ret;
  2083. cmd = MI_FLUSH_DW;
  2084. if (INTEL_INFO(ring->dev)->gen >= 8)
  2085. cmd += 1;
  2086. /* We always require a command barrier so that subsequent
  2087. * commands, such as breadcrumb interrupts, are strictly ordered
  2088. * wrt the contents of the write cache being flushed to memory
  2089. * (and thus being coherent from the CPU).
  2090. */
  2091. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2092. /*
  2093. * Bspec vol 1c.5 - video engine command streamer:
  2094. * "If ENABLED, all TLBs will be invalidated once the flush
  2095. * operation is complete. This bit is only valid when the
  2096. * Post-Sync Operation field is a value of 1h or 3h."
  2097. */
  2098. if (invalidate & I915_GEM_GPU_DOMAINS)
  2099. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
  2100. intel_ring_emit(ring, cmd);
  2101. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2102. if (INTEL_INFO(ring->dev)->gen >= 8) {
  2103. intel_ring_emit(ring, 0); /* upper addr */
  2104. intel_ring_emit(ring, 0); /* value */
  2105. } else {
  2106. intel_ring_emit(ring, 0);
  2107. intel_ring_emit(ring, MI_NOOP);
  2108. }
  2109. intel_ring_advance(ring);
  2110. return 0;
  2111. }
  2112. static int
  2113. gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2114. u64 offset, u32 len,
  2115. unsigned dispatch_flags)
  2116. {
  2117. struct intel_engine_cs *ring = req->ring;
  2118. bool ppgtt = USES_PPGTT(ring->dev) &&
  2119. !(dispatch_flags & I915_DISPATCH_SECURE);
  2120. int ret;
  2121. ret = intel_ring_begin(req, 4);
  2122. if (ret)
  2123. return ret;
  2124. /* FIXME(BDW): Address space and security selectors. */
  2125. intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
  2126. (dispatch_flags & I915_DISPATCH_RS ?
  2127. MI_BATCH_RESOURCE_STREAMER : 0));
  2128. intel_ring_emit(ring, lower_32_bits(offset));
  2129. intel_ring_emit(ring, upper_32_bits(offset));
  2130. intel_ring_emit(ring, MI_NOOP);
  2131. intel_ring_advance(ring);
  2132. return 0;
  2133. }
  2134. static int
  2135. hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2136. u64 offset, u32 len,
  2137. unsigned dispatch_flags)
  2138. {
  2139. struct intel_engine_cs *ring = req->ring;
  2140. int ret;
  2141. ret = intel_ring_begin(req, 2);
  2142. if (ret)
  2143. return ret;
  2144. intel_ring_emit(ring,
  2145. MI_BATCH_BUFFER_START |
  2146. (dispatch_flags & I915_DISPATCH_SECURE ?
  2147. 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
  2148. (dispatch_flags & I915_DISPATCH_RS ?
  2149. MI_BATCH_RESOURCE_STREAMER : 0));
  2150. /* bit0-7 is the length on GEN6+ */
  2151. intel_ring_emit(ring, offset);
  2152. intel_ring_advance(ring);
  2153. return 0;
  2154. }
  2155. static int
  2156. gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2157. u64 offset, u32 len,
  2158. unsigned dispatch_flags)
  2159. {
  2160. struct intel_engine_cs *ring = req->ring;
  2161. int ret;
  2162. ret = intel_ring_begin(req, 2);
  2163. if (ret)
  2164. return ret;
  2165. intel_ring_emit(ring,
  2166. MI_BATCH_BUFFER_START |
  2167. (dispatch_flags & I915_DISPATCH_SECURE ?
  2168. 0 : MI_BATCH_NON_SECURE_I965));
  2169. /* bit0-7 is the length on GEN6+ */
  2170. intel_ring_emit(ring, offset);
  2171. intel_ring_advance(ring);
  2172. return 0;
  2173. }
  2174. /* Blitter support (SandyBridge+) */
  2175. static int gen6_ring_flush(struct drm_i915_gem_request *req,
  2176. u32 invalidate, u32 flush)
  2177. {
  2178. struct intel_engine_cs *ring = req->ring;
  2179. struct drm_device *dev = ring->dev;
  2180. uint32_t cmd;
  2181. int ret;
  2182. ret = intel_ring_begin(req, 4);
  2183. if (ret)
  2184. return ret;
  2185. cmd = MI_FLUSH_DW;
  2186. if (INTEL_INFO(dev)->gen >= 8)
  2187. cmd += 1;
  2188. /* We always require a command barrier so that subsequent
  2189. * commands, such as breadcrumb interrupts, are strictly ordered
  2190. * wrt the contents of the write cache being flushed to memory
  2191. * (and thus being coherent from the CPU).
  2192. */
  2193. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2194. /*
  2195. * Bspec vol 1c.3 - blitter engine command streamer:
  2196. * "If ENABLED, all TLBs will be invalidated once the flush
  2197. * operation is complete. This bit is only valid when the
  2198. * Post-Sync Operation field is a value of 1h or 3h."
  2199. */
  2200. if (invalidate & I915_GEM_DOMAIN_RENDER)
  2201. cmd |= MI_INVALIDATE_TLB;
  2202. intel_ring_emit(ring, cmd);
  2203. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2204. if (INTEL_INFO(dev)->gen >= 8) {
  2205. intel_ring_emit(ring, 0); /* upper addr */
  2206. intel_ring_emit(ring, 0); /* value */
  2207. } else {
  2208. intel_ring_emit(ring, 0);
  2209. intel_ring_emit(ring, MI_NOOP);
  2210. }
  2211. intel_ring_advance(ring);
  2212. return 0;
  2213. }
  2214. int intel_init_render_ring_buffer(struct drm_device *dev)
  2215. {
  2216. struct drm_i915_private *dev_priv = dev->dev_private;
  2217. struct intel_engine_cs *ring = &dev_priv->ring[RCS];
  2218. struct drm_i915_gem_object *obj;
  2219. int ret;
  2220. ring->name = "render ring";
  2221. ring->id = RCS;
  2222. ring->mmio_base = RENDER_RING_BASE;
  2223. if (INTEL_INFO(dev)->gen >= 8) {
  2224. if (i915_semaphore_is_enabled(dev)) {
  2225. obj = i915_gem_alloc_object(dev, 4096);
  2226. if (obj == NULL) {
  2227. DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
  2228. i915.semaphores = 0;
  2229. } else {
  2230. i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  2231. ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
  2232. if (ret != 0) {
  2233. drm_gem_object_unreference(&obj->base);
  2234. DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
  2235. i915.semaphores = 0;
  2236. } else
  2237. dev_priv->semaphore_obj = obj;
  2238. }
  2239. }
  2240. ring->init_context = intel_rcs_ctx_init;
  2241. ring->add_request = gen6_add_request;
  2242. ring->flush = gen8_render_ring_flush;
  2243. ring->irq_get = gen8_ring_get_irq;
  2244. ring->irq_put = gen8_ring_put_irq;
  2245. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2246. ring->get_seqno = gen6_ring_get_seqno;
  2247. ring->set_seqno = ring_set_seqno;
  2248. if (i915_semaphore_is_enabled(dev)) {
  2249. WARN_ON(!dev_priv->semaphore_obj);
  2250. ring->semaphore.sync_to = gen8_ring_sync;
  2251. ring->semaphore.signal = gen8_rcs_signal;
  2252. GEN8_RING_SEMAPHORE_INIT;
  2253. }
  2254. } else if (INTEL_INFO(dev)->gen >= 6) {
  2255. ring->init_context = intel_rcs_ctx_init;
  2256. ring->add_request = gen6_add_request;
  2257. ring->flush = gen7_render_ring_flush;
  2258. if (INTEL_INFO(dev)->gen == 6)
  2259. ring->flush = gen6_render_ring_flush;
  2260. ring->irq_get = gen6_ring_get_irq;
  2261. ring->irq_put = gen6_ring_put_irq;
  2262. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2263. ring->get_seqno = gen6_ring_get_seqno;
  2264. ring->set_seqno = ring_set_seqno;
  2265. if (i915_semaphore_is_enabled(dev)) {
  2266. ring->semaphore.sync_to = gen6_ring_sync;
  2267. ring->semaphore.signal = gen6_signal;
  2268. /*
  2269. * The current semaphore is only applied on pre-gen8
  2270. * platform. And there is no VCS2 ring on the pre-gen8
  2271. * platform. So the semaphore between RCS and VCS2 is
  2272. * initialized as INVALID. Gen8 will initialize the
  2273. * sema between VCS2 and RCS later.
  2274. */
  2275. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
  2276. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
  2277. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
  2278. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
  2279. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2280. ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
  2281. ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
  2282. ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
  2283. ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
  2284. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2285. }
  2286. } else if (IS_GEN5(dev)) {
  2287. ring->add_request = pc_render_add_request;
  2288. ring->flush = gen4_render_ring_flush;
  2289. ring->get_seqno = pc_render_get_seqno;
  2290. ring->set_seqno = pc_render_set_seqno;
  2291. ring->irq_get = gen5_ring_get_irq;
  2292. ring->irq_put = gen5_ring_put_irq;
  2293. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
  2294. GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
  2295. } else {
  2296. ring->add_request = i9xx_add_request;
  2297. if (INTEL_INFO(dev)->gen < 4)
  2298. ring->flush = gen2_render_ring_flush;
  2299. else
  2300. ring->flush = gen4_render_ring_flush;
  2301. ring->get_seqno = ring_get_seqno;
  2302. ring->set_seqno = ring_set_seqno;
  2303. if (IS_GEN2(dev)) {
  2304. ring->irq_get = i8xx_ring_get_irq;
  2305. ring->irq_put = i8xx_ring_put_irq;
  2306. } else {
  2307. ring->irq_get = i9xx_ring_get_irq;
  2308. ring->irq_put = i9xx_ring_put_irq;
  2309. }
  2310. ring->irq_enable_mask = I915_USER_INTERRUPT;
  2311. }
  2312. ring->write_tail = ring_write_tail;
  2313. if (IS_HASWELL(dev))
  2314. ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
  2315. else if (IS_GEN8(dev))
  2316. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2317. else if (INTEL_INFO(dev)->gen >= 6)
  2318. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2319. else if (INTEL_INFO(dev)->gen >= 4)
  2320. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2321. else if (IS_I830(dev) || IS_845G(dev))
  2322. ring->dispatch_execbuffer = i830_dispatch_execbuffer;
  2323. else
  2324. ring->dispatch_execbuffer = i915_dispatch_execbuffer;
  2325. ring->init_hw = init_render_ring;
  2326. ring->cleanup = render_ring_cleanup;
  2327. /* Workaround batchbuffer to combat CS tlb bug. */
  2328. if (HAS_BROKEN_CS_TLB(dev)) {
  2329. obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
  2330. if (obj == NULL) {
  2331. DRM_ERROR("Failed to allocate batch bo\n");
  2332. return -ENOMEM;
  2333. }
  2334. ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
  2335. if (ret != 0) {
  2336. drm_gem_object_unreference(&obj->base);
  2337. DRM_ERROR("Failed to ping batch bo\n");
  2338. return ret;
  2339. }
  2340. ring->scratch.obj = obj;
  2341. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
  2342. }
  2343. ret = intel_init_ring_buffer(dev, ring);
  2344. if (ret)
  2345. return ret;
  2346. if (INTEL_INFO(dev)->gen >= 5) {
  2347. ret = intel_init_pipe_control(ring);
  2348. if (ret)
  2349. return ret;
  2350. }
  2351. return 0;
  2352. }
  2353. int intel_init_bsd_ring_buffer(struct drm_device *dev)
  2354. {
  2355. struct drm_i915_private *dev_priv = dev->dev_private;
  2356. struct intel_engine_cs *ring = &dev_priv->ring[VCS];
  2357. ring->name = "bsd ring";
  2358. ring->id = VCS;
  2359. ring->write_tail = ring_write_tail;
  2360. if (INTEL_INFO(dev)->gen >= 6) {
  2361. ring->mmio_base = GEN6_BSD_RING_BASE;
  2362. /* gen6 bsd needs a special wa for tail updates */
  2363. if (IS_GEN6(dev))
  2364. ring->write_tail = gen6_bsd_ring_write_tail;
  2365. ring->flush = gen6_bsd_ring_flush;
  2366. ring->add_request = gen6_add_request;
  2367. ring->get_seqno = gen6_ring_get_seqno;
  2368. ring->set_seqno = ring_set_seqno;
  2369. if (INTEL_INFO(dev)->gen >= 8) {
  2370. ring->irq_enable_mask =
  2371. GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
  2372. ring->irq_get = gen8_ring_get_irq;
  2373. ring->irq_put = gen8_ring_put_irq;
  2374. ring->dispatch_execbuffer =
  2375. gen8_ring_dispatch_execbuffer;
  2376. if (i915_semaphore_is_enabled(dev)) {
  2377. ring->semaphore.sync_to = gen8_ring_sync;
  2378. ring->semaphore.signal = gen8_xcs_signal;
  2379. GEN8_RING_SEMAPHORE_INIT;
  2380. }
  2381. } else {
  2382. ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  2383. ring->irq_get = gen6_ring_get_irq;
  2384. ring->irq_put = gen6_ring_put_irq;
  2385. ring->dispatch_execbuffer =
  2386. gen6_ring_dispatch_execbuffer;
  2387. if (i915_semaphore_is_enabled(dev)) {
  2388. ring->semaphore.sync_to = gen6_ring_sync;
  2389. ring->semaphore.signal = gen6_signal;
  2390. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
  2391. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
  2392. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
  2393. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
  2394. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2395. ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
  2396. ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
  2397. ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
  2398. ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
  2399. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2400. }
  2401. }
  2402. } else {
  2403. ring->mmio_base = BSD_RING_BASE;
  2404. ring->flush = bsd_ring_flush;
  2405. ring->add_request = i9xx_add_request;
  2406. ring->get_seqno = ring_get_seqno;
  2407. ring->set_seqno = ring_set_seqno;
  2408. if (IS_GEN5(dev)) {
  2409. ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  2410. ring->irq_get = gen5_ring_get_irq;
  2411. ring->irq_put = gen5_ring_put_irq;
  2412. } else {
  2413. ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  2414. ring->irq_get = i9xx_ring_get_irq;
  2415. ring->irq_put = i9xx_ring_put_irq;
  2416. }
  2417. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2418. }
  2419. ring->init_hw = init_ring_common;
  2420. return intel_init_ring_buffer(dev, ring);
  2421. }
  2422. /**
  2423. * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
  2424. */
  2425. int intel_init_bsd2_ring_buffer(struct drm_device *dev)
  2426. {
  2427. struct drm_i915_private *dev_priv = dev->dev_private;
  2428. struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
  2429. ring->name = "bsd2 ring";
  2430. ring->id = VCS2;
  2431. ring->write_tail = ring_write_tail;
  2432. ring->mmio_base = GEN8_BSD2_RING_BASE;
  2433. ring->flush = gen6_bsd_ring_flush;
  2434. ring->add_request = gen6_add_request;
  2435. ring->get_seqno = gen6_ring_get_seqno;
  2436. ring->set_seqno = ring_set_seqno;
  2437. ring->irq_enable_mask =
  2438. GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
  2439. ring->irq_get = gen8_ring_get_irq;
  2440. ring->irq_put = gen8_ring_put_irq;
  2441. ring->dispatch_execbuffer =
  2442. gen8_ring_dispatch_execbuffer;
  2443. if (i915_semaphore_is_enabled(dev)) {
  2444. ring->semaphore.sync_to = gen8_ring_sync;
  2445. ring->semaphore.signal = gen8_xcs_signal;
  2446. GEN8_RING_SEMAPHORE_INIT;
  2447. }
  2448. ring->init_hw = init_ring_common;
  2449. return intel_init_ring_buffer(dev, ring);
  2450. }
  2451. int intel_init_blt_ring_buffer(struct drm_device *dev)
  2452. {
  2453. struct drm_i915_private *dev_priv = dev->dev_private;
  2454. struct intel_engine_cs *ring = &dev_priv->ring[BCS];
  2455. ring->name = "blitter ring";
  2456. ring->id = BCS;
  2457. ring->mmio_base = BLT_RING_BASE;
  2458. ring->write_tail = ring_write_tail;
  2459. ring->flush = gen6_ring_flush;
  2460. ring->add_request = gen6_add_request;
  2461. ring->get_seqno = gen6_ring_get_seqno;
  2462. ring->set_seqno = ring_set_seqno;
  2463. if (INTEL_INFO(dev)->gen >= 8) {
  2464. ring->irq_enable_mask =
  2465. GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
  2466. ring->irq_get = gen8_ring_get_irq;
  2467. ring->irq_put = gen8_ring_put_irq;
  2468. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2469. if (i915_semaphore_is_enabled(dev)) {
  2470. ring->semaphore.sync_to = gen8_ring_sync;
  2471. ring->semaphore.signal = gen8_xcs_signal;
  2472. GEN8_RING_SEMAPHORE_INIT;
  2473. }
  2474. } else {
  2475. ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  2476. ring->irq_get = gen6_ring_get_irq;
  2477. ring->irq_put = gen6_ring_put_irq;
  2478. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2479. if (i915_semaphore_is_enabled(dev)) {
  2480. ring->semaphore.signal = gen6_signal;
  2481. ring->semaphore.sync_to = gen6_ring_sync;
  2482. /*
  2483. * The current semaphore is only applied on pre-gen8
  2484. * platform. And there is no VCS2 ring on the pre-gen8
  2485. * platform. So the semaphore between BCS and VCS2 is
  2486. * initialized as INVALID. Gen8 will initialize the
  2487. * sema between BCS and VCS2 later.
  2488. */
  2489. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
  2490. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
  2491. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
  2492. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
  2493. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2494. ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
  2495. ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
  2496. ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
  2497. ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
  2498. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2499. }
  2500. }
  2501. ring->init_hw = init_ring_common;
  2502. return intel_init_ring_buffer(dev, ring);
  2503. }
  2504. int intel_init_vebox_ring_buffer(struct drm_device *dev)
  2505. {
  2506. struct drm_i915_private *dev_priv = dev->dev_private;
  2507. struct intel_engine_cs *ring = &dev_priv->ring[VECS];
  2508. ring->name = "video enhancement ring";
  2509. ring->id = VECS;
  2510. ring->mmio_base = VEBOX_RING_BASE;
  2511. ring->write_tail = ring_write_tail;
  2512. ring->flush = gen6_ring_flush;
  2513. ring->add_request = gen6_add_request;
  2514. ring->get_seqno = gen6_ring_get_seqno;
  2515. ring->set_seqno = ring_set_seqno;
  2516. if (INTEL_INFO(dev)->gen >= 8) {
  2517. ring->irq_enable_mask =
  2518. GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
  2519. ring->irq_get = gen8_ring_get_irq;
  2520. ring->irq_put = gen8_ring_put_irq;
  2521. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2522. if (i915_semaphore_is_enabled(dev)) {
  2523. ring->semaphore.sync_to = gen8_ring_sync;
  2524. ring->semaphore.signal = gen8_xcs_signal;
  2525. GEN8_RING_SEMAPHORE_INIT;
  2526. }
  2527. } else {
  2528. ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  2529. ring->irq_get = hsw_vebox_get_irq;
  2530. ring->irq_put = hsw_vebox_put_irq;
  2531. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2532. if (i915_semaphore_is_enabled(dev)) {
  2533. ring->semaphore.sync_to = gen6_ring_sync;
  2534. ring->semaphore.signal = gen6_signal;
  2535. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
  2536. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
  2537. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
  2538. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
  2539. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2540. ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
  2541. ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
  2542. ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
  2543. ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
  2544. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2545. }
  2546. }
  2547. ring->init_hw = init_ring_common;
  2548. return intel_init_ring_buffer(dev, ring);
  2549. }
  2550. int
  2551. intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
  2552. {
  2553. struct intel_engine_cs *ring = req->ring;
  2554. int ret;
  2555. if (!ring->gpu_caches_dirty)
  2556. return 0;
  2557. ret = ring->flush(req, 0, I915_GEM_GPU_DOMAINS);
  2558. if (ret)
  2559. return ret;
  2560. trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
  2561. ring->gpu_caches_dirty = false;
  2562. return 0;
  2563. }
  2564. int
  2565. intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
  2566. {
  2567. struct intel_engine_cs *ring = req->ring;
  2568. uint32_t flush_domains;
  2569. int ret;
  2570. flush_domains = 0;
  2571. if (ring->gpu_caches_dirty)
  2572. flush_domains = I915_GEM_GPU_DOMAINS;
  2573. ret = ring->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
  2574. if (ret)
  2575. return ret;
  2576. trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
  2577. ring->gpu_caches_dirty = false;
  2578. return 0;
  2579. }
  2580. void
  2581. intel_stop_ring_buffer(struct intel_engine_cs *ring)
  2582. {
  2583. int ret;
  2584. if (!intel_ring_initialized(ring))
  2585. return;
  2586. ret = intel_ring_idle(ring);
  2587. if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
  2588. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  2589. ring->name, ret);
  2590. stop_ring(ring);
  2591. }