cpuset.c 75 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713
  1. /*
  2. * kernel/cpuset.c
  3. *
  4. * Processor and Memory placement constraints for sets of tasks.
  5. *
  6. * Copyright (C) 2003 BULL SA.
  7. * Copyright (C) 2004-2007 Silicon Graphics, Inc.
  8. * Copyright (C) 2006 Google, Inc
  9. *
  10. * Portions derived from Patrick Mochel's sysfs code.
  11. * sysfs is Copyright (c) 2001-3 Patrick Mochel
  12. *
  13. * 2003-10-10 Written by Simon Derr.
  14. * 2003-10-22 Updates by Stephen Hemminger.
  15. * 2004 May-July Rework by Paul Jackson.
  16. * 2006 Rework by Paul Menage to use generic cgroups
  17. * 2008 Rework of the scheduler domains and CPU hotplug handling
  18. * by Max Krasnyansky
  19. *
  20. * This file is subject to the terms and conditions of the GNU General Public
  21. * License. See the file COPYING in the main directory of the Linux
  22. * distribution for more details.
  23. */
  24. #include <linux/cpu.h>
  25. #include <linux/cpumask.h>
  26. #include <linux/cpuset.h>
  27. #include <linux/err.h>
  28. #include <linux/errno.h>
  29. #include <linux/file.h>
  30. #include <linux/fs.h>
  31. #include <linux/init.h>
  32. #include <linux/interrupt.h>
  33. #include <linux/kernel.h>
  34. #include <linux/kmod.h>
  35. #include <linux/list.h>
  36. #include <linux/mempolicy.h>
  37. #include <linux/mm.h>
  38. #include <linux/memory.h>
  39. #include <linux/export.h>
  40. #include <linux/mount.h>
  41. #include <linux/namei.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/proc_fs.h>
  44. #include <linux/rcupdate.h>
  45. #include <linux/sched.h>
  46. #include <linux/seq_file.h>
  47. #include <linux/security.h>
  48. #include <linux/slab.h>
  49. #include <linux/spinlock.h>
  50. #include <linux/stat.h>
  51. #include <linux/string.h>
  52. #include <linux/time.h>
  53. #include <linux/time64.h>
  54. #include <linux/backing-dev.h>
  55. #include <linux/sort.h>
  56. #include <asm/uaccess.h>
  57. #include <linux/atomic.h>
  58. #include <linux/mutex.h>
  59. #include <linux/workqueue.h>
  60. #include <linux/cgroup.h>
  61. #include <linux/wait.h>
  62. struct static_key cpusets_enabled_key __read_mostly = STATIC_KEY_INIT_FALSE;
  63. /* See "Frequency meter" comments, below. */
  64. struct fmeter {
  65. int cnt; /* unprocessed events count */
  66. int val; /* most recent output value */
  67. time64_t time; /* clock (secs) when val computed */
  68. spinlock_t lock; /* guards read or write of above */
  69. };
  70. struct cpuset {
  71. struct cgroup_subsys_state css;
  72. unsigned long flags; /* "unsigned long" so bitops work */
  73. /*
  74. * On default hierarchy:
  75. *
  76. * The user-configured masks can only be changed by writing to
  77. * cpuset.cpus and cpuset.mems, and won't be limited by the
  78. * parent masks.
  79. *
  80. * The effective masks is the real masks that apply to the tasks
  81. * in the cpuset. They may be changed if the configured masks are
  82. * changed or hotplug happens.
  83. *
  84. * effective_mask == configured_mask & parent's effective_mask,
  85. * and if it ends up empty, it will inherit the parent's mask.
  86. *
  87. *
  88. * On legacy hierachy:
  89. *
  90. * The user-configured masks are always the same with effective masks.
  91. */
  92. /* user-configured CPUs and Memory Nodes allow to tasks */
  93. cpumask_var_t cpus_allowed;
  94. nodemask_t mems_allowed;
  95. /* effective CPUs and Memory Nodes allow to tasks */
  96. cpumask_var_t effective_cpus;
  97. nodemask_t effective_mems;
  98. /*
  99. * This is old Memory Nodes tasks took on.
  100. *
  101. * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
  102. * - A new cpuset's old_mems_allowed is initialized when some
  103. * task is moved into it.
  104. * - old_mems_allowed is used in cpuset_migrate_mm() when we change
  105. * cpuset.mems_allowed and have tasks' nodemask updated, and
  106. * then old_mems_allowed is updated to mems_allowed.
  107. */
  108. nodemask_t old_mems_allowed;
  109. struct fmeter fmeter; /* memory_pressure filter */
  110. /*
  111. * Tasks are being attached to this cpuset. Used to prevent
  112. * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
  113. */
  114. int attach_in_progress;
  115. /* partition number for rebuild_sched_domains() */
  116. int pn;
  117. /* for custom sched domain */
  118. int relax_domain_level;
  119. };
  120. static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
  121. {
  122. return css ? container_of(css, struct cpuset, css) : NULL;
  123. }
  124. /* Retrieve the cpuset for a task */
  125. static inline struct cpuset *task_cs(struct task_struct *task)
  126. {
  127. return css_cs(task_css(task, cpuset_cgrp_id));
  128. }
  129. static inline struct cpuset *parent_cs(struct cpuset *cs)
  130. {
  131. return css_cs(cs->css.parent);
  132. }
  133. #ifdef CONFIG_NUMA
  134. static inline bool task_has_mempolicy(struct task_struct *task)
  135. {
  136. return task->mempolicy;
  137. }
  138. #else
  139. static inline bool task_has_mempolicy(struct task_struct *task)
  140. {
  141. return false;
  142. }
  143. #endif
  144. /* bits in struct cpuset flags field */
  145. typedef enum {
  146. CS_ONLINE,
  147. CS_CPU_EXCLUSIVE,
  148. CS_MEM_EXCLUSIVE,
  149. CS_MEM_HARDWALL,
  150. CS_MEMORY_MIGRATE,
  151. CS_SCHED_LOAD_BALANCE,
  152. CS_SPREAD_PAGE,
  153. CS_SPREAD_SLAB,
  154. } cpuset_flagbits_t;
  155. /* convenient tests for these bits */
  156. static inline bool is_cpuset_online(const struct cpuset *cs)
  157. {
  158. return test_bit(CS_ONLINE, &cs->flags);
  159. }
  160. static inline int is_cpu_exclusive(const struct cpuset *cs)
  161. {
  162. return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
  163. }
  164. static inline int is_mem_exclusive(const struct cpuset *cs)
  165. {
  166. return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
  167. }
  168. static inline int is_mem_hardwall(const struct cpuset *cs)
  169. {
  170. return test_bit(CS_MEM_HARDWALL, &cs->flags);
  171. }
  172. static inline int is_sched_load_balance(const struct cpuset *cs)
  173. {
  174. return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
  175. }
  176. static inline int is_memory_migrate(const struct cpuset *cs)
  177. {
  178. return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
  179. }
  180. static inline int is_spread_page(const struct cpuset *cs)
  181. {
  182. return test_bit(CS_SPREAD_PAGE, &cs->flags);
  183. }
  184. static inline int is_spread_slab(const struct cpuset *cs)
  185. {
  186. return test_bit(CS_SPREAD_SLAB, &cs->flags);
  187. }
  188. static struct cpuset top_cpuset = {
  189. .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
  190. (1 << CS_MEM_EXCLUSIVE)),
  191. };
  192. /**
  193. * cpuset_for_each_child - traverse online children of a cpuset
  194. * @child_cs: loop cursor pointing to the current child
  195. * @pos_css: used for iteration
  196. * @parent_cs: target cpuset to walk children of
  197. *
  198. * Walk @child_cs through the online children of @parent_cs. Must be used
  199. * with RCU read locked.
  200. */
  201. #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
  202. css_for_each_child((pos_css), &(parent_cs)->css) \
  203. if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
  204. /**
  205. * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
  206. * @des_cs: loop cursor pointing to the current descendant
  207. * @pos_css: used for iteration
  208. * @root_cs: target cpuset to walk ancestor of
  209. *
  210. * Walk @des_cs through the online descendants of @root_cs. Must be used
  211. * with RCU read locked. The caller may modify @pos_css by calling
  212. * css_rightmost_descendant() to skip subtree. @root_cs is included in the
  213. * iteration and the first node to be visited.
  214. */
  215. #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
  216. css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
  217. if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
  218. /*
  219. * There are two global locks guarding cpuset structures - cpuset_mutex and
  220. * callback_lock. We also require taking task_lock() when dereferencing a
  221. * task's cpuset pointer. See "The task_lock() exception", at the end of this
  222. * comment.
  223. *
  224. * A task must hold both locks to modify cpusets. If a task holds
  225. * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
  226. * is the only task able to also acquire callback_lock and be able to
  227. * modify cpusets. It can perform various checks on the cpuset structure
  228. * first, knowing nothing will change. It can also allocate memory while
  229. * just holding cpuset_mutex. While it is performing these checks, various
  230. * callback routines can briefly acquire callback_lock to query cpusets.
  231. * Once it is ready to make the changes, it takes callback_lock, blocking
  232. * everyone else.
  233. *
  234. * Calls to the kernel memory allocator can not be made while holding
  235. * callback_lock, as that would risk double tripping on callback_lock
  236. * from one of the callbacks into the cpuset code from within
  237. * __alloc_pages().
  238. *
  239. * If a task is only holding callback_lock, then it has read-only
  240. * access to cpusets.
  241. *
  242. * Now, the task_struct fields mems_allowed and mempolicy may be changed
  243. * by other task, we use alloc_lock in the task_struct fields to protect
  244. * them.
  245. *
  246. * The cpuset_common_file_read() handlers only hold callback_lock across
  247. * small pieces of code, such as when reading out possibly multi-word
  248. * cpumasks and nodemasks.
  249. *
  250. * Accessing a task's cpuset should be done in accordance with the
  251. * guidelines for accessing subsystem state in kernel/cgroup.c
  252. */
  253. static DEFINE_MUTEX(cpuset_mutex);
  254. static DEFINE_SPINLOCK(callback_lock);
  255. /*
  256. * CPU / memory hotplug is handled asynchronously.
  257. */
  258. static void cpuset_hotplug_workfn(struct work_struct *work);
  259. static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
  260. static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
  261. /*
  262. * This is ugly, but preserves the userspace API for existing cpuset
  263. * users. If someone tries to mount the "cpuset" filesystem, we
  264. * silently switch it to mount "cgroup" instead
  265. */
  266. static struct dentry *cpuset_mount(struct file_system_type *fs_type,
  267. int flags, const char *unused_dev_name, void *data)
  268. {
  269. struct file_system_type *cgroup_fs = get_fs_type("cgroup");
  270. struct dentry *ret = ERR_PTR(-ENODEV);
  271. if (cgroup_fs) {
  272. char mountopts[] =
  273. "cpuset,noprefix,"
  274. "release_agent=/sbin/cpuset_release_agent";
  275. ret = cgroup_fs->mount(cgroup_fs, flags,
  276. unused_dev_name, mountopts);
  277. put_filesystem(cgroup_fs);
  278. }
  279. return ret;
  280. }
  281. static struct file_system_type cpuset_fs_type = {
  282. .name = "cpuset",
  283. .mount = cpuset_mount,
  284. };
  285. /*
  286. * Return in pmask the portion of a cpusets's cpus_allowed that
  287. * are online. If none are online, walk up the cpuset hierarchy
  288. * until we find one that does have some online cpus. The top
  289. * cpuset always has some cpus online.
  290. *
  291. * One way or another, we guarantee to return some non-empty subset
  292. * of cpu_online_mask.
  293. *
  294. * Call with callback_lock or cpuset_mutex held.
  295. */
  296. static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
  297. {
  298. while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask))
  299. cs = parent_cs(cs);
  300. cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
  301. }
  302. /*
  303. * Return in *pmask the portion of a cpusets's mems_allowed that
  304. * are online, with memory. If none are online with memory, walk
  305. * up the cpuset hierarchy until we find one that does have some
  306. * online mems. The top cpuset always has some mems online.
  307. *
  308. * One way or another, we guarantee to return some non-empty subset
  309. * of node_states[N_MEMORY].
  310. *
  311. * Call with callback_lock or cpuset_mutex held.
  312. */
  313. static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
  314. {
  315. while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
  316. cs = parent_cs(cs);
  317. nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
  318. }
  319. /*
  320. * update task's spread flag if cpuset's page/slab spread flag is set
  321. *
  322. * Call with callback_lock or cpuset_mutex held.
  323. */
  324. static void cpuset_update_task_spread_flag(struct cpuset *cs,
  325. struct task_struct *tsk)
  326. {
  327. if (is_spread_page(cs))
  328. task_set_spread_page(tsk);
  329. else
  330. task_clear_spread_page(tsk);
  331. if (is_spread_slab(cs))
  332. task_set_spread_slab(tsk);
  333. else
  334. task_clear_spread_slab(tsk);
  335. }
  336. /*
  337. * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
  338. *
  339. * One cpuset is a subset of another if all its allowed CPUs and
  340. * Memory Nodes are a subset of the other, and its exclusive flags
  341. * are only set if the other's are set. Call holding cpuset_mutex.
  342. */
  343. static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
  344. {
  345. return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
  346. nodes_subset(p->mems_allowed, q->mems_allowed) &&
  347. is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
  348. is_mem_exclusive(p) <= is_mem_exclusive(q);
  349. }
  350. /**
  351. * alloc_trial_cpuset - allocate a trial cpuset
  352. * @cs: the cpuset that the trial cpuset duplicates
  353. */
  354. static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
  355. {
  356. struct cpuset *trial;
  357. trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
  358. if (!trial)
  359. return NULL;
  360. if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
  361. goto free_cs;
  362. if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
  363. goto free_cpus;
  364. cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
  365. cpumask_copy(trial->effective_cpus, cs->effective_cpus);
  366. return trial;
  367. free_cpus:
  368. free_cpumask_var(trial->cpus_allowed);
  369. free_cs:
  370. kfree(trial);
  371. return NULL;
  372. }
  373. /**
  374. * free_trial_cpuset - free the trial cpuset
  375. * @trial: the trial cpuset to be freed
  376. */
  377. static void free_trial_cpuset(struct cpuset *trial)
  378. {
  379. free_cpumask_var(trial->effective_cpus);
  380. free_cpumask_var(trial->cpus_allowed);
  381. kfree(trial);
  382. }
  383. /*
  384. * validate_change() - Used to validate that any proposed cpuset change
  385. * follows the structural rules for cpusets.
  386. *
  387. * If we replaced the flag and mask values of the current cpuset
  388. * (cur) with those values in the trial cpuset (trial), would
  389. * our various subset and exclusive rules still be valid? Presumes
  390. * cpuset_mutex held.
  391. *
  392. * 'cur' is the address of an actual, in-use cpuset. Operations
  393. * such as list traversal that depend on the actual address of the
  394. * cpuset in the list must use cur below, not trial.
  395. *
  396. * 'trial' is the address of bulk structure copy of cur, with
  397. * perhaps one or more of the fields cpus_allowed, mems_allowed,
  398. * or flags changed to new, trial values.
  399. *
  400. * Return 0 if valid, -errno if not.
  401. */
  402. static int validate_change(struct cpuset *cur, struct cpuset *trial)
  403. {
  404. struct cgroup_subsys_state *css;
  405. struct cpuset *c, *par;
  406. int ret;
  407. rcu_read_lock();
  408. /* Each of our child cpusets must be a subset of us */
  409. ret = -EBUSY;
  410. cpuset_for_each_child(c, css, cur)
  411. if (!is_cpuset_subset(c, trial))
  412. goto out;
  413. /* Remaining checks don't apply to root cpuset */
  414. ret = 0;
  415. if (cur == &top_cpuset)
  416. goto out;
  417. par = parent_cs(cur);
  418. /* On legacy hiearchy, we must be a subset of our parent cpuset. */
  419. ret = -EACCES;
  420. if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
  421. !is_cpuset_subset(trial, par))
  422. goto out;
  423. /*
  424. * If either I or some sibling (!= me) is exclusive, we can't
  425. * overlap
  426. */
  427. ret = -EINVAL;
  428. cpuset_for_each_child(c, css, par) {
  429. if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
  430. c != cur &&
  431. cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
  432. goto out;
  433. if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
  434. c != cur &&
  435. nodes_intersects(trial->mems_allowed, c->mems_allowed))
  436. goto out;
  437. }
  438. /*
  439. * Cpusets with tasks - existing or newly being attached - can't
  440. * be changed to have empty cpus_allowed or mems_allowed.
  441. */
  442. ret = -ENOSPC;
  443. if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
  444. if (!cpumask_empty(cur->cpus_allowed) &&
  445. cpumask_empty(trial->cpus_allowed))
  446. goto out;
  447. if (!nodes_empty(cur->mems_allowed) &&
  448. nodes_empty(trial->mems_allowed))
  449. goto out;
  450. }
  451. /*
  452. * We can't shrink if we won't have enough room for SCHED_DEADLINE
  453. * tasks.
  454. */
  455. ret = -EBUSY;
  456. if (is_cpu_exclusive(cur) &&
  457. !cpuset_cpumask_can_shrink(cur->cpus_allowed,
  458. trial->cpus_allowed))
  459. goto out;
  460. ret = 0;
  461. out:
  462. rcu_read_unlock();
  463. return ret;
  464. }
  465. #ifdef CONFIG_SMP
  466. /*
  467. * Helper routine for generate_sched_domains().
  468. * Do cpusets a, b have overlapping effective cpus_allowed masks?
  469. */
  470. static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
  471. {
  472. return cpumask_intersects(a->effective_cpus, b->effective_cpus);
  473. }
  474. static void
  475. update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
  476. {
  477. if (dattr->relax_domain_level < c->relax_domain_level)
  478. dattr->relax_domain_level = c->relax_domain_level;
  479. return;
  480. }
  481. static void update_domain_attr_tree(struct sched_domain_attr *dattr,
  482. struct cpuset *root_cs)
  483. {
  484. struct cpuset *cp;
  485. struct cgroup_subsys_state *pos_css;
  486. rcu_read_lock();
  487. cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
  488. /* skip the whole subtree if @cp doesn't have any CPU */
  489. if (cpumask_empty(cp->cpus_allowed)) {
  490. pos_css = css_rightmost_descendant(pos_css);
  491. continue;
  492. }
  493. if (is_sched_load_balance(cp))
  494. update_domain_attr(dattr, cp);
  495. }
  496. rcu_read_unlock();
  497. }
  498. /*
  499. * generate_sched_domains()
  500. *
  501. * This function builds a partial partition of the systems CPUs
  502. * A 'partial partition' is a set of non-overlapping subsets whose
  503. * union is a subset of that set.
  504. * The output of this function needs to be passed to kernel/sched/core.c
  505. * partition_sched_domains() routine, which will rebuild the scheduler's
  506. * load balancing domains (sched domains) as specified by that partial
  507. * partition.
  508. *
  509. * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
  510. * for a background explanation of this.
  511. *
  512. * Does not return errors, on the theory that the callers of this
  513. * routine would rather not worry about failures to rebuild sched
  514. * domains when operating in the severe memory shortage situations
  515. * that could cause allocation failures below.
  516. *
  517. * Must be called with cpuset_mutex held.
  518. *
  519. * The three key local variables below are:
  520. * q - a linked-list queue of cpuset pointers, used to implement a
  521. * top-down scan of all cpusets. This scan loads a pointer
  522. * to each cpuset marked is_sched_load_balance into the
  523. * array 'csa'. For our purposes, rebuilding the schedulers
  524. * sched domains, we can ignore !is_sched_load_balance cpusets.
  525. * csa - (for CpuSet Array) Array of pointers to all the cpusets
  526. * that need to be load balanced, for convenient iterative
  527. * access by the subsequent code that finds the best partition,
  528. * i.e the set of domains (subsets) of CPUs such that the
  529. * cpus_allowed of every cpuset marked is_sched_load_balance
  530. * is a subset of one of these domains, while there are as
  531. * many such domains as possible, each as small as possible.
  532. * doms - Conversion of 'csa' to an array of cpumasks, for passing to
  533. * the kernel/sched/core.c routine partition_sched_domains() in a
  534. * convenient format, that can be easily compared to the prior
  535. * value to determine what partition elements (sched domains)
  536. * were changed (added or removed.)
  537. *
  538. * Finding the best partition (set of domains):
  539. * The triple nested loops below over i, j, k scan over the
  540. * load balanced cpusets (using the array of cpuset pointers in
  541. * csa[]) looking for pairs of cpusets that have overlapping
  542. * cpus_allowed, but which don't have the same 'pn' partition
  543. * number and gives them in the same partition number. It keeps
  544. * looping on the 'restart' label until it can no longer find
  545. * any such pairs.
  546. *
  547. * The union of the cpus_allowed masks from the set of
  548. * all cpusets having the same 'pn' value then form the one
  549. * element of the partition (one sched domain) to be passed to
  550. * partition_sched_domains().
  551. */
  552. static int generate_sched_domains(cpumask_var_t **domains,
  553. struct sched_domain_attr **attributes)
  554. {
  555. struct cpuset *cp; /* scans q */
  556. struct cpuset **csa; /* array of all cpuset ptrs */
  557. int csn; /* how many cpuset ptrs in csa so far */
  558. int i, j, k; /* indices for partition finding loops */
  559. cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
  560. cpumask_var_t non_isolated_cpus; /* load balanced CPUs */
  561. struct sched_domain_attr *dattr; /* attributes for custom domains */
  562. int ndoms = 0; /* number of sched domains in result */
  563. int nslot; /* next empty doms[] struct cpumask slot */
  564. struct cgroup_subsys_state *pos_css;
  565. doms = NULL;
  566. dattr = NULL;
  567. csa = NULL;
  568. if (!alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL))
  569. goto done;
  570. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  571. /* Special case for the 99% of systems with one, full, sched domain */
  572. if (is_sched_load_balance(&top_cpuset)) {
  573. ndoms = 1;
  574. doms = alloc_sched_domains(ndoms);
  575. if (!doms)
  576. goto done;
  577. dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
  578. if (dattr) {
  579. *dattr = SD_ATTR_INIT;
  580. update_domain_attr_tree(dattr, &top_cpuset);
  581. }
  582. cpumask_and(doms[0], top_cpuset.effective_cpus,
  583. non_isolated_cpus);
  584. goto done;
  585. }
  586. csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
  587. if (!csa)
  588. goto done;
  589. csn = 0;
  590. rcu_read_lock();
  591. cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
  592. if (cp == &top_cpuset)
  593. continue;
  594. /*
  595. * Continue traversing beyond @cp iff @cp has some CPUs and
  596. * isn't load balancing. The former is obvious. The
  597. * latter: All child cpusets contain a subset of the
  598. * parent's cpus, so just skip them, and then we call
  599. * update_domain_attr_tree() to calc relax_domain_level of
  600. * the corresponding sched domain.
  601. */
  602. if (!cpumask_empty(cp->cpus_allowed) &&
  603. !(is_sched_load_balance(cp) &&
  604. cpumask_intersects(cp->cpus_allowed, non_isolated_cpus)))
  605. continue;
  606. if (is_sched_load_balance(cp))
  607. csa[csn++] = cp;
  608. /* skip @cp's subtree */
  609. pos_css = css_rightmost_descendant(pos_css);
  610. }
  611. rcu_read_unlock();
  612. for (i = 0; i < csn; i++)
  613. csa[i]->pn = i;
  614. ndoms = csn;
  615. restart:
  616. /* Find the best partition (set of sched domains) */
  617. for (i = 0; i < csn; i++) {
  618. struct cpuset *a = csa[i];
  619. int apn = a->pn;
  620. for (j = 0; j < csn; j++) {
  621. struct cpuset *b = csa[j];
  622. int bpn = b->pn;
  623. if (apn != bpn && cpusets_overlap(a, b)) {
  624. for (k = 0; k < csn; k++) {
  625. struct cpuset *c = csa[k];
  626. if (c->pn == bpn)
  627. c->pn = apn;
  628. }
  629. ndoms--; /* one less element */
  630. goto restart;
  631. }
  632. }
  633. }
  634. /*
  635. * Now we know how many domains to create.
  636. * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
  637. */
  638. doms = alloc_sched_domains(ndoms);
  639. if (!doms)
  640. goto done;
  641. /*
  642. * The rest of the code, including the scheduler, can deal with
  643. * dattr==NULL case. No need to abort if alloc fails.
  644. */
  645. dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
  646. for (nslot = 0, i = 0; i < csn; i++) {
  647. struct cpuset *a = csa[i];
  648. struct cpumask *dp;
  649. int apn = a->pn;
  650. if (apn < 0) {
  651. /* Skip completed partitions */
  652. continue;
  653. }
  654. dp = doms[nslot];
  655. if (nslot == ndoms) {
  656. static int warnings = 10;
  657. if (warnings) {
  658. pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
  659. nslot, ndoms, csn, i, apn);
  660. warnings--;
  661. }
  662. continue;
  663. }
  664. cpumask_clear(dp);
  665. if (dattr)
  666. *(dattr + nslot) = SD_ATTR_INIT;
  667. for (j = i; j < csn; j++) {
  668. struct cpuset *b = csa[j];
  669. if (apn == b->pn) {
  670. cpumask_or(dp, dp, b->effective_cpus);
  671. cpumask_and(dp, dp, non_isolated_cpus);
  672. if (dattr)
  673. update_domain_attr_tree(dattr + nslot, b);
  674. /* Done with this partition */
  675. b->pn = -1;
  676. }
  677. }
  678. nslot++;
  679. }
  680. BUG_ON(nslot != ndoms);
  681. done:
  682. free_cpumask_var(non_isolated_cpus);
  683. kfree(csa);
  684. /*
  685. * Fallback to the default domain if kmalloc() failed.
  686. * See comments in partition_sched_domains().
  687. */
  688. if (doms == NULL)
  689. ndoms = 1;
  690. *domains = doms;
  691. *attributes = dattr;
  692. return ndoms;
  693. }
  694. /*
  695. * Rebuild scheduler domains.
  696. *
  697. * If the flag 'sched_load_balance' of any cpuset with non-empty
  698. * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
  699. * which has that flag enabled, or if any cpuset with a non-empty
  700. * 'cpus' is removed, then call this routine to rebuild the
  701. * scheduler's dynamic sched domains.
  702. *
  703. * Call with cpuset_mutex held. Takes get_online_cpus().
  704. */
  705. static void rebuild_sched_domains_locked(void)
  706. {
  707. struct sched_domain_attr *attr;
  708. cpumask_var_t *doms;
  709. int ndoms;
  710. lockdep_assert_held(&cpuset_mutex);
  711. get_online_cpus();
  712. /*
  713. * We have raced with CPU hotplug. Don't do anything to avoid
  714. * passing doms with offlined cpu to partition_sched_domains().
  715. * Anyways, hotplug work item will rebuild sched domains.
  716. */
  717. if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
  718. goto out;
  719. /* Generate domain masks and attrs */
  720. ndoms = generate_sched_domains(&doms, &attr);
  721. /* Have scheduler rebuild the domains */
  722. partition_sched_domains(ndoms, doms, attr);
  723. out:
  724. put_online_cpus();
  725. }
  726. #else /* !CONFIG_SMP */
  727. static void rebuild_sched_domains_locked(void)
  728. {
  729. }
  730. #endif /* CONFIG_SMP */
  731. void rebuild_sched_domains(void)
  732. {
  733. mutex_lock(&cpuset_mutex);
  734. rebuild_sched_domains_locked();
  735. mutex_unlock(&cpuset_mutex);
  736. }
  737. /**
  738. * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
  739. * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
  740. *
  741. * Iterate through each task of @cs updating its cpus_allowed to the
  742. * effective cpuset's. As this function is called with cpuset_mutex held,
  743. * cpuset membership stays stable.
  744. */
  745. static void update_tasks_cpumask(struct cpuset *cs)
  746. {
  747. struct css_task_iter it;
  748. struct task_struct *task;
  749. css_task_iter_start(&cs->css, &it);
  750. while ((task = css_task_iter_next(&it)))
  751. set_cpus_allowed_ptr(task, cs->effective_cpus);
  752. css_task_iter_end(&it);
  753. }
  754. /*
  755. * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
  756. * @cs: the cpuset to consider
  757. * @new_cpus: temp variable for calculating new effective_cpus
  758. *
  759. * When congifured cpumask is changed, the effective cpumasks of this cpuset
  760. * and all its descendants need to be updated.
  761. *
  762. * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
  763. *
  764. * Called with cpuset_mutex held
  765. */
  766. static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
  767. {
  768. struct cpuset *cp;
  769. struct cgroup_subsys_state *pos_css;
  770. bool need_rebuild_sched_domains = false;
  771. rcu_read_lock();
  772. cpuset_for_each_descendant_pre(cp, pos_css, cs) {
  773. struct cpuset *parent = parent_cs(cp);
  774. cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);
  775. /*
  776. * If it becomes empty, inherit the effective mask of the
  777. * parent, which is guaranteed to have some CPUs.
  778. */
  779. if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
  780. cpumask_empty(new_cpus))
  781. cpumask_copy(new_cpus, parent->effective_cpus);
  782. /* Skip the whole subtree if the cpumask remains the same. */
  783. if (cpumask_equal(new_cpus, cp->effective_cpus)) {
  784. pos_css = css_rightmost_descendant(pos_css);
  785. continue;
  786. }
  787. if (!css_tryget_online(&cp->css))
  788. continue;
  789. rcu_read_unlock();
  790. spin_lock_irq(&callback_lock);
  791. cpumask_copy(cp->effective_cpus, new_cpus);
  792. spin_unlock_irq(&callback_lock);
  793. WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
  794. !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
  795. update_tasks_cpumask(cp);
  796. /*
  797. * If the effective cpumask of any non-empty cpuset is changed,
  798. * we need to rebuild sched domains.
  799. */
  800. if (!cpumask_empty(cp->cpus_allowed) &&
  801. is_sched_load_balance(cp))
  802. need_rebuild_sched_domains = true;
  803. rcu_read_lock();
  804. css_put(&cp->css);
  805. }
  806. rcu_read_unlock();
  807. if (need_rebuild_sched_domains)
  808. rebuild_sched_domains_locked();
  809. }
  810. /**
  811. * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
  812. * @cs: the cpuset to consider
  813. * @trialcs: trial cpuset
  814. * @buf: buffer of cpu numbers written to this cpuset
  815. */
  816. static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
  817. const char *buf)
  818. {
  819. int retval;
  820. /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
  821. if (cs == &top_cpuset)
  822. return -EACCES;
  823. /*
  824. * An empty cpus_allowed is ok only if the cpuset has no tasks.
  825. * Since cpulist_parse() fails on an empty mask, we special case
  826. * that parsing. The validate_change() call ensures that cpusets
  827. * with tasks have cpus.
  828. */
  829. if (!*buf) {
  830. cpumask_clear(trialcs->cpus_allowed);
  831. } else {
  832. retval = cpulist_parse(buf, trialcs->cpus_allowed);
  833. if (retval < 0)
  834. return retval;
  835. if (!cpumask_subset(trialcs->cpus_allowed,
  836. top_cpuset.cpus_allowed))
  837. return -EINVAL;
  838. }
  839. /* Nothing to do if the cpus didn't change */
  840. if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
  841. return 0;
  842. retval = validate_change(cs, trialcs);
  843. if (retval < 0)
  844. return retval;
  845. spin_lock_irq(&callback_lock);
  846. cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
  847. spin_unlock_irq(&callback_lock);
  848. /* use trialcs->cpus_allowed as a temp variable */
  849. update_cpumasks_hier(cs, trialcs->cpus_allowed);
  850. return 0;
  851. }
  852. /*
  853. * cpuset_migrate_mm
  854. *
  855. * Migrate memory region from one set of nodes to another.
  856. *
  857. * Temporarilly set tasks mems_allowed to target nodes of migration,
  858. * so that the migration code can allocate pages on these nodes.
  859. *
  860. * While the mm_struct we are migrating is typically from some
  861. * other task, the task_struct mems_allowed that we are hacking
  862. * is for our current task, which must allocate new pages for that
  863. * migrating memory region.
  864. */
  865. static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
  866. const nodemask_t *to)
  867. {
  868. struct task_struct *tsk = current;
  869. tsk->mems_allowed = *to;
  870. do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
  871. rcu_read_lock();
  872. guarantee_online_mems(task_cs(tsk), &tsk->mems_allowed);
  873. rcu_read_unlock();
  874. }
  875. /*
  876. * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
  877. * @tsk: the task to change
  878. * @newmems: new nodes that the task will be set
  879. *
  880. * In order to avoid seeing no nodes if the old and new nodes are disjoint,
  881. * we structure updates as setting all new allowed nodes, then clearing newly
  882. * disallowed ones.
  883. */
  884. static void cpuset_change_task_nodemask(struct task_struct *tsk,
  885. nodemask_t *newmems)
  886. {
  887. bool need_loop;
  888. /*
  889. * Allow tasks that have access to memory reserves because they have
  890. * been OOM killed to get memory anywhere.
  891. */
  892. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  893. return;
  894. if (current->flags & PF_EXITING) /* Let dying task have memory */
  895. return;
  896. task_lock(tsk);
  897. /*
  898. * Determine if a loop is necessary if another thread is doing
  899. * read_mems_allowed_begin(). If at least one node remains unchanged and
  900. * tsk does not have a mempolicy, then an empty nodemask will not be
  901. * possible when mems_allowed is larger than a word.
  902. */
  903. need_loop = task_has_mempolicy(tsk) ||
  904. !nodes_intersects(*newmems, tsk->mems_allowed);
  905. if (need_loop) {
  906. local_irq_disable();
  907. write_seqcount_begin(&tsk->mems_allowed_seq);
  908. }
  909. nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
  910. mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
  911. mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
  912. tsk->mems_allowed = *newmems;
  913. if (need_loop) {
  914. write_seqcount_end(&tsk->mems_allowed_seq);
  915. local_irq_enable();
  916. }
  917. task_unlock(tsk);
  918. }
  919. static void *cpuset_being_rebound;
  920. /**
  921. * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
  922. * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
  923. *
  924. * Iterate through each task of @cs updating its mems_allowed to the
  925. * effective cpuset's. As this function is called with cpuset_mutex held,
  926. * cpuset membership stays stable.
  927. */
  928. static void update_tasks_nodemask(struct cpuset *cs)
  929. {
  930. static nodemask_t newmems; /* protected by cpuset_mutex */
  931. struct css_task_iter it;
  932. struct task_struct *task;
  933. cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
  934. guarantee_online_mems(cs, &newmems);
  935. /*
  936. * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
  937. * take while holding tasklist_lock. Forks can happen - the
  938. * mpol_dup() cpuset_being_rebound check will catch such forks,
  939. * and rebind their vma mempolicies too. Because we still hold
  940. * the global cpuset_mutex, we know that no other rebind effort
  941. * will be contending for the global variable cpuset_being_rebound.
  942. * It's ok if we rebind the same mm twice; mpol_rebind_mm()
  943. * is idempotent. Also migrate pages in each mm to new nodes.
  944. */
  945. css_task_iter_start(&cs->css, &it);
  946. while ((task = css_task_iter_next(&it))) {
  947. struct mm_struct *mm;
  948. bool migrate;
  949. cpuset_change_task_nodemask(task, &newmems);
  950. mm = get_task_mm(task);
  951. if (!mm)
  952. continue;
  953. migrate = is_memory_migrate(cs);
  954. mpol_rebind_mm(mm, &cs->mems_allowed);
  955. if (migrate)
  956. cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
  957. mmput(mm);
  958. }
  959. css_task_iter_end(&it);
  960. /*
  961. * All the tasks' nodemasks have been updated, update
  962. * cs->old_mems_allowed.
  963. */
  964. cs->old_mems_allowed = newmems;
  965. /* We're done rebinding vmas to this cpuset's new mems_allowed. */
  966. cpuset_being_rebound = NULL;
  967. }
  968. /*
  969. * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
  970. * @cs: the cpuset to consider
  971. * @new_mems: a temp variable for calculating new effective_mems
  972. *
  973. * When configured nodemask is changed, the effective nodemasks of this cpuset
  974. * and all its descendants need to be updated.
  975. *
  976. * On legacy hiearchy, effective_mems will be the same with mems_allowed.
  977. *
  978. * Called with cpuset_mutex held
  979. */
  980. static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
  981. {
  982. struct cpuset *cp;
  983. struct cgroup_subsys_state *pos_css;
  984. rcu_read_lock();
  985. cpuset_for_each_descendant_pre(cp, pos_css, cs) {
  986. struct cpuset *parent = parent_cs(cp);
  987. nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
  988. /*
  989. * If it becomes empty, inherit the effective mask of the
  990. * parent, which is guaranteed to have some MEMs.
  991. */
  992. if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
  993. nodes_empty(*new_mems))
  994. *new_mems = parent->effective_mems;
  995. /* Skip the whole subtree if the nodemask remains the same. */
  996. if (nodes_equal(*new_mems, cp->effective_mems)) {
  997. pos_css = css_rightmost_descendant(pos_css);
  998. continue;
  999. }
  1000. if (!css_tryget_online(&cp->css))
  1001. continue;
  1002. rcu_read_unlock();
  1003. spin_lock_irq(&callback_lock);
  1004. cp->effective_mems = *new_mems;
  1005. spin_unlock_irq(&callback_lock);
  1006. WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
  1007. !nodes_equal(cp->mems_allowed, cp->effective_mems));
  1008. update_tasks_nodemask(cp);
  1009. rcu_read_lock();
  1010. css_put(&cp->css);
  1011. }
  1012. rcu_read_unlock();
  1013. }
  1014. /*
  1015. * Handle user request to change the 'mems' memory placement
  1016. * of a cpuset. Needs to validate the request, update the
  1017. * cpusets mems_allowed, and for each task in the cpuset,
  1018. * update mems_allowed and rebind task's mempolicy and any vma
  1019. * mempolicies and if the cpuset is marked 'memory_migrate',
  1020. * migrate the tasks pages to the new memory.
  1021. *
  1022. * Call with cpuset_mutex held. May take callback_lock during call.
  1023. * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
  1024. * lock each such tasks mm->mmap_sem, scan its vma's and rebind
  1025. * their mempolicies to the cpusets new mems_allowed.
  1026. */
  1027. static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
  1028. const char *buf)
  1029. {
  1030. int retval;
  1031. /*
  1032. * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
  1033. * it's read-only
  1034. */
  1035. if (cs == &top_cpuset) {
  1036. retval = -EACCES;
  1037. goto done;
  1038. }
  1039. /*
  1040. * An empty mems_allowed is ok iff there are no tasks in the cpuset.
  1041. * Since nodelist_parse() fails on an empty mask, we special case
  1042. * that parsing. The validate_change() call ensures that cpusets
  1043. * with tasks have memory.
  1044. */
  1045. if (!*buf) {
  1046. nodes_clear(trialcs->mems_allowed);
  1047. } else {
  1048. retval = nodelist_parse(buf, trialcs->mems_allowed);
  1049. if (retval < 0)
  1050. goto done;
  1051. if (!nodes_subset(trialcs->mems_allowed,
  1052. top_cpuset.mems_allowed)) {
  1053. retval = -EINVAL;
  1054. goto done;
  1055. }
  1056. }
  1057. if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
  1058. retval = 0; /* Too easy - nothing to do */
  1059. goto done;
  1060. }
  1061. retval = validate_change(cs, trialcs);
  1062. if (retval < 0)
  1063. goto done;
  1064. spin_lock_irq(&callback_lock);
  1065. cs->mems_allowed = trialcs->mems_allowed;
  1066. spin_unlock_irq(&callback_lock);
  1067. /* use trialcs->mems_allowed as a temp variable */
  1068. update_nodemasks_hier(cs, &trialcs->mems_allowed);
  1069. done:
  1070. return retval;
  1071. }
  1072. int current_cpuset_is_being_rebound(void)
  1073. {
  1074. int ret;
  1075. rcu_read_lock();
  1076. ret = task_cs(current) == cpuset_being_rebound;
  1077. rcu_read_unlock();
  1078. return ret;
  1079. }
  1080. static int update_relax_domain_level(struct cpuset *cs, s64 val)
  1081. {
  1082. #ifdef CONFIG_SMP
  1083. if (val < -1 || val >= sched_domain_level_max)
  1084. return -EINVAL;
  1085. #endif
  1086. if (val != cs->relax_domain_level) {
  1087. cs->relax_domain_level = val;
  1088. if (!cpumask_empty(cs->cpus_allowed) &&
  1089. is_sched_load_balance(cs))
  1090. rebuild_sched_domains_locked();
  1091. }
  1092. return 0;
  1093. }
  1094. /**
  1095. * update_tasks_flags - update the spread flags of tasks in the cpuset.
  1096. * @cs: the cpuset in which each task's spread flags needs to be changed
  1097. *
  1098. * Iterate through each task of @cs updating its spread flags. As this
  1099. * function is called with cpuset_mutex held, cpuset membership stays
  1100. * stable.
  1101. */
  1102. static void update_tasks_flags(struct cpuset *cs)
  1103. {
  1104. struct css_task_iter it;
  1105. struct task_struct *task;
  1106. css_task_iter_start(&cs->css, &it);
  1107. while ((task = css_task_iter_next(&it)))
  1108. cpuset_update_task_spread_flag(cs, task);
  1109. css_task_iter_end(&it);
  1110. }
  1111. /*
  1112. * update_flag - read a 0 or a 1 in a file and update associated flag
  1113. * bit: the bit to update (see cpuset_flagbits_t)
  1114. * cs: the cpuset to update
  1115. * turning_on: whether the flag is being set or cleared
  1116. *
  1117. * Call with cpuset_mutex held.
  1118. */
  1119. static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
  1120. int turning_on)
  1121. {
  1122. struct cpuset *trialcs;
  1123. int balance_flag_changed;
  1124. int spread_flag_changed;
  1125. int err;
  1126. trialcs = alloc_trial_cpuset(cs);
  1127. if (!trialcs)
  1128. return -ENOMEM;
  1129. if (turning_on)
  1130. set_bit(bit, &trialcs->flags);
  1131. else
  1132. clear_bit(bit, &trialcs->flags);
  1133. err = validate_change(cs, trialcs);
  1134. if (err < 0)
  1135. goto out;
  1136. balance_flag_changed = (is_sched_load_balance(cs) !=
  1137. is_sched_load_balance(trialcs));
  1138. spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
  1139. || (is_spread_page(cs) != is_spread_page(trialcs)));
  1140. spin_lock_irq(&callback_lock);
  1141. cs->flags = trialcs->flags;
  1142. spin_unlock_irq(&callback_lock);
  1143. if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
  1144. rebuild_sched_domains_locked();
  1145. if (spread_flag_changed)
  1146. update_tasks_flags(cs);
  1147. out:
  1148. free_trial_cpuset(trialcs);
  1149. return err;
  1150. }
  1151. /*
  1152. * Frequency meter - How fast is some event occurring?
  1153. *
  1154. * These routines manage a digitally filtered, constant time based,
  1155. * event frequency meter. There are four routines:
  1156. * fmeter_init() - initialize a frequency meter.
  1157. * fmeter_markevent() - called each time the event happens.
  1158. * fmeter_getrate() - returns the recent rate of such events.
  1159. * fmeter_update() - internal routine used to update fmeter.
  1160. *
  1161. * A common data structure is passed to each of these routines,
  1162. * which is used to keep track of the state required to manage the
  1163. * frequency meter and its digital filter.
  1164. *
  1165. * The filter works on the number of events marked per unit time.
  1166. * The filter is single-pole low-pass recursive (IIR). The time unit
  1167. * is 1 second. Arithmetic is done using 32-bit integers scaled to
  1168. * simulate 3 decimal digits of precision (multiplied by 1000).
  1169. *
  1170. * With an FM_COEF of 933, and a time base of 1 second, the filter
  1171. * has a half-life of 10 seconds, meaning that if the events quit
  1172. * happening, then the rate returned from the fmeter_getrate()
  1173. * will be cut in half each 10 seconds, until it converges to zero.
  1174. *
  1175. * It is not worth doing a real infinitely recursive filter. If more
  1176. * than FM_MAXTICKS ticks have elapsed since the last filter event,
  1177. * just compute FM_MAXTICKS ticks worth, by which point the level
  1178. * will be stable.
  1179. *
  1180. * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
  1181. * arithmetic overflow in the fmeter_update() routine.
  1182. *
  1183. * Given the simple 32 bit integer arithmetic used, this meter works
  1184. * best for reporting rates between one per millisecond (msec) and
  1185. * one per 32 (approx) seconds. At constant rates faster than one
  1186. * per msec it maxes out at values just under 1,000,000. At constant
  1187. * rates between one per msec, and one per second it will stabilize
  1188. * to a value N*1000, where N is the rate of events per second.
  1189. * At constant rates between one per second and one per 32 seconds,
  1190. * it will be choppy, moving up on the seconds that have an event,
  1191. * and then decaying until the next event. At rates slower than
  1192. * about one in 32 seconds, it decays all the way back to zero between
  1193. * each event.
  1194. */
  1195. #define FM_COEF 933 /* coefficient for half-life of 10 secs */
  1196. #define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */
  1197. #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
  1198. #define FM_SCALE 1000 /* faux fixed point scale */
  1199. /* Initialize a frequency meter */
  1200. static void fmeter_init(struct fmeter *fmp)
  1201. {
  1202. fmp->cnt = 0;
  1203. fmp->val = 0;
  1204. fmp->time = 0;
  1205. spin_lock_init(&fmp->lock);
  1206. }
  1207. /* Internal meter update - process cnt events and update value */
  1208. static void fmeter_update(struct fmeter *fmp)
  1209. {
  1210. time64_t now;
  1211. u32 ticks;
  1212. now = ktime_get_seconds();
  1213. ticks = now - fmp->time;
  1214. if (ticks == 0)
  1215. return;
  1216. ticks = min(FM_MAXTICKS, ticks);
  1217. while (ticks-- > 0)
  1218. fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
  1219. fmp->time = now;
  1220. fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
  1221. fmp->cnt = 0;
  1222. }
  1223. /* Process any previous ticks, then bump cnt by one (times scale). */
  1224. static void fmeter_markevent(struct fmeter *fmp)
  1225. {
  1226. spin_lock(&fmp->lock);
  1227. fmeter_update(fmp);
  1228. fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
  1229. spin_unlock(&fmp->lock);
  1230. }
  1231. /* Process any previous ticks, then return current value. */
  1232. static int fmeter_getrate(struct fmeter *fmp)
  1233. {
  1234. int val;
  1235. spin_lock(&fmp->lock);
  1236. fmeter_update(fmp);
  1237. val = fmp->val;
  1238. spin_unlock(&fmp->lock);
  1239. return val;
  1240. }
  1241. static struct cpuset *cpuset_attach_old_cs;
  1242. /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
  1243. static int cpuset_can_attach(struct cgroup_taskset *tset)
  1244. {
  1245. struct cgroup_subsys_state *css;
  1246. struct cpuset *cs;
  1247. struct task_struct *task;
  1248. int ret;
  1249. /* used later by cpuset_attach() */
  1250. cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
  1251. cs = css_cs(css);
  1252. mutex_lock(&cpuset_mutex);
  1253. /* allow moving tasks into an empty cpuset if on default hierarchy */
  1254. ret = -ENOSPC;
  1255. if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
  1256. (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
  1257. goto out_unlock;
  1258. cgroup_taskset_for_each(task, css, tset) {
  1259. ret = task_can_attach(task, cs->cpus_allowed);
  1260. if (ret)
  1261. goto out_unlock;
  1262. ret = security_task_setscheduler(task);
  1263. if (ret)
  1264. goto out_unlock;
  1265. }
  1266. /*
  1267. * Mark attach is in progress. This makes validate_change() fail
  1268. * changes which zero cpus/mems_allowed.
  1269. */
  1270. cs->attach_in_progress++;
  1271. ret = 0;
  1272. out_unlock:
  1273. mutex_unlock(&cpuset_mutex);
  1274. return ret;
  1275. }
  1276. static void cpuset_cancel_attach(struct cgroup_taskset *tset)
  1277. {
  1278. struct cgroup_subsys_state *css;
  1279. struct cpuset *cs;
  1280. cgroup_taskset_first(tset, &css);
  1281. cs = css_cs(css);
  1282. mutex_lock(&cpuset_mutex);
  1283. css_cs(css)->attach_in_progress--;
  1284. mutex_unlock(&cpuset_mutex);
  1285. }
  1286. /*
  1287. * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
  1288. * but we can't allocate it dynamically there. Define it global and
  1289. * allocate from cpuset_init().
  1290. */
  1291. static cpumask_var_t cpus_attach;
  1292. static void cpuset_attach(struct cgroup_taskset *tset)
  1293. {
  1294. /* static buf protected by cpuset_mutex */
  1295. static nodemask_t cpuset_attach_nodemask_to;
  1296. struct task_struct *task;
  1297. struct task_struct *leader;
  1298. struct cgroup_subsys_state *css;
  1299. struct cpuset *cs;
  1300. struct cpuset *oldcs = cpuset_attach_old_cs;
  1301. cgroup_taskset_first(tset, &css);
  1302. cs = css_cs(css);
  1303. mutex_lock(&cpuset_mutex);
  1304. /* prepare for attach */
  1305. if (cs == &top_cpuset)
  1306. cpumask_copy(cpus_attach, cpu_possible_mask);
  1307. else
  1308. guarantee_online_cpus(cs, cpus_attach);
  1309. guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
  1310. cgroup_taskset_for_each(task, css, tset) {
  1311. /*
  1312. * can_attach beforehand should guarantee that this doesn't
  1313. * fail. TODO: have a better way to handle failure here
  1314. */
  1315. WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
  1316. cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
  1317. cpuset_update_task_spread_flag(cs, task);
  1318. }
  1319. /*
  1320. * Change mm for all threadgroup leaders. This is expensive and may
  1321. * sleep and should be moved outside migration path proper.
  1322. */
  1323. cpuset_attach_nodemask_to = cs->effective_mems;
  1324. cgroup_taskset_for_each_leader(leader, css, tset) {
  1325. struct mm_struct *mm = get_task_mm(leader);
  1326. if (mm) {
  1327. mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
  1328. /*
  1329. * old_mems_allowed is the same with mems_allowed
  1330. * here, except if this task is being moved
  1331. * automatically due to hotplug. In that case
  1332. * @mems_allowed has been updated and is empty, so
  1333. * @old_mems_allowed is the right nodesets that we
  1334. * migrate mm from.
  1335. */
  1336. if (is_memory_migrate(cs)) {
  1337. cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
  1338. &cpuset_attach_nodemask_to);
  1339. }
  1340. mmput(mm);
  1341. }
  1342. }
  1343. cs->old_mems_allowed = cpuset_attach_nodemask_to;
  1344. cs->attach_in_progress--;
  1345. if (!cs->attach_in_progress)
  1346. wake_up(&cpuset_attach_wq);
  1347. mutex_unlock(&cpuset_mutex);
  1348. }
  1349. /* The various types of files and directories in a cpuset file system */
  1350. typedef enum {
  1351. FILE_MEMORY_MIGRATE,
  1352. FILE_CPULIST,
  1353. FILE_MEMLIST,
  1354. FILE_EFFECTIVE_CPULIST,
  1355. FILE_EFFECTIVE_MEMLIST,
  1356. FILE_CPU_EXCLUSIVE,
  1357. FILE_MEM_EXCLUSIVE,
  1358. FILE_MEM_HARDWALL,
  1359. FILE_SCHED_LOAD_BALANCE,
  1360. FILE_SCHED_RELAX_DOMAIN_LEVEL,
  1361. FILE_MEMORY_PRESSURE_ENABLED,
  1362. FILE_MEMORY_PRESSURE,
  1363. FILE_SPREAD_PAGE,
  1364. FILE_SPREAD_SLAB,
  1365. } cpuset_filetype_t;
  1366. static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
  1367. u64 val)
  1368. {
  1369. struct cpuset *cs = css_cs(css);
  1370. cpuset_filetype_t type = cft->private;
  1371. int retval = 0;
  1372. mutex_lock(&cpuset_mutex);
  1373. if (!is_cpuset_online(cs)) {
  1374. retval = -ENODEV;
  1375. goto out_unlock;
  1376. }
  1377. switch (type) {
  1378. case FILE_CPU_EXCLUSIVE:
  1379. retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
  1380. break;
  1381. case FILE_MEM_EXCLUSIVE:
  1382. retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
  1383. break;
  1384. case FILE_MEM_HARDWALL:
  1385. retval = update_flag(CS_MEM_HARDWALL, cs, val);
  1386. break;
  1387. case FILE_SCHED_LOAD_BALANCE:
  1388. retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
  1389. break;
  1390. case FILE_MEMORY_MIGRATE:
  1391. retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
  1392. break;
  1393. case FILE_MEMORY_PRESSURE_ENABLED:
  1394. cpuset_memory_pressure_enabled = !!val;
  1395. break;
  1396. case FILE_SPREAD_PAGE:
  1397. retval = update_flag(CS_SPREAD_PAGE, cs, val);
  1398. break;
  1399. case FILE_SPREAD_SLAB:
  1400. retval = update_flag(CS_SPREAD_SLAB, cs, val);
  1401. break;
  1402. default:
  1403. retval = -EINVAL;
  1404. break;
  1405. }
  1406. out_unlock:
  1407. mutex_unlock(&cpuset_mutex);
  1408. return retval;
  1409. }
  1410. static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
  1411. s64 val)
  1412. {
  1413. struct cpuset *cs = css_cs(css);
  1414. cpuset_filetype_t type = cft->private;
  1415. int retval = -ENODEV;
  1416. mutex_lock(&cpuset_mutex);
  1417. if (!is_cpuset_online(cs))
  1418. goto out_unlock;
  1419. switch (type) {
  1420. case FILE_SCHED_RELAX_DOMAIN_LEVEL:
  1421. retval = update_relax_domain_level(cs, val);
  1422. break;
  1423. default:
  1424. retval = -EINVAL;
  1425. break;
  1426. }
  1427. out_unlock:
  1428. mutex_unlock(&cpuset_mutex);
  1429. return retval;
  1430. }
  1431. /*
  1432. * Common handling for a write to a "cpus" or "mems" file.
  1433. */
  1434. static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
  1435. char *buf, size_t nbytes, loff_t off)
  1436. {
  1437. struct cpuset *cs = css_cs(of_css(of));
  1438. struct cpuset *trialcs;
  1439. int retval = -ENODEV;
  1440. buf = strstrip(buf);
  1441. /*
  1442. * CPU or memory hotunplug may leave @cs w/o any execution
  1443. * resources, in which case the hotplug code asynchronously updates
  1444. * configuration and transfers all tasks to the nearest ancestor
  1445. * which can execute.
  1446. *
  1447. * As writes to "cpus" or "mems" may restore @cs's execution
  1448. * resources, wait for the previously scheduled operations before
  1449. * proceeding, so that we don't end up keep removing tasks added
  1450. * after execution capability is restored.
  1451. *
  1452. * cpuset_hotplug_work calls back into cgroup core via
  1453. * cgroup_transfer_tasks() and waiting for it from a cgroupfs
  1454. * operation like this one can lead to a deadlock through kernfs
  1455. * active_ref protection. Let's break the protection. Losing the
  1456. * protection is okay as we check whether @cs is online after
  1457. * grabbing cpuset_mutex anyway. This only happens on the legacy
  1458. * hierarchies.
  1459. */
  1460. css_get(&cs->css);
  1461. kernfs_break_active_protection(of->kn);
  1462. flush_work(&cpuset_hotplug_work);
  1463. mutex_lock(&cpuset_mutex);
  1464. if (!is_cpuset_online(cs))
  1465. goto out_unlock;
  1466. trialcs = alloc_trial_cpuset(cs);
  1467. if (!trialcs) {
  1468. retval = -ENOMEM;
  1469. goto out_unlock;
  1470. }
  1471. switch (of_cft(of)->private) {
  1472. case FILE_CPULIST:
  1473. retval = update_cpumask(cs, trialcs, buf);
  1474. break;
  1475. case FILE_MEMLIST:
  1476. retval = update_nodemask(cs, trialcs, buf);
  1477. break;
  1478. default:
  1479. retval = -EINVAL;
  1480. break;
  1481. }
  1482. free_trial_cpuset(trialcs);
  1483. out_unlock:
  1484. mutex_unlock(&cpuset_mutex);
  1485. kernfs_unbreak_active_protection(of->kn);
  1486. css_put(&cs->css);
  1487. return retval ?: nbytes;
  1488. }
  1489. /*
  1490. * These ascii lists should be read in a single call, by using a user
  1491. * buffer large enough to hold the entire map. If read in smaller
  1492. * chunks, there is no guarantee of atomicity. Since the display format
  1493. * used, list of ranges of sequential numbers, is variable length,
  1494. * and since these maps can change value dynamically, one could read
  1495. * gibberish by doing partial reads while a list was changing.
  1496. */
  1497. static int cpuset_common_seq_show(struct seq_file *sf, void *v)
  1498. {
  1499. struct cpuset *cs = css_cs(seq_css(sf));
  1500. cpuset_filetype_t type = seq_cft(sf)->private;
  1501. int ret = 0;
  1502. spin_lock_irq(&callback_lock);
  1503. switch (type) {
  1504. case FILE_CPULIST:
  1505. seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
  1506. break;
  1507. case FILE_MEMLIST:
  1508. seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
  1509. break;
  1510. case FILE_EFFECTIVE_CPULIST:
  1511. seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
  1512. break;
  1513. case FILE_EFFECTIVE_MEMLIST:
  1514. seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
  1515. break;
  1516. default:
  1517. ret = -EINVAL;
  1518. }
  1519. spin_unlock_irq(&callback_lock);
  1520. return ret;
  1521. }
  1522. static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
  1523. {
  1524. struct cpuset *cs = css_cs(css);
  1525. cpuset_filetype_t type = cft->private;
  1526. switch (type) {
  1527. case FILE_CPU_EXCLUSIVE:
  1528. return is_cpu_exclusive(cs);
  1529. case FILE_MEM_EXCLUSIVE:
  1530. return is_mem_exclusive(cs);
  1531. case FILE_MEM_HARDWALL:
  1532. return is_mem_hardwall(cs);
  1533. case FILE_SCHED_LOAD_BALANCE:
  1534. return is_sched_load_balance(cs);
  1535. case FILE_MEMORY_MIGRATE:
  1536. return is_memory_migrate(cs);
  1537. case FILE_MEMORY_PRESSURE_ENABLED:
  1538. return cpuset_memory_pressure_enabled;
  1539. case FILE_MEMORY_PRESSURE:
  1540. return fmeter_getrate(&cs->fmeter);
  1541. case FILE_SPREAD_PAGE:
  1542. return is_spread_page(cs);
  1543. case FILE_SPREAD_SLAB:
  1544. return is_spread_slab(cs);
  1545. default:
  1546. BUG();
  1547. }
  1548. /* Unreachable but makes gcc happy */
  1549. return 0;
  1550. }
  1551. static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
  1552. {
  1553. struct cpuset *cs = css_cs(css);
  1554. cpuset_filetype_t type = cft->private;
  1555. switch (type) {
  1556. case FILE_SCHED_RELAX_DOMAIN_LEVEL:
  1557. return cs->relax_domain_level;
  1558. default:
  1559. BUG();
  1560. }
  1561. /* Unrechable but makes gcc happy */
  1562. return 0;
  1563. }
  1564. /*
  1565. * for the common functions, 'private' gives the type of file
  1566. */
  1567. static struct cftype files[] = {
  1568. {
  1569. .name = "cpus",
  1570. .seq_show = cpuset_common_seq_show,
  1571. .write = cpuset_write_resmask,
  1572. .max_write_len = (100U + 6 * NR_CPUS),
  1573. .private = FILE_CPULIST,
  1574. },
  1575. {
  1576. .name = "mems",
  1577. .seq_show = cpuset_common_seq_show,
  1578. .write = cpuset_write_resmask,
  1579. .max_write_len = (100U + 6 * MAX_NUMNODES),
  1580. .private = FILE_MEMLIST,
  1581. },
  1582. {
  1583. .name = "effective_cpus",
  1584. .seq_show = cpuset_common_seq_show,
  1585. .private = FILE_EFFECTIVE_CPULIST,
  1586. },
  1587. {
  1588. .name = "effective_mems",
  1589. .seq_show = cpuset_common_seq_show,
  1590. .private = FILE_EFFECTIVE_MEMLIST,
  1591. },
  1592. {
  1593. .name = "cpu_exclusive",
  1594. .read_u64 = cpuset_read_u64,
  1595. .write_u64 = cpuset_write_u64,
  1596. .private = FILE_CPU_EXCLUSIVE,
  1597. },
  1598. {
  1599. .name = "mem_exclusive",
  1600. .read_u64 = cpuset_read_u64,
  1601. .write_u64 = cpuset_write_u64,
  1602. .private = FILE_MEM_EXCLUSIVE,
  1603. },
  1604. {
  1605. .name = "mem_hardwall",
  1606. .read_u64 = cpuset_read_u64,
  1607. .write_u64 = cpuset_write_u64,
  1608. .private = FILE_MEM_HARDWALL,
  1609. },
  1610. {
  1611. .name = "sched_load_balance",
  1612. .read_u64 = cpuset_read_u64,
  1613. .write_u64 = cpuset_write_u64,
  1614. .private = FILE_SCHED_LOAD_BALANCE,
  1615. },
  1616. {
  1617. .name = "sched_relax_domain_level",
  1618. .read_s64 = cpuset_read_s64,
  1619. .write_s64 = cpuset_write_s64,
  1620. .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
  1621. },
  1622. {
  1623. .name = "memory_migrate",
  1624. .read_u64 = cpuset_read_u64,
  1625. .write_u64 = cpuset_write_u64,
  1626. .private = FILE_MEMORY_MIGRATE,
  1627. },
  1628. {
  1629. .name = "memory_pressure",
  1630. .read_u64 = cpuset_read_u64,
  1631. },
  1632. {
  1633. .name = "memory_spread_page",
  1634. .read_u64 = cpuset_read_u64,
  1635. .write_u64 = cpuset_write_u64,
  1636. .private = FILE_SPREAD_PAGE,
  1637. },
  1638. {
  1639. .name = "memory_spread_slab",
  1640. .read_u64 = cpuset_read_u64,
  1641. .write_u64 = cpuset_write_u64,
  1642. .private = FILE_SPREAD_SLAB,
  1643. },
  1644. {
  1645. .name = "memory_pressure_enabled",
  1646. .flags = CFTYPE_ONLY_ON_ROOT,
  1647. .read_u64 = cpuset_read_u64,
  1648. .write_u64 = cpuset_write_u64,
  1649. .private = FILE_MEMORY_PRESSURE_ENABLED,
  1650. },
  1651. { } /* terminate */
  1652. };
  1653. /*
  1654. * cpuset_css_alloc - allocate a cpuset css
  1655. * cgrp: control group that the new cpuset will be part of
  1656. */
  1657. static struct cgroup_subsys_state *
  1658. cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
  1659. {
  1660. struct cpuset *cs;
  1661. if (!parent_css)
  1662. return &top_cpuset.css;
  1663. cs = kzalloc(sizeof(*cs), GFP_KERNEL);
  1664. if (!cs)
  1665. return ERR_PTR(-ENOMEM);
  1666. if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
  1667. goto free_cs;
  1668. if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
  1669. goto free_cpus;
  1670. set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
  1671. cpumask_clear(cs->cpus_allowed);
  1672. nodes_clear(cs->mems_allowed);
  1673. cpumask_clear(cs->effective_cpus);
  1674. nodes_clear(cs->effective_mems);
  1675. fmeter_init(&cs->fmeter);
  1676. cs->relax_domain_level = -1;
  1677. return &cs->css;
  1678. free_cpus:
  1679. free_cpumask_var(cs->cpus_allowed);
  1680. free_cs:
  1681. kfree(cs);
  1682. return ERR_PTR(-ENOMEM);
  1683. }
  1684. static int cpuset_css_online(struct cgroup_subsys_state *css)
  1685. {
  1686. struct cpuset *cs = css_cs(css);
  1687. struct cpuset *parent = parent_cs(cs);
  1688. struct cpuset *tmp_cs;
  1689. struct cgroup_subsys_state *pos_css;
  1690. if (!parent)
  1691. return 0;
  1692. mutex_lock(&cpuset_mutex);
  1693. set_bit(CS_ONLINE, &cs->flags);
  1694. if (is_spread_page(parent))
  1695. set_bit(CS_SPREAD_PAGE, &cs->flags);
  1696. if (is_spread_slab(parent))
  1697. set_bit(CS_SPREAD_SLAB, &cs->flags);
  1698. cpuset_inc();
  1699. spin_lock_irq(&callback_lock);
  1700. if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
  1701. cpumask_copy(cs->effective_cpus, parent->effective_cpus);
  1702. cs->effective_mems = parent->effective_mems;
  1703. }
  1704. spin_unlock_irq(&callback_lock);
  1705. if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
  1706. goto out_unlock;
  1707. /*
  1708. * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
  1709. * set. This flag handling is implemented in cgroup core for
  1710. * histrical reasons - the flag may be specified during mount.
  1711. *
  1712. * Currently, if any sibling cpusets have exclusive cpus or mem, we
  1713. * refuse to clone the configuration - thereby refusing the task to
  1714. * be entered, and as a result refusing the sys_unshare() or
  1715. * clone() which initiated it. If this becomes a problem for some
  1716. * users who wish to allow that scenario, then this could be
  1717. * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
  1718. * (and likewise for mems) to the new cgroup.
  1719. */
  1720. rcu_read_lock();
  1721. cpuset_for_each_child(tmp_cs, pos_css, parent) {
  1722. if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
  1723. rcu_read_unlock();
  1724. goto out_unlock;
  1725. }
  1726. }
  1727. rcu_read_unlock();
  1728. spin_lock_irq(&callback_lock);
  1729. cs->mems_allowed = parent->mems_allowed;
  1730. cs->effective_mems = parent->mems_allowed;
  1731. cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
  1732. cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
  1733. spin_unlock_irq(&callback_lock);
  1734. out_unlock:
  1735. mutex_unlock(&cpuset_mutex);
  1736. return 0;
  1737. }
  1738. /*
  1739. * If the cpuset being removed has its flag 'sched_load_balance'
  1740. * enabled, then simulate turning sched_load_balance off, which
  1741. * will call rebuild_sched_domains_locked().
  1742. */
  1743. static void cpuset_css_offline(struct cgroup_subsys_state *css)
  1744. {
  1745. struct cpuset *cs = css_cs(css);
  1746. mutex_lock(&cpuset_mutex);
  1747. if (is_sched_load_balance(cs))
  1748. update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
  1749. cpuset_dec();
  1750. clear_bit(CS_ONLINE, &cs->flags);
  1751. mutex_unlock(&cpuset_mutex);
  1752. }
  1753. static void cpuset_css_free(struct cgroup_subsys_state *css)
  1754. {
  1755. struct cpuset *cs = css_cs(css);
  1756. free_cpumask_var(cs->effective_cpus);
  1757. free_cpumask_var(cs->cpus_allowed);
  1758. kfree(cs);
  1759. }
  1760. static void cpuset_bind(struct cgroup_subsys_state *root_css)
  1761. {
  1762. mutex_lock(&cpuset_mutex);
  1763. spin_lock_irq(&callback_lock);
  1764. if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
  1765. cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
  1766. top_cpuset.mems_allowed = node_possible_map;
  1767. } else {
  1768. cpumask_copy(top_cpuset.cpus_allowed,
  1769. top_cpuset.effective_cpus);
  1770. top_cpuset.mems_allowed = top_cpuset.effective_mems;
  1771. }
  1772. spin_unlock_irq(&callback_lock);
  1773. mutex_unlock(&cpuset_mutex);
  1774. }
  1775. struct cgroup_subsys cpuset_cgrp_subsys = {
  1776. .css_alloc = cpuset_css_alloc,
  1777. .css_online = cpuset_css_online,
  1778. .css_offline = cpuset_css_offline,
  1779. .css_free = cpuset_css_free,
  1780. .can_attach = cpuset_can_attach,
  1781. .cancel_attach = cpuset_cancel_attach,
  1782. .attach = cpuset_attach,
  1783. .bind = cpuset_bind,
  1784. .legacy_cftypes = files,
  1785. .early_init = 1,
  1786. };
  1787. /**
  1788. * cpuset_init - initialize cpusets at system boot
  1789. *
  1790. * Description: Initialize top_cpuset and the cpuset internal file system,
  1791. **/
  1792. int __init cpuset_init(void)
  1793. {
  1794. int err = 0;
  1795. if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
  1796. BUG();
  1797. if (!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL))
  1798. BUG();
  1799. cpumask_setall(top_cpuset.cpus_allowed);
  1800. nodes_setall(top_cpuset.mems_allowed);
  1801. cpumask_setall(top_cpuset.effective_cpus);
  1802. nodes_setall(top_cpuset.effective_mems);
  1803. fmeter_init(&top_cpuset.fmeter);
  1804. set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
  1805. top_cpuset.relax_domain_level = -1;
  1806. err = register_filesystem(&cpuset_fs_type);
  1807. if (err < 0)
  1808. return err;
  1809. if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
  1810. BUG();
  1811. return 0;
  1812. }
  1813. /*
  1814. * If CPU and/or memory hotplug handlers, below, unplug any CPUs
  1815. * or memory nodes, we need to walk over the cpuset hierarchy,
  1816. * removing that CPU or node from all cpusets. If this removes the
  1817. * last CPU or node from a cpuset, then move the tasks in the empty
  1818. * cpuset to its next-highest non-empty parent.
  1819. */
  1820. static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
  1821. {
  1822. struct cpuset *parent;
  1823. /*
  1824. * Find its next-highest non-empty parent, (top cpuset
  1825. * has online cpus, so can't be empty).
  1826. */
  1827. parent = parent_cs(cs);
  1828. while (cpumask_empty(parent->cpus_allowed) ||
  1829. nodes_empty(parent->mems_allowed))
  1830. parent = parent_cs(parent);
  1831. if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
  1832. pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
  1833. pr_cont_cgroup_name(cs->css.cgroup);
  1834. pr_cont("\n");
  1835. }
  1836. }
  1837. static void
  1838. hotplug_update_tasks_legacy(struct cpuset *cs,
  1839. struct cpumask *new_cpus, nodemask_t *new_mems,
  1840. bool cpus_updated, bool mems_updated)
  1841. {
  1842. bool is_empty;
  1843. spin_lock_irq(&callback_lock);
  1844. cpumask_copy(cs->cpus_allowed, new_cpus);
  1845. cpumask_copy(cs->effective_cpus, new_cpus);
  1846. cs->mems_allowed = *new_mems;
  1847. cs->effective_mems = *new_mems;
  1848. spin_unlock_irq(&callback_lock);
  1849. /*
  1850. * Don't call update_tasks_cpumask() if the cpuset becomes empty,
  1851. * as the tasks will be migratecd to an ancestor.
  1852. */
  1853. if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
  1854. update_tasks_cpumask(cs);
  1855. if (mems_updated && !nodes_empty(cs->mems_allowed))
  1856. update_tasks_nodemask(cs);
  1857. is_empty = cpumask_empty(cs->cpus_allowed) ||
  1858. nodes_empty(cs->mems_allowed);
  1859. mutex_unlock(&cpuset_mutex);
  1860. /*
  1861. * Move tasks to the nearest ancestor with execution resources,
  1862. * This is full cgroup operation which will also call back into
  1863. * cpuset. Should be done outside any lock.
  1864. */
  1865. if (is_empty)
  1866. remove_tasks_in_empty_cpuset(cs);
  1867. mutex_lock(&cpuset_mutex);
  1868. }
  1869. static void
  1870. hotplug_update_tasks(struct cpuset *cs,
  1871. struct cpumask *new_cpus, nodemask_t *new_mems,
  1872. bool cpus_updated, bool mems_updated)
  1873. {
  1874. if (cpumask_empty(new_cpus))
  1875. cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
  1876. if (nodes_empty(*new_mems))
  1877. *new_mems = parent_cs(cs)->effective_mems;
  1878. spin_lock_irq(&callback_lock);
  1879. cpumask_copy(cs->effective_cpus, new_cpus);
  1880. cs->effective_mems = *new_mems;
  1881. spin_unlock_irq(&callback_lock);
  1882. if (cpus_updated)
  1883. update_tasks_cpumask(cs);
  1884. if (mems_updated)
  1885. update_tasks_nodemask(cs);
  1886. }
  1887. /**
  1888. * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
  1889. * @cs: cpuset in interest
  1890. *
  1891. * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
  1892. * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
  1893. * all its tasks are moved to the nearest ancestor with both resources.
  1894. */
  1895. static void cpuset_hotplug_update_tasks(struct cpuset *cs)
  1896. {
  1897. static cpumask_t new_cpus;
  1898. static nodemask_t new_mems;
  1899. bool cpus_updated;
  1900. bool mems_updated;
  1901. retry:
  1902. wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
  1903. mutex_lock(&cpuset_mutex);
  1904. /*
  1905. * We have raced with task attaching. We wait until attaching
  1906. * is finished, so we won't attach a task to an empty cpuset.
  1907. */
  1908. if (cs->attach_in_progress) {
  1909. mutex_unlock(&cpuset_mutex);
  1910. goto retry;
  1911. }
  1912. cpumask_and(&new_cpus, cs->cpus_allowed, parent_cs(cs)->effective_cpus);
  1913. nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems);
  1914. cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
  1915. mems_updated = !nodes_equal(new_mems, cs->effective_mems);
  1916. if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
  1917. hotplug_update_tasks(cs, &new_cpus, &new_mems,
  1918. cpus_updated, mems_updated);
  1919. else
  1920. hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
  1921. cpus_updated, mems_updated);
  1922. mutex_unlock(&cpuset_mutex);
  1923. }
  1924. /**
  1925. * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
  1926. *
  1927. * This function is called after either CPU or memory configuration has
  1928. * changed and updates cpuset accordingly. The top_cpuset is always
  1929. * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
  1930. * order to make cpusets transparent (of no affect) on systems that are
  1931. * actively using CPU hotplug but making no active use of cpusets.
  1932. *
  1933. * Non-root cpusets are only affected by offlining. If any CPUs or memory
  1934. * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
  1935. * all descendants.
  1936. *
  1937. * Note that CPU offlining during suspend is ignored. We don't modify
  1938. * cpusets across suspend/resume cycles at all.
  1939. */
  1940. static void cpuset_hotplug_workfn(struct work_struct *work)
  1941. {
  1942. static cpumask_t new_cpus;
  1943. static nodemask_t new_mems;
  1944. bool cpus_updated, mems_updated;
  1945. bool on_dfl = cgroup_subsys_on_dfl(cpuset_cgrp_subsys);
  1946. mutex_lock(&cpuset_mutex);
  1947. /* fetch the available cpus/mems and find out which changed how */
  1948. cpumask_copy(&new_cpus, cpu_active_mask);
  1949. new_mems = node_states[N_MEMORY];
  1950. cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
  1951. mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
  1952. /* synchronize cpus_allowed to cpu_active_mask */
  1953. if (cpus_updated) {
  1954. spin_lock_irq(&callback_lock);
  1955. if (!on_dfl)
  1956. cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
  1957. cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
  1958. spin_unlock_irq(&callback_lock);
  1959. /* we don't mess with cpumasks of tasks in top_cpuset */
  1960. }
  1961. /* synchronize mems_allowed to N_MEMORY */
  1962. if (mems_updated) {
  1963. spin_lock_irq(&callback_lock);
  1964. if (!on_dfl)
  1965. top_cpuset.mems_allowed = new_mems;
  1966. top_cpuset.effective_mems = new_mems;
  1967. spin_unlock_irq(&callback_lock);
  1968. update_tasks_nodemask(&top_cpuset);
  1969. }
  1970. mutex_unlock(&cpuset_mutex);
  1971. /* if cpus or mems changed, we need to propagate to descendants */
  1972. if (cpus_updated || mems_updated) {
  1973. struct cpuset *cs;
  1974. struct cgroup_subsys_state *pos_css;
  1975. rcu_read_lock();
  1976. cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
  1977. if (cs == &top_cpuset || !css_tryget_online(&cs->css))
  1978. continue;
  1979. rcu_read_unlock();
  1980. cpuset_hotplug_update_tasks(cs);
  1981. rcu_read_lock();
  1982. css_put(&cs->css);
  1983. }
  1984. rcu_read_unlock();
  1985. }
  1986. /* rebuild sched domains if cpus_allowed has changed */
  1987. if (cpus_updated)
  1988. rebuild_sched_domains();
  1989. }
  1990. void cpuset_update_active_cpus(bool cpu_online)
  1991. {
  1992. /*
  1993. * We're inside cpu hotplug critical region which usually nests
  1994. * inside cgroup synchronization. Bounce actual hotplug processing
  1995. * to a work item to avoid reverse locking order.
  1996. *
  1997. * We still need to do partition_sched_domains() synchronously;
  1998. * otherwise, the scheduler will get confused and put tasks to the
  1999. * dead CPU. Fall back to the default single domain.
  2000. * cpuset_hotplug_workfn() will rebuild it as necessary.
  2001. */
  2002. partition_sched_domains(1, NULL, NULL);
  2003. schedule_work(&cpuset_hotplug_work);
  2004. }
  2005. /*
  2006. * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
  2007. * Call this routine anytime after node_states[N_MEMORY] changes.
  2008. * See cpuset_update_active_cpus() for CPU hotplug handling.
  2009. */
  2010. static int cpuset_track_online_nodes(struct notifier_block *self,
  2011. unsigned long action, void *arg)
  2012. {
  2013. schedule_work(&cpuset_hotplug_work);
  2014. return NOTIFY_OK;
  2015. }
  2016. static struct notifier_block cpuset_track_online_nodes_nb = {
  2017. .notifier_call = cpuset_track_online_nodes,
  2018. .priority = 10, /* ??! */
  2019. };
  2020. /**
  2021. * cpuset_init_smp - initialize cpus_allowed
  2022. *
  2023. * Description: Finish top cpuset after cpu, node maps are initialized
  2024. */
  2025. void __init cpuset_init_smp(void)
  2026. {
  2027. cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
  2028. top_cpuset.mems_allowed = node_states[N_MEMORY];
  2029. top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
  2030. cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
  2031. top_cpuset.effective_mems = node_states[N_MEMORY];
  2032. register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
  2033. }
  2034. /**
  2035. * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
  2036. * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
  2037. * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
  2038. *
  2039. * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
  2040. * attached to the specified @tsk. Guaranteed to return some non-empty
  2041. * subset of cpu_online_mask, even if this means going outside the
  2042. * tasks cpuset.
  2043. **/
  2044. void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
  2045. {
  2046. unsigned long flags;
  2047. spin_lock_irqsave(&callback_lock, flags);
  2048. rcu_read_lock();
  2049. guarantee_online_cpus(task_cs(tsk), pmask);
  2050. rcu_read_unlock();
  2051. spin_unlock_irqrestore(&callback_lock, flags);
  2052. }
  2053. void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
  2054. {
  2055. rcu_read_lock();
  2056. do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
  2057. rcu_read_unlock();
  2058. /*
  2059. * We own tsk->cpus_allowed, nobody can change it under us.
  2060. *
  2061. * But we used cs && cs->cpus_allowed lockless and thus can
  2062. * race with cgroup_attach_task() or update_cpumask() and get
  2063. * the wrong tsk->cpus_allowed. However, both cases imply the
  2064. * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
  2065. * which takes task_rq_lock().
  2066. *
  2067. * If we are called after it dropped the lock we must see all
  2068. * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
  2069. * set any mask even if it is not right from task_cs() pov,
  2070. * the pending set_cpus_allowed_ptr() will fix things.
  2071. *
  2072. * select_fallback_rq() will fix things ups and set cpu_possible_mask
  2073. * if required.
  2074. */
  2075. }
  2076. void __init cpuset_init_current_mems_allowed(void)
  2077. {
  2078. nodes_setall(current->mems_allowed);
  2079. }
  2080. /**
  2081. * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
  2082. * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
  2083. *
  2084. * Description: Returns the nodemask_t mems_allowed of the cpuset
  2085. * attached to the specified @tsk. Guaranteed to return some non-empty
  2086. * subset of node_states[N_MEMORY], even if this means going outside the
  2087. * tasks cpuset.
  2088. **/
  2089. nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
  2090. {
  2091. nodemask_t mask;
  2092. unsigned long flags;
  2093. spin_lock_irqsave(&callback_lock, flags);
  2094. rcu_read_lock();
  2095. guarantee_online_mems(task_cs(tsk), &mask);
  2096. rcu_read_unlock();
  2097. spin_unlock_irqrestore(&callback_lock, flags);
  2098. return mask;
  2099. }
  2100. /**
  2101. * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
  2102. * @nodemask: the nodemask to be checked
  2103. *
  2104. * Are any of the nodes in the nodemask allowed in current->mems_allowed?
  2105. */
  2106. int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
  2107. {
  2108. return nodes_intersects(*nodemask, current->mems_allowed);
  2109. }
  2110. /*
  2111. * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
  2112. * mem_hardwall ancestor to the specified cpuset. Call holding
  2113. * callback_lock. If no ancestor is mem_exclusive or mem_hardwall
  2114. * (an unusual configuration), then returns the root cpuset.
  2115. */
  2116. static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
  2117. {
  2118. while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
  2119. cs = parent_cs(cs);
  2120. return cs;
  2121. }
  2122. /**
  2123. * cpuset_node_allowed - Can we allocate on a memory node?
  2124. * @node: is this an allowed node?
  2125. * @gfp_mask: memory allocation flags
  2126. *
  2127. * If we're in interrupt, yes, we can always allocate. If @node is set in
  2128. * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this
  2129. * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
  2130. * yes. If current has access to memory reserves due to TIF_MEMDIE, yes.
  2131. * Otherwise, no.
  2132. *
  2133. * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
  2134. * and do not allow allocations outside the current tasks cpuset
  2135. * unless the task has been OOM killed as is marked TIF_MEMDIE.
  2136. * GFP_KERNEL allocations are not so marked, so can escape to the
  2137. * nearest enclosing hardwalled ancestor cpuset.
  2138. *
  2139. * Scanning up parent cpusets requires callback_lock. The
  2140. * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
  2141. * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
  2142. * current tasks mems_allowed came up empty on the first pass over
  2143. * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
  2144. * cpuset are short of memory, might require taking the callback_lock.
  2145. *
  2146. * The first call here from mm/page_alloc:get_page_from_freelist()
  2147. * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
  2148. * so no allocation on a node outside the cpuset is allowed (unless
  2149. * in interrupt, of course).
  2150. *
  2151. * The second pass through get_page_from_freelist() doesn't even call
  2152. * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
  2153. * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
  2154. * in alloc_flags. That logic and the checks below have the combined
  2155. * affect that:
  2156. * in_interrupt - any node ok (current task context irrelevant)
  2157. * GFP_ATOMIC - any node ok
  2158. * TIF_MEMDIE - any node ok
  2159. * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
  2160. * GFP_USER - only nodes in current tasks mems allowed ok.
  2161. */
  2162. int __cpuset_node_allowed(int node, gfp_t gfp_mask)
  2163. {
  2164. struct cpuset *cs; /* current cpuset ancestors */
  2165. int allowed; /* is allocation in zone z allowed? */
  2166. unsigned long flags;
  2167. if (in_interrupt())
  2168. return 1;
  2169. if (node_isset(node, current->mems_allowed))
  2170. return 1;
  2171. /*
  2172. * Allow tasks that have access to memory reserves because they have
  2173. * been OOM killed to get memory anywhere.
  2174. */
  2175. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  2176. return 1;
  2177. if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
  2178. return 0;
  2179. if (current->flags & PF_EXITING) /* Let dying task have memory */
  2180. return 1;
  2181. /* Not hardwall and node outside mems_allowed: scan up cpusets */
  2182. spin_lock_irqsave(&callback_lock, flags);
  2183. rcu_read_lock();
  2184. cs = nearest_hardwall_ancestor(task_cs(current));
  2185. allowed = node_isset(node, cs->mems_allowed);
  2186. rcu_read_unlock();
  2187. spin_unlock_irqrestore(&callback_lock, flags);
  2188. return allowed;
  2189. }
  2190. /**
  2191. * cpuset_mem_spread_node() - On which node to begin search for a file page
  2192. * cpuset_slab_spread_node() - On which node to begin search for a slab page
  2193. *
  2194. * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
  2195. * tasks in a cpuset with is_spread_page or is_spread_slab set),
  2196. * and if the memory allocation used cpuset_mem_spread_node()
  2197. * to determine on which node to start looking, as it will for
  2198. * certain page cache or slab cache pages such as used for file
  2199. * system buffers and inode caches, then instead of starting on the
  2200. * local node to look for a free page, rather spread the starting
  2201. * node around the tasks mems_allowed nodes.
  2202. *
  2203. * We don't have to worry about the returned node being offline
  2204. * because "it can't happen", and even if it did, it would be ok.
  2205. *
  2206. * The routines calling guarantee_online_mems() are careful to
  2207. * only set nodes in task->mems_allowed that are online. So it
  2208. * should not be possible for the following code to return an
  2209. * offline node. But if it did, that would be ok, as this routine
  2210. * is not returning the node where the allocation must be, only
  2211. * the node where the search should start. The zonelist passed to
  2212. * __alloc_pages() will include all nodes. If the slab allocator
  2213. * is passed an offline node, it will fall back to the local node.
  2214. * See kmem_cache_alloc_node().
  2215. */
  2216. static int cpuset_spread_node(int *rotor)
  2217. {
  2218. int node;
  2219. node = next_node(*rotor, current->mems_allowed);
  2220. if (node == MAX_NUMNODES)
  2221. node = first_node(current->mems_allowed);
  2222. *rotor = node;
  2223. return node;
  2224. }
  2225. int cpuset_mem_spread_node(void)
  2226. {
  2227. if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
  2228. current->cpuset_mem_spread_rotor =
  2229. node_random(&current->mems_allowed);
  2230. return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
  2231. }
  2232. int cpuset_slab_spread_node(void)
  2233. {
  2234. if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
  2235. current->cpuset_slab_spread_rotor =
  2236. node_random(&current->mems_allowed);
  2237. return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
  2238. }
  2239. EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
  2240. /**
  2241. * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
  2242. * @tsk1: pointer to task_struct of some task.
  2243. * @tsk2: pointer to task_struct of some other task.
  2244. *
  2245. * Description: Return true if @tsk1's mems_allowed intersects the
  2246. * mems_allowed of @tsk2. Used by the OOM killer to determine if
  2247. * one of the task's memory usage might impact the memory available
  2248. * to the other.
  2249. **/
  2250. int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
  2251. const struct task_struct *tsk2)
  2252. {
  2253. return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
  2254. }
  2255. /**
  2256. * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
  2257. *
  2258. * Description: Prints current's name, cpuset name, and cached copy of its
  2259. * mems_allowed to the kernel log.
  2260. */
  2261. void cpuset_print_current_mems_allowed(void)
  2262. {
  2263. struct cgroup *cgrp;
  2264. rcu_read_lock();
  2265. cgrp = task_cs(current)->css.cgroup;
  2266. pr_info("%s cpuset=", current->comm);
  2267. pr_cont_cgroup_name(cgrp);
  2268. pr_cont(" mems_allowed=%*pbl\n",
  2269. nodemask_pr_args(&current->mems_allowed));
  2270. rcu_read_unlock();
  2271. }
  2272. /*
  2273. * Collection of memory_pressure is suppressed unless
  2274. * this flag is enabled by writing "1" to the special
  2275. * cpuset file 'memory_pressure_enabled' in the root cpuset.
  2276. */
  2277. int cpuset_memory_pressure_enabled __read_mostly;
  2278. /**
  2279. * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
  2280. *
  2281. * Keep a running average of the rate of synchronous (direct)
  2282. * page reclaim efforts initiated by tasks in each cpuset.
  2283. *
  2284. * This represents the rate at which some task in the cpuset
  2285. * ran low on memory on all nodes it was allowed to use, and
  2286. * had to enter the kernels page reclaim code in an effort to
  2287. * create more free memory by tossing clean pages or swapping
  2288. * or writing dirty pages.
  2289. *
  2290. * Display to user space in the per-cpuset read-only file
  2291. * "memory_pressure". Value displayed is an integer
  2292. * representing the recent rate of entry into the synchronous
  2293. * (direct) page reclaim by any task attached to the cpuset.
  2294. **/
  2295. void __cpuset_memory_pressure_bump(void)
  2296. {
  2297. rcu_read_lock();
  2298. fmeter_markevent(&task_cs(current)->fmeter);
  2299. rcu_read_unlock();
  2300. }
  2301. #ifdef CONFIG_PROC_PID_CPUSET
  2302. /*
  2303. * proc_cpuset_show()
  2304. * - Print tasks cpuset path into seq_file.
  2305. * - Used for /proc/<pid>/cpuset.
  2306. * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
  2307. * doesn't really matter if tsk->cpuset changes after we read it,
  2308. * and we take cpuset_mutex, keeping cpuset_attach() from changing it
  2309. * anyway.
  2310. */
  2311. int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
  2312. struct pid *pid, struct task_struct *tsk)
  2313. {
  2314. char *buf, *p;
  2315. struct cgroup_subsys_state *css;
  2316. int retval;
  2317. retval = -ENOMEM;
  2318. buf = kmalloc(PATH_MAX, GFP_KERNEL);
  2319. if (!buf)
  2320. goto out;
  2321. retval = -ENAMETOOLONG;
  2322. rcu_read_lock();
  2323. css = task_css(tsk, cpuset_cgrp_id);
  2324. p = cgroup_path(css->cgroup, buf, PATH_MAX);
  2325. rcu_read_unlock();
  2326. if (!p)
  2327. goto out_free;
  2328. seq_puts(m, p);
  2329. seq_putc(m, '\n');
  2330. retval = 0;
  2331. out_free:
  2332. kfree(buf);
  2333. out:
  2334. return retval;
  2335. }
  2336. #endif /* CONFIG_PROC_PID_CPUSET */
  2337. /* Display task mems_allowed in /proc/<pid>/status file. */
  2338. void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
  2339. {
  2340. seq_printf(m, "Mems_allowed:\t%*pb\n",
  2341. nodemask_pr_args(&task->mems_allowed));
  2342. seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
  2343. nodemask_pr_args(&task->mems_allowed));
  2344. }