exit.c 42 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633
  1. /*
  2. * linux/kernel/exit.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. #include <linux/mm.h>
  7. #include <linux/slab.h>
  8. #include <linux/interrupt.h>
  9. #include <linux/module.h>
  10. #include <linux/capability.h>
  11. #include <linux/completion.h>
  12. #include <linux/personality.h>
  13. #include <linux/tty.h>
  14. #include <linux/iocontext.h>
  15. #include <linux/key.h>
  16. #include <linux/security.h>
  17. #include <linux/cpu.h>
  18. #include <linux/acct.h>
  19. #include <linux/tsacct_kern.h>
  20. #include <linux/file.h>
  21. #include <linux/fdtable.h>
  22. #include <linux/freezer.h>
  23. #include <linux/binfmts.h>
  24. #include <linux/nsproxy.h>
  25. #include <linux/pid_namespace.h>
  26. #include <linux/ptrace.h>
  27. #include <linux/profile.h>
  28. #include <linux/mount.h>
  29. #include <linux/proc_fs.h>
  30. #include <linux/kthread.h>
  31. #include <linux/mempolicy.h>
  32. #include <linux/taskstats_kern.h>
  33. #include <linux/delayacct.h>
  34. #include <linux/cgroup.h>
  35. #include <linux/syscalls.h>
  36. #include <linux/signal.h>
  37. #include <linux/posix-timers.h>
  38. #include <linux/cn_proc.h>
  39. #include <linux/mutex.h>
  40. #include <linux/futex.h>
  41. #include <linux/pipe_fs_i.h>
  42. #include <linux/audit.h> /* for audit_free() */
  43. #include <linux/resource.h>
  44. #include <linux/blkdev.h>
  45. #include <linux/task_io_accounting_ops.h>
  46. #include <linux/tracehook.h>
  47. #include <linux/fs_struct.h>
  48. #include <linux/init_task.h>
  49. #include <linux/perf_event.h>
  50. #include <trace/events/sched.h>
  51. #include <linux/hw_breakpoint.h>
  52. #include <linux/oom.h>
  53. #include <linux/writeback.h>
  54. #include <linux/shm.h>
  55. #include <asm/uaccess.h>
  56. #include <asm/unistd.h>
  57. #include <asm/pgtable.h>
  58. #include <asm/mmu_context.h>
  59. static void __unhash_process(struct task_struct *p, bool group_dead)
  60. {
  61. nr_threads--;
  62. detach_pid(p, PIDTYPE_PID);
  63. if (group_dead) {
  64. detach_pid(p, PIDTYPE_PGID);
  65. detach_pid(p, PIDTYPE_SID);
  66. list_del_rcu(&p->tasks);
  67. list_del_init(&p->sibling);
  68. __this_cpu_dec(process_counts);
  69. }
  70. list_del_rcu(&p->thread_group);
  71. list_del_rcu(&p->thread_node);
  72. }
  73. /*
  74. * This function expects the tasklist_lock write-locked.
  75. */
  76. static void __exit_signal(struct task_struct *tsk)
  77. {
  78. struct signal_struct *sig = tsk->signal;
  79. bool group_dead = thread_group_leader(tsk);
  80. struct sighand_struct *sighand;
  81. struct tty_struct *uninitialized_var(tty);
  82. cputime_t utime, stime;
  83. sighand = rcu_dereference_check(tsk->sighand,
  84. lockdep_tasklist_lock_is_held());
  85. spin_lock(&sighand->siglock);
  86. posix_cpu_timers_exit(tsk);
  87. if (group_dead) {
  88. posix_cpu_timers_exit_group(tsk);
  89. tty = sig->tty;
  90. sig->tty = NULL;
  91. } else {
  92. /*
  93. * This can only happen if the caller is de_thread().
  94. * FIXME: this is the temporary hack, we should teach
  95. * posix-cpu-timers to handle this case correctly.
  96. */
  97. if (unlikely(has_group_leader_pid(tsk)))
  98. posix_cpu_timers_exit_group(tsk);
  99. /*
  100. * If there is any task waiting for the group exit
  101. * then notify it:
  102. */
  103. if (sig->notify_count > 0 && !--sig->notify_count)
  104. wake_up_process(sig->group_exit_task);
  105. if (tsk == sig->curr_target)
  106. sig->curr_target = next_thread(tsk);
  107. }
  108. /*
  109. * Accumulate here the counters for all threads as they die. We could
  110. * skip the group leader because it is the last user of signal_struct,
  111. * but we want to avoid the race with thread_group_cputime() which can
  112. * see the empty ->thread_head list.
  113. */
  114. task_cputime(tsk, &utime, &stime);
  115. write_seqlock(&sig->stats_lock);
  116. sig->utime += utime;
  117. sig->stime += stime;
  118. sig->gtime += task_gtime(tsk);
  119. sig->min_flt += tsk->min_flt;
  120. sig->maj_flt += tsk->maj_flt;
  121. sig->nvcsw += tsk->nvcsw;
  122. sig->nivcsw += tsk->nivcsw;
  123. sig->inblock += task_io_get_inblock(tsk);
  124. sig->oublock += task_io_get_oublock(tsk);
  125. task_io_accounting_add(&sig->ioac, &tsk->ioac);
  126. sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
  127. sig->nr_threads--;
  128. __unhash_process(tsk, group_dead);
  129. write_sequnlock(&sig->stats_lock);
  130. /*
  131. * Do this under ->siglock, we can race with another thread
  132. * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
  133. */
  134. flush_sigqueue(&tsk->pending);
  135. tsk->sighand = NULL;
  136. spin_unlock(&sighand->siglock);
  137. __cleanup_sighand(sighand);
  138. clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
  139. if (group_dead) {
  140. flush_sigqueue(&sig->shared_pending);
  141. tty_kref_put(tty);
  142. }
  143. }
  144. static void delayed_put_task_struct(struct rcu_head *rhp)
  145. {
  146. struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
  147. perf_event_delayed_put(tsk);
  148. trace_sched_process_free(tsk);
  149. put_task_struct(tsk);
  150. }
  151. void release_task(struct task_struct *p)
  152. {
  153. struct task_struct *leader;
  154. int zap_leader;
  155. repeat:
  156. /* don't need to get the RCU readlock here - the process is dead and
  157. * can't be modifying its own credentials. But shut RCU-lockdep up */
  158. rcu_read_lock();
  159. atomic_dec(&__task_cred(p)->user->processes);
  160. rcu_read_unlock();
  161. proc_flush_task(p);
  162. write_lock_irq(&tasklist_lock);
  163. ptrace_release_task(p);
  164. __exit_signal(p);
  165. /*
  166. * If we are the last non-leader member of the thread
  167. * group, and the leader is zombie, then notify the
  168. * group leader's parent process. (if it wants notification.)
  169. */
  170. zap_leader = 0;
  171. leader = p->group_leader;
  172. if (leader != p && thread_group_empty(leader)
  173. && leader->exit_state == EXIT_ZOMBIE) {
  174. /*
  175. * If we were the last child thread and the leader has
  176. * exited already, and the leader's parent ignores SIGCHLD,
  177. * then we are the one who should release the leader.
  178. */
  179. zap_leader = do_notify_parent(leader, leader->exit_signal);
  180. if (zap_leader)
  181. leader->exit_state = EXIT_DEAD;
  182. }
  183. write_unlock_irq(&tasklist_lock);
  184. release_thread(p);
  185. call_rcu(&p->rcu, delayed_put_task_struct);
  186. p = leader;
  187. if (unlikely(zap_leader))
  188. goto repeat;
  189. }
  190. /*
  191. * Determine if a process group is "orphaned", according to the POSIX
  192. * definition in 2.2.2.52. Orphaned process groups are not to be affected
  193. * by terminal-generated stop signals. Newly orphaned process groups are
  194. * to receive a SIGHUP and a SIGCONT.
  195. *
  196. * "I ask you, have you ever known what it is to be an orphan?"
  197. */
  198. static int will_become_orphaned_pgrp(struct pid *pgrp,
  199. struct task_struct *ignored_task)
  200. {
  201. struct task_struct *p;
  202. do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
  203. if ((p == ignored_task) ||
  204. (p->exit_state && thread_group_empty(p)) ||
  205. is_global_init(p->real_parent))
  206. continue;
  207. if (task_pgrp(p->real_parent) != pgrp &&
  208. task_session(p->real_parent) == task_session(p))
  209. return 0;
  210. } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
  211. return 1;
  212. }
  213. int is_current_pgrp_orphaned(void)
  214. {
  215. int retval;
  216. read_lock(&tasklist_lock);
  217. retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
  218. read_unlock(&tasklist_lock);
  219. return retval;
  220. }
  221. static bool has_stopped_jobs(struct pid *pgrp)
  222. {
  223. struct task_struct *p;
  224. do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
  225. if (p->signal->flags & SIGNAL_STOP_STOPPED)
  226. return true;
  227. } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
  228. return false;
  229. }
  230. /*
  231. * Check to see if any process groups have become orphaned as
  232. * a result of our exiting, and if they have any stopped jobs,
  233. * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
  234. */
  235. static void
  236. kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
  237. {
  238. struct pid *pgrp = task_pgrp(tsk);
  239. struct task_struct *ignored_task = tsk;
  240. if (!parent)
  241. /* exit: our father is in a different pgrp than
  242. * we are and we were the only connection outside.
  243. */
  244. parent = tsk->real_parent;
  245. else
  246. /* reparent: our child is in a different pgrp than
  247. * we are, and it was the only connection outside.
  248. */
  249. ignored_task = NULL;
  250. if (task_pgrp(parent) != pgrp &&
  251. task_session(parent) == task_session(tsk) &&
  252. will_become_orphaned_pgrp(pgrp, ignored_task) &&
  253. has_stopped_jobs(pgrp)) {
  254. __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
  255. __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
  256. }
  257. }
  258. #ifdef CONFIG_MEMCG
  259. /*
  260. * A task is exiting. If it owned this mm, find a new owner for the mm.
  261. */
  262. void mm_update_next_owner(struct mm_struct *mm)
  263. {
  264. struct task_struct *c, *g, *p = current;
  265. retry:
  266. /*
  267. * If the exiting or execing task is not the owner, it's
  268. * someone else's problem.
  269. */
  270. if (mm->owner != p)
  271. return;
  272. /*
  273. * The current owner is exiting/execing and there are no other
  274. * candidates. Do not leave the mm pointing to a possibly
  275. * freed task structure.
  276. */
  277. if (atomic_read(&mm->mm_users) <= 1) {
  278. mm->owner = NULL;
  279. return;
  280. }
  281. read_lock(&tasklist_lock);
  282. /*
  283. * Search in the children
  284. */
  285. list_for_each_entry(c, &p->children, sibling) {
  286. if (c->mm == mm)
  287. goto assign_new_owner;
  288. }
  289. /*
  290. * Search in the siblings
  291. */
  292. list_for_each_entry(c, &p->real_parent->children, sibling) {
  293. if (c->mm == mm)
  294. goto assign_new_owner;
  295. }
  296. /*
  297. * Search through everything else, we should not get here often.
  298. */
  299. for_each_process(g) {
  300. if (g->flags & PF_KTHREAD)
  301. continue;
  302. for_each_thread(g, c) {
  303. if (c->mm == mm)
  304. goto assign_new_owner;
  305. if (c->mm)
  306. break;
  307. }
  308. }
  309. read_unlock(&tasklist_lock);
  310. /*
  311. * We found no owner yet mm_users > 1: this implies that we are
  312. * most likely racing with swapoff (try_to_unuse()) or /proc or
  313. * ptrace or page migration (get_task_mm()). Mark owner as NULL.
  314. */
  315. mm->owner = NULL;
  316. return;
  317. assign_new_owner:
  318. BUG_ON(c == p);
  319. get_task_struct(c);
  320. /*
  321. * The task_lock protects c->mm from changing.
  322. * We always want mm->owner->mm == mm
  323. */
  324. task_lock(c);
  325. /*
  326. * Delay read_unlock() till we have the task_lock()
  327. * to ensure that c does not slip away underneath us
  328. */
  329. read_unlock(&tasklist_lock);
  330. if (c->mm != mm) {
  331. task_unlock(c);
  332. put_task_struct(c);
  333. goto retry;
  334. }
  335. mm->owner = c;
  336. task_unlock(c);
  337. put_task_struct(c);
  338. }
  339. #endif /* CONFIG_MEMCG */
  340. /*
  341. * Turn us into a lazy TLB process if we
  342. * aren't already..
  343. */
  344. static void exit_mm(struct task_struct *tsk)
  345. {
  346. struct mm_struct *mm = tsk->mm;
  347. struct core_state *core_state;
  348. mm_release(tsk, mm);
  349. if (!mm)
  350. return;
  351. sync_mm_rss(mm);
  352. /*
  353. * Serialize with any possible pending coredump.
  354. * We must hold mmap_sem around checking core_state
  355. * and clearing tsk->mm. The core-inducing thread
  356. * will increment ->nr_threads for each thread in the
  357. * group with ->mm != NULL.
  358. */
  359. down_read(&mm->mmap_sem);
  360. core_state = mm->core_state;
  361. if (core_state) {
  362. struct core_thread self;
  363. up_read(&mm->mmap_sem);
  364. self.task = tsk;
  365. self.next = xchg(&core_state->dumper.next, &self);
  366. /*
  367. * Implies mb(), the result of xchg() must be visible
  368. * to core_state->dumper.
  369. */
  370. if (atomic_dec_and_test(&core_state->nr_threads))
  371. complete(&core_state->startup);
  372. for (;;) {
  373. set_task_state(tsk, TASK_UNINTERRUPTIBLE);
  374. if (!self.task) /* see coredump_finish() */
  375. break;
  376. freezable_schedule();
  377. }
  378. __set_task_state(tsk, TASK_RUNNING);
  379. down_read(&mm->mmap_sem);
  380. }
  381. atomic_inc(&mm->mm_count);
  382. BUG_ON(mm != tsk->active_mm);
  383. /* more a memory barrier than a real lock */
  384. task_lock(tsk);
  385. tsk->mm = NULL;
  386. up_read(&mm->mmap_sem);
  387. enter_lazy_tlb(mm, current);
  388. task_unlock(tsk);
  389. mm_update_next_owner(mm);
  390. mmput(mm);
  391. if (test_thread_flag(TIF_MEMDIE))
  392. exit_oom_victim();
  393. }
  394. static struct task_struct *find_alive_thread(struct task_struct *p)
  395. {
  396. struct task_struct *t;
  397. for_each_thread(p, t) {
  398. if (!(t->flags & PF_EXITING))
  399. return t;
  400. }
  401. return NULL;
  402. }
  403. static struct task_struct *find_child_reaper(struct task_struct *father)
  404. __releases(&tasklist_lock)
  405. __acquires(&tasklist_lock)
  406. {
  407. struct pid_namespace *pid_ns = task_active_pid_ns(father);
  408. struct task_struct *reaper = pid_ns->child_reaper;
  409. if (likely(reaper != father))
  410. return reaper;
  411. reaper = find_alive_thread(father);
  412. if (reaper) {
  413. pid_ns->child_reaper = reaper;
  414. return reaper;
  415. }
  416. write_unlock_irq(&tasklist_lock);
  417. if (unlikely(pid_ns == &init_pid_ns)) {
  418. panic("Attempted to kill init! exitcode=0x%08x\n",
  419. father->signal->group_exit_code ?: father->exit_code);
  420. }
  421. zap_pid_ns_processes(pid_ns);
  422. write_lock_irq(&tasklist_lock);
  423. return father;
  424. }
  425. /*
  426. * When we die, we re-parent all our children, and try to:
  427. * 1. give them to another thread in our thread group, if such a member exists
  428. * 2. give it to the first ancestor process which prctl'd itself as a
  429. * child_subreaper for its children (like a service manager)
  430. * 3. give it to the init process (PID 1) in our pid namespace
  431. */
  432. static struct task_struct *find_new_reaper(struct task_struct *father,
  433. struct task_struct *child_reaper)
  434. {
  435. struct task_struct *thread, *reaper;
  436. thread = find_alive_thread(father);
  437. if (thread)
  438. return thread;
  439. if (father->signal->has_child_subreaper) {
  440. /*
  441. * Find the first ->is_child_subreaper ancestor in our pid_ns.
  442. * We start from father to ensure we can not look into another
  443. * namespace, this is safe because all its threads are dead.
  444. */
  445. for (reaper = father;
  446. !same_thread_group(reaper, child_reaper);
  447. reaper = reaper->real_parent) {
  448. /* call_usermodehelper() descendants need this check */
  449. if (reaper == &init_task)
  450. break;
  451. if (!reaper->signal->is_child_subreaper)
  452. continue;
  453. thread = find_alive_thread(reaper);
  454. if (thread)
  455. return thread;
  456. }
  457. }
  458. return child_reaper;
  459. }
  460. /*
  461. * Any that need to be release_task'd are put on the @dead list.
  462. */
  463. static void reparent_leader(struct task_struct *father, struct task_struct *p,
  464. struct list_head *dead)
  465. {
  466. if (unlikely(p->exit_state == EXIT_DEAD))
  467. return;
  468. /* We don't want people slaying init. */
  469. p->exit_signal = SIGCHLD;
  470. /* If it has exited notify the new parent about this child's death. */
  471. if (!p->ptrace &&
  472. p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
  473. if (do_notify_parent(p, p->exit_signal)) {
  474. p->exit_state = EXIT_DEAD;
  475. list_add(&p->ptrace_entry, dead);
  476. }
  477. }
  478. kill_orphaned_pgrp(p, father);
  479. }
  480. /*
  481. * This does two things:
  482. *
  483. * A. Make init inherit all the child processes
  484. * B. Check to see if any process groups have become orphaned
  485. * as a result of our exiting, and if they have any stopped
  486. * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
  487. */
  488. static void forget_original_parent(struct task_struct *father,
  489. struct list_head *dead)
  490. {
  491. struct task_struct *p, *t, *reaper;
  492. if (unlikely(!list_empty(&father->ptraced)))
  493. exit_ptrace(father, dead);
  494. /* Can drop and reacquire tasklist_lock */
  495. reaper = find_child_reaper(father);
  496. if (list_empty(&father->children))
  497. return;
  498. reaper = find_new_reaper(father, reaper);
  499. list_for_each_entry(p, &father->children, sibling) {
  500. for_each_thread(p, t) {
  501. t->real_parent = reaper;
  502. BUG_ON((!t->ptrace) != (t->parent == father));
  503. if (likely(!t->ptrace))
  504. t->parent = t->real_parent;
  505. if (t->pdeath_signal)
  506. group_send_sig_info(t->pdeath_signal,
  507. SEND_SIG_NOINFO, t);
  508. }
  509. /*
  510. * If this is a threaded reparent there is no need to
  511. * notify anyone anything has happened.
  512. */
  513. if (!same_thread_group(reaper, father))
  514. reparent_leader(father, p, dead);
  515. }
  516. list_splice_tail_init(&father->children, &reaper->children);
  517. }
  518. /*
  519. * Send signals to all our closest relatives so that they know
  520. * to properly mourn us..
  521. */
  522. static void exit_notify(struct task_struct *tsk, int group_dead)
  523. {
  524. bool autoreap;
  525. struct task_struct *p, *n;
  526. LIST_HEAD(dead);
  527. write_lock_irq(&tasklist_lock);
  528. forget_original_parent(tsk, &dead);
  529. if (group_dead)
  530. kill_orphaned_pgrp(tsk->group_leader, NULL);
  531. if (unlikely(tsk->ptrace)) {
  532. int sig = thread_group_leader(tsk) &&
  533. thread_group_empty(tsk) &&
  534. !ptrace_reparented(tsk) ?
  535. tsk->exit_signal : SIGCHLD;
  536. autoreap = do_notify_parent(tsk, sig);
  537. } else if (thread_group_leader(tsk)) {
  538. autoreap = thread_group_empty(tsk) &&
  539. do_notify_parent(tsk, tsk->exit_signal);
  540. } else {
  541. autoreap = true;
  542. }
  543. tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
  544. if (tsk->exit_state == EXIT_DEAD)
  545. list_add(&tsk->ptrace_entry, &dead);
  546. /* mt-exec, de_thread() is waiting for group leader */
  547. if (unlikely(tsk->signal->notify_count < 0))
  548. wake_up_process(tsk->signal->group_exit_task);
  549. write_unlock_irq(&tasklist_lock);
  550. list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
  551. list_del_init(&p->ptrace_entry);
  552. release_task(p);
  553. }
  554. }
  555. #ifdef CONFIG_DEBUG_STACK_USAGE
  556. static void check_stack_usage(void)
  557. {
  558. static DEFINE_SPINLOCK(low_water_lock);
  559. static int lowest_to_date = THREAD_SIZE;
  560. unsigned long free;
  561. free = stack_not_used(current);
  562. if (free >= lowest_to_date)
  563. return;
  564. spin_lock(&low_water_lock);
  565. if (free < lowest_to_date) {
  566. pr_warn("%s (%d) used greatest stack depth: %lu bytes left\n",
  567. current->comm, task_pid_nr(current), free);
  568. lowest_to_date = free;
  569. }
  570. spin_unlock(&low_water_lock);
  571. }
  572. #else
  573. static inline void check_stack_usage(void) {}
  574. #endif
  575. void do_exit(long code)
  576. {
  577. struct task_struct *tsk = current;
  578. int group_dead;
  579. TASKS_RCU(int tasks_rcu_i);
  580. profile_task_exit(tsk);
  581. WARN_ON(blk_needs_flush_plug(tsk));
  582. if (unlikely(in_interrupt()))
  583. panic("Aiee, killing interrupt handler!");
  584. if (unlikely(!tsk->pid))
  585. panic("Attempted to kill the idle task!");
  586. /*
  587. * If do_exit is called because this processes oopsed, it's possible
  588. * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
  589. * continuing. Amongst other possible reasons, this is to prevent
  590. * mm_release()->clear_child_tid() from writing to a user-controlled
  591. * kernel address.
  592. */
  593. set_fs(USER_DS);
  594. ptrace_event(PTRACE_EVENT_EXIT, code);
  595. validate_creds_for_do_exit(tsk);
  596. /*
  597. * We're taking recursive faults here in do_exit. Safest is to just
  598. * leave this task alone and wait for reboot.
  599. */
  600. if (unlikely(tsk->flags & PF_EXITING)) {
  601. pr_alert("Fixing recursive fault but reboot is needed!\n");
  602. /*
  603. * We can do this unlocked here. The futex code uses
  604. * this flag just to verify whether the pi state
  605. * cleanup has been done or not. In the worst case it
  606. * loops once more. We pretend that the cleanup was
  607. * done as there is no way to return. Either the
  608. * OWNER_DIED bit is set by now or we push the blocked
  609. * task into the wait for ever nirwana as well.
  610. */
  611. tsk->flags |= PF_EXITPIDONE;
  612. set_current_state(TASK_UNINTERRUPTIBLE);
  613. schedule();
  614. }
  615. exit_signals(tsk); /* sets PF_EXITING */
  616. /*
  617. * tsk->flags are checked in the futex code to protect against
  618. * an exiting task cleaning up the robust pi futexes.
  619. */
  620. smp_mb();
  621. raw_spin_unlock_wait(&tsk->pi_lock);
  622. if (unlikely(in_atomic())) {
  623. pr_info("note: %s[%d] exited with preempt_count %d\n",
  624. current->comm, task_pid_nr(current),
  625. preempt_count());
  626. preempt_count_set(PREEMPT_ENABLED);
  627. }
  628. /* sync mm's RSS info before statistics gathering */
  629. if (tsk->mm)
  630. sync_mm_rss(tsk->mm);
  631. acct_update_integrals(tsk);
  632. group_dead = atomic_dec_and_test(&tsk->signal->live);
  633. if (group_dead) {
  634. hrtimer_cancel(&tsk->signal->real_timer);
  635. exit_itimers(tsk->signal);
  636. if (tsk->mm)
  637. setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
  638. }
  639. acct_collect(code, group_dead);
  640. if (group_dead)
  641. tty_audit_exit();
  642. audit_free(tsk);
  643. tsk->exit_code = code;
  644. taskstats_exit(tsk, group_dead);
  645. exit_mm(tsk);
  646. if (group_dead)
  647. acct_process();
  648. trace_sched_process_exit(tsk);
  649. exit_sem(tsk);
  650. exit_shm(tsk);
  651. exit_files(tsk);
  652. exit_fs(tsk);
  653. if (group_dead)
  654. disassociate_ctty(1);
  655. exit_task_namespaces(tsk);
  656. exit_task_work(tsk);
  657. exit_thread();
  658. /*
  659. * Flush inherited counters to the parent - before the parent
  660. * gets woken up by child-exit notifications.
  661. *
  662. * because of cgroup mode, must be called before cgroup_exit()
  663. */
  664. perf_event_exit_task(tsk);
  665. cgroup_exit(tsk);
  666. /*
  667. * FIXME: do that only when needed, using sched_exit tracepoint
  668. */
  669. flush_ptrace_hw_breakpoint(tsk);
  670. TASKS_RCU(preempt_disable());
  671. TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu));
  672. TASKS_RCU(preempt_enable());
  673. exit_notify(tsk, group_dead);
  674. proc_exit_connector(tsk);
  675. #ifdef CONFIG_NUMA
  676. task_lock(tsk);
  677. mpol_put(tsk->mempolicy);
  678. tsk->mempolicy = NULL;
  679. task_unlock(tsk);
  680. #endif
  681. #ifdef CONFIG_FUTEX
  682. if (unlikely(current->pi_state_cache))
  683. kfree(current->pi_state_cache);
  684. #endif
  685. /*
  686. * Make sure we are holding no locks:
  687. */
  688. debug_check_no_locks_held();
  689. /*
  690. * We can do this unlocked here. The futex code uses this flag
  691. * just to verify whether the pi state cleanup has been done
  692. * or not. In the worst case it loops once more.
  693. */
  694. tsk->flags |= PF_EXITPIDONE;
  695. if (tsk->io_context)
  696. exit_io_context(tsk);
  697. if (tsk->splice_pipe)
  698. free_pipe_info(tsk->splice_pipe);
  699. if (tsk->task_frag.page)
  700. put_page(tsk->task_frag.page);
  701. validate_creds_for_do_exit(tsk);
  702. check_stack_usage();
  703. preempt_disable();
  704. if (tsk->nr_dirtied)
  705. __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
  706. exit_rcu();
  707. TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i));
  708. /*
  709. * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
  710. * when the following two conditions become true.
  711. * - There is race condition of mmap_sem (It is acquired by
  712. * exit_mm()), and
  713. * - SMI occurs before setting TASK_RUNINNG.
  714. * (or hypervisor of virtual machine switches to other guest)
  715. * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
  716. *
  717. * To avoid it, we have to wait for releasing tsk->pi_lock which
  718. * is held by try_to_wake_up()
  719. */
  720. smp_mb();
  721. raw_spin_unlock_wait(&tsk->pi_lock);
  722. /* causes final put_task_struct in finish_task_switch(). */
  723. tsk->state = TASK_DEAD;
  724. tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
  725. schedule();
  726. BUG();
  727. /* Avoid "noreturn function does return". */
  728. for (;;)
  729. cpu_relax(); /* For when BUG is null */
  730. }
  731. EXPORT_SYMBOL_GPL(do_exit);
  732. void complete_and_exit(struct completion *comp, long code)
  733. {
  734. if (comp)
  735. complete(comp);
  736. do_exit(code);
  737. }
  738. EXPORT_SYMBOL(complete_and_exit);
  739. SYSCALL_DEFINE1(exit, int, error_code)
  740. {
  741. do_exit((error_code&0xff)<<8);
  742. }
  743. /*
  744. * Take down every thread in the group. This is called by fatal signals
  745. * as well as by sys_exit_group (below).
  746. */
  747. void
  748. do_group_exit(int exit_code)
  749. {
  750. struct signal_struct *sig = current->signal;
  751. BUG_ON(exit_code & 0x80); /* core dumps don't get here */
  752. if (signal_group_exit(sig))
  753. exit_code = sig->group_exit_code;
  754. else if (!thread_group_empty(current)) {
  755. struct sighand_struct *const sighand = current->sighand;
  756. spin_lock_irq(&sighand->siglock);
  757. if (signal_group_exit(sig))
  758. /* Another thread got here before we took the lock. */
  759. exit_code = sig->group_exit_code;
  760. else {
  761. sig->group_exit_code = exit_code;
  762. sig->flags = SIGNAL_GROUP_EXIT;
  763. zap_other_threads(current);
  764. }
  765. spin_unlock_irq(&sighand->siglock);
  766. }
  767. do_exit(exit_code);
  768. /* NOTREACHED */
  769. }
  770. /*
  771. * this kills every thread in the thread group. Note that any externally
  772. * wait4()-ing process will get the correct exit code - even if this
  773. * thread is not the thread group leader.
  774. */
  775. SYSCALL_DEFINE1(exit_group, int, error_code)
  776. {
  777. do_group_exit((error_code & 0xff) << 8);
  778. /* NOTREACHED */
  779. return 0;
  780. }
  781. struct wait_opts {
  782. enum pid_type wo_type;
  783. int wo_flags;
  784. struct pid *wo_pid;
  785. struct siginfo __user *wo_info;
  786. int __user *wo_stat;
  787. struct rusage __user *wo_rusage;
  788. wait_queue_t child_wait;
  789. int notask_error;
  790. };
  791. static inline
  792. struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
  793. {
  794. if (type != PIDTYPE_PID)
  795. task = task->group_leader;
  796. return task->pids[type].pid;
  797. }
  798. static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
  799. {
  800. return wo->wo_type == PIDTYPE_MAX ||
  801. task_pid_type(p, wo->wo_type) == wo->wo_pid;
  802. }
  803. static int eligible_child(struct wait_opts *wo, struct task_struct *p)
  804. {
  805. if (!eligible_pid(wo, p))
  806. return 0;
  807. /* Wait for all children (clone and not) if __WALL is set;
  808. * otherwise, wait for clone children *only* if __WCLONE is
  809. * set; otherwise, wait for non-clone children *only*. (Note:
  810. * A "clone" child here is one that reports to its parent
  811. * using a signal other than SIGCHLD.) */
  812. if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
  813. && !(wo->wo_flags & __WALL))
  814. return 0;
  815. return 1;
  816. }
  817. static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
  818. pid_t pid, uid_t uid, int why, int status)
  819. {
  820. struct siginfo __user *infop;
  821. int retval = wo->wo_rusage
  822. ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
  823. put_task_struct(p);
  824. infop = wo->wo_info;
  825. if (infop) {
  826. if (!retval)
  827. retval = put_user(SIGCHLD, &infop->si_signo);
  828. if (!retval)
  829. retval = put_user(0, &infop->si_errno);
  830. if (!retval)
  831. retval = put_user((short)why, &infop->si_code);
  832. if (!retval)
  833. retval = put_user(pid, &infop->si_pid);
  834. if (!retval)
  835. retval = put_user(uid, &infop->si_uid);
  836. if (!retval)
  837. retval = put_user(status, &infop->si_status);
  838. }
  839. if (!retval)
  840. retval = pid;
  841. return retval;
  842. }
  843. /*
  844. * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
  845. * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
  846. * the lock and this task is uninteresting. If we return nonzero, we have
  847. * released the lock and the system call should return.
  848. */
  849. static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
  850. {
  851. int state, retval, status;
  852. pid_t pid = task_pid_vnr(p);
  853. uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
  854. struct siginfo __user *infop;
  855. if (!likely(wo->wo_flags & WEXITED))
  856. return 0;
  857. if (unlikely(wo->wo_flags & WNOWAIT)) {
  858. int exit_code = p->exit_code;
  859. int why;
  860. get_task_struct(p);
  861. read_unlock(&tasklist_lock);
  862. sched_annotate_sleep();
  863. if ((exit_code & 0x7f) == 0) {
  864. why = CLD_EXITED;
  865. status = exit_code >> 8;
  866. } else {
  867. why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
  868. status = exit_code & 0x7f;
  869. }
  870. return wait_noreap_copyout(wo, p, pid, uid, why, status);
  871. }
  872. /*
  873. * Move the task's state to DEAD/TRACE, only one thread can do this.
  874. */
  875. state = (ptrace_reparented(p) && thread_group_leader(p)) ?
  876. EXIT_TRACE : EXIT_DEAD;
  877. if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
  878. return 0;
  879. /*
  880. * We own this thread, nobody else can reap it.
  881. */
  882. read_unlock(&tasklist_lock);
  883. sched_annotate_sleep();
  884. /*
  885. * Check thread_group_leader() to exclude the traced sub-threads.
  886. */
  887. if (state == EXIT_DEAD && thread_group_leader(p)) {
  888. struct signal_struct *sig = p->signal;
  889. struct signal_struct *psig = current->signal;
  890. unsigned long maxrss;
  891. cputime_t tgutime, tgstime;
  892. /*
  893. * The resource counters for the group leader are in its
  894. * own task_struct. Those for dead threads in the group
  895. * are in its signal_struct, as are those for the child
  896. * processes it has previously reaped. All these
  897. * accumulate in the parent's signal_struct c* fields.
  898. *
  899. * We don't bother to take a lock here to protect these
  900. * p->signal fields because the whole thread group is dead
  901. * and nobody can change them.
  902. *
  903. * psig->stats_lock also protects us from our sub-theads
  904. * which can reap other children at the same time. Until
  905. * we change k_getrusage()-like users to rely on this lock
  906. * we have to take ->siglock as well.
  907. *
  908. * We use thread_group_cputime_adjusted() to get times for
  909. * the thread group, which consolidates times for all threads
  910. * in the group including the group leader.
  911. */
  912. thread_group_cputime_adjusted(p, &tgutime, &tgstime);
  913. spin_lock_irq(&current->sighand->siglock);
  914. write_seqlock(&psig->stats_lock);
  915. psig->cutime += tgutime + sig->cutime;
  916. psig->cstime += tgstime + sig->cstime;
  917. psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
  918. psig->cmin_flt +=
  919. p->min_flt + sig->min_flt + sig->cmin_flt;
  920. psig->cmaj_flt +=
  921. p->maj_flt + sig->maj_flt + sig->cmaj_flt;
  922. psig->cnvcsw +=
  923. p->nvcsw + sig->nvcsw + sig->cnvcsw;
  924. psig->cnivcsw +=
  925. p->nivcsw + sig->nivcsw + sig->cnivcsw;
  926. psig->cinblock +=
  927. task_io_get_inblock(p) +
  928. sig->inblock + sig->cinblock;
  929. psig->coublock +=
  930. task_io_get_oublock(p) +
  931. sig->oublock + sig->coublock;
  932. maxrss = max(sig->maxrss, sig->cmaxrss);
  933. if (psig->cmaxrss < maxrss)
  934. psig->cmaxrss = maxrss;
  935. task_io_accounting_add(&psig->ioac, &p->ioac);
  936. task_io_accounting_add(&psig->ioac, &sig->ioac);
  937. write_sequnlock(&psig->stats_lock);
  938. spin_unlock_irq(&current->sighand->siglock);
  939. }
  940. retval = wo->wo_rusage
  941. ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
  942. status = (p->signal->flags & SIGNAL_GROUP_EXIT)
  943. ? p->signal->group_exit_code : p->exit_code;
  944. if (!retval && wo->wo_stat)
  945. retval = put_user(status, wo->wo_stat);
  946. infop = wo->wo_info;
  947. if (!retval && infop)
  948. retval = put_user(SIGCHLD, &infop->si_signo);
  949. if (!retval && infop)
  950. retval = put_user(0, &infop->si_errno);
  951. if (!retval && infop) {
  952. int why;
  953. if ((status & 0x7f) == 0) {
  954. why = CLD_EXITED;
  955. status >>= 8;
  956. } else {
  957. why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
  958. status &= 0x7f;
  959. }
  960. retval = put_user((short)why, &infop->si_code);
  961. if (!retval)
  962. retval = put_user(status, &infop->si_status);
  963. }
  964. if (!retval && infop)
  965. retval = put_user(pid, &infop->si_pid);
  966. if (!retval && infop)
  967. retval = put_user(uid, &infop->si_uid);
  968. if (!retval)
  969. retval = pid;
  970. if (state == EXIT_TRACE) {
  971. write_lock_irq(&tasklist_lock);
  972. /* We dropped tasklist, ptracer could die and untrace */
  973. ptrace_unlink(p);
  974. /* If parent wants a zombie, don't release it now */
  975. state = EXIT_ZOMBIE;
  976. if (do_notify_parent(p, p->exit_signal))
  977. state = EXIT_DEAD;
  978. p->exit_state = state;
  979. write_unlock_irq(&tasklist_lock);
  980. }
  981. if (state == EXIT_DEAD)
  982. release_task(p);
  983. return retval;
  984. }
  985. static int *task_stopped_code(struct task_struct *p, bool ptrace)
  986. {
  987. if (ptrace) {
  988. if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
  989. return &p->exit_code;
  990. } else {
  991. if (p->signal->flags & SIGNAL_STOP_STOPPED)
  992. return &p->signal->group_exit_code;
  993. }
  994. return NULL;
  995. }
  996. /**
  997. * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
  998. * @wo: wait options
  999. * @ptrace: is the wait for ptrace
  1000. * @p: task to wait for
  1001. *
  1002. * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
  1003. *
  1004. * CONTEXT:
  1005. * read_lock(&tasklist_lock), which is released if return value is
  1006. * non-zero. Also, grabs and releases @p->sighand->siglock.
  1007. *
  1008. * RETURNS:
  1009. * 0 if wait condition didn't exist and search for other wait conditions
  1010. * should continue. Non-zero return, -errno on failure and @p's pid on
  1011. * success, implies that tasklist_lock is released and wait condition
  1012. * search should terminate.
  1013. */
  1014. static int wait_task_stopped(struct wait_opts *wo,
  1015. int ptrace, struct task_struct *p)
  1016. {
  1017. struct siginfo __user *infop;
  1018. int retval, exit_code, *p_code, why;
  1019. uid_t uid = 0; /* unneeded, required by compiler */
  1020. pid_t pid;
  1021. /*
  1022. * Traditionally we see ptrace'd stopped tasks regardless of options.
  1023. */
  1024. if (!ptrace && !(wo->wo_flags & WUNTRACED))
  1025. return 0;
  1026. if (!task_stopped_code(p, ptrace))
  1027. return 0;
  1028. exit_code = 0;
  1029. spin_lock_irq(&p->sighand->siglock);
  1030. p_code = task_stopped_code(p, ptrace);
  1031. if (unlikely(!p_code))
  1032. goto unlock_sig;
  1033. exit_code = *p_code;
  1034. if (!exit_code)
  1035. goto unlock_sig;
  1036. if (!unlikely(wo->wo_flags & WNOWAIT))
  1037. *p_code = 0;
  1038. uid = from_kuid_munged(current_user_ns(), task_uid(p));
  1039. unlock_sig:
  1040. spin_unlock_irq(&p->sighand->siglock);
  1041. if (!exit_code)
  1042. return 0;
  1043. /*
  1044. * Now we are pretty sure this task is interesting.
  1045. * Make sure it doesn't get reaped out from under us while we
  1046. * give up the lock and then examine it below. We don't want to
  1047. * keep holding onto the tasklist_lock while we call getrusage and
  1048. * possibly take page faults for user memory.
  1049. */
  1050. get_task_struct(p);
  1051. pid = task_pid_vnr(p);
  1052. why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
  1053. read_unlock(&tasklist_lock);
  1054. sched_annotate_sleep();
  1055. if (unlikely(wo->wo_flags & WNOWAIT))
  1056. return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
  1057. retval = wo->wo_rusage
  1058. ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
  1059. if (!retval && wo->wo_stat)
  1060. retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
  1061. infop = wo->wo_info;
  1062. if (!retval && infop)
  1063. retval = put_user(SIGCHLD, &infop->si_signo);
  1064. if (!retval && infop)
  1065. retval = put_user(0, &infop->si_errno);
  1066. if (!retval && infop)
  1067. retval = put_user((short)why, &infop->si_code);
  1068. if (!retval && infop)
  1069. retval = put_user(exit_code, &infop->si_status);
  1070. if (!retval && infop)
  1071. retval = put_user(pid, &infop->si_pid);
  1072. if (!retval && infop)
  1073. retval = put_user(uid, &infop->si_uid);
  1074. if (!retval)
  1075. retval = pid;
  1076. put_task_struct(p);
  1077. BUG_ON(!retval);
  1078. return retval;
  1079. }
  1080. /*
  1081. * Handle do_wait work for one task in a live, non-stopped state.
  1082. * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
  1083. * the lock and this task is uninteresting. If we return nonzero, we have
  1084. * released the lock and the system call should return.
  1085. */
  1086. static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
  1087. {
  1088. int retval;
  1089. pid_t pid;
  1090. uid_t uid;
  1091. if (!unlikely(wo->wo_flags & WCONTINUED))
  1092. return 0;
  1093. if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
  1094. return 0;
  1095. spin_lock_irq(&p->sighand->siglock);
  1096. /* Re-check with the lock held. */
  1097. if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
  1098. spin_unlock_irq(&p->sighand->siglock);
  1099. return 0;
  1100. }
  1101. if (!unlikely(wo->wo_flags & WNOWAIT))
  1102. p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
  1103. uid = from_kuid_munged(current_user_ns(), task_uid(p));
  1104. spin_unlock_irq(&p->sighand->siglock);
  1105. pid = task_pid_vnr(p);
  1106. get_task_struct(p);
  1107. read_unlock(&tasklist_lock);
  1108. sched_annotate_sleep();
  1109. if (!wo->wo_info) {
  1110. retval = wo->wo_rusage
  1111. ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
  1112. put_task_struct(p);
  1113. if (!retval && wo->wo_stat)
  1114. retval = put_user(0xffff, wo->wo_stat);
  1115. if (!retval)
  1116. retval = pid;
  1117. } else {
  1118. retval = wait_noreap_copyout(wo, p, pid, uid,
  1119. CLD_CONTINUED, SIGCONT);
  1120. BUG_ON(retval == 0);
  1121. }
  1122. return retval;
  1123. }
  1124. /*
  1125. * Consider @p for a wait by @parent.
  1126. *
  1127. * -ECHILD should be in ->notask_error before the first call.
  1128. * Returns nonzero for a final return, when we have unlocked tasklist_lock.
  1129. * Returns zero if the search for a child should continue;
  1130. * then ->notask_error is 0 if @p is an eligible child,
  1131. * or another error from security_task_wait(), or still -ECHILD.
  1132. */
  1133. static int wait_consider_task(struct wait_opts *wo, int ptrace,
  1134. struct task_struct *p)
  1135. {
  1136. /*
  1137. * We can race with wait_task_zombie() from another thread.
  1138. * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
  1139. * can't confuse the checks below.
  1140. */
  1141. int exit_state = ACCESS_ONCE(p->exit_state);
  1142. int ret;
  1143. if (unlikely(exit_state == EXIT_DEAD))
  1144. return 0;
  1145. ret = eligible_child(wo, p);
  1146. if (!ret)
  1147. return ret;
  1148. ret = security_task_wait(p);
  1149. if (unlikely(ret < 0)) {
  1150. /*
  1151. * If we have not yet seen any eligible child,
  1152. * then let this error code replace -ECHILD.
  1153. * A permission error will give the user a clue
  1154. * to look for security policy problems, rather
  1155. * than for mysterious wait bugs.
  1156. */
  1157. if (wo->notask_error)
  1158. wo->notask_error = ret;
  1159. return 0;
  1160. }
  1161. if (unlikely(exit_state == EXIT_TRACE)) {
  1162. /*
  1163. * ptrace == 0 means we are the natural parent. In this case
  1164. * we should clear notask_error, debugger will notify us.
  1165. */
  1166. if (likely(!ptrace))
  1167. wo->notask_error = 0;
  1168. return 0;
  1169. }
  1170. if (likely(!ptrace) && unlikely(p->ptrace)) {
  1171. /*
  1172. * If it is traced by its real parent's group, just pretend
  1173. * the caller is ptrace_do_wait() and reap this child if it
  1174. * is zombie.
  1175. *
  1176. * This also hides group stop state from real parent; otherwise
  1177. * a single stop can be reported twice as group and ptrace stop.
  1178. * If a ptracer wants to distinguish these two events for its
  1179. * own children it should create a separate process which takes
  1180. * the role of real parent.
  1181. */
  1182. if (!ptrace_reparented(p))
  1183. ptrace = 1;
  1184. }
  1185. /* slay zombie? */
  1186. if (exit_state == EXIT_ZOMBIE) {
  1187. /* we don't reap group leaders with subthreads */
  1188. if (!delay_group_leader(p)) {
  1189. /*
  1190. * A zombie ptracee is only visible to its ptracer.
  1191. * Notification and reaping will be cascaded to the
  1192. * real parent when the ptracer detaches.
  1193. */
  1194. if (unlikely(ptrace) || likely(!p->ptrace))
  1195. return wait_task_zombie(wo, p);
  1196. }
  1197. /*
  1198. * Allow access to stopped/continued state via zombie by
  1199. * falling through. Clearing of notask_error is complex.
  1200. *
  1201. * When !@ptrace:
  1202. *
  1203. * If WEXITED is set, notask_error should naturally be
  1204. * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
  1205. * so, if there are live subthreads, there are events to
  1206. * wait for. If all subthreads are dead, it's still safe
  1207. * to clear - this function will be called again in finite
  1208. * amount time once all the subthreads are released and
  1209. * will then return without clearing.
  1210. *
  1211. * When @ptrace:
  1212. *
  1213. * Stopped state is per-task and thus can't change once the
  1214. * target task dies. Only continued and exited can happen.
  1215. * Clear notask_error if WCONTINUED | WEXITED.
  1216. */
  1217. if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
  1218. wo->notask_error = 0;
  1219. } else {
  1220. /*
  1221. * @p is alive and it's gonna stop, continue or exit, so
  1222. * there always is something to wait for.
  1223. */
  1224. wo->notask_error = 0;
  1225. }
  1226. /*
  1227. * Wait for stopped. Depending on @ptrace, different stopped state
  1228. * is used and the two don't interact with each other.
  1229. */
  1230. ret = wait_task_stopped(wo, ptrace, p);
  1231. if (ret)
  1232. return ret;
  1233. /*
  1234. * Wait for continued. There's only one continued state and the
  1235. * ptracer can consume it which can confuse the real parent. Don't
  1236. * use WCONTINUED from ptracer. You don't need or want it.
  1237. */
  1238. return wait_task_continued(wo, p);
  1239. }
  1240. /*
  1241. * Do the work of do_wait() for one thread in the group, @tsk.
  1242. *
  1243. * -ECHILD should be in ->notask_error before the first call.
  1244. * Returns nonzero for a final return, when we have unlocked tasklist_lock.
  1245. * Returns zero if the search for a child should continue; then
  1246. * ->notask_error is 0 if there were any eligible children,
  1247. * or another error from security_task_wait(), or still -ECHILD.
  1248. */
  1249. static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
  1250. {
  1251. struct task_struct *p;
  1252. list_for_each_entry(p, &tsk->children, sibling) {
  1253. int ret = wait_consider_task(wo, 0, p);
  1254. if (ret)
  1255. return ret;
  1256. }
  1257. return 0;
  1258. }
  1259. static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
  1260. {
  1261. struct task_struct *p;
  1262. list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
  1263. int ret = wait_consider_task(wo, 1, p);
  1264. if (ret)
  1265. return ret;
  1266. }
  1267. return 0;
  1268. }
  1269. static int child_wait_callback(wait_queue_t *wait, unsigned mode,
  1270. int sync, void *key)
  1271. {
  1272. struct wait_opts *wo = container_of(wait, struct wait_opts,
  1273. child_wait);
  1274. struct task_struct *p = key;
  1275. if (!eligible_pid(wo, p))
  1276. return 0;
  1277. if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
  1278. return 0;
  1279. return default_wake_function(wait, mode, sync, key);
  1280. }
  1281. void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
  1282. {
  1283. __wake_up_sync_key(&parent->signal->wait_chldexit,
  1284. TASK_INTERRUPTIBLE, 1, p);
  1285. }
  1286. static long do_wait(struct wait_opts *wo)
  1287. {
  1288. struct task_struct *tsk;
  1289. int retval;
  1290. trace_sched_process_wait(wo->wo_pid);
  1291. init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
  1292. wo->child_wait.private = current;
  1293. add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
  1294. repeat:
  1295. /*
  1296. * If there is nothing that can match our criteria, just get out.
  1297. * We will clear ->notask_error to zero if we see any child that
  1298. * might later match our criteria, even if we are not able to reap
  1299. * it yet.
  1300. */
  1301. wo->notask_error = -ECHILD;
  1302. if ((wo->wo_type < PIDTYPE_MAX) &&
  1303. (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
  1304. goto notask;
  1305. set_current_state(TASK_INTERRUPTIBLE);
  1306. read_lock(&tasklist_lock);
  1307. tsk = current;
  1308. do {
  1309. retval = do_wait_thread(wo, tsk);
  1310. if (retval)
  1311. goto end;
  1312. retval = ptrace_do_wait(wo, tsk);
  1313. if (retval)
  1314. goto end;
  1315. if (wo->wo_flags & __WNOTHREAD)
  1316. break;
  1317. } while_each_thread(current, tsk);
  1318. read_unlock(&tasklist_lock);
  1319. notask:
  1320. retval = wo->notask_error;
  1321. if (!retval && !(wo->wo_flags & WNOHANG)) {
  1322. retval = -ERESTARTSYS;
  1323. if (!signal_pending(current)) {
  1324. schedule();
  1325. goto repeat;
  1326. }
  1327. }
  1328. end:
  1329. __set_current_state(TASK_RUNNING);
  1330. remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
  1331. return retval;
  1332. }
  1333. SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
  1334. infop, int, options, struct rusage __user *, ru)
  1335. {
  1336. struct wait_opts wo;
  1337. struct pid *pid = NULL;
  1338. enum pid_type type;
  1339. long ret;
  1340. if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
  1341. return -EINVAL;
  1342. if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
  1343. return -EINVAL;
  1344. switch (which) {
  1345. case P_ALL:
  1346. type = PIDTYPE_MAX;
  1347. break;
  1348. case P_PID:
  1349. type = PIDTYPE_PID;
  1350. if (upid <= 0)
  1351. return -EINVAL;
  1352. break;
  1353. case P_PGID:
  1354. type = PIDTYPE_PGID;
  1355. if (upid <= 0)
  1356. return -EINVAL;
  1357. break;
  1358. default:
  1359. return -EINVAL;
  1360. }
  1361. if (type < PIDTYPE_MAX)
  1362. pid = find_get_pid(upid);
  1363. wo.wo_type = type;
  1364. wo.wo_pid = pid;
  1365. wo.wo_flags = options;
  1366. wo.wo_info = infop;
  1367. wo.wo_stat = NULL;
  1368. wo.wo_rusage = ru;
  1369. ret = do_wait(&wo);
  1370. if (ret > 0) {
  1371. ret = 0;
  1372. } else if (infop) {
  1373. /*
  1374. * For a WNOHANG return, clear out all the fields
  1375. * we would set so the user can easily tell the
  1376. * difference.
  1377. */
  1378. if (!ret)
  1379. ret = put_user(0, &infop->si_signo);
  1380. if (!ret)
  1381. ret = put_user(0, &infop->si_errno);
  1382. if (!ret)
  1383. ret = put_user(0, &infop->si_code);
  1384. if (!ret)
  1385. ret = put_user(0, &infop->si_pid);
  1386. if (!ret)
  1387. ret = put_user(0, &infop->si_uid);
  1388. if (!ret)
  1389. ret = put_user(0, &infop->si_status);
  1390. }
  1391. put_pid(pid);
  1392. return ret;
  1393. }
  1394. SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
  1395. int, options, struct rusage __user *, ru)
  1396. {
  1397. struct wait_opts wo;
  1398. struct pid *pid = NULL;
  1399. enum pid_type type;
  1400. long ret;
  1401. if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
  1402. __WNOTHREAD|__WCLONE|__WALL))
  1403. return -EINVAL;
  1404. if (upid == -1)
  1405. type = PIDTYPE_MAX;
  1406. else if (upid < 0) {
  1407. type = PIDTYPE_PGID;
  1408. pid = find_get_pid(-upid);
  1409. } else if (upid == 0) {
  1410. type = PIDTYPE_PGID;
  1411. pid = get_task_pid(current, PIDTYPE_PGID);
  1412. } else /* upid > 0 */ {
  1413. type = PIDTYPE_PID;
  1414. pid = find_get_pid(upid);
  1415. }
  1416. wo.wo_type = type;
  1417. wo.wo_pid = pid;
  1418. wo.wo_flags = options | WEXITED;
  1419. wo.wo_info = NULL;
  1420. wo.wo_stat = stat_addr;
  1421. wo.wo_rusage = ru;
  1422. ret = do_wait(&wo);
  1423. put_pid(pid);
  1424. return ret;
  1425. }
  1426. #ifdef __ARCH_WANT_SYS_WAITPID
  1427. /*
  1428. * sys_waitpid() remains for compatibility. waitpid() should be
  1429. * implemented by calling sys_wait4() from libc.a.
  1430. */
  1431. SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
  1432. {
  1433. return sys_wait4(pid, stat_addr, options, NULL);
  1434. }
  1435. #endif