stop_machine.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628
  1. /*
  2. * kernel/stop_machine.c
  3. *
  4. * Copyright (C) 2008, 2005 IBM Corporation.
  5. * Copyright (C) 2008, 2005 Rusty Russell rusty@rustcorp.com.au
  6. * Copyright (C) 2010 SUSE Linux Products GmbH
  7. * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
  8. *
  9. * This file is released under the GPLv2 and any later version.
  10. */
  11. #include <linux/completion.h>
  12. #include <linux/cpu.h>
  13. #include <linux/init.h>
  14. #include <linux/kthread.h>
  15. #include <linux/export.h>
  16. #include <linux/percpu.h>
  17. #include <linux/sched.h>
  18. #include <linux/stop_machine.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/kallsyms.h>
  21. #include <linux/smpboot.h>
  22. #include <linux/atomic.h>
  23. #include <linux/lglock.h>
  24. /*
  25. * Structure to determine completion condition and record errors. May
  26. * be shared by works on different cpus.
  27. */
  28. struct cpu_stop_done {
  29. atomic_t nr_todo; /* nr left to execute */
  30. int ret; /* collected return value */
  31. struct completion completion; /* fired if nr_todo reaches 0 */
  32. };
  33. /* the actual stopper, one per every possible cpu, enabled on online cpus */
  34. struct cpu_stopper {
  35. struct task_struct *thread;
  36. spinlock_t lock;
  37. bool enabled; /* is this stopper enabled? */
  38. struct list_head works; /* list of pending works */
  39. struct cpu_stop_work stop_work; /* for stop_cpus */
  40. };
  41. static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper);
  42. static bool stop_machine_initialized = false;
  43. /*
  44. * Avoids a race between stop_two_cpus and global stop_cpus, where
  45. * the stoppers could get queued up in reverse order, leading to
  46. * system deadlock. Using an lglock means stop_two_cpus remains
  47. * relatively cheap.
  48. */
  49. DEFINE_STATIC_LGLOCK(stop_cpus_lock);
  50. static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo)
  51. {
  52. memset(done, 0, sizeof(*done));
  53. atomic_set(&done->nr_todo, nr_todo);
  54. init_completion(&done->completion);
  55. }
  56. /* signal completion unless @done is NULL */
  57. static void cpu_stop_signal_done(struct cpu_stop_done *done)
  58. {
  59. if (atomic_dec_and_test(&done->nr_todo))
  60. complete(&done->completion);
  61. }
  62. static void __cpu_stop_queue_work(struct cpu_stopper *stopper,
  63. struct cpu_stop_work *work)
  64. {
  65. list_add_tail(&work->list, &stopper->works);
  66. wake_up_process(stopper->thread);
  67. }
  68. /* queue @work to @stopper. if offline, @work is completed immediately */
  69. static bool cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work)
  70. {
  71. struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
  72. unsigned long flags;
  73. bool enabled;
  74. spin_lock_irqsave(&stopper->lock, flags);
  75. enabled = stopper->enabled;
  76. if (enabled)
  77. __cpu_stop_queue_work(stopper, work);
  78. else if (work->done)
  79. cpu_stop_signal_done(work->done);
  80. spin_unlock_irqrestore(&stopper->lock, flags);
  81. return enabled;
  82. }
  83. /**
  84. * stop_one_cpu - stop a cpu
  85. * @cpu: cpu to stop
  86. * @fn: function to execute
  87. * @arg: argument to @fn
  88. *
  89. * Execute @fn(@arg) on @cpu. @fn is run in a process context with
  90. * the highest priority preempting any task on the cpu and
  91. * monopolizing it. This function returns after the execution is
  92. * complete.
  93. *
  94. * This function doesn't guarantee @cpu stays online till @fn
  95. * completes. If @cpu goes down in the middle, execution may happen
  96. * partially or fully on different cpus. @fn should either be ready
  97. * for that or the caller should ensure that @cpu stays online until
  98. * this function completes.
  99. *
  100. * CONTEXT:
  101. * Might sleep.
  102. *
  103. * RETURNS:
  104. * -ENOENT if @fn(@arg) was not executed because @cpu was offline;
  105. * otherwise, the return value of @fn.
  106. */
  107. int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)
  108. {
  109. struct cpu_stop_done done;
  110. struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done };
  111. cpu_stop_init_done(&done, 1);
  112. if (!cpu_stop_queue_work(cpu, &work))
  113. return -ENOENT;
  114. wait_for_completion(&done.completion);
  115. return done.ret;
  116. }
  117. /* This controls the threads on each CPU. */
  118. enum multi_stop_state {
  119. /* Dummy starting state for thread. */
  120. MULTI_STOP_NONE,
  121. /* Awaiting everyone to be scheduled. */
  122. MULTI_STOP_PREPARE,
  123. /* Disable interrupts. */
  124. MULTI_STOP_DISABLE_IRQ,
  125. /* Run the function */
  126. MULTI_STOP_RUN,
  127. /* Exit */
  128. MULTI_STOP_EXIT,
  129. };
  130. struct multi_stop_data {
  131. cpu_stop_fn_t fn;
  132. void *data;
  133. /* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */
  134. unsigned int num_threads;
  135. const struct cpumask *active_cpus;
  136. enum multi_stop_state state;
  137. atomic_t thread_ack;
  138. };
  139. static void set_state(struct multi_stop_data *msdata,
  140. enum multi_stop_state newstate)
  141. {
  142. /* Reset ack counter. */
  143. atomic_set(&msdata->thread_ack, msdata->num_threads);
  144. smp_wmb();
  145. msdata->state = newstate;
  146. }
  147. /* Last one to ack a state moves to the next state. */
  148. static void ack_state(struct multi_stop_data *msdata)
  149. {
  150. if (atomic_dec_and_test(&msdata->thread_ack))
  151. set_state(msdata, msdata->state + 1);
  152. }
  153. /* This is the cpu_stop function which stops the CPU. */
  154. static int multi_cpu_stop(void *data)
  155. {
  156. struct multi_stop_data *msdata = data;
  157. enum multi_stop_state curstate = MULTI_STOP_NONE;
  158. int cpu = smp_processor_id(), err = 0;
  159. unsigned long flags;
  160. bool is_active;
  161. /*
  162. * When called from stop_machine_from_inactive_cpu(), irq might
  163. * already be disabled. Save the state and restore it on exit.
  164. */
  165. local_save_flags(flags);
  166. if (!msdata->active_cpus)
  167. is_active = cpu == cpumask_first(cpu_online_mask);
  168. else
  169. is_active = cpumask_test_cpu(cpu, msdata->active_cpus);
  170. /* Simple state machine */
  171. do {
  172. /* Chill out and ensure we re-read multi_stop_state. */
  173. cpu_relax();
  174. if (msdata->state != curstate) {
  175. curstate = msdata->state;
  176. switch (curstate) {
  177. case MULTI_STOP_DISABLE_IRQ:
  178. local_irq_disable();
  179. hard_irq_disable();
  180. break;
  181. case MULTI_STOP_RUN:
  182. if (is_active)
  183. err = msdata->fn(msdata->data);
  184. break;
  185. default:
  186. break;
  187. }
  188. ack_state(msdata);
  189. }
  190. } while (curstate != MULTI_STOP_EXIT);
  191. local_irq_restore(flags);
  192. return err;
  193. }
  194. static int cpu_stop_queue_two_works(int cpu1, struct cpu_stop_work *work1,
  195. int cpu2, struct cpu_stop_work *work2)
  196. {
  197. struct cpu_stopper *stopper1 = per_cpu_ptr(&cpu_stopper, cpu1);
  198. struct cpu_stopper *stopper2 = per_cpu_ptr(&cpu_stopper, cpu2);
  199. int err;
  200. lg_double_lock(&stop_cpus_lock, cpu1, cpu2);
  201. spin_lock_irq(&stopper1->lock);
  202. spin_lock_nested(&stopper2->lock, SINGLE_DEPTH_NESTING);
  203. err = -ENOENT;
  204. if (!stopper1->enabled || !stopper2->enabled)
  205. goto unlock;
  206. err = 0;
  207. __cpu_stop_queue_work(stopper1, work1);
  208. __cpu_stop_queue_work(stopper2, work2);
  209. unlock:
  210. spin_unlock(&stopper2->lock);
  211. spin_unlock_irq(&stopper1->lock);
  212. lg_double_unlock(&stop_cpus_lock, cpu1, cpu2);
  213. return err;
  214. }
  215. /**
  216. * stop_two_cpus - stops two cpus
  217. * @cpu1: the cpu to stop
  218. * @cpu2: the other cpu to stop
  219. * @fn: function to execute
  220. * @arg: argument to @fn
  221. *
  222. * Stops both the current and specified CPU and runs @fn on one of them.
  223. *
  224. * returns when both are completed.
  225. */
  226. int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg)
  227. {
  228. struct cpu_stop_done done;
  229. struct cpu_stop_work work1, work2;
  230. struct multi_stop_data msdata;
  231. msdata = (struct multi_stop_data){
  232. .fn = fn,
  233. .data = arg,
  234. .num_threads = 2,
  235. .active_cpus = cpumask_of(cpu1),
  236. };
  237. work1 = work2 = (struct cpu_stop_work){
  238. .fn = multi_cpu_stop,
  239. .arg = &msdata,
  240. .done = &done
  241. };
  242. cpu_stop_init_done(&done, 2);
  243. set_state(&msdata, MULTI_STOP_PREPARE);
  244. if (cpu1 > cpu2)
  245. swap(cpu1, cpu2);
  246. if (cpu_stop_queue_two_works(cpu1, &work1, cpu2, &work2))
  247. return -ENOENT;
  248. wait_for_completion(&done.completion);
  249. return done.ret;
  250. }
  251. /**
  252. * stop_one_cpu_nowait - stop a cpu but don't wait for completion
  253. * @cpu: cpu to stop
  254. * @fn: function to execute
  255. * @arg: argument to @fn
  256. * @work_buf: pointer to cpu_stop_work structure
  257. *
  258. * Similar to stop_one_cpu() but doesn't wait for completion. The
  259. * caller is responsible for ensuring @work_buf is currently unused
  260. * and will remain untouched until stopper starts executing @fn.
  261. *
  262. * CONTEXT:
  263. * Don't care.
  264. *
  265. * RETURNS:
  266. * true if cpu_stop_work was queued successfully and @fn will be called,
  267. * false otherwise.
  268. */
  269. bool stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
  270. struct cpu_stop_work *work_buf)
  271. {
  272. *work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, };
  273. return cpu_stop_queue_work(cpu, work_buf);
  274. }
  275. /* static data for stop_cpus */
  276. static DEFINE_MUTEX(stop_cpus_mutex);
  277. static bool queue_stop_cpus_work(const struct cpumask *cpumask,
  278. cpu_stop_fn_t fn, void *arg,
  279. struct cpu_stop_done *done)
  280. {
  281. struct cpu_stop_work *work;
  282. unsigned int cpu;
  283. bool queued = false;
  284. /*
  285. * Disable preemption while queueing to avoid getting
  286. * preempted by a stopper which might wait for other stoppers
  287. * to enter @fn which can lead to deadlock.
  288. */
  289. lg_global_lock(&stop_cpus_lock);
  290. for_each_cpu(cpu, cpumask) {
  291. work = &per_cpu(cpu_stopper.stop_work, cpu);
  292. work->fn = fn;
  293. work->arg = arg;
  294. work->done = done;
  295. if (cpu_stop_queue_work(cpu, work))
  296. queued = true;
  297. }
  298. lg_global_unlock(&stop_cpus_lock);
  299. return queued;
  300. }
  301. static int __stop_cpus(const struct cpumask *cpumask,
  302. cpu_stop_fn_t fn, void *arg)
  303. {
  304. struct cpu_stop_done done;
  305. cpu_stop_init_done(&done, cpumask_weight(cpumask));
  306. if (!queue_stop_cpus_work(cpumask, fn, arg, &done))
  307. return -ENOENT;
  308. wait_for_completion(&done.completion);
  309. return done.ret;
  310. }
  311. /**
  312. * stop_cpus - stop multiple cpus
  313. * @cpumask: cpus to stop
  314. * @fn: function to execute
  315. * @arg: argument to @fn
  316. *
  317. * Execute @fn(@arg) on online cpus in @cpumask. On each target cpu,
  318. * @fn is run in a process context with the highest priority
  319. * preempting any task on the cpu and monopolizing it. This function
  320. * returns after all executions are complete.
  321. *
  322. * This function doesn't guarantee the cpus in @cpumask stay online
  323. * till @fn completes. If some cpus go down in the middle, execution
  324. * on the cpu may happen partially or fully on different cpus. @fn
  325. * should either be ready for that or the caller should ensure that
  326. * the cpus stay online until this function completes.
  327. *
  328. * All stop_cpus() calls are serialized making it safe for @fn to wait
  329. * for all cpus to start executing it.
  330. *
  331. * CONTEXT:
  332. * Might sleep.
  333. *
  334. * RETURNS:
  335. * -ENOENT if @fn(@arg) was not executed at all because all cpus in
  336. * @cpumask were offline; otherwise, 0 if all executions of @fn
  337. * returned 0, any non zero return value if any returned non zero.
  338. */
  339. int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
  340. {
  341. int ret;
  342. /* static works are used, process one request at a time */
  343. mutex_lock(&stop_cpus_mutex);
  344. ret = __stop_cpus(cpumask, fn, arg);
  345. mutex_unlock(&stop_cpus_mutex);
  346. return ret;
  347. }
  348. /**
  349. * try_stop_cpus - try to stop multiple cpus
  350. * @cpumask: cpus to stop
  351. * @fn: function to execute
  352. * @arg: argument to @fn
  353. *
  354. * Identical to stop_cpus() except that it fails with -EAGAIN if
  355. * someone else is already using the facility.
  356. *
  357. * CONTEXT:
  358. * Might sleep.
  359. *
  360. * RETURNS:
  361. * -EAGAIN if someone else is already stopping cpus, -ENOENT if
  362. * @fn(@arg) was not executed at all because all cpus in @cpumask were
  363. * offline; otherwise, 0 if all executions of @fn returned 0, any non
  364. * zero return value if any returned non zero.
  365. */
  366. int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
  367. {
  368. int ret;
  369. /* static works are used, process one request at a time */
  370. if (!mutex_trylock(&stop_cpus_mutex))
  371. return -EAGAIN;
  372. ret = __stop_cpus(cpumask, fn, arg);
  373. mutex_unlock(&stop_cpus_mutex);
  374. return ret;
  375. }
  376. static int cpu_stop_should_run(unsigned int cpu)
  377. {
  378. struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
  379. unsigned long flags;
  380. int run;
  381. spin_lock_irqsave(&stopper->lock, flags);
  382. run = !list_empty(&stopper->works);
  383. spin_unlock_irqrestore(&stopper->lock, flags);
  384. return run;
  385. }
  386. static void cpu_stopper_thread(unsigned int cpu)
  387. {
  388. struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
  389. struct cpu_stop_work *work;
  390. repeat:
  391. work = NULL;
  392. spin_lock_irq(&stopper->lock);
  393. if (!list_empty(&stopper->works)) {
  394. work = list_first_entry(&stopper->works,
  395. struct cpu_stop_work, list);
  396. list_del_init(&work->list);
  397. }
  398. spin_unlock_irq(&stopper->lock);
  399. if (work) {
  400. cpu_stop_fn_t fn = work->fn;
  401. void *arg = work->arg;
  402. struct cpu_stop_done *done = work->done;
  403. int ret;
  404. /* cpu stop callbacks must not sleep, make in_atomic() == T */
  405. preempt_count_inc();
  406. ret = fn(arg);
  407. if (done) {
  408. if (ret)
  409. done->ret = ret;
  410. cpu_stop_signal_done(done);
  411. }
  412. preempt_count_dec();
  413. WARN_ONCE(preempt_count(),
  414. "cpu_stop: %pf(%p) leaked preempt count\n", fn, arg);
  415. goto repeat;
  416. }
  417. }
  418. void stop_machine_park(int cpu)
  419. {
  420. struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
  421. /*
  422. * Lockless. cpu_stopper_thread() will take stopper->lock and flush
  423. * the pending works before it parks, until then it is fine to queue
  424. * the new works.
  425. */
  426. stopper->enabled = false;
  427. kthread_park(stopper->thread);
  428. }
  429. extern void sched_set_stop_task(int cpu, struct task_struct *stop);
  430. static void cpu_stop_create(unsigned int cpu)
  431. {
  432. sched_set_stop_task(cpu, per_cpu(cpu_stopper.thread, cpu));
  433. }
  434. static void cpu_stop_park(unsigned int cpu)
  435. {
  436. struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
  437. WARN_ON(!list_empty(&stopper->works));
  438. }
  439. void stop_machine_unpark(int cpu)
  440. {
  441. struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
  442. stopper->enabled = true;
  443. kthread_unpark(stopper->thread);
  444. }
  445. static struct smp_hotplug_thread cpu_stop_threads = {
  446. .store = &cpu_stopper.thread,
  447. .thread_should_run = cpu_stop_should_run,
  448. .thread_fn = cpu_stopper_thread,
  449. .thread_comm = "migration/%u",
  450. .create = cpu_stop_create,
  451. .park = cpu_stop_park,
  452. .selfparking = true,
  453. };
  454. static int __init cpu_stop_init(void)
  455. {
  456. unsigned int cpu;
  457. for_each_possible_cpu(cpu) {
  458. struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
  459. spin_lock_init(&stopper->lock);
  460. INIT_LIST_HEAD(&stopper->works);
  461. }
  462. BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads));
  463. stop_machine_unpark(raw_smp_processor_id());
  464. stop_machine_initialized = true;
  465. return 0;
  466. }
  467. early_initcall(cpu_stop_init);
  468. static int __stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus)
  469. {
  470. struct multi_stop_data msdata = {
  471. .fn = fn,
  472. .data = data,
  473. .num_threads = num_online_cpus(),
  474. .active_cpus = cpus,
  475. };
  476. if (!stop_machine_initialized) {
  477. /*
  478. * Handle the case where stop_machine() is called
  479. * early in boot before stop_machine() has been
  480. * initialized.
  481. */
  482. unsigned long flags;
  483. int ret;
  484. WARN_ON_ONCE(msdata.num_threads != 1);
  485. local_irq_save(flags);
  486. hard_irq_disable();
  487. ret = (*fn)(data);
  488. local_irq_restore(flags);
  489. return ret;
  490. }
  491. /* Set the initial state and stop all online cpus. */
  492. set_state(&msdata, MULTI_STOP_PREPARE);
  493. return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata);
  494. }
  495. int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus)
  496. {
  497. int ret;
  498. /* No CPUs can come up or down during this. */
  499. get_online_cpus();
  500. ret = __stop_machine(fn, data, cpus);
  501. put_online_cpus();
  502. return ret;
  503. }
  504. EXPORT_SYMBOL_GPL(stop_machine);
  505. /**
  506. * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU
  507. * @fn: the function to run
  508. * @data: the data ptr for the @fn()
  509. * @cpus: the cpus to run the @fn() on (NULL = any online cpu)
  510. *
  511. * This is identical to stop_machine() but can be called from a CPU which
  512. * is not active. The local CPU is in the process of hotplug (so no other
  513. * CPU hotplug can start) and not marked active and doesn't have enough
  514. * context to sleep.
  515. *
  516. * This function provides stop_machine() functionality for such state by
  517. * using busy-wait for synchronization and executing @fn directly for local
  518. * CPU.
  519. *
  520. * CONTEXT:
  521. * Local CPU is inactive. Temporarily stops all active CPUs.
  522. *
  523. * RETURNS:
  524. * 0 if all executions of @fn returned 0, any non zero return value if any
  525. * returned non zero.
  526. */
  527. int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data,
  528. const struct cpumask *cpus)
  529. {
  530. struct multi_stop_data msdata = { .fn = fn, .data = data,
  531. .active_cpus = cpus };
  532. struct cpu_stop_done done;
  533. int ret;
  534. /* Local CPU must be inactive and CPU hotplug in progress. */
  535. BUG_ON(cpu_active(raw_smp_processor_id()));
  536. msdata.num_threads = num_active_cpus() + 1; /* +1 for local */
  537. /* No proper task established and can't sleep - busy wait for lock. */
  538. while (!mutex_trylock(&stop_cpus_mutex))
  539. cpu_relax();
  540. /* Schedule work on other CPUs and execute directly for local CPU */
  541. set_state(&msdata, MULTI_STOP_PREPARE);
  542. cpu_stop_init_done(&done, num_active_cpus());
  543. queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata,
  544. &done);
  545. ret = multi_cpu_stop(&msdata);
  546. /* Busy wait for completion. */
  547. while (!completion_done(&done.completion))
  548. cpu_relax();
  549. mutex_unlock(&stop_cpus_mutex);
  550. return ret ?: done.ret;
  551. }