tick-sched.c 29 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199
  1. /*
  2. * linux/kernel/time/tick-sched.c
  3. *
  4. * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
  5. * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
  6. * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
  7. *
  8. * No idle tick implementation for low and high resolution timers
  9. *
  10. * Started by: Thomas Gleixner and Ingo Molnar
  11. *
  12. * Distribute under GPLv2.
  13. */
  14. #include <linux/cpu.h>
  15. #include <linux/err.h>
  16. #include <linux/hrtimer.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/kernel_stat.h>
  19. #include <linux/percpu.h>
  20. #include <linux/profile.h>
  21. #include <linux/sched.h>
  22. #include <linux/module.h>
  23. #include <linux/irq_work.h>
  24. #include <linux/posix-timers.h>
  25. #include <linux/perf_event.h>
  26. #include <linux/context_tracking.h>
  27. #include <asm/irq_regs.h>
  28. #include "tick-internal.h"
  29. #include <trace/events/timer.h>
  30. /*
  31. * Per cpu nohz control structure
  32. */
  33. static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
  34. /*
  35. * The time, when the last jiffy update happened. Protected by jiffies_lock.
  36. */
  37. static ktime_t last_jiffies_update;
  38. struct tick_sched *tick_get_tick_sched(int cpu)
  39. {
  40. return &per_cpu(tick_cpu_sched, cpu);
  41. }
  42. /*
  43. * Must be called with interrupts disabled !
  44. */
  45. static void tick_do_update_jiffies64(ktime_t now)
  46. {
  47. unsigned long ticks = 0;
  48. ktime_t delta;
  49. /*
  50. * Do a quick check without holding jiffies_lock:
  51. */
  52. delta = ktime_sub(now, last_jiffies_update);
  53. if (delta.tv64 < tick_period.tv64)
  54. return;
  55. /* Reevalute with jiffies_lock held */
  56. write_seqlock(&jiffies_lock);
  57. delta = ktime_sub(now, last_jiffies_update);
  58. if (delta.tv64 >= tick_period.tv64) {
  59. delta = ktime_sub(delta, tick_period);
  60. last_jiffies_update = ktime_add(last_jiffies_update,
  61. tick_period);
  62. /* Slow path for long timeouts */
  63. if (unlikely(delta.tv64 >= tick_period.tv64)) {
  64. s64 incr = ktime_to_ns(tick_period);
  65. ticks = ktime_divns(delta, incr);
  66. last_jiffies_update = ktime_add_ns(last_jiffies_update,
  67. incr * ticks);
  68. }
  69. do_timer(++ticks);
  70. /* Keep the tick_next_period variable up to date */
  71. tick_next_period = ktime_add(last_jiffies_update, tick_period);
  72. } else {
  73. write_sequnlock(&jiffies_lock);
  74. return;
  75. }
  76. write_sequnlock(&jiffies_lock);
  77. update_wall_time();
  78. }
  79. /*
  80. * Initialize and return retrieve the jiffies update.
  81. */
  82. static ktime_t tick_init_jiffy_update(void)
  83. {
  84. ktime_t period;
  85. write_seqlock(&jiffies_lock);
  86. /* Did we start the jiffies update yet ? */
  87. if (last_jiffies_update.tv64 == 0)
  88. last_jiffies_update = tick_next_period;
  89. period = last_jiffies_update;
  90. write_sequnlock(&jiffies_lock);
  91. return period;
  92. }
  93. static void tick_sched_do_timer(ktime_t now)
  94. {
  95. int cpu = smp_processor_id();
  96. #ifdef CONFIG_NO_HZ_COMMON
  97. /*
  98. * Check if the do_timer duty was dropped. We don't care about
  99. * concurrency: This happens only when the cpu in charge went
  100. * into a long sleep. If two cpus happen to assign themself to
  101. * this duty, then the jiffies update is still serialized by
  102. * jiffies_lock.
  103. */
  104. if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
  105. && !tick_nohz_full_cpu(cpu))
  106. tick_do_timer_cpu = cpu;
  107. #endif
  108. /* Check, if the jiffies need an update */
  109. if (tick_do_timer_cpu == cpu)
  110. tick_do_update_jiffies64(now);
  111. }
  112. static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
  113. {
  114. #ifdef CONFIG_NO_HZ_COMMON
  115. /*
  116. * When we are idle and the tick is stopped, we have to touch
  117. * the watchdog as we might not schedule for a really long
  118. * time. This happens on complete idle SMP systems while
  119. * waiting on the login prompt. We also increment the "start of
  120. * idle" jiffy stamp so the idle accounting adjustment we do
  121. * when we go busy again does not account too much ticks.
  122. */
  123. if (ts->tick_stopped) {
  124. touch_softlockup_watchdog_sched();
  125. if (is_idle_task(current))
  126. ts->idle_jiffies++;
  127. }
  128. #endif
  129. update_process_times(user_mode(regs));
  130. profile_tick(CPU_PROFILING);
  131. }
  132. #ifdef CONFIG_NO_HZ_FULL
  133. cpumask_var_t tick_nohz_full_mask;
  134. cpumask_var_t housekeeping_mask;
  135. bool tick_nohz_full_running;
  136. static bool can_stop_full_tick(void)
  137. {
  138. WARN_ON_ONCE(!irqs_disabled());
  139. if (!sched_can_stop_tick()) {
  140. trace_tick_stop(0, "more than 1 task in runqueue\n");
  141. return false;
  142. }
  143. if (!posix_cpu_timers_can_stop_tick(current)) {
  144. trace_tick_stop(0, "posix timers running\n");
  145. return false;
  146. }
  147. if (!perf_event_can_stop_tick()) {
  148. trace_tick_stop(0, "perf events running\n");
  149. return false;
  150. }
  151. /* sched_clock_tick() needs us? */
  152. #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
  153. /*
  154. * TODO: kick full dynticks CPUs when
  155. * sched_clock_stable is set.
  156. */
  157. if (!sched_clock_stable()) {
  158. trace_tick_stop(0, "unstable sched clock\n");
  159. /*
  160. * Don't allow the user to think they can get
  161. * full NO_HZ with this machine.
  162. */
  163. WARN_ONCE(tick_nohz_full_running,
  164. "NO_HZ FULL will not work with unstable sched clock");
  165. return false;
  166. }
  167. #endif
  168. return true;
  169. }
  170. static void nohz_full_kick_work_func(struct irq_work *work)
  171. {
  172. /* Empty, the tick restart happens on tick_nohz_irq_exit() */
  173. }
  174. static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
  175. .func = nohz_full_kick_work_func,
  176. };
  177. /*
  178. * Kick this CPU if it's full dynticks in order to force it to
  179. * re-evaluate its dependency on the tick and restart it if necessary.
  180. * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
  181. * is NMI safe.
  182. */
  183. void tick_nohz_full_kick(void)
  184. {
  185. if (!tick_nohz_full_cpu(smp_processor_id()))
  186. return;
  187. irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
  188. }
  189. /*
  190. * Kick the CPU if it's full dynticks in order to force it to
  191. * re-evaluate its dependency on the tick and restart it if necessary.
  192. */
  193. void tick_nohz_full_kick_cpu(int cpu)
  194. {
  195. if (!tick_nohz_full_cpu(cpu))
  196. return;
  197. irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
  198. }
  199. static void nohz_full_kick_ipi(void *info)
  200. {
  201. /* Empty, the tick restart happens on tick_nohz_irq_exit() */
  202. }
  203. /*
  204. * Kick all full dynticks CPUs in order to force these to re-evaluate
  205. * their dependency on the tick and restart it if necessary.
  206. */
  207. void tick_nohz_full_kick_all(void)
  208. {
  209. if (!tick_nohz_full_running)
  210. return;
  211. preempt_disable();
  212. smp_call_function_many(tick_nohz_full_mask,
  213. nohz_full_kick_ipi, NULL, false);
  214. tick_nohz_full_kick();
  215. preempt_enable();
  216. }
  217. /*
  218. * Re-evaluate the need for the tick as we switch the current task.
  219. * It might need the tick due to per task/process properties:
  220. * perf events, posix cpu timers, ...
  221. */
  222. void __tick_nohz_task_switch(void)
  223. {
  224. unsigned long flags;
  225. local_irq_save(flags);
  226. if (!tick_nohz_full_cpu(smp_processor_id()))
  227. goto out;
  228. if (tick_nohz_tick_stopped() && !can_stop_full_tick())
  229. tick_nohz_full_kick();
  230. out:
  231. local_irq_restore(flags);
  232. }
  233. /* Parse the boot-time nohz CPU list from the kernel parameters. */
  234. static int __init tick_nohz_full_setup(char *str)
  235. {
  236. alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
  237. if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
  238. pr_warning("NOHZ: Incorrect nohz_full cpumask\n");
  239. free_bootmem_cpumask_var(tick_nohz_full_mask);
  240. return 1;
  241. }
  242. tick_nohz_full_running = true;
  243. return 1;
  244. }
  245. __setup("nohz_full=", tick_nohz_full_setup);
  246. static int tick_nohz_cpu_down_callback(struct notifier_block *nfb,
  247. unsigned long action,
  248. void *hcpu)
  249. {
  250. unsigned int cpu = (unsigned long)hcpu;
  251. switch (action & ~CPU_TASKS_FROZEN) {
  252. case CPU_DOWN_PREPARE:
  253. /*
  254. * The boot CPU handles housekeeping duty (unbound timers,
  255. * workqueues, timekeeping, ...) on behalf of full dynticks
  256. * CPUs. It must remain online when nohz full is enabled.
  257. */
  258. if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
  259. return NOTIFY_BAD;
  260. break;
  261. }
  262. return NOTIFY_OK;
  263. }
  264. static int tick_nohz_init_all(void)
  265. {
  266. int err = -1;
  267. #ifdef CONFIG_NO_HZ_FULL_ALL
  268. if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
  269. WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
  270. return err;
  271. }
  272. err = 0;
  273. cpumask_setall(tick_nohz_full_mask);
  274. tick_nohz_full_running = true;
  275. #endif
  276. return err;
  277. }
  278. void __init tick_nohz_init(void)
  279. {
  280. int cpu;
  281. if (!tick_nohz_full_running) {
  282. if (tick_nohz_init_all() < 0)
  283. return;
  284. }
  285. if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
  286. WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
  287. cpumask_clear(tick_nohz_full_mask);
  288. tick_nohz_full_running = false;
  289. return;
  290. }
  291. /*
  292. * Full dynticks uses irq work to drive the tick rescheduling on safe
  293. * locking contexts. But then we need irq work to raise its own
  294. * interrupts to avoid circular dependency on the tick
  295. */
  296. if (!arch_irq_work_has_interrupt()) {
  297. pr_warning("NO_HZ: Can't run full dynticks because arch doesn't "
  298. "support irq work self-IPIs\n");
  299. cpumask_clear(tick_nohz_full_mask);
  300. cpumask_copy(housekeeping_mask, cpu_possible_mask);
  301. tick_nohz_full_running = false;
  302. return;
  303. }
  304. cpu = smp_processor_id();
  305. if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
  306. pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu);
  307. cpumask_clear_cpu(cpu, tick_nohz_full_mask);
  308. }
  309. cpumask_andnot(housekeeping_mask,
  310. cpu_possible_mask, tick_nohz_full_mask);
  311. for_each_cpu(cpu, tick_nohz_full_mask)
  312. context_tracking_cpu_set(cpu);
  313. cpu_notifier(tick_nohz_cpu_down_callback, 0);
  314. pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
  315. cpumask_pr_args(tick_nohz_full_mask));
  316. /*
  317. * We need at least one CPU to handle housekeeping work such
  318. * as timekeeping, unbound timers, workqueues, ...
  319. */
  320. WARN_ON_ONCE(cpumask_empty(housekeeping_mask));
  321. }
  322. #endif
  323. /*
  324. * NOHZ - aka dynamic tick functionality
  325. */
  326. #ifdef CONFIG_NO_HZ_COMMON
  327. /*
  328. * NO HZ enabled ?
  329. */
  330. int tick_nohz_enabled __read_mostly = 1;
  331. unsigned long tick_nohz_active __read_mostly;
  332. /*
  333. * Enable / Disable tickless mode
  334. */
  335. static int __init setup_tick_nohz(char *str)
  336. {
  337. if (!strcmp(str, "off"))
  338. tick_nohz_enabled = 0;
  339. else if (!strcmp(str, "on"))
  340. tick_nohz_enabled = 1;
  341. else
  342. return 0;
  343. return 1;
  344. }
  345. __setup("nohz=", setup_tick_nohz);
  346. int tick_nohz_tick_stopped(void)
  347. {
  348. return __this_cpu_read(tick_cpu_sched.tick_stopped);
  349. }
  350. /**
  351. * tick_nohz_update_jiffies - update jiffies when idle was interrupted
  352. *
  353. * Called from interrupt entry when the CPU was idle
  354. *
  355. * In case the sched_tick was stopped on this CPU, we have to check if jiffies
  356. * must be updated. Otherwise an interrupt handler could use a stale jiffy
  357. * value. We do this unconditionally on any cpu, as we don't know whether the
  358. * cpu, which has the update task assigned is in a long sleep.
  359. */
  360. static void tick_nohz_update_jiffies(ktime_t now)
  361. {
  362. unsigned long flags;
  363. __this_cpu_write(tick_cpu_sched.idle_waketime, now);
  364. local_irq_save(flags);
  365. tick_do_update_jiffies64(now);
  366. local_irq_restore(flags);
  367. touch_softlockup_watchdog_sched();
  368. }
  369. /*
  370. * Updates the per cpu time idle statistics counters
  371. */
  372. static void
  373. update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
  374. {
  375. ktime_t delta;
  376. if (ts->idle_active) {
  377. delta = ktime_sub(now, ts->idle_entrytime);
  378. if (nr_iowait_cpu(cpu) > 0)
  379. ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
  380. else
  381. ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
  382. ts->idle_entrytime = now;
  383. }
  384. if (last_update_time)
  385. *last_update_time = ktime_to_us(now);
  386. }
  387. static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
  388. {
  389. update_ts_time_stats(smp_processor_id(), ts, now, NULL);
  390. ts->idle_active = 0;
  391. sched_clock_idle_wakeup_event(0);
  392. }
  393. static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
  394. {
  395. ktime_t now = ktime_get();
  396. ts->idle_entrytime = now;
  397. ts->idle_active = 1;
  398. sched_clock_idle_sleep_event();
  399. return now;
  400. }
  401. /**
  402. * get_cpu_idle_time_us - get the total idle time of a cpu
  403. * @cpu: CPU number to query
  404. * @last_update_time: variable to store update time in. Do not update
  405. * counters if NULL.
  406. *
  407. * Return the cummulative idle time (since boot) for a given
  408. * CPU, in microseconds.
  409. *
  410. * This time is measured via accounting rather than sampling,
  411. * and is as accurate as ktime_get() is.
  412. *
  413. * This function returns -1 if NOHZ is not enabled.
  414. */
  415. u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
  416. {
  417. struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
  418. ktime_t now, idle;
  419. if (!tick_nohz_active)
  420. return -1;
  421. now = ktime_get();
  422. if (last_update_time) {
  423. update_ts_time_stats(cpu, ts, now, last_update_time);
  424. idle = ts->idle_sleeptime;
  425. } else {
  426. if (ts->idle_active && !nr_iowait_cpu(cpu)) {
  427. ktime_t delta = ktime_sub(now, ts->idle_entrytime);
  428. idle = ktime_add(ts->idle_sleeptime, delta);
  429. } else {
  430. idle = ts->idle_sleeptime;
  431. }
  432. }
  433. return ktime_to_us(idle);
  434. }
  435. EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
  436. /**
  437. * get_cpu_iowait_time_us - get the total iowait time of a cpu
  438. * @cpu: CPU number to query
  439. * @last_update_time: variable to store update time in. Do not update
  440. * counters if NULL.
  441. *
  442. * Return the cummulative iowait time (since boot) for a given
  443. * CPU, in microseconds.
  444. *
  445. * This time is measured via accounting rather than sampling,
  446. * and is as accurate as ktime_get() is.
  447. *
  448. * This function returns -1 if NOHZ is not enabled.
  449. */
  450. u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
  451. {
  452. struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
  453. ktime_t now, iowait;
  454. if (!tick_nohz_active)
  455. return -1;
  456. now = ktime_get();
  457. if (last_update_time) {
  458. update_ts_time_stats(cpu, ts, now, last_update_time);
  459. iowait = ts->iowait_sleeptime;
  460. } else {
  461. if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
  462. ktime_t delta = ktime_sub(now, ts->idle_entrytime);
  463. iowait = ktime_add(ts->iowait_sleeptime, delta);
  464. } else {
  465. iowait = ts->iowait_sleeptime;
  466. }
  467. }
  468. return ktime_to_us(iowait);
  469. }
  470. EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
  471. static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
  472. {
  473. hrtimer_cancel(&ts->sched_timer);
  474. hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
  475. /* Forward the time to expire in the future */
  476. hrtimer_forward(&ts->sched_timer, now, tick_period);
  477. if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
  478. hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
  479. else
  480. tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
  481. }
  482. static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
  483. ktime_t now, int cpu)
  484. {
  485. struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
  486. u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
  487. unsigned long seq, basejiff;
  488. ktime_t tick;
  489. /* Read jiffies and the time when jiffies were updated last */
  490. do {
  491. seq = read_seqbegin(&jiffies_lock);
  492. basemono = last_jiffies_update.tv64;
  493. basejiff = jiffies;
  494. } while (read_seqretry(&jiffies_lock, seq));
  495. ts->last_jiffies = basejiff;
  496. if (rcu_needs_cpu(basemono, &next_rcu) ||
  497. arch_needs_cpu() || irq_work_needs_cpu()) {
  498. next_tick = basemono + TICK_NSEC;
  499. } else {
  500. /*
  501. * Get the next pending timer. If high resolution
  502. * timers are enabled this only takes the timer wheel
  503. * timers into account. If high resolution timers are
  504. * disabled this also looks at the next expiring
  505. * hrtimer.
  506. */
  507. next_tmr = get_next_timer_interrupt(basejiff, basemono);
  508. ts->next_timer = next_tmr;
  509. /* Take the next rcu event into account */
  510. next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
  511. }
  512. /*
  513. * If the tick is due in the next period, keep it ticking or
  514. * force prod the timer.
  515. */
  516. delta = next_tick - basemono;
  517. if (delta <= (u64)TICK_NSEC) {
  518. tick.tv64 = 0;
  519. /*
  520. * We've not stopped the tick yet, and there's a timer in the
  521. * next period, so no point in stopping it either, bail.
  522. */
  523. if (!ts->tick_stopped)
  524. goto out;
  525. /*
  526. * If, OTOH, we did stop it, but there's a pending (expired)
  527. * timer reprogram the timer hardware to fire now.
  528. *
  529. * We will not restart the tick proper, just prod the timer
  530. * hardware into firing an interrupt to process the pending
  531. * timers. Just like tick_irq_exit() will not restart the tick
  532. * for 'normal' interrupts.
  533. *
  534. * Only once we exit the idle loop will we re-enable the tick,
  535. * see tick_nohz_idle_exit().
  536. */
  537. if (delta == 0) {
  538. tick_nohz_restart(ts, now);
  539. goto out;
  540. }
  541. }
  542. /*
  543. * If this cpu is the one which updates jiffies, then give up
  544. * the assignment and let it be taken by the cpu which runs
  545. * the tick timer next, which might be this cpu as well. If we
  546. * don't drop this here the jiffies might be stale and
  547. * do_timer() never invoked. Keep track of the fact that it
  548. * was the one which had the do_timer() duty last. If this cpu
  549. * is the one which had the do_timer() duty last, we limit the
  550. * sleep time to the timekeeping max_deferement value.
  551. * Otherwise we can sleep as long as we want.
  552. */
  553. delta = timekeeping_max_deferment();
  554. if (cpu == tick_do_timer_cpu) {
  555. tick_do_timer_cpu = TICK_DO_TIMER_NONE;
  556. ts->do_timer_last = 1;
  557. } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
  558. delta = KTIME_MAX;
  559. ts->do_timer_last = 0;
  560. } else if (!ts->do_timer_last) {
  561. delta = KTIME_MAX;
  562. }
  563. #ifdef CONFIG_NO_HZ_FULL
  564. /* Limit the tick delta to the maximum scheduler deferment */
  565. if (!ts->inidle)
  566. delta = min(delta, scheduler_tick_max_deferment());
  567. #endif
  568. /* Calculate the next expiry time */
  569. if (delta < (KTIME_MAX - basemono))
  570. expires = basemono + delta;
  571. else
  572. expires = KTIME_MAX;
  573. expires = min_t(u64, expires, next_tick);
  574. tick.tv64 = expires;
  575. /* Skip reprogram of event if its not changed */
  576. if (ts->tick_stopped && (expires == dev->next_event.tv64))
  577. goto out;
  578. /*
  579. * nohz_stop_sched_tick can be called several times before
  580. * the nohz_restart_sched_tick is called. This happens when
  581. * interrupts arrive which do not cause a reschedule. In the
  582. * first call we save the current tick time, so we can restart
  583. * the scheduler tick in nohz_restart_sched_tick.
  584. */
  585. if (!ts->tick_stopped) {
  586. nohz_balance_enter_idle(cpu);
  587. calc_load_enter_idle();
  588. ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
  589. ts->tick_stopped = 1;
  590. trace_tick_stop(1, " ");
  591. }
  592. /*
  593. * If the expiration time == KTIME_MAX, then we simply stop
  594. * the tick timer.
  595. */
  596. if (unlikely(expires == KTIME_MAX)) {
  597. if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
  598. hrtimer_cancel(&ts->sched_timer);
  599. goto out;
  600. }
  601. if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
  602. hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED);
  603. else
  604. tick_program_event(tick, 1);
  605. out:
  606. /* Update the estimated sleep length */
  607. ts->sleep_length = ktime_sub(dev->next_event, now);
  608. return tick;
  609. }
  610. static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now, int active)
  611. {
  612. /* Update jiffies first */
  613. tick_do_update_jiffies64(now);
  614. update_cpu_load_nohz(active);
  615. calc_load_exit_idle();
  616. touch_softlockup_watchdog_sched();
  617. /*
  618. * Cancel the scheduled timer and restore the tick
  619. */
  620. ts->tick_stopped = 0;
  621. ts->idle_exittime = now;
  622. tick_nohz_restart(ts, now);
  623. }
  624. static void tick_nohz_full_update_tick(struct tick_sched *ts)
  625. {
  626. #ifdef CONFIG_NO_HZ_FULL
  627. int cpu = smp_processor_id();
  628. if (!tick_nohz_full_cpu(cpu))
  629. return;
  630. if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
  631. return;
  632. if (can_stop_full_tick())
  633. tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
  634. else if (ts->tick_stopped)
  635. tick_nohz_restart_sched_tick(ts, ktime_get(), 1);
  636. #endif
  637. }
  638. static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
  639. {
  640. /*
  641. * If this cpu is offline and it is the one which updates
  642. * jiffies, then give up the assignment and let it be taken by
  643. * the cpu which runs the tick timer next. If we don't drop
  644. * this here the jiffies might be stale and do_timer() never
  645. * invoked.
  646. */
  647. if (unlikely(!cpu_online(cpu))) {
  648. if (cpu == tick_do_timer_cpu)
  649. tick_do_timer_cpu = TICK_DO_TIMER_NONE;
  650. return false;
  651. }
  652. if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
  653. ts->sleep_length = (ktime_t) { .tv64 = NSEC_PER_SEC/HZ };
  654. return false;
  655. }
  656. if (need_resched())
  657. return false;
  658. if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
  659. static int ratelimit;
  660. if (ratelimit < 10 &&
  661. (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
  662. pr_warn("NOHZ: local_softirq_pending %02x\n",
  663. (unsigned int) local_softirq_pending());
  664. ratelimit++;
  665. }
  666. return false;
  667. }
  668. if (tick_nohz_full_enabled()) {
  669. /*
  670. * Keep the tick alive to guarantee timekeeping progression
  671. * if there are full dynticks CPUs around
  672. */
  673. if (tick_do_timer_cpu == cpu)
  674. return false;
  675. /*
  676. * Boot safety: make sure the timekeeping duty has been
  677. * assigned before entering dyntick-idle mode,
  678. */
  679. if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
  680. return false;
  681. }
  682. return true;
  683. }
  684. static void __tick_nohz_idle_enter(struct tick_sched *ts)
  685. {
  686. ktime_t now, expires;
  687. int cpu = smp_processor_id();
  688. now = tick_nohz_start_idle(ts);
  689. if (can_stop_idle_tick(cpu, ts)) {
  690. int was_stopped = ts->tick_stopped;
  691. ts->idle_calls++;
  692. expires = tick_nohz_stop_sched_tick(ts, now, cpu);
  693. if (expires.tv64 > 0LL) {
  694. ts->idle_sleeps++;
  695. ts->idle_expires = expires;
  696. }
  697. if (!was_stopped && ts->tick_stopped)
  698. ts->idle_jiffies = ts->last_jiffies;
  699. }
  700. }
  701. /**
  702. * tick_nohz_idle_enter - stop the idle tick from the idle task
  703. *
  704. * When the next event is more than a tick into the future, stop the idle tick
  705. * Called when we start the idle loop.
  706. *
  707. * The arch is responsible of calling:
  708. *
  709. * - rcu_idle_enter() after its last use of RCU before the CPU is put
  710. * to sleep.
  711. * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
  712. */
  713. void tick_nohz_idle_enter(void)
  714. {
  715. struct tick_sched *ts;
  716. WARN_ON_ONCE(irqs_disabled());
  717. /*
  718. * Update the idle state in the scheduler domain hierarchy
  719. * when tick_nohz_stop_sched_tick() is called from the idle loop.
  720. * State will be updated to busy during the first busy tick after
  721. * exiting idle.
  722. */
  723. set_cpu_sd_state_idle();
  724. local_irq_disable();
  725. ts = this_cpu_ptr(&tick_cpu_sched);
  726. ts->inidle = 1;
  727. __tick_nohz_idle_enter(ts);
  728. local_irq_enable();
  729. }
  730. /**
  731. * tick_nohz_irq_exit - update next tick event from interrupt exit
  732. *
  733. * When an interrupt fires while we are idle and it doesn't cause
  734. * a reschedule, it may still add, modify or delete a timer, enqueue
  735. * an RCU callback, etc...
  736. * So we need to re-calculate and reprogram the next tick event.
  737. */
  738. void tick_nohz_irq_exit(void)
  739. {
  740. struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
  741. if (ts->inidle)
  742. __tick_nohz_idle_enter(ts);
  743. else
  744. tick_nohz_full_update_tick(ts);
  745. }
  746. /**
  747. * tick_nohz_get_sleep_length - return the length of the current sleep
  748. *
  749. * Called from power state control code with interrupts disabled
  750. */
  751. ktime_t tick_nohz_get_sleep_length(void)
  752. {
  753. struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
  754. return ts->sleep_length;
  755. }
  756. static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
  757. {
  758. #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
  759. unsigned long ticks;
  760. if (vtime_accounting_cpu_enabled())
  761. return;
  762. /*
  763. * We stopped the tick in idle. Update process times would miss the
  764. * time we slept as update_process_times does only a 1 tick
  765. * accounting. Enforce that this is accounted to idle !
  766. */
  767. ticks = jiffies - ts->idle_jiffies;
  768. /*
  769. * We might be one off. Do not randomly account a huge number of ticks!
  770. */
  771. if (ticks && ticks < LONG_MAX)
  772. account_idle_ticks(ticks);
  773. #endif
  774. }
  775. /**
  776. * tick_nohz_idle_exit - restart the idle tick from the idle task
  777. *
  778. * Restart the idle tick when the CPU is woken up from idle
  779. * This also exit the RCU extended quiescent state. The CPU
  780. * can use RCU again after this function is called.
  781. */
  782. void tick_nohz_idle_exit(void)
  783. {
  784. struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
  785. ktime_t now;
  786. local_irq_disable();
  787. WARN_ON_ONCE(!ts->inidle);
  788. ts->inidle = 0;
  789. if (ts->idle_active || ts->tick_stopped)
  790. now = ktime_get();
  791. if (ts->idle_active)
  792. tick_nohz_stop_idle(ts, now);
  793. if (ts->tick_stopped) {
  794. tick_nohz_restart_sched_tick(ts, now, 0);
  795. tick_nohz_account_idle_ticks(ts);
  796. }
  797. local_irq_enable();
  798. }
  799. /*
  800. * The nohz low res interrupt handler
  801. */
  802. static void tick_nohz_handler(struct clock_event_device *dev)
  803. {
  804. struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
  805. struct pt_regs *regs = get_irq_regs();
  806. ktime_t now = ktime_get();
  807. dev->next_event.tv64 = KTIME_MAX;
  808. tick_sched_do_timer(now);
  809. tick_sched_handle(ts, regs);
  810. /* No need to reprogram if we are running tickless */
  811. if (unlikely(ts->tick_stopped))
  812. return;
  813. hrtimer_forward(&ts->sched_timer, now, tick_period);
  814. tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
  815. }
  816. static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
  817. {
  818. if (!tick_nohz_enabled)
  819. return;
  820. ts->nohz_mode = mode;
  821. /* One update is enough */
  822. if (!test_and_set_bit(0, &tick_nohz_active))
  823. timers_update_migration(true);
  824. }
  825. /**
  826. * tick_nohz_switch_to_nohz - switch to nohz mode
  827. */
  828. static void tick_nohz_switch_to_nohz(void)
  829. {
  830. struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
  831. ktime_t next;
  832. if (!tick_nohz_enabled)
  833. return;
  834. if (tick_switch_to_oneshot(tick_nohz_handler))
  835. return;
  836. /*
  837. * Recycle the hrtimer in ts, so we can share the
  838. * hrtimer_forward with the highres code.
  839. */
  840. hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
  841. /* Get the next period */
  842. next = tick_init_jiffy_update();
  843. hrtimer_forward_now(&ts->sched_timer, tick_period);
  844. hrtimer_set_expires(&ts->sched_timer, next);
  845. tick_program_event(next, 1);
  846. tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
  847. }
  848. /*
  849. * When NOHZ is enabled and the tick is stopped, we need to kick the
  850. * tick timer from irq_enter() so that the jiffies update is kept
  851. * alive during long running softirqs. That's ugly as hell, but
  852. * correctness is key even if we need to fix the offending softirq in
  853. * the first place.
  854. *
  855. * Note, this is different to tick_nohz_restart. We just kick the
  856. * timer and do not touch the other magic bits which need to be done
  857. * when idle is left.
  858. */
  859. static void tick_nohz_kick_tick(struct tick_sched *ts, ktime_t now)
  860. {
  861. #if 0
  862. /* Switch back to 2.6.27 behaviour */
  863. ktime_t delta;
  864. /*
  865. * Do not touch the tick device, when the next expiry is either
  866. * already reached or less/equal than the tick period.
  867. */
  868. delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
  869. if (delta.tv64 <= tick_period.tv64)
  870. return;
  871. tick_nohz_restart(ts, now);
  872. #endif
  873. }
  874. static inline void tick_nohz_irq_enter(void)
  875. {
  876. struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
  877. ktime_t now;
  878. if (!ts->idle_active && !ts->tick_stopped)
  879. return;
  880. now = ktime_get();
  881. if (ts->idle_active)
  882. tick_nohz_stop_idle(ts, now);
  883. if (ts->tick_stopped) {
  884. tick_nohz_update_jiffies(now);
  885. tick_nohz_kick_tick(ts, now);
  886. }
  887. }
  888. #else
  889. static inline void tick_nohz_switch_to_nohz(void) { }
  890. static inline void tick_nohz_irq_enter(void) { }
  891. static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
  892. #endif /* CONFIG_NO_HZ_COMMON */
  893. /*
  894. * Called from irq_enter to notify about the possible interruption of idle()
  895. */
  896. void tick_irq_enter(void)
  897. {
  898. tick_check_oneshot_broadcast_this_cpu();
  899. tick_nohz_irq_enter();
  900. }
  901. /*
  902. * High resolution timer specific code
  903. */
  904. #ifdef CONFIG_HIGH_RES_TIMERS
  905. /*
  906. * We rearm the timer until we get disabled by the idle code.
  907. * Called with interrupts disabled.
  908. */
  909. static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
  910. {
  911. struct tick_sched *ts =
  912. container_of(timer, struct tick_sched, sched_timer);
  913. struct pt_regs *regs = get_irq_regs();
  914. ktime_t now = ktime_get();
  915. tick_sched_do_timer(now);
  916. /*
  917. * Do not call, when we are not in irq context and have
  918. * no valid regs pointer
  919. */
  920. if (regs)
  921. tick_sched_handle(ts, regs);
  922. /* No need to reprogram if we are in idle or full dynticks mode */
  923. if (unlikely(ts->tick_stopped))
  924. return HRTIMER_NORESTART;
  925. hrtimer_forward(timer, now, tick_period);
  926. return HRTIMER_RESTART;
  927. }
  928. static int sched_skew_tick;
  929. static int __init skew_tick(char *str)
  930. {
  931. get_option(&str, &sched_skew_tick);
  932. return 0;
  933. }
  934. early_param("skew_tick", skew_tick);
  935. /**
  936. * tick_setup_sched_timer - setup the tick emulation timer
  937. */
  938. void tick_setup_sched_timer(void)
  939. {
  940. struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
  941. ktime_t now = ktime_get();
  942. /*
  943. * Emulate tick processing via per-CPU hrtimers:
  944. */
  945. hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
  946. ts->sched_timer.function = tick_sched_timer;
  947. /* Get the next period (per cpu) */
  948. hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
  949. /* Offset the tick to avert jiffies_lock contention. */
  950. if (sched_skew_tick) {
  951. u64 offset = ktime_to_ns(tick_period) >> 1;
  952. do_div(offset, num_possible_cpus());
  953. offset *= smp_processor_id();
  954. hrtimer_add_expires_ns(&ts->sched_timer, offset);
  955. }
  956. hrtimer_forward(&ts->sched_timer, now, tick_period);
  957. hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
  958. tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
  959. }
  960. #endif /* HIGH_RES_TIMERS */
  961. #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
  962. void tick_cancel_sched_timer(int cpu)
  963. {
  964. struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
  965. # ifdef CONFIG_HIGH_RES_TIMERS
  966. if (ts->sched_timer.base)
  967. hrtimer_cancel(&ts->sched_timer);
  968. # endif
  969. memset(ts, 0, sizeof(*ts));
  970. }
  971. #endif
  972. /**
  973. * Async notification about clocksource changes
  974. */
  975. void tick_clock_notify(void)
  976. {
  977. int cpu;
  978. for_each_possible_cpu(cpu)
  979. set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
  980. }
  981. /*
  982. * Async notification about clock event changes
  983. */
  984. void tick_oneshot_notify(void)
  985. {
  986. struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
  987. set_bit(0, &ts->check_clocks);
  988. }
  989. /**
  990. * Check, if a change happened, which makes oneshot possible.
  991. *
  992. * Called cyclic from the hrtimer softirq (driven by the timer
  993. * softirq) allow_nohz signals, that we can switch into low-res nohz
  994. * mode, because high resolution timers are disabled (either compile
  995. * or runtime). Called with interrupts disabled.
  996. */
  997. int tick_check_oneshot_change(int allow_nohz)
  998. {
  999. struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
  1000. if (!test_and_clear_bit(0, &ts->check_clocks))
  1001. return 0;
  1002. if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
  1003. return 0;
  1004. if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
  1005. return 0;
  1006. if (!allow_nohz)
  1007. return 1;
  1008. tick_nohz_switch_to_nohz();
  1009. return 0;
  1010. }