interrupt.c 71 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * handling kvm guest interrupts
  4. *
  5. * Copyright IBM Corp. 2008, 2015
  6. *
  7. * Author(s): Carsten Otte <cotte@de.ibm.com>
  8. */
  9. #include <linux/interrupt.h>
  10. #include <linux/kvm_host.h>
  11. #include <linux/hrtimer.h>
  12. #include <linux/mmu_context.h>
  13. #include <linux/signal.h>
  14. #include <linux/slab.h>
  15. #include <linux/bitmap.h>
  16. #include <linux/vmalloc.h>
  17. #include <asm/asm-offsets.h>
  18. #include <asm/dis.h>
  19. #include <linux/uaccess.h>
  20. #include <asm/sclp.h>
  21. #include <asm/isc.h>
  22. #include <asm/gmap.h>
  23. #include <asm/switch_to.h>
  24. #include <asm/nmi.h>
  25. #include "kvm-s390.h"
  26. #include "gaccess.h"
  27. #include "trace-s390.h"
  28. #define PFAULT_INIT 0x0600
  29. #define PFAULT_DONE 0x0680
  30. #define VIRTIO_PARAM 0x0d00
  31. /* handle external calls via sigp interpretation facility */
  32. static int sca_ext_call_pending(struct kvm_vcpu *vcpu, int *src_id)
  33. {
  34. int c, scn;
  35. if (!(atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_ECALL_PEND))
  36. return 0;
  37. BUG_ON(!kvm_s390_use_sca_entries());
  38. read_lock(&vcpu->kvm->arch.sca_lock);
  39. if (vcpu->kvm->arch.use_esca) {
  40. struct esca_block *sca = vcpu->kvm->arch.sca;
  41. union esca_sigp_ctrl sigp_ctrl =
  42. sca->cpu[vcpu->vcpu_id].sigp_ctrl;
  43. c = sigp_ctrl.c;
  44. scn = sigp_ctrl.scn;
  45. } else {
  46. struct bsca_block *sca = vcpu->kvm->arch.sca;
  47. union bsca_sigp_ctrl sigp_ctrl =
  48. sca->cpu[vcpu->vcpu_id].sigp_ctrl;
  49. c = sigp_ctrl.c;
  50. scn = sigp_ctrl.scn;
  51. }
  52. read_unlock(&vcpu->kvm->arch.sca_lock);
  53. if (src_id)
  54. *src_id = scn;
  55. return c;
  56. }
  57. static int sca_inject_ext_call(struct kvm_vcpu *vcpu, int src_id)
  58. {
  59. int expect, rc;
  60. BUG_ON(!kvm_s390_use_sca_entries());
  61. read_lock(&vcpu->kvm->arch.sca_lock);
  62. if (vcpu->kvm->arch.use_esca) {
  63. struct esca_block *sca = vcpu->kvm->arch.sca;
  64. union esca_sigp_ctrl *sigp_ctrl =
  65. &(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
  66. union esca_sigp_ctrl new_val = {0}, old_val = *sigp_ctrl;
  67. new_val.scn = src_id;
  68. new_val.c = 1;
  69. old_val.c = 0;
  70. expect = old_val.value;
  71. rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value);
  72. } else {
  73. struct bsca_block *sca = vcpu->kvm->arch.sca;
  74. union bsca_sigp_ctrl *sigp_ctrl =
  75. &(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
  76. union bsca_sigp_ctrl new_val = {0}, old_val = *sigp_ctrl;
  77. new_val.scn = src_id;
  78. new_val.c = 1;
  79. old_val.c = 0;
  80. expect = old_val.value;
  81. rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value);
  82. }
  83. read_unlock(&vcpu->kvm->arch.sca_lock);
  84. if (rc != expect) {
  85. /* another external call is pending */
  86. return -EBUSY;
  87. }
  88. kvm_s390_set_cpuflags(vcpu, CPUSTAT_ECALL_PEND);
  89. return 0;
  90. }
  91. static void sca_clear_ext_call(struct kvm_vcpu *vcpu)
  92. {
  93. int rc, expect;
  94. if (!kvm_s390_use_sca_entries())
  95. return;
  96. atomic_andnot(CPUSTAT_ECALL_PEND, &vcpu->arch.sie_block->cpuflags);
  97. read_lock(&vcpu->kvm->arch.sca_lock);
  98. if (vcpu->kvm->arch.use_esca) {
  99. struct esca_block *sca = vcpu->kvm->arch.sca;
  100. union esca_sigp_ctrl *sigp_ctrl =
  101. &(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
  102. union esca_sigp_ctrl old = *sigp_ctrl;
  103. expect = old.value;
  104. rc = cmpxchg(&sigp_ctrl->value, old.value, 0);
  105. } else {
  106. struct bsca_block *sca = vcpu->kvm->arch.sca;
  107. union bsca_sigp_ctrl *sigp_ctrl =
  108. &(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
  109. union bsca_sigp_ctrl old = *sigp_ctrl;
  110. expect = old.value;
  111. rc = cmpxchg(&sigp_ctrl->value, old.value, 0);
  112. }
  113. read_unlock(&vcpu->kvm->arch.sca_lock);
  114. WARN_ON(rc != expect); /* cannot clear? */
  115. }
  116. int psw_extint_disabled(struct kvm_vcpu *vcpu)
  117. {
  118. return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_EXT);
  119. }
  120. static int psw_ioint_disabled(struct kvm_vcpu *vcpu)
  121. {
  122. return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_IO);
  123. }
  124. static int psw_mchk_disabled(struct kvm_vcpu *vcpu)
  125. {
  126. return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_MCHECK);
  127. }
  128. static int psw_interrupts_disabled(struct kvm_vcpu *vcpu)
  129. {
  130. return psw_extint_disabled(vcpu) &&
  131. psw_ioint_disabled(vcpu) &&
  132. psw_mchk_disabled(vcpu);
  133. }
  134. static int ckc_interrupts_enabled(struct kvm_vcpu *vcpu)
  135. {
  136. if (psw_extint_disabled(vcpu) ||
  137. !(vcpu->arch.sie_block->gcr[0] & 0x800ul))
  138. return 0;
  139. if (guestdbg_enabled(vcpu) && guestdbg_sstep_enabled(vcpu))
  140. /* No timer interrupts when single stepping */
  141. return 0;
  142. return 1;
  143. }
  144. static int ckc_irq_pending(struct kvm_vcpu *vcpu)
  145. {
  146. if (vcpu->arch.sie_block->ckc >= kvm_s390_get_tod_clock_fast(vcpu->kvm))
  147. return 0;
  148. return ckc_interrupts_enabled(vcpu);
  149. }
  150. static int cpu_timer_interrupts_enabled(struct kvm_vcpu *vcpu)
  151. {
  152. return !psw_extint_disabled(vcpu) &&
  153. (vcpu->arch.sie_block->gcr[0] & 0x400ul);
  154. }
  155. static int cpu_timer_irq_pending(struct kvm_vcpu *vcpu)
  156. {
  157. if (!cpu_timer_interrupts_enabled(vcpu))
  158. return 0;
  159. return kvm_s390_get_cpu_timer(vcpu) >> 63;
  160. }
  161. static inline int is_ioirq(unsigned long irq_type)
  162. {
  163. return ((irq_type >= IRQ_PEND_IO_ISC_0) &&
  164. (irq_type <= IRQ_PEND_IO_ISC_7));
  165. }
  166. static uint64_t isc_to_isc_bits(int isc)
  167. {
  168. return (0x80 >> isc) << 24;
  169. }
  170. static inline u8 int_word_to_isc(u32 int_word)
  171. {
  172. return (int_word & 0x38000000) >> 27;
  173. }
  174. static inline unsigned long pending_irqs(struct kvm_vcpu *vcpu)
  175. {
  176. return vcpu->kvm->arch.float_int.pending_irqs |
  177. vcpu->arch.local_int.pending_irqs;
  178. }
  179. static inline int isc_to_irq_type(unsigned long isc)
  180. {
  181. return IRQ_PEND_IO_ISC_0 + isc;
  182. }
  183. static inline int irq_type_to_isc(unsigned long irq_type)
  184. {
  185. return irq_type - IRQ_PEND_IO_ISC_0;
  186. }
  187. static unsigned long disable_iscs(struct kvm_vcpu *vcpu,
  188. unsigned long active_mask)
  189. {
  190. int i;
  191. for (i = 0; i <= MAX_ISC; i++)
  192. if (!(vcpu->arch.sie_block->gcr[6] & isc_to_isc_bits(i)))
  193. active_mask &= ~(1UL << (isc_to_irq_type(i)));
  194. return active_mask;
  195. }
  196. static unsigned long deliverable_irqs(struct kvm_vcpu *vcpu)
  197. {
  198. unsigned long active_mask;
  199. active_mask = pending_irqs(vcpu);
  200. if (!active_mask)
  201. return 0;
  202. if (psw_extint_disabled(vcpu))
  203. active_mask &= ~IRQ_PEND_EXT_MASK;
  204. if (psw_ioint_disabled(vcpu))
  205. active_mask &= ~IRQ_PEND_IO_MASK;
  206. else
  207. active_mask = disable_iscs(vcpu, active_mask);
  208. if (!(vcpu->arch.sie_block->gcr[0] & 0x2000ul))
  209. __clear_bit(IRQ_PEND_EXT_EXTERNAL, &active_mask);
  210. if (!(vcpu->arch.sie_block->gcr[0] & 0x4000ul))
  211. __clear_bit(IRQ_PEND_EXT_EMERGENCY, &active_mask);
  212. if (!(vcpu->arch.sie_block->gcr[0] & 0x800ul))
  213. __clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &active_mask);
  214. if (!(vcpu->arch.sie_block->gcr[0] & 0x400ul))
  215. __clear_bit(IRQ_PEND_EXT_CPU_TIMER, &active_mask);
  216. if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
  217. __clear_bit(IRQ_PEND_EXT_SERVICE, &active_mask);
  218. if (psw_mchk_disabled(vcpu))
  219. active_mask &= ~IRQ_PEND_MCHK_MASK;
  220. /*
  221. * Check both floating and local interrupt's cr14 because
  222. * bit IRQ_PEND_MCHK_REP could be set in both cases.
  223. */
  224. if (!(vcpu->arch.sie_block->gcr[14] &
  225. (vcpu->kvm->arch.float_int.mchk.cr14 |
  226. vcpu->arch.local_int.irq.mchk.cr14)))
  227. __clear_bit(IRQ_PEND_MCHK_REP, &active_mask);
  228. /*
  229. * STOP irqs will never be actively delivered. They are triggered via
  230. * intercept requests and cleared when the stop intercept is performed.
  231. */
  232. __clear_bit(IRQ_PEND_SIGP_STOP, &active_mask);
  233. return active_mask;
  234. }
  235. static void __set_cpu_idle(struct kvm_vcpu *vcpu)
  236. {
  237. kvm_s390_set_cpuflags(vcpu, CPUSTAT_WAIT);
  238. set_bit(vcpu->vcpu_id, vcpu->kvm->arch.float_int.idle_mask);
  239. }
  240. static void __unset_cpu_idle(struct kvm_vcpu *vcpu)
  241. {
  242. atomic_andnot(CPUSTAT_WAIT, &vcpu->arch.sie_block->cpuflags);
  243. clear_bit(vcpu->vcpu_id, vcpu->kvm->arch.float_int.idle_mask);
  244. }
  245. static void __reset_intercept_indicators(struct kvm_vcpu *vcpu)
  246. {
  247. atomic_andnot(CPUSTAT_IO_INT | CPUSTAT_EXT_INT | CPUSTAT_STOP_INT,
  248. &vcpu->arch.sie_block->cpuflags);
  249. vcpu->arch.sie_block->lctl = 0x0000;
  250. vcpu->arch.sie_block->ictl &= ~(ICTL_LPSW | ICTL_STCTL | ICTL_PINT);
  251. if (guestdbg_enabled(vcpu)) {
  252. vcpu->arch.sie_block->lctl |= (LCTL_CR0 | LCTL_CR9 |
  253. LCTL_CR10 | LCTL_CR11);
  254. vcpu->arch.sie_block->ictl |= (ICTL_STCTL | ICTL_PINT);
  255. }
  256. }
  257. static void set_intercept_indicators_io(struct kvm_vcpu *vcpu)
  258. {
  259. if (!(pending_irqs(vcpu) & IRQ_PEND_IO_MASK))
  260. return;
  261. else if (psw_ioint_disabled(vcpu))
  262. kvm_s390_set_cpuflags(vcpu, CPUSTAT_IO_INT);
  263. else
  264. vcpu->arch.sie_block->lctl |= LCTL_CR6;
  265. }
  266. static void set_intercept_indicators_ext(struct kvm_vcpu *vcpu)
  267. {
  268. if (!(pending_irqs(vcpu) & IRQ_PEND_EXT_MASK))
  269. return;
  270. if (psw_extint_disabled(vcpu))
  271. kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
  272. else
  273. vcpu->arch.sie_block->lctl |= LCTL_CR0;
  274. }
  275. static void set_intercept_indicators_mchk(struct kvm_vcpu *vcpu)
  276. {
  277. if (!(pending_irqs(vcpu) & IRQ_PEND_MCHK_MASK))
  278. return;
  279. if (psw_mchk_disabled(vcpu))
  280. vcpu->arch.sie_block->ictl |= ICTL_LPSW;
  281. else
  282. vcpu->arch.sie_block->lctl |= LCTL_CR14;
  283. }
  284. static void set_intercept_indicators_stop(struct kvm_vcpu *vcpu)
  285. {
  286. if (kvm_s390_is_stop_irq_pending(vcpu))
  287. kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT);
  288. }
  289. /* Set interception request for non-deliverable interrupts */
  290. static void set_intercept_indicators(struct kvm_vcpu *vcpu)
  291. {
  292. set_intercept_indicators_io(vcpu);
  293. set_intercept_indicators_ext(vcpu);
  294. set_intercept_indicators_mchk(vcpu);
  295. set_intercept_indicators_stop(vcpu);
  296. }
  297. static int __must_check __deliver_cpu_timer(struct kvm_vcpu *vcpu)
  298. {
  299. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  300. int rc;
  301. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
  302. 0, 0);
  303. rc = put_guest_lc(vcpu, EXT_IRQ_CPU_TIMER,
  304. (u16 *)__LC_EXT_INT_CODE);
  305. rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
  306. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  307. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  308. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  309. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  310. clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
  311. return rc ? -EFAULT : 0;
  312. }
  313. static int __must_check __deliver_ckc(struct kvm_vcpu *vcpu)
  314. {
  315. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  316. int rc;
  317. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
  318. 0, 0);
  319. rc = put_guest_lc(vcpu, EXT_IRQ_CLK_COMP,
  320. (u16 __user *)__LC_EXT_INT_CODE);
  321. rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
  322. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  323. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  324. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  325. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  326. clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
  327. return rc ? -EFAULT : 0;
  328. }
  329. static int __must_check __deliver_pfault_init(struct kvm_vcpu *vcpu)
  330. {
  331. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  332. struct kvm_s390_ext_info ext;
  333. int rc;
  334. spin_lock(&li->lock);
  335. ext = li->irq.ext;
  336. clear_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
  337. li->irq.ext.ext_params2 = 0;
  338. spin_unlock(&li->lock);
  339. VCPU_EVENT(vcpu, 4, "deliver: pfault init token 0x%llx",
  340. ext.ext_params2);
  341. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  342. KVM_S390_INT_PFAULT_INIT,
  343. 0, ext.ext_params2);
  344. rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, (u16 *) __LC_EXT_INT_CODE);
  345. rc |= put_guest_lc(vcpu, PFAULT_INIT, (u16 *) __LC_EXT_CPU_ADDR);
  346. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  347. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  348. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  349. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  350. rc |= put_guest_lc(vcpu, ext.ext_params2, (u64 *) __LC_EXT_PARAMS2);
  351. return rc ? -EFAULT : 0;
  352. }
  353. static int __write_machine_check(struct kvm_vcpu *vcpu,
  354. struct kvm_s390_mchk_info *mchk)
  355. {
  356. unsigned long ext_sa_addr;
  357. unsigned long lc;
  358. freg_t fprs[NUM_FPRS];
  359. union mci mci;
  360. int rc;
  361. mci.val = mchk->mcic;
  362. /* take care of lazy register loading */
  363. save_fpu_regs();
  364. save_access_regs(vcpu->run->s.regs.acrs);
  365. if (MACHINE_HAS_GS && vcpu->arch.gs_enabled)
  366. save_gs_cb(current->thread.gs_cb);
  367. /* Extended save area */
  368. rc = read_guest_lc(vcpu, __LC_MCESAD, &ext_sa_addr,
  369. sizeof(unsigned long));
  370. /* Only bits 0 through 63-LC are used for address formation */
  371. lc = ext_sa_addr & MCESA_LC_MASK;
  372. if (test_kvm_facility(vcpu->kvm, 133)) {
  373. switch (lc) {
  374. case 0:
  375. case 10:
  376. ext_sa_addr &= ~0x3ffUL;
  377. break;
  378. case 11:
  379. ext_sa_addr &= ~0x7ffUL;
  380. break;
  381. case 12:
  382. ext_sa_addr &= ~0xfffUL;
  383. break;
  384. default:
  385. ext_sa_addr = 0;
  386. break;
  387. }
  388. } else {
  389. ext_sa_addr &= ~0x3ffUL;
  390. }
  391. if (!rc && mci.vr && ext_sa_addr && test_kvm_facility(vcpu->kvm, 129)) {
  392. if (write_guest_abs(vcpu, ext_sa_addr, vcpu->run->s.regs.vrs,
  393. 512))
  394. mci.vr = 0;
  395. } else {
  396. mci.vr = 0;
  397. }
  398. if (!rc && mci.gs && ext_sa_addr && test_kvm_facility(vcpu->kvm, 133)
  399. && (lc == 11 || lc == 12)) {
  400. if (write_guest_abs(vcpu, ext_sa_addr + 1024,
  401. &vcpu->run->s.regs.gscb, 32))
  402. mci.gs = 0;
  403. } else {
  404. mci.gs = 0;
  405. }
  406. /* General interruption information */
  407. rc |= put_guest_lc(vcpu, 1, (u8 __user *) __LC_AR_MODE_ID);
  408. rc |= write_guest_lc(vcpu, __LC_MCK_OLD_PSW,
  409. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  410. rc |= read_guest_lc(vcpu, __LC_MCK_NEW_PSW,
  411. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  412. rc |= put_guest_lc(vcpu, mci.val, (u64 __user *) __LC_MCCK_CODE);
  413. /* Register-save areas */
  414. if (MACHINE_HAS_VX) {
  415. convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
  416. rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA, fprs, 128);
  417. } else {
  418. rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA,
  419. vcpu->run->s.regs.fprs, 128);
  420. }
  421. rc |= write_guest_lc(vcpu, __LC_GPREGS_SAVE_AREA,
  422. vcpu->run->s.regs.gprs, 128);
  423. rc |= put_guest_lc(vcpu, current->thread.fpu.fpc,
  424. (u32 __user *) __LC_FP_CREG_SAVE_AREA);
  425. rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->todpr,
  426. (u32 __user *) __LC_TOD_PROGREG_SAVE_AREA);
  427. rc |= put_guest_lc(vcpu, kvm_s390_get_cpu_timer(vcpu),
  428. (u64 __user *) __LC_CPU_TIMER_SAVE_AREA);
  429. rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->ckc >> 8,
  430. (u64 __user *) __LC_CLOCK_COMP_SAVE_AREA);
  431. rc |= write_guest_lc(vcpu, __LC_AREGS_SAVE_AREA,
  432. &vcpu->run->s.regs.acrs, 64);
  433. rc |= write_guest_lc(vcpu, __LC_CREGS_SAVE_AREA,
  434. &vcpu->arch.sie_block->gcr, 128);
  435. /* Extended interruption information */
  436. rc |= put_guest_lc(vcpu, mchk->ext_damage_code,
  437. (u32 __user *) __LC_EXT_DAMAGE_CODE);
  438. rc |= put_guest_lc(vcpu, mchk->failing_storage_address,
  439. (u64 __user *) __LC_MCCK_FAIL_STOR_ADDR);
  440. rc |= write_guest_lc(vcpu, __LC_PSW_SAVE_AREA, &mchk->fixed_logout,
  441. sizeof(mchk->fixed_logout));
  442. return rc ? -EFAULT : 0;
  443. }
  444. static int __must_check __deliver_machine_check(struct kvm_vcpu *vcpu)
  445. {
  446. struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
  447. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  448. struct kvm_s390_mchk_info mchk = {};
  449. int deliver = 0;
  450. int rc = 0;
  451. spin_lock(&fi->lock);
  452. spin_lock(&li->lock);
  453. if (test_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs) ||
  454. test_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs)) {
  455. /*
  456. * If there was an exigent machine check pending, then any
  457. * repressible machine checks that might have been pending
  458. * are indicated along with it, so always clear bits for
  459. * repressible and exigent interrupts
  460. */
  461. mchk = li->irq.mchk;
  462. clear_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
  463. clear_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs);
  464. memset(&li->irq.mchk, 0, sizeof(mchk));
  465. deliver = 1;
  466. }
  467. /*
  468. * We indicate floating repressible conditions along with
  469. * other pending conditions. Channel Report Pending and Channel
  470. * Subsystem damage are the only two and and are indicated by
  471. * bits in mcic and masked in cr14.
  472. */
  473. if (test_and_clear_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
  474. mchk.mcic |= fi->mchk.mcic;
  475. mchk.cr14 |= fi->mchk.cr14;
  476. memset(&fi->mchk, 0, sizeof(mchk));
  477. deliver = 1;
  478. }
  479. spin_unlock(&li->lock);
  480. spin_unlock(&fi->lock);
  481. if (deliver) {
  482. VCPU_EVENT(vcpu, 3, "deliver: machine check mcic 0x%llx",
  483. mchk.mcic);
  484. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  485. KVM_S390_MCHK,
  486. mchk.cr14, mchk.mcic);
  487. rc = __write_machine_check(vcpu, &mchk);
  488. }
  489. return rc;
  490. }
  491. static int __must_check __deliver_restart(struct kvm_vcpu *vcpu)
  492. {
  493. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  494. int rc;
  495. VCPU_EVENT(vcpu, 3, "%s", "deliver: cpu restart");
  496. vcpu->stat.deliver_restart_signal++;
  497. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);
  498. rc = write_guest_lc(vcpu,
  499. offsetof(struct lowcore, restart_old_psw),
  500. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  501. rc |= read_guest_lc(vcpu, offsetof(struct lowcore, restart_psw),
  502. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  503. clear_bit(IRQ_PEND_RESTART, &li->pending_irqs);
  504. return rc ? -EFAULT : 0;
  505. }
  506. static int __must_check __deliver_set_prefix(struct kvm_vcpu *vcpu)
  507. {
  508. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  509. struct kvm_s390_prefix_info prefix;
  510. spin_lock(&li->lock);
  511. prefix = li->irq.prefix;
  512. li->irq.prefix.address = 0;
  513. clear_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
  514. spin_unlock(&li->lock);
  515. vcpu->stat.deliver_prefix_signal++;
  516. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  517. KVM_S390_SIGP_SET_PREFIX,
  518. prefix.address, 0);
  519. kvm_s390_set_prefix(vcpu, prefix.address);
  520. return 0;
  521. }
  522. static int __must_check __deliver_emergency_signal(struct kvm_vcpu *vcpu)
  523. {
  524. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  525. int rc;
  526. int cpu_addr;
  527. spin_lock(&li->lock);
  528. cpu_addr = find_first_bit(li->sigp_emerg_pending, KVM_MAX_VCPUS);
  529. clear_bit(cpu_addr, li->sigp_emerg_pending);
  530. if (bitmap_empty(li->sigp_emerg_pending, KVM_MAX_VCPUS))
  531. clear_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
  532. spin_unlock(&li->lock);
  533. VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp emerg");
  534. vcpu->stat.deliver_emergency_signal++;
  535. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
  536. cpu_addr, 0);
  537. rc = put_guest_lc(vcpu, EXT_IRQ_EMERGENCY_SIG,
  538. (u16 *)__LC_EXT_INT_CODE);
  539. rc |= put_guest_lc(vcpu, cpu_addr, (u16 *)__LC_EXT_CPU_ADDR);
  540. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  541. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  542. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  543. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  544. return rc ? -EFAULT : 0;
  545. }
  546. static int __must_check __deliver_external_call(struct kvm_vcpu *vcpu)
  547. {
  548. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  549. struct kvm_s390_extcall_info extcall;
  550. int rc;
  551. spin_lock(&li->lock);
  552. extcall = li->irq.extcall;
  553. li->irq.extcall.code = 0;
  554. clear_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
  555. spin_unlock(&li->lock);
  556. VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp ext call");
  557. vcpu->stat.deliver_external_call++;
  558. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  559. KVM_S390_INT_EXTERNAL_CALL,
  560. extcall.code, 0);
  561. rc = put_guest_lc(vcpu, EXT_IRQ_EXTERNAL_CALL,
  562. (u16 *)__LC_EXT_INT_CODE);
  563. rc |= put_guest_lc(vcpu, extcall.code, (u16 *)__LC_EXT_CPU_ADDR);
  564. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  565. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  566. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, &vcpu->arch.sie_block->gpsw,
  567. sizeof(psw_t));
  568. return rc ? -EFAULT : 0;
  569. }
  570. static int __must_check __deliver_prog(struct kvm_vcpu *vcpu)
  571. {
  572. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  573. struct kvm_s390_pgm_info pgm_info;
  574. int rc = 0, nullifying = false;
  575. u16 ilen;
  576. spin_lock(&li->lock);
  577. pgm_info = li->irq.pgm;
  578. clear_bit(IRQ_PEND_PROG, &li->pending_irqs);
  579. memset(&li->irq.pgm, 0, sizeof(pgm_info));
  580. spin_unlock(&li->lock);
  581. ilen = pgm_info.flags & KVM_S390_PGM_FLAGS_ILC_MASK;
  582. VCPU_EVENT(vcpu, 3, "deliver: program irq code 0x%x, ilen:%d",
  583. pgm_info.code, ilen);
  584. vcpu->stat.deliver_program_int++;
  585. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
  586. pgm_info.code, 0);
  587. switch (pgm_info.code & ~PGM_PER) {
  588. case PGM_AFX_TRANSLATION:
  589. case PGM_ASX_TRANSLATION:
  590. case PGM_EX_TRANSLATION:
  591. case PGM_LFX_TRANSLATION:
  592. case PGM_LSTE_SEQUENCE:
  593. case PGM_LSX_TRANSLATION:
  594. case PGM_LX_TRANSLATION:
  595. case PGM_PRIMARY_AUTHORITY:
  596. case PGM_SECONDARY_AUTHORITY:
  597. nullifying = true;
  598. /* fall through */
  599. case PGM_SPACE_SWITCH:
  600. rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
  601. (u64 *)__LC_TRANS_EXC_CODE);
  602. break;
  603. case PGM_ALEN_TRANSLATION:
  604. case PGM_ALE_SEQUENCE:
  605. case PGM_ASTE_INSTANCE:
  606. case PGM_ASTE_SEQUENCE:
  607. case PGM_ASTE_VALIDITY:
  608. case PGM_EXTENDED_AUTHORITY:
  609. rc = put_guest_lc(vcpu, pgm_info.exc_access_id,
  610. (u8 *)__LC_EXC_ACCESS_ID);
  611. nullifying = true;
  612. break;
  613. case PGM_ASCE_TYPE:
  614. case PGM_PAGE_TRANSLATION:
  615. case PGM_REGION_FIRST_TRANS:
  616. case PGM_REGION_SECOND_TRANS:
  617. case PGM_REGION_THIRD_TRANS:
  618. case PGM_SEGMENT_TRANSLATION:
  619. rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
  620. (u64 *)__LC_TRANS_EXC_CODE);
  621. rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
  622. (u8 *)__LC_EXC_ACCESS_ID);
  623. rc |= put_guest_lc(vcpu, pgm_info.op_access_id,
  624. (u8 *)__LC_OP_ACCESS_ID);
  625. nullifying = true;
  626. break;
  627. case PGM_MONITOR:
  628. rc = put_guest_lc(vcpu, pgm_info.mon_class_nr,
  629. (u16 *)__LC_MON_CLASS_NR);
  630. rc |= put_guest_lc(vcpu, pgm_info.mon_code,
  631. (u64 *)__LC_MON_CODE);
  632. break;
  633. case PGM_VECTOR_PROCESSING:
  634. case PGM_DATA:
  635. rc = put_guest_lc(vcpu, pgm_info.data_exc_code,
  636. (u32 *)__LC_DATA_EXC_CODE);
  637. break;
  638. case PGM_PROTECTION:
  639. rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
  640. (u64 *)__LC_TRANS_EXC_CODE);
  641. rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
  642. (u8 *)__LC_EXC_ACCESS_ID);
  643. break;
  644. case PGM_STACK_FULL:
  645. case PGM_STACK_EMPTY:
  646. case PGM_STACK_SPECIFICATION:
  647. case PGM_STACK_TYPE:
  648. case PGM_STACK_OPERATION:
  649. case PGM_TRACE_TABEL:
  650. case PGM_CRYPTO_OPERATION:
  651. nullifying = true;
  652. break;
  653. }
  654. if (pgm_info.code & PGM_PER) {
  655. rc |= put_guest_lc(vcpu, pgm_info.per_code,
  656. (u8 *) __LC_PER_CODE);
  657. rc |= put_guest_lc(vcpu, pgm_info.per_atmid,
  658. (u8 *)__LC_PER_ATMID);
  659. rc |= put_guest_lc(vcpu, pgm_info.per_address,
  660. (u64 *) __LC_PER_ADDRESS);
  661. rc |= put_guest_lc(vcpu, pgm_info.per_access_id,
  662. (u8 *) __LC_PER_ACCESS_ID);
  663. }
  664. if (nullifying && !(pgm_info.flags & KVM_S390_PGM_FLAGS_NO_REWIND))
  665. kvm_s390_rewind_psw(vcpu, ilen);
  666. /* bit 1+2 of the target are the ilc, so we can directly use ilen */
  667. rc |= put_guest_lc(vcpu, ilen, (u16 *) __LC_PGM_ILC);
  668. rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->gbea,
  669. (u64 *) __LC_LAST_BREAK);
  670. rc |= put_guest_lc(vcpu, pgm_info.code,
  671. (u16 *)__LC_PGM_INT_CODE);
  672. rc |= write_guest_lc(vcpu, __LC_PGM_OLD_PSW,
  673. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  674. rc |= read_guest_lc(vcpu, __LC_PGM_NEW_PSW,
  675. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  676. return rc ? -EFAULT : 0;
  677. }
  678. static int __must_check __deliver_service(struct kvm_vcpu *vcpu)
  679. {
  680. struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
  681. struct kvm_s390_ext_info ext;
  682. int rc = 0;
  683. spin_lock(&fi->lock);
  684. if (!(test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs))) {
  685. spin_unlock(&fi->lock);
  686. return 0;
  687. }
  688. ext = fi->srv_signal;
  689. memset(&fi->srv_signal, 0, sizeof(ext));
  690. clear_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
  691. spin_unlock(&fi->lock);
  692. VCPU_EVENT(vcpu, 4, "deliver: sclp parameter 0x%x",
  693. ext.ext_params);
  694. vcpu->stat.deliver_service_signal++;
  695. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE,
  696. ext.ext_params, 0);
  697. rc = put_guest_lc(vcpu, EXT_IRQ_SERVICE_SIG, (u16 *)__LC_EXT_INT_CODE);
  698. rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
  699. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  700. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  701. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  702. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  703. rc |= put_guest_lc(vcpu, ext.ext_params,
  704. (u32 *)__LC_EXT_PARAMS);
  705. return rc ? -EFAULT : 0;
  706. }
  707. static int __must_check __deliver_pfault_done(struct kvm_vcpu *vcpu)
  708. {
  709. struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
  710. struct kvm_s390_interrupt_info *inti;
  711. int rc = 0;
  712. spin_lock(&fi->lock);
  713. inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_PFAULT],
  714. struct kvm_s390_interrupt_info,
  715. list);
  716. if (inti) {
  717. list_del(&inti->list);
  718. fi->counters[FIRQ_CNTR_PFAULT] -= 1;
  719. }
  720. if (list_empty(&fi->lists[FIRQ_LIST_PFAULT]))
  721. clear_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
  722. spin_unlock(&fi->lock);
  723. if (inti) {
  724. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  725. KVM_S390_INT_PFAULT_DONE, 0,
  726. inti->ext.ext_params2);
  727. VCPU_EVENT(vcpu, 4, "deliver: pfault done token 0x%llx",
  728. inti->ext.ext_params2);
  729. rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
  730. (u16 *)__LC_EXT_INT_CODE);
  731. rc |= put_guest_lc(vcpu, PFAULT_DONE,
  732. (u16 *)__LC_EXT_CPU_ADDR);
  733. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  734. &vcpu->arch.sie_block->gpsw,
  735. sizeof(psw_t));
  736. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  737. &vcpu->arch.sie_block->gpsw,
  738. sizeof(psw_t));
  739. rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
  740. (u64 *)__LC_EXT_PARAMS2);
  741. kfree(inti);
  742. }
  743. return rc ? -EFAULT : 0;
  744. }
  745. static int __must_check __deliver_virtio(struct kvm_vcpu *vcpu)
  746. {
  747. struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
  748. struct kvm_s390_interrupt_info *inti;
  749. int rc = 0;
  750. spin_lock(&fi->lock);
  751. inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_VIRTIO],
  752. struct kvm_s390_interrupt_info,
  753. list);
  754. if (inti) {
  755. VCPU_EVENT(vcpu, 4,
  756. "deliver: virtio parm: 0x%x,parm64: 0x%llx",
  757. inti->ext.ext_params, inti->ext.ext_params2);
  758. vcpu->stat.deliver_virtio_interrupt++;
  759. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  760. inti->type,
  761. inti->ext.ext_params,
  762. inti->ext.ext_params2);
  763. list_del(&inti->list);
  764. fi->counters[FIRQ_CNTR_VIRTIO] -= 1;
  765. }
  766. if (list_empty(&fi->lists[FIRQ_LIST_VIRTIO]))
  767. clear_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
  768. spin_unlock(&fi->lock);
  769. if (inti) {
  770. rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
  771. (u16 *)__LC_EXT_INT_CODE);
  772. rc |= put_guest_lc(vcpu, VIRTIO_PARAM,
  773. (u16 *)__LC_EXT_CPU_ADDR);
  774. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  775. &vcpu->arch.sie_block->gpsw,
  776. sizeof(psw_t));
  777. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  778. &vcpu->arch.sie_block->gpsw,
  779. sizeof(psw_t));
  780. rc |= put_guest_lc(vcpu, inti->ext.ext_params,
  781. (u32 *)__LC_EXT_PARAMS);
  782. rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
  783. (u64 *)__LC_EXT_PARAMS2);
  784. kfree(inti);
  785. }
  786. return rc ? -EFAULT : 0;
  787. }
  788. static int __must_check __deliver_io(struct kvm_vcpu *vcpu,
  789. unsigned long irq_type)
  790. {
  791. struct list_head *isc_list;
  792. struct kvm_s390_float_interrupt *fi;
  793. struct kvm_s390_interrupt_info *inti = NULL;
  794. int rc = 0;
  795. fi = &vcpu->kvm->arch.float_int;
  796. spin_lock(&fi->lock);
  797. isc_list = &fi->lists[irq_type_to_isc(irq_type)];
  798. inti = list_first_entry_or_null(isc_list,
  799. struct kvm_s390_interrupt_info,
  800. list);
  801. if (inti) {
  802. if (inti->type & KVM_S390_INT_IO_AI_MASK)
  803. VCPU_EVENT(vcpu, 4, "%s", "deliver: I/O (AI)");
  804. else
  805. VCPU_EVENT(vcpu, 4, "deliver: I/O %x ss %x schid %04x",
  806. inti->io.subchannel_id >> 8,
  807. inti->io.subchannel_id >> 1 & 0x3,
  808. inti->io.subchannel_nr);
  809. vcpu->stat.deliver_io_int++;
  810. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  811. inti->type,
  812. ((__u32)inti->io.subchannel_id << 16) |
  813. inti->io.subchannel_nr,
  814. ((__u64)inti->io.io_int_parm << 32) |
  815. inti->io.io_int_word);
  816. list_del(&inti->list);
  817. fi->counters[FIRQ_CNTR_IO] -= 1;
  818. }
  819. if (list_empty(isc_list))
  820. clear_bit(irq_type, &fi->pending_irqs);
  821. spin_unlock(&fi->lock);
  822. if (inti) {
  823. rc = put_guest_lc(vcpu, inti->io.subchannel_id,
  824. (u16 *)__LC_SUBCHANNEL_ID);
  825. rc |= put_guest_lc(vcpu, inti->io.subchannel_nr,
  826. (u16 *)__LC_SUBCHANNEL_NR);
  827. rc |= put_guest_lc(vcpu, inti->io.io_int_parm,
  828. (u32 *)__LC_IO_INT_PARM);
  829. rc |= put_guest_lc(vcpu, inti->io.io_int_word,
  830. (u32 *)__LC_IO_INT_WORD);
  831. rc |= write_guest_lc(vcpu, __LC_IO_OLD_PSW,
  832. &vcpu->arch.sie_block->gpsw,
  833. sizeof(psw_t));
  834. rc |= read_guest_lc(vcpu, __LC_IO_NEW_PSW,
  835. &vcpu->arch.sie_block->gpsw,
  836. sizeof(psw_t));
  837. kfree(inti);
  838. }
  839. return rc ? -EFAULT : 0;
  840. }
  841. typedef int (*deliver_irq_t)(struct kvm_vcpu *vcpu);
  842. static const deliver_irq_t deliver_irq_funcs[] = {
  843. [IRQ_PEND_MCHK_EX] = __deliver_machine_check,
  844. [IRQ_PEND_MCHK_REP] = __deliver_machine_check,
  845. [IRQ_PEND_PROG] = __deliver_prog,
  846. [IRQ_PEND_EXT_EMERGENCY] = __deliver_emergency_signal,
  847. [IRQ_PEND_EXT_EXTERNAL] = __deliver_external_call,
  848. [IRQ_PEND_EXT_CLOCK_COMP] = __deliver_ckc,
  849. [IRQ_PEND_EXT_CPU_TIMER] = __deliver_cpu_timer,
  850. [IRQ_PEND_RESTART] = __deliver_restart,
  851. [IRQ_PEND_SET_PREFIX] = __deliver_set_prefix,
  852. [IRQ_PEND_PFAULT_INIT] = __deliver_pfault_init,
  853. [IRQ_PEND_EXT_SERVICE] = __deliver_service,
  854. [IRQ_PEND_PFAULT_DONE] = __deliver_pfault_done,
  855. [IRQ_PEND_VIRTIO] = __deliver_virtio,
  856. };
  857. /* Check whether an external call is pending (deliverable or not) */
  858. int kvm_s390_ext_call_pending(struct kvm_vcpu *vcpu)
  859. {
  860. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  861. if (!sclp.has_sigpif)
  862. return test_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
  863. return sca_ext_call_pending(vcpu, NULL);
  864. }
  865. int kvm_s390_vcpu_has_irq(struct kvm_vcpu *vcpu, int exclude_stop)
  866. {
  867. if (deliverable_irqs(vcpu))
  868. return 1;
  869. if (kvm_cpu_has_pending_timer(vcpu))
  870. return 1;
  871. /* external call pending and deliverable */
  872. if (kvm_s390_ext_call_pending(vcpu) &&
  873. !psw_extint_disabled(vcpu) &&
  874. (vcpu->arch.sie_block->gcr[0] & 0x2000ul))
  875. return 1;
  876. if (!exclude_stop && kvm_s390_is_stop_irq_pending(vcpu))
  877. return 1;
  878. return 0;
  879. }
  880. int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
  881. {
  882. return ckc_irq_pending(vcpu) || cpu_timer_irq_pending(vcpu);
  883. }
  884. static u64 __calculate_sltime(struct kvm_vcpu *vcpu)
  885. {
  886. u64 now, cputm, sltime = 0;
  887. if (ckc_interrupts_enabled(vcpu)) {
  888. now = kvm_s390_get_tod_clock_fast(vcpu->kvm);
  889. sltime = tod_to_ns(vcpu->arch.sie_block->ckc - now);
  890. /* already expired or overflow? */
  891. if (!sltime || vcpu->arch.sie_block->ckc <= now)
  892. return 0;
  893. if (cpu_timer_interrupts_enabled(vcpu)) {
  894. cputm = kvm_s390_get_cpu_timer(vcpu);
  895. /* already expired? */
  896. if (cputm >> 63)
  897. return 0;
  898. return min(sltime, tod_to_ns(cputm));
  899. }
  900. } else if (cpu_timer_interrupts_enabled(vcpu)) {
  901. sltime = kvm_s390_get_cpu_timer(vcpu);
  902. /* already expired? */
  903. if (sltime >> 63)
  904. return 0;
  905. }
  906. return sltime;
  907. }
  908. int kvm_s390_handle_wait(struct kvm_vcpu *vcpu)
  909. {
  910. u64 sltime;
  911. vcpu->stat.exit_wait_state++;
  912. /* fast path */
  913. if (kvm_arch_vcpu_runnable(vcpu))
  914. return 0;
  915. if (psw_interrupts_disabled(vcpu)) {
  916. VCPU_EVENT(vcpu, 3, "%s", "disabled wait");
  917. return -EOPNOTSUPP; /* disabled wait */
  918. }
  919. if (!ckc_interrupts_enabled(vcpu) &&
  920. !cpu_timer_interrupts_enabled(vcpu)) {
  921. VCPU_EVENT(vcpu, 3, "%s", "enabled wait w/o timer");
  922. __set_cpu_idle(vcpu);
  923. goto no_timer;
  924. }
  925. sltime = __calculate_sltime(vcpu);
  926. if (!sltime)
  927. return 0;
  928. __set_cpu_idle(vcpu);
  929. hrtimer_start(&vcpu->arch.ckc_timer, sltime, HRTIMER_MODE_REL);
  930. VCPU_EVENT(vcpu, 4, "enabled wait: %llu ns", sltime);
  931. no_timer:
  932. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  933. kvm_vcpu_block(vcpu);
  934. __unset_cpu_idle(vcpu);
  935. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  936. hrtimer_cancel(&vcpu->arch.ckc_timer);
  937. return 0;
  938. }
  939. void kvm_s390_vcpu_wakeup(struct kvm_vcpu *vcpu)
  940. {
  941. /*
  942. * We cannot move this into the if, as the CPU might be already
  943. * in kvm_vcpu_block without having the waitqueue set (polling)
  944. */
  945. vcpu->valid_wakeup = true;
  946. /*
  947. * This is mostly to document, that the read in swait_active could
  948. * be moved before other stores, leading to subtle races.
  949. * All current users do not store or use an atomic like update
  950. */
  951. smp_mb__after_atomic();
  952. if (swait_active(&vcpu->wq)) {
  953. /*
  954. * The vcpu gave up the cpu voluntarily, mark it as a good
  955. * yield-candidate.
  956. */
  957. vcpu->preempted = true;
  958. swake_up(&vcpu->wq);
  959. vcpu->stat.halt_wakeup++;
  960. }
  961. /*
  962. * The VCPU might not be sleeping but is executing the VSIE. Let's
  963. * kick it, so it leaves the SIE to process the request.
  964. */
  965. kvm_s390_vsie_kick(vcpu);
  966. }
  967. enum hrtimer_restart kvm_s390_idle_wakeup(struct hrtimer *timer)
  968. {
  969. struct kvm_vcpu *vcpu;
  970. u64 sltime;
  971. vcpu = container_of(timer, struct kvm_vcpu, arch.ckc_timer);
  972. sltime = __calculate_sltime(vcpu);
  973. /*
  974. * If the monotonic clock runs faster than the tod clock we might be
  975. * woken up too early and have to go back to sleep to avoid deadlocks.
  976. */
  977. if (sltime && hrtimer_forward_now(timer, ns_to_ktime(sltime)))
  978. return HRTIMER_RESTART;
  979. kvm_s390_vcpu_wakeup(vcpu);
  980. return HRTIMER_NORESTART;
  981. }
  982. void kvm_s390_clear_local_irqs(struct kvm_vcpu *vcpu)
  983. {
  984. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  985. spin_lock(&li->lock);
  986. li->pending_irqs = 0;
  987. bitmap_zero(li->sigp_emerg_pending, KVM_MAX_VCPUS);
  988. memset(&li->irq, 0, sizeof(li->irq));
  989. spin_unlock(&li->lock);
  990. sca_clear_ext_call(vcpu);
  991. }
  992. int __must_check kvm_s390_deliver_pending_interrupts(struct kvm_vcpu *vcpu)
  993. {
  994. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  995. deliver_irq_t func;
  996. int rc = 0;
  997. unsigned long irq_type;
  998. unsigned long irqs;
  999. __reset_intercept_indicators(vcpu);
  1000. /* pending ckc conditions might have been invalidated */
  1001. clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
  1002. if (ckc_irq_pending(vcpu))
  1003. set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
  1004. /* pending cpu timer conditions might have been invalidated */
  1005. clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
  1006. if (cpu_timer_irq_pending(vcpu))
  1007. set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
  1008. while ((irqs = deliverable_irqs(vcpu)) && !rc) {
  1009. /* bits are in the order of interrupt priority */
  1010. irq_type = find_first_bit(&irqs, IRQ_PEND_COUNT);
  1011. if (is_ioirq(irq_type)) {
  1012. rc = __deliver_io(vcpu, irq_type);
  1013. } else {
  1014. func = deliver_irq_funcs[irq_type];
  1015. if (!func) {
  1016. WARN_ON_ONCE(func == NULL);
  1017. clear_bit(irq_type, &li->pending_irqs);
  1018. continue;
  1019. }
  1020. rc = func(vcpu);
  1021. }
  1022. }
  1023. set_intercept_indicators(vcpu);
  1024. return rc;
  1025. }
  1026. static int __inject_prog(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1027. {
  1028. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1029. VCPU_EVENT(vcpu, 3, "inject: program irq code 0x%x", irq->u.pgm.code);
  1030. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
  1031. irq->u.pgm.code, 0);
  1032. if (!(irq->u.pgm.flags & KVM_S390_PGM_FLAGS_ILC_VALID)) {
  1033. /* auto detection if no valid ILC was given */
  1034. irq->u.pgm.flags &= ~KVM_S390_PGM_FLAGS_ILC_MASK;
  1035. irq->u.pgm.flags |= kvm_s390_get_ilen(vcpu);
  1036. irq->u.pgm.flags |= KVM_S390_PGM_FLAGS_ILC_VALID;
  1037. }
  1038. if (irq->u.pgm.code == PGM_PER) {
  1039. li->irq.pgm.code |= PGM_PER;
  1040. li->irq.pgm.flags = irq->u.pgm.flags;
  1041. /* only modify PER related information */
  1042. li->irq.pgm.per_address = irq->u.pgm.per_address;
  1043. li->irq.pgm.per_code = irq->u.pgm.per_code;
  1044. li->irq.pgm.per_atmid = irq->u.pgm.per_atmid;
  1045. li->irq.pgm.per_access_id = irq->u.pgm.per_access_id;
  1046. } else if (!(irq->u.pgm.code & PGM_PER)) {
  1047. li->irq.pgm.code = (li->irq.pgm.code & PGM_PER) |
  1048. irq->u.pgm.code;
  1049. li->irq.pgm.flags = irq->u.pgm.flags;
  1050. /* only modify non-PER information */
  1051. li->irq.pgm.trans_exc_code = irq->u.pgm.trans_exc_code;
  1052. li->irq.pgm.mon_code = irq->u.pgm.mon_code;
  1053. li->irq.pgm.data_exc_code = irq->u.pgm.data_exc_code;
  1054. li->irq.pgm.mon_class_nr = irq->u.pgm.mon_class_nr;
  1055. li->irq.pgm.exc_access_id = irq->u.pgm.exc_access_id;
  1056. li->irq.pgm.op_access_id = irq->u.pgm.op_access_id;
  1057. } else {
  1058. li->irq.pgm = irq->u.pgm;
  1059. }
  1060. set_bit(IRQ_PEND_PROG, &li->pending_irqs);
  1061. return 0;
  1062. }
  1063. static int __inject_pfault_init(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1064. {
  1065. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1066. VCPU_EVENT(vcpu, 4, "inject: pfault init parameter block at 0x%llx",
  1067. irq->u.ext.ext_params2);
  1068. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_PFAULT_INIT,
  1069. irq->u.ext.ext_params,
  1070. irq->u.ext.ext_params2);
  1071. li->irq.ext = irq->u.ext;
  1072. set_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
  1073. kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
  1074. return 0;
  1075. }
  1076. static int __inject_extcall(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1077. {
  1078. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1079. struct kvm_s390_extcall_info *extcall = &li->irq.extcall;
  1080. uint16_t src_id = irq->u.extcall.code;
  1081. VCPU_EVENT(vcpu, 4, "inject: external call source-cpu:%u",
  1082. src_id);
  1083. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EXTERNAL_CALL,
  1084. src_id, 0);
  1085. /* sending vcpu invalid */
  1086. if (kvm_get_vcpu_by_id(vcpu->kvm, src_id) == NULL)
  1087. return -EINVAL;
  1088. if (sclp.has_sigpif)
  1089. return sca_inject_ext_call(vcpu, src_id);
  1090. if (test_and_set_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs))
  1091. return -EBUSY;
  1092. *extcall = irq->u.extcall;
  1093. kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
  1094. return 0;
  1095. }
  1096. static int __inject_set_prefix(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1097. {
  1098. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1099. struct kvm_s390_prefix_info *prefix = &li->irq.prefix;
  1100. VCPU_EVENT(vcpu, 3, "inject: set prefix to %x",
  1101. irq->u.prefix.address);
  1102. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_SET_PREFIX,
  1103. irq->u.prefix.address, 0);
  1104. if (!is_vcpu_stopped(vcpu))
  1105. return -EBUSY;
  1106. *prefix = irq->u.prefix;
  1107. set_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
  1108. return 0;
  1109. }
  1110. #define KVM_S390_STOP_SUPP_FLAGS (KVM_S390_STOP_FLAG_STORE_STATUS)
  1111. static int __inject_sigp_stop(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1112. {
  1113. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1114. struct kvm_s390_stop_info *stop = &li->irq.stop;
  1115. int rc = 0;
  1116. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_STOP, 0, 0);
  1117. if (irq->u.stop.flags & ~KVM_S390_STOP_SUPP_FLAGS)
  1118. return -EINVAL;
  1119. if (is_vcpu_stopped(vcpu)) {
  1120. if (irq->u.stop.flags & KVM_S390_STOP_FLAG_STORE_STATUS)
  1121. rc = kvm_s390_store_status_unloaded(vcpu,
  1122. KVM_S390_STORE_STATUS_NOADDR);
  1123. return rc;
  1124. }
  1125. if (test_and_set_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs))
  1126. return -EBUSY;
  1127. stop->flags = irq->u.stop.flags;
  1128. kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT);
  1129. return 0;
  1130. }
  1131. static int __inject_sigp_restart(struct kvm_vcpu *vcpu,
  1132. struct kvm_s390_irq *irq)
  1133. {
  1134. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1135. VCPU_EVENT(vcpu, 3, "%s", "inject: restart int");
  1136. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);
  1137. set_bit(IRQ_PEND_RESTART, &li->pending_irqs);
  1138. return 0;
  1139. }
  1140. static int __inject_sigp_emergency(struct kvm_vcpu *vcpu,
  1141. struct kvm_s390_irq *irq)
  1142. {
  1143. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1144. VCPU_EVENT(vcpu, 4, "inject: emergency from cpu %u",
  1145. irq->u.emerg.code);
  1146. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
  1147. irq->u.emerg.code, 0);
  1148. /* sending vcpu invalid */
  1149. if (kvm_get_vcpu_by_id(vcpu->kvm, irq->u.emerg.code) == NULL)
  1150. return -EINVAL;
  1151. set_bit(irq->u.emerg.code, li->sigp_emerg_pending);
  1152. set_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
  1153. kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
  1154. return 0;
  1155. }
  1156. static int __inject_mchk(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1157. {
  1158. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1159. struct kvm_s390_mchk_info *mchk = &li->irq.mchk;
  1160. VCPU_EVENT(vcpu, 3, "inject: machine check mcic 0x%llx",
  1161. irq->u.mchk.mcic);
  1162. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_MCHK, 0,
  1163. irq->u.mchk.mcic);
  1164. /*
  1165. * Because repressible machine checks can be indicated along with
  1166. * exigent machine checks (PoP, Chapter 11, Interruption action)
  1167. * we need to combine cr14, mcic and external damage code.
  1168. * Failing storage address and the logout area should not be or'ed
  1169. * together, we just indicate the last occurrence of the corresponding
  1170. * machine check
  1171. */
  1172. mchk->cr14 |= irq->u.mchk.cr14;
  1173. mchk->mcic |= irq->u.mchk.mcic;
  1174. mchk->ext_damage_code |= irq->u.mchk.ext_damage_code;
  1175. mchk->failing_storage_address = irq->u.mchk.failing_storage_address;
  1176. memcpy(&mchk->fixed_logout, &irq->u.mchk.fixed_logout,
  1177. sizeof(mchk->fixed_logout));
  1178. if (mchk->mcic & MCHK_EX_MASK)
  1179. set_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
  1180. else if (mchk->mcic & MCHK_REP_MASK)
  1181. set_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs);
  1182. return 0;
  1183. }
  1184. static int __inject_ckc(struct kvm_vcpu *vcpu)
  1185. {
  1186. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1187. VCPU_EVENT(vcpu, 3, "%s", "inject: clock comparator external");
  1188. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
  1189. 0, 0);
  1190. set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
  1191. kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
  1192. return 0;
  1193. }
  1194. static int __inject_cpu_timer(struct kvm_vcpu *vcpu)
  1195. {
  1196. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1197. VCPU_EVENT(vcpu, 3, "%s", "inject: cpu timer external");
  1198. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
  1199. 0, 0);
  1200. set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
  1201. kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
  1202. return 0;
  1203. }
  1204. static struct kvm_s390_interrupt_info *get_io_int(struct kvm *kvm,
  1205. int isc, u32 schid)
  1206. {
  1207. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1208. struct list_head *isc_list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
  1209. struct kvm_s390_interrupt_info *iter;
  1210. u16 id = (schid & 0xffff0000U) >> 16;
  1211. u16 nr = schid & 0x0000ffffU;
  1212. spin_lock(&fi->lock);
  1213. list_for_each_entry(iter, isc_list, list) {
  1214. if (schid && (id != iter->io.subchannel_id ||
  1215. nr != iter->io.subchannel_nr))
  1216. continue;
  1217. /* found an appropriate entry */
  1218. list_del_init(&iter->list);
  1219. fi->counters[FIRQ_CNTR_IO] -= 1;
  1220. if (list_empty(isc_list))
  1221. clear_bit(isc_to_irq_type(isc), &fi->pending_irqs);
  1222. spin_unlock(&fi->lock);
  1223. return iter;
  1224. }
  1225. spin_unlock(&fi->lock);
  1226. return NULL;
  1227. }
  1228. /*
  1229. * Dequeue and return an I/O interrupt matching any of the interruption
  1230. * subclasses as designated by the isc mask in cr6 and the schid (if != 0).
  1231. */
  1232. struct kvm_s390_interrupt_info *kvm_s390_get_io_int(struct kvm *kvm,
  1233. u64 isc_mask, u32 schid)
  1234. {
  1235. struct kvm_s390_interrupt_info *inti = NULL;
  1236. int isc;
  1237. for (isc = 0; isc <= MAX_ISC && !inti; isc++) {
  1238. if (isc_mask & isc_to_isc_bits(isc))
  1239. inti = get_io_int(kvm, isc, schid);
  1240. }
  1241. return inti;
  1242. }
  1243. #define SCCB_MASK 0xFFFFFFF8
  1244. #define SCCB_EVENT_PENDING 0x3
  1245. static int __inject_service(struct kvm *kvm,
  1246. struct kvm_s390_interrupt_info *inti)
  1247. {
  1248. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1249. spin_lock(&fi->lock);
  1250. fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_EVENT_PENDING;
  1251. /*
  1252. * Early versions of the QEMU s390 bios will inject several
  1253. * service interrupts after another without handling a
  1254. * condition code indicating busy.
  1255. * We will silently ignore those superfluous sccb values.
  1256. * A future version of QEMU will take care of serialization
  1257. * of servc requests
  1258. */
  1259. if (fi->srv_signal.ext_params & SCCB_MASK)
  1260. goto out;
  1261. fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_MASK;
  1262. set_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
  1263. out:
  1264. spin_unlock(&fi->lock);
  1265. kfree(inti);
  1266. return 0;
  1267. }
  1268. static int __inject_virtio(struct kvm *kvm,
  1269. struct kvm_s390_interrupt_info *inti)
  1270. {
  1271. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1272. spin_lock(&fi->lock);
  1273. if (fi->counters[FIRQ_CNTR_VIRTIO] >= KVM_S390_MAX_VIRTIO_IRQS) {
  1274. spin_unlock(&fi->lock);
  1275. return -EBUSY;
  1276. }
  1277. fi->counters[FIRQ_CNTR_VIRTIO] += 1;
  1278. list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_VIRTIO]);
  1279. set_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
  1280. spin_unlock(&fi->lock);
  1281. return 0;
  1282. }
  1283. static int __inject_pfault_done(struct kvm *kvm,
  1284. struct kvm_s390_interrupt_info *inti)
  1285. {
  1286. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1287. spin_lock(&fi->lock);
  1288. if (fi->counters[FIRQ_CNTR_PFAULT] >=
  1289. (ASYNC_PF_PER_VCPU * KVM_MAX_VCPUS)) {
  1290. spin_unlock(&fi->lock);
  1291. return -EBUSY;
  1292. }
  1293. fi->counters[FIRQ_CNTR_PFAULT] += 1;
  1294. list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_PFAULT]);
  1295. set_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
  1296. spin_unlock(&fi->lock);
  1297. return 0;
  1298. }
  1299. #define CR_PENDING_SUBCLASS 28
  1300. static int __inject_float_mchk(struct kvm *kvm,
  1301. struct kvm_s390_interrupt_info *inti)
  1302. {
  1303. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1304. spin_lock(&fi->lock);
  1305. fi->mchk.cr14 |= inti->mchk.cr14 & (1UL << CR_PENDING_SUBCLASS);
  1306. fi->mchk.mcic |= inti->mchk.mcic;
  1307. set_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs);
  1308. spin_unlock(&fi->lock);
  1309. kfree(inti);
  1310. return 0;
  1311. }
  1312. static int __inject_io(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
  1313. {
  1314. struct kvm_s390_float_interrupt *fi;
  1315. struct list_head *list;
  1316. int isc;
  1317. fi = &kvm->arch.float_int;
  1318. spin_lock(&fi->lock);
  1319. if (fi->counters[FIRQ_CNTR_IO] >= KVM_S390_MAX_FLOAT_IRQS) {
  1320. spin_unlock(&fi->lock);
  1321. return -EBUSY;
  1322. }
  1323. fi->counters[FIRQ_CNTR_IO] += 1;
  1324. if (inti->type & KVM_S390_INT_IO_AI_MASK)
  1325. VM_EVENT(kvm, 4, "%s", "inject: I/O (AI)");
  1326. else
  1327. VM_EVENT(kvm, 4, "inject: I/O %x ss %x schid %04x",
  1328. inti->io.subchannel_id >> 8,
  1329. inti->io.subchannel_id >> 1 & 0x3,
  1330. inti->io.subchannel_nr);
  1331. isc = int_word_to_isc(inti->io.io_int_word);
  1332. list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
  1333. list_add_tail(&inti->list, list);
  1334. set_bit(isc_to_irq_type(isc), &fi->pending_irqs);
  1335. spin_unlock(&fi->lock);
  1336. return 0;
  1337. }
  1338. /*
  1339. * Find a destination VCPU for a floating irq and kick it.
  1340. */
  1341. static void __floating_irq_kick(struct kvm *kvm, u64 type)
  1342. {
  1343. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1344. struct kvm_vcpu *dst_vcpu;
  1345. int sigcpu, online_vcpus, nr_tries = 0;
  1346. online_vcpus = atomic_read(&kvm->online_vcpus);
  1347. if (!online_vcpus)
  1348. return;
  1349. /* find idle VCPUs first, then round robin */
  1350. sigcpu = find_first_bit(fi->idle_mask, online_vcpus);
  1351. if (sigcpu == online_vcpus) {
  1352. do {
  1353. sigcpu = fi->next_rr_cpu;
  1354. fi->next_rr_cpu = (fi->next_rr_cpu + 1) % online_vcpus;
  1355. /* avoid endless loops if all vcpus are stopped */
  1356. if (nr_tries++ >= online_vcpus)
  1357. return;
  1358. } while (is_vcpu_stopped(kvm_get_vcpu(kvm, sigcpu)));
  1359. }
  1360. dst_vcpu = kvm_get_vcpu(kvm, sigcpu);
  1361. /* make the VCPU drop out of the SIE, or wake it up if sleeping */
  1362. switch (type) {
  1363. case KVM_S390_MCHK:
  1364. kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_STOP_INT);
  1365. break;
  1366. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1367. kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_IO_INT);
  1368. break;
  1369. default:
  1370. kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_EXT_INT);
  1371. break;
  1372. }
  1373. kvm_s390_vcpu_wakeup(dst_vcpu);
  1374. }
  1375. static int __inject_vm(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
  1376. {
  1377. u64 type = READ_ONCE(inti->type);
  1378. int rc;
  1379. switch (type) {
  1380. case KVM_S390_MCHK:
  1381. rc = __inject_float_mchk(kvm, inti);
  1382. break;
  1383. case KVM_S390_INT_VIRTIO:
  1384. rc = __inject_virtio(kvm, inti);
  1385. break;
  1386. case KVM_S390_INT_SERVICE:
  1387. rc = __inject_service(kvm, inti);
  1388. break;
  1389. case KVM_S390_INT_PFAULT_DONE:
  1390. rc = __inject_pfault_done(kvm, inti);
  1391. break;
  1392. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1393. rc = __inject_io(kvm, inti);
  1394. break;
  1395. default:
  1396. rc = -EINVAL;
  1397. }
  1398. if (rc)
  1399. return rc;
  1400. __floating_irq_kick(kvm, type);
  1401. return 0;
  1402. }
  1403. int kvm_s390_inject_vm(struct kvm *kvm,
  1404. struct kvm_s390_interrupt *s390int)
  1405. {
  1406. struct kvm_s390_interrupt_info *inti;
  1407. int rc;
  1408. inti = kzalloc(sizeof(*inti), GFP_KERNEL);
  1409. if (!inti)
  1410. return -ENOMEM;
  1411. inti->type = s390int->type;
  1412. switch (inti->type) {
  1413. case KVM_S390_INT_VIRTIO:
  1414. VM_EVENT(kvm, 5, "inject: virtio parm:%x,parm64:%llx",
  1415. s390int->parm, s390int->parm64);
  1416. inti->ext.ext_params = s390int->parm;
  1417. inti->ext.ext_params2 = s390int->parm64;
  1418. break;
  1419. case KVM_S390_INT_SERVICE:
  1420. VM_EVENT(kvm, 4, "inject: sclp parm:%x", s390int->parm);
  1421. inti->ext.ext_params = s390int->parm;
  1422. break;
  1423. case KVM_S390_INT_PFAULT_DONE:
  1424. inti->ext.ext_params2 = s390int->parm64;
  1425. break;
  1426. case KVM_S390_MCHK:
  1427. VM_EVENT(kvm, 3, "inject: machine check mcic 0x%llx",
  1428. s390int->parm64);
  1429. inti->mchk.cr14 = s390int->parm; /* upper bits are not used */
  1430. inti->mchk.mcic = s390int->parm64;
  1431. break;
  1432. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1433. inti->io.subchannel_id = s390int->parm >> 16;
  1434. inti->io.subchannel_nr = s390int->parm & 0x0000ffffu;
  1435. inti->io.io_int_parm = s390int->parm64 >> 32;
  1436. inti->io.io_int_word = s390int->parm64 & 0x00000000ffffffffull;
  1437. break;
  1438. default:
  1439. kfree(inti);
  1440. return -EINVAL;
  1441. }
  1442. trace_kvm_s390_inject_vm(s390int->type, s390int->parm, s390int->parm64,
  1443. 2);
  1444. rc = __inject_vm(kvm, inti);
  1445. if (rc)
  1446. kfree(inti);
  1447. return rc;
  1448. }
  1449. int kvm_s390_reinject_io_int(struct kvm *kvm,
  1450. struct kvm_s390_interrupt_info *inti)
  1451. {
  1452. return __inject_vm(kvm, inti);
  1453. }
  1454. int s390int_to_s390irq(struct kvm_s390_interrupt *s390int,
  1455. struct kvm_s390_irq *irq)
  1456. {
  1457. irq->type = s390int->type;
  1458. switch (irq->type) {
  1459. case KVM_S390_PROGRAM_INT:
  1460. if (s390int->parm & 0xffff0000)
  1461. return -EINVAL;
  1462. irq->u.pgm.code = s390int->parm;
  1463. break;
  1464. case KVM_S390_SIGP_SET_PREFIX:
  1465. irq->u.prefix.address = s390int->parm;
  1466. break;
  1467. case KVM_S390_SIGP_STOP:
  1468. irq->u.stop.flags = s390int->parm;
  1469. break;
  1470. case KVM_S390_INT_EXTERNAL_CALL:
  1471. if (s390int->parm & 0xffff0000)
  1472. return -EINVAL;
  1473. irq->u.extcall.code = s390int->parm;
  1474. break;
  1475. case KVM_S390_INT_EMERGENCY:
  1476. if (s390int->parm & 0xffff0000)
  1477. return -EINVAL;
  1478. irq->u.emerg.code = s390int->parm;
  1479. break;
  1480. case KVM_S390_MCHK:
  1481. irq->u.mchk.mcic = s390int->parm64;
  1482. break;
  1483. }
  1484. return 0;
  1485. }
  1486. int kvm_s390_is_stop_irq_pending(struct kvm_vcpu *vcpu)
  1487. {
  1488. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1489. return test_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
  1490. }
  1491. void kvm_s390_clear_stop_irq(struct kvm_vcpu *vcpu)
  1492. {
  1493. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1494. spin_lock(&li->lock);
  1495. li->irq.stop.flags = 0;
  1496. clear_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
  1497. spin_unlock(&li->lock);
  1498. }
  1499. static int do_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1500. {
  1501. int rc;
  1502. switch (irq->type) {
  1503. case KVM_S390_PROGRAM_INT:
  1504. rc = __inject_prog(vcpu, irq);
  1505. break;
  1506. case KVM_S390_SIGP_SET_PREFIX:
  1507. rc = __inject_set_prefix(vcpu, irq);
  1508. break;
  1509. case KVM_S390_SIGP_STOP:
  1510. rc = __inject_sigp_stop(vcpu, irq);
  1511. break;
  1512. case KVM_S390_RESTART:
  1513. rc = __inject_sigp_restart(vcpu, irq);
  1514. break;
  1515. case KVM_S390_INT_CLOCK_COMP:
  1516. rc = __inject_ckc(vcpu);
  1517. break;
  1518. case KVM_S390_INT_CPU_TIMER:
  1519. rc = __inject_cpu_timer(vcpu);
  1520. break;
  1521. case KVM_S390_INT_EXTERNAL_CALL:
  1522. rc = __inject_extcall(vcpu, irq);
  1523. break;
  1524. case KVM_S390_INT_EMERGENCY:
  1525. rc = __inject_sigp_emergency(vcpu, irq);
  1526. break;
  1527. case KVM_S390_MCHK:
  1528. rc = __inject_mchk(vcpu, irq);
  1529. break;
  1530. case KVM_S390_INT_PFAULT_INIT:
  1531. rc = __inject_pfault_init(vcpu, irq);
  1532. break;
  1533. case KVM_S390_INT_VIRTIO:
  1534. case KVM_S390_INT_SERVICE:
  1535. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1536. default:
  1537. rc = -EINVAL;
  1538. }
  1539. return rc;
  1540. }
  1541. int kvm_s390_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1542. {
  1543. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1544. int rc;
  1545. spin_lock(&li->lock);
  1546. rc = do_inject_vcpu(vcpu, irq);
  1547. spin_unlock(&li->lock);
  1548. if (!rc)
  1549. kvm_s390_vcpu_wakeup(vcpu);
  1550. return rc;
  1551. }
  1552. static inline void clear_irq_list(struct list_head *_list)
  1553. {
  1554. struct kvm_s390_interrupt_info *inti, *n;
  1555. list_for_each_entry_safe(inti, n, _list, list) {
  1556. list_del(&inti->list);
  1557. kfree(inti);
  1558. }
  1559. }
  1560. static void inti_to_irq(struct kvm_s390_interrupt_info *inti,
  1561. struct kvm_s390_irq *irq)
  1562. {
  1563. irq->type = inti->type;
  1564. switch (inti->type) {
  1565. case KVM_S390_INT_PFAULT_INIT:
  1566. case KVM_S390_INT_PFAULT_DONE:
  1567. case KVM_S390_INT_VIRTIO:
  1568. irq->u.ext = inti->ext;
  1569. break;
  1570. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1571. irq->u.io = inti->io;
  1572. break;
  1573. }
  1574. }
  1575. void kvm_s390_clear_float_irqs(struct kvm *kvm)
  1576. {
  1577. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1578. int i;
  1579. spin_lock(&fi->lock);
  1580. fi->pending_irqs = 0;
  1581. memset(&fi->srv_signal, 0, sizeof(fi->srv_signal));
  1582. memset(&fi->mchk, 0, sizeof(fi->mchk));
  1583. for (i = 0; i < FIRQ_LIST_COUNT; i++)
  1584. clear_irq_list(&fi->lists[i]);
  1585. for (i = 0; i < FIRQ_MAX_COUNT; i++)
  1586. fi->counters[i] = 0;
  1587. spin_unlock(&fi->lock);
  1588. };
  1589. static int get_all_floating_irqs(struct kvm *kvm, u8 __user *usrbuf, u64 len)
  1590. {
  1591. struct kvm_s390_interrupt_info *inti;
  1592. struct kvm_s390_float_interrupt *fi;
  1593. struct kvm_s390_irq *buf;
  1594. struct kvm_s390_irq *irq;
  1595. int max_irqs;
  1596. int ret = 0;
  1597. int n = 0;
  1598. int i;
  1599. if (len > KVM_S390_FLIC_MAX_BUFFER || len == 0)
  1600. return -EINVAL;
  1601. /*
  1602. * We are already using -ENOMEM to signal
  1603. * userspace it may retry with a bigger buffer,
  1604. * so we need to use something else for this case
  1605. */
  1606. buf = vzalloc(len);
  1607. if (!buf)
  1608. return -ENOBUFS;
  1609. max_irqs = len / sizeof(struct kvm_s390_irq);
  1610. fi = &kvm->arch.float_int;
  1611. spin_lock(&fi->lock);
  1612. for (i = 0; i < FIRQ_LIST_COUNT; i++) {
  1613. list_for_each_entry(inti, &fi->lists[i], list) {
  1614. if (n == max_irqs) {
  1615. /* signal userspace to try again */
  1616. ret = -ENOMEM;
  1617. goto out;
  1618. }
  1619. inti_to_irq(inti, &buf[n]);
  1620. n++;
  1621. }
  1622. }
  1623. if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs)) {
  1624. if (n == max_irqs) {
  1625. /* signal userspace to try again */
  1626. ret = -ENOMEM;
  1627. goto out;
  1628. }
  1629. irq = (struct kvm_s390_irq *) &buf[n];
  1630. irq->type = KVM_S390_INT_SERVICE;
  1631. irq->u.ext = fi->srv_signal;
  1632. n++;
  1633. }
  1634. if (test_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
  1635. if (n == max_irqs) {
  1636. /* signal userspace to try again */
  1637. ret = -ENOMEM;
  1638. goto out;
  1639. }
  1640. irq = (struct kvm_s390_irq *) &buf[n];
  1641. irq->type = KVM_S390_MCHK;
  1642. irq->u.mchk = fi->mchk;
  1643. n++;
  1644. }
  1645. out:
  1646. spin_unlock(&fi->lock);
  1647. if (!ret && n > 0) {
  1648. if (copy_to_user(usrbuf, buf, sizeof(struct kvm_s390_irq) * n))
  1649. ret = -EFAULT;
  1650. }
  1651. vfree(buf);
  1652. return ret < 0 ? ret : n;
  1653. }
  1654. static int flic_ais_mode_get_all(struct kvm *kvm, struct kvm_device_attr *attr)
  1655. {
  1656. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1657. struct kvm_s390_ais_all ais;
  1658. if (attr->attr < sizeof(ais))
  1659. return -EINVAL;
  1660. if (!test_kvm_facility(kvm, 72))
  1661. return -ENOTSUPP;
  1662. mutex_lock(&fi->ais_lock);
  1663. ais.simm = fi->simm;
  1664. ais.nimm = fi->nimm;
  1665. mutex_unlock(&fi->ais_lock);
  1666. if (copy_to_user((void __user *)attr->addr, &ais, sizeof(ais)))
  1667. return -EFAULT;
  1668. return 0;
  1669. }
  1670. static int flic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
  1671. {
  1672. int r;
  1673. switch (attr->group) {
  1674. case KVM_DEV_FLIC_GET_ALL_IRQS:
  1675. r = get_all_floating_irqs(dev->kvm, (u8 __user *) attr->addr,
  1676. attr->attr);
  1677. break;
  1678. case KVM_DEV_FLIC_AISM_ALL:
  1679. r = flic_ais_mode_get_all(dev->kvm, attr);
  1680. break;
  1681. default:
  1682. r = -EINVAL;
  1683. }
  1684. return r;
  1685. }
  1686. static inline int copy_irq_from_user(struct kvm_s390_interrupt_info *inti,
  1687. u64 addr)
  1688. {
  1689. struct kvm_s390_irq __user *uptr = (struct kvm_s390_irq __user *) addr;
  1690. void *target = NULL;
  1691. void __user *source;
  1692. u64 size;
  1693. if (get_user(inti->type, (u64 __user *)addr))
  1694. return -EFAULT;
  1695. switch (inti->type) {
  1696. case KVM_S390_INT_PFAULT_INIT:
  1697. case KVM_S390_INT_PFAULT_DONE:
  1698. case KVM_S390_INT_VIRTIO:
  1699. case KVM_S390_INT_SERVICE:
  1700. target = (void *) &inti->ext;
  1701. source = &uptr->u.ext;
  1702. size = sizeof(inti->ext);
  1703. break;
  1704. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1705. target = (void *) &inti->io;
  1706. source = &uptr->u.io;
  1707. size = sizeof(inti->io);
  1708. break;
  1709. case KVM_S390_MCHK:
  1710. target = (void *) &inti->mchk;
  1711. source = &uptr->u.mchk;
  1712. size = sizeof(inti->mchk);
  1713. break;
  1714. default:
  1715. return -EINVAL;
  1716. }
  1717. if (copy_from_user(target, source, size))
  1718. return -EFAULT;
  1719. return 0;
  1720. }
  1721. static int enqueue_floating_irq(struct kvm_device *dev,
  1722. struct kvm_device_attr *attr)
  1723. {
  1724. struct kvm_s390_interrupt_info *inti = NULL;
  1725. int r = 0;
  1726. int len = attr->attr;
  1727. if (len % sizeof(struct kvm_s390_irq) != 0)
  1728. return -EINVAL;
  1729. else if (len > KVM_S390_FLIC_MAX_BUFFER)
  1730. return -EINVAL;
  1731. while (len >= sizeof(struct kvm_s390_irq)) {
  1732. inti = kzalloc(sizeof(*inti), GFP_KERNEL);
  1733. if (!inti)
  1734. return -ENOMEM;
  1735. r = copy_irq_from_user(inti, attr->addr);
  1736. if (r) {
  1737. kfree(inti);
  1738. return r;
  1739. }
  1740. r = __inject_vm(dev->kvm, inti);
  1741. if (r) {
  1742. kfree(inti);
  1743. return r;
  1744. }
  1745. len -= sizeof(struct kvm_s390_irq);
  1746. attr->addr += sizeof(struct kvm_s390_irq);
  1747. }
  1748. return r;
  1749. }
  1750. static struct s390_io_adapter *get_io_adapter(struct kvm *kvm, unsigned int id)
  1751. {
  1752. if (id >= MAX_S390_IO_ADAPTERS)
  1753. return NULL;
  1754. return kvm->arch.adapters[id];
  1755. }
  1756. static int register_io_adapter(struct kvm_device *dev,
  1757. struct kvm_device_attr *attr)
  1758. {
  1759. struct s390_io_adapter *adapter;
  1760. struct kvm_s390_io_adapter adapter_info;
  1761. if (copy_from_user(&adapter_info,
  1762. (void __user *)attr->addr, sizeof(adapter_info)))
  1763. return -EFAULT;
  1764. if ((adapter_info.id >= MAX_S390_IO_ADAPTERS) ||
  1765. (dev->kvm->arch.adapters[adapter_info.id] != NULL))
  1766. return -EINVAL;
  1767. adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
  1768. if (!adapter)
  1769. return -ENOMEM;
  1770. INIT_LIST_HEAD(&adapter->maps);
  1771. init_rwsem(&adapter->maps_lock);
  1772. atomic_set(&adapter->nr_maps, 0);
  1773. adapter->id = adapter_info.id;
  1774. adapter->isc = adapter_info.isc;
  1775. adapter->maskable = adapter_info.maskable;
  1776. adapter->masked = false;
  1777. adapter->swap = adapter_info.swap;
  1778. adapter->suppressible = (adapter_info.flags) &
  1779. KVM_S390_ADAPTER_SUPPRESSIBLE;
  1780. dev->kvm->arch.adapters[adapter->id] = adapter;
  1781. return 0;
  1782. }
  1783. int kvm_s390_mask_adapter(struct kvm *kvm, unsigned int id, bool masked)
  1784. {
  1785. int ret;
  1786. struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
  1787. if (!adapter || !adapter->maskable)
  1788. return -EINVAL;
  1789. ret = adapter->masked;
  1790. adapter->masked = masked;
  1791. return ret;
  1792. }
  1793. static int kvm_s390_adapter_map(struct kvm *kvm, unsigned int id, __u64 addr)
  1794. {
  1795. struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
  1796. struct s390_map_info *map;
  1797. int ret;
  1798. if (!adapter || !addr)
  1799. return -EINVAL;
  1800. map = kzalloc(sizeof(*map), GFP_KERNEL);
  1801. if (!map) {
  1802. ret = -ENOMEM;
  1803. goto out;
  1804. }
  1805. INIT_LIST_HEAD(&map->list);
  1806. map->guest_addr = addr;
  1807. map->addr = gmap_translate(kvm->arch.gmap, addr);
  1808. if (map->addr == -EFAULT) {
  1809. ret = -EFAULT;
  1810. goto out;
  1811. }
  1812. ret = get_user_pages_fast(map->addr, 1, 1, &map->page);
  1813. if (ret < 0)
  1814. goto out;
  1815. BUG_ON(ret != 1);
  1816. down_write(&adapter->maps_lock);
  1817. if (atomic_inc_return(&adapter->nr_maps) < MAX_S390_ADAPTER_MAPS) {
  1818. list_add_tail(&map->list, &adapter->maps);
  1819. ret = 0;
  1820. } else {
  1821. put_page(map->page);
  1822. ret = -EINVAL;
  1823. }
  1824. up_write(&adapter->maps_lock);
  1825. out:
  1826. if (ret)
  1827. kfree(map);
  1828. return ret;
  1829. }
  1830. static int kvm_s390_adapter_unmap(struct kvm *kvm, unsigned int id, __u64 addr)
  1831. {
  1832. struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
  1833. struct s390_map_info *map, *tmp;
  1834. int found = 0;
  1835. if (!adapter || !addr)
  1836. return -EINVAL;
  1837. down_write(&adapter->maps_lock);
  1838. list_for_each_entry_safe(map, tmp, &adapter->maps, list) {
  1839. if (map->guest_addr == addr) {
  1840. found = 1;
  1841. atomic_dec(&adapter->nr_maps);
  1842. list_del(&map->list);
  1843. put_page(map->page);
  1844. kfree(map);
  1845. break;
  1846. }
  1847. }
  1848. up_write(&adapter->maps_lock);
  1849. return found ? 0 : -EINVAL;
  1850. }
  1851. void kvm_s390_destroy_adapters(struct kvm *kvm)
  1852. {
  1853. int i;
  1854. struct s390_map_info *map, *tmp;
  1855. for (i = 0; i < MAX_S390_IO_ADAPTERS; i++) {
  1856. if (!kvm->arch.adapters[i])
  1857. continue;
  1858. list_for_each_entry_safe(map, tmp,
  1859. &kvm->arch.adapters[i]->maps, list) {
  1860. list_del(&map->list);
  1861. put_page(map->page);
  1862. kfree(map);
  1863. }
  1864. kfree(kvm->arch.adapters[i]);
  1865. }
  1866. }
  1867. static int modify_io_adapter(struct kvm_device *dev,
  1868. struct kvm_device_attr *attr)
  1869. {
  1870. struct kvm_s390_io_adapter_req req;
  1871. struct s390_io_adapter *adapter;
  1872. int ret;
  1873. if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req)))
  1874. return -EFAULT;
  1875. adapter = get_io_adapter(dev->kvm, req.id);
  1876. if (!adapter)
  1877. return -EINVAL;
  1878. switch (req.type) {
  1879. case KVM_S390_IO_ADAPTER_MASK:
  1880. ret = kvm_s390_mask_adapter(dev->kvm, req.id, req.mask);
  1881. if (ret > 0)
  1882. ret = 0;
  1883. break;
  1884. case KVM_S390_IO_ADAPTER_MAP:
  1885. ret = kvm_s390_adapter_map(dev->kvm, req.id, req.addr);
  1886. break;
  1887. case KVM_S390_IO_ADAPTER_UNMAP:
  1888. ret = kvm_s390_adapter_unmap(dev->kvm, req.id, req.addr);
  1889. break;
  1890. default:
  1891. ret = -EINVAL;
  1892. }
  1893. return ret;
  1894. }
  1895. static int clear_io_irq(struct kvm *kvm, struct kvm_device_attr *attr)
  1896. {
  1897. const u64 isc_mask = 0xffUL << 24; /* all iscs set */
  1898. u32 schid;
  1899. if (attr->flags)
  1900. return -EINVAL;
  1901. if (attr->attr != sizeof(schid))
  1902. return -EINVAL;
  1903. if (copy_from_user(&schid, (void __user *) attr->addr, sizeof(schid)))
  1904. return -EFAULT;
  1905. if (!schid)
  1906. return -EINVAL;
  1907. kfree(kvm_s390_get_io_int(kvm, isc_mask, schid));
  1908. /*
  1909. * If userspace is conforming to the architecture, we can have at most
  1910. * one pending I/O interrupt per subchannel, so this is effectively a
  1911. * clear all.
  1912. */
  1913. return 0;
  1914. }
  1915. static int modify_ais_mode(struct kvm *kvm, struct kvm_device_attr *attr)
  1916. {
  1917. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1918. struct kvm_s390_ais_req req;
  1919. int ret = 0;
  1920. if (!test_kvm_facility(kvm, 72))
  1921. return -ENOTSUPP;
  1922. if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req)))
  1923. return -EFAULT;
  1924. if (req.isc > MAX_ISC)
  1925. return -EINVAL;
  1926. trace_kvm_s390_modify_ais_mode(req.isc,
  1927. (fi->simm & AIS_MODE_MASK(req.isc)) ?
  1928. (fi->nimm & AIS_MODE_MASK(req.isc)) ?
  1929. 2 : KVM_S390_AIS_MODE_SINGLE :
  1930. KVM_S390_AIS_MODE_ALL, req.mode);
  1931. mutex_lock(&fi->ais_lock);
  1932. switch (req.mode) {
  1933. case KVM_S390_AIS_MODE_ALL:
  1934. fi->simm &= ~AIS_MODE_MASK(req.isc);
  1935. fi->nimm &= ~AIS_MODE_MASK(req.isc);
  1936. break;
  1937. case KVM_S390_AIS_MODE_SINGLE:
  1938. fi->simm |= AIS_MODE_MASK(req.isc);
  1939. fi->nimm &= ~AIS_MODE_MASK(req.isc);
  1940. break;
  1941. default:
  1942. ret = -EINVAL;
  1943. }
  1944. mutex_unlock(&fi->ais_lock);
  1945. return ret;
  1946. }
  1947. static int kvm_s390_inject_airq(struct kvm *kvm,
  1948. struct s390_io_adapter *adapter)
  1949. {
  1950. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1951. struct kvm_s390_interrupt s390int = {
  1952. .type = KVM_S390_INT_IO(1, 0, 0, 0),
  1953. .parm = 0,
  1954. .parm64 = (adapter->isc << 27) | 0x80000000,
  1955. };
  1956. int ret = 0;
  1957. if (!test_kvm_facility(kvm, 72) || !adapter->suppressible)
  1958. return kvm_s390_inject_vm(kvm, &s390int);
  1959. mutex_lock(&fi->ais_lock);
  1960. if (fi->nimm & AIS_MODE_MASK(adapter->isc)) {
  1961. trace_kvm_s390_airq_suppressed(adapter->id, adapter->isc);
  1962. goto out;
  1963. }
  1964. ret = kvm_s390_inject_vm(kvm, &s390int);
  1965. if (!ret && (fi->simm & AIS_MODE_MASK(adapter->isc))) {
  1966. fi->nimm |= AIS_MODE_MASK(adapter->isc);
  1967. trace_kvm_s390_modify_ais_mode(adapter->isc,
  1968. KVM_S390_AIS_MODE_SINGLE, 2);
  1969. }
  1970. out:
  1971. mutex_unlock(&fi->ais_lock);
  1972. return ret;
  1973. }
  1974. static int flic_inject_airq(struct kvm *kvm, struct kvm_device_attr *attr)
  1975. {
  1976. unsigned int id = attr->attr;
  1977. struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
  1978. if (!adapter)
  1979. return -EINVAL;
  1980. return kvm_s390_inject_airq(kvm, adapter);
  1981. }
  1982. static int flic_ais_mode_set_all(struct kvm *kvm, struct kvm_device_attr *attr)
  1983. {
  1984. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1985. struct kvm_s390_ais_all ais;
  1986. if (!test_kvm_facility(kvm, 72))
  1987. return -ENOTSUPP;
  1988. if (copy_from_user(&ais, (void __user *)attr->addr, sizeof(ais)))
  1989. return -EFAULT;
  1990. mutex_lock(&fi->ais_lock);
  1991. fi->simm = ais.simm;
  1992. fi->nimm = ais.nimm;
  1993. mutex_unlock(&fi->ais_lock);
  1994. return 0;
  1995. }
  1996. static int flic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
  1997. {
  1998. int r = 0;
  1999. unsigned int i;
  2000. struct kvm_vcpu *vcpu;
  2001. switch (attr->group) {
  2002. case KVM_DEV_FLIC_ENQUEUE:
  2003. r = enqueue_floating_irq(dev, attr);
  2004. break;
  2005. case KVM_DEV_FLIC_CLEAR_IRQS:
  2006. kvm_s390_clear_float_irqs(dev->kvm);
  2007. break;
  2008. case KVM_DEV_FLIC_APF_ENABLE:
  2009. dev->kvm->arch.gmap->pfault_enabled = 1;
  2010. break;
  2011. case KVM_DEV_FLIC_APF_DISABLE_WAIT:
  2012. dev->kvm->arch.gmap->pfault_enabled = 0;
  2013. /*
  2014. * Make sure no async faults are in transition when
  2015. * clearing the queues. So we don't need to worry
  2016. * about late coming workers.
  2017. */
  2018. synchronize_srcu(&dev->kvm->srcu);
  2019. kvm_for_each_vcpu(i, vcpu, dev->kvm)
  2020. kvm_clear_async_pf_completion_queue(vcpu);
  2021. break;
  2022. case KVM_DEV_FLIC_ADAPTER_REGISTER:
  2023. r = register_io_adapter(dev, attr);
  2024. break;
  2025. case KVM_DEV_FLIC_ADAPTER_MODIFY:
  2026. r = modify_io_adapter(dev, attr);
  2027. break;
  2028. case KVM_DEV_FLIC_CLEAR_IO_IRQ:
  2029. r = clear_io_irq(dev->kvm, attr);
  2030. break;
  2031. case KVM_DEV_FLIC_AISM:
  2032. r = modify_ais_mode(dev->kvm, attr);
  2033. break;
  2034. case KVM_DEV_FLIC_AIRQ_INJECT:
  2035. r = flic_inject_airq(dev->kvm, attr);
  2036. break;
  2037. case KVM_DEV_FLIC_AISM_ALL:
  2038. r = flic_ais_mode_set_all(dev->kvm, attr);
  2039. break;
  2040. default:
  2041. r = -EINVAL;
  2042. }
  2043. return r;
  2044. }
  2045. static int flic_has_attr(struct kvm_device *dev,
  2046. struct kvm_device_attr *attr)
  2047. {
  2048. switch (attr->group) {
  2049. case KVM_DEV_FLIC_GET_ALL_IRQS:
  2050. case KVM_DEV_FLIC_ENQUEUE:
  2051. case KVM_DEV_FLIC_CLEAR_IRQS:
  2052. case KVM_DEV_FLIC_APF_ENABLE:
  2053. case KVM_DEV_FLIC_APF_DISABLE_WAIT:
  2054. case KVM_DEV_FLIC_ADAPTER_REGISTER:
  2055. case KVM_DEV_FLIC_ADAPTER_MODIFY:
  2056. case KVM_DEV_FLIC_CLEAR_IO_IRQ:
  2057. case KVM_DEV_FLIC_AISM:
  2058. case KVM_DEV_FLIC_AIRQ_INJECT:
  2059. case KVM_DEV_FLIC_AISM_ALL:
  2060. return 0;
  2061. }
  2062. return -ENXIO;
  2063. }
  2064. static int flic_create(struct kvm_device *dev, u32 type)
  2065. {
  2066. if (!dev)
  2067. return -EINVAL;
  2068. if (dev->kvm->arch.flic)
  2069. return -EINVAL;
  2070. dev->kvm->arch.flic = dev;
  2071. return 0;
  2072. }
  2073. static void flic_destroy(struct kvm_device *dev)
  2074. {
  2075. dev->kvm->arch.flic = NULL;
  2076. kfree(dev);
  2077. }
  2078. /* s390 floating irq controller (flic) */
  2079. struct kvm_device_ops kvm_flic_ops = {
  2080. .name = "kvm-flic",
  2081. .get_attr = flic_get_attr,
  2082. .set_attr = flic_set_attr,
  2083. .has_attr = flic_has_attr,
  2084. .create = flic_create,
  2085. .destroy = flic_destroy,
  2086. };
  2087. static unsigned long get_ind_bit(__u64 addr, unsigned long bit_nr, bool swap)
  2088. {
  2089. unsigned long bit;
  2090. bit = bit_nr + (addr % PAGE_SIZE) * 8;
  2091. return swap ? (bit ^ (BITS_PER_LONG - 1)) : bit;
  2092. }
  2093. static struct s390_map_info *get_map_info(struct s390_io_adapter *adapter,
  2094. u64 addr)
  2095. {
  2096. struct s390_map_info *map;
  2097. if (!adapter)
  2098. return NULL;
  2099. list_for_each_entry(map, &adapter->maps, list) {
  2100. if (map->guest_addr == addr)
  2101. return map;
  2102. }
  2103. return NULL;
  2104. }
  2105. static int adapter_indicators_set(struct kvm *kvm,
  2106. struct s390_io_adapter *adapter,
  2107. struct kvm_s390_adapter_int *adapter_int)
  2108. {
  2109. unsigned long bit;
  2110. int summary_set, idx;
  2111. struct s390_map_info *info;
  2112. void *map;
  2113. info = get_map_info(adapter, adapter_int->ind_addr);
  2114. if (!info)
  2115. return -1;
  2116. map = page_address(info->page);
  2117. bit = get_ind_bit(info->addr, adapter_int->ind_offset, adapter->swap);
  2118. set_bit(bit, map);
  2119. idx = srcu_read_lock(&kvm->srcu);
  2120. mark_page_dirty(kvm, info->guest_addr >> PAGE_SHIFT);
  2121. set_page_dirty_lock(info->page);
  2122. info = get_map_info(adapter, adapter_int->summary_addr);
  2123. if (!info) {
  2124. srcu_read_unlock(&kvm->srcu, idx);
  2125. return -1;
  2126. }
  2127. map = page_address(info->page);
  2128. bit = get_ind_bit(info->addr, adapter_int->summary_offset,
  2129. adapter->swap);
  2130. summary_set = test_and_set_bit(bit, map);
  2131. mark_page_dirty(kvm, info->guest_addr >> PAGE_SHIFT);
  2132. set_page_dirty_lock(info->page);
  2133. srcu_read_unlock(&kvm->srcu, idx);
  2134. return summary_set ? 0 : 1;
  2135. }
  2136. /*
  2137. * < 0 - not injected due to error
  2138. * = 0 - coalesced, summary indicator already active
  2139. * > 0 - injected interrupt
  2140. */
  2141. static int set_adapter_int(struct kvm_kernel_irq_routing_entry *e,
  2142. struct kvm *kvm, int irq_source_id, int level,
  2143. bool line_status)
  2144. {
  2145. int ret;
  2146. struct s390_io_adapter *adapter;
  2147. /* We're only interested in the 0->1 transition. */
  2148. if (!level)
  2149. return 0;
  2150. adapter = get_io_adapter(kvm, e->adapter.adapter_id);
  2151. if (!adapter)
  2152. return -1;
  2153. down_read(&adapter->maps_lock);
  2154. ret = adapter_indicators_set(kvm, adapter, &e->adapter);
  2155. up_read(&adapter->maps_lock);
  2156. if ((ret > 0) && !adapter->masked) {
  2157. ret = kvm_s390_inject_airq(kvm, adapter);
  2158. if (ret == 0)
  2159. ret = 1;
  2160. }
  2161. return ret;
  2162. }
  2163. /*
  2164. * Inject the machine check to the guest.
  2165. */
  2166. void kvm_s390_reinject_machine_check(struct kvm_vcpu *vcpu,
  2167. struct mcck_volatile_info *mcck_info)
  2168. {
  2169. struct kvm_s390_interrupt_info inti;
  2170. struct kvm_s390_irq irq;
  2171. struct kvm_s390_mchk_info *mchk;
  2172. union mci mci;
  2173. __u64 cr14 = 0; /* upper bits are not used */
  2174. int rc;
  2175. mci.val = mcck_info->mcic;
  2176. if (mci.sr)
  2177. cr14 |= CR14_RECOVERY_SUBMASK;
  2178. if (mci.dg)
  2179. cr14 |= CR14_DEGRADATION_SUBMASK;
  2180. if (mci.w)
  2181. cr14 |= CR14_WARNING_SUBMASK;
  2182. mchk = mci.ck ? &inti.mchk : &irq.u.mchk;
  2183. mchk->cr14 = cr14;
  2184. mchk->mcic = mcck_info->mcic;
  2185. mchk->ext_damage_code = mcck_info->ext_damage_code;
  2186. mchk->failing_storage_address = mcck_info->failing_storage_address;
  2187. if (mci.ck) {
  2188. /* Inject the floating machine check */
  2189. inti.type = KVM_S390_MCHK;
  2190. rc = __inject_vm(vcpu->kvm, &inti);
  2191. } else {
  2192. /* Inject the machine check to specified vcpu */
  2193. irq.type = KVM_S390_MCHK;
  2194. rc = kvm_s390_inject_vcpu(vcpu, &irq);
  2195. }
  2196. WARN_ON_ONCE(rc);
  2197. }
  2198. int kvm_set_routing_entry(struct kvm *kvm,
  2199. struct kvm_kernel_irq_routing_entry *e,
  2200. const struct kvm_irq_routing_entry *ue)
  2201. {
  2202. int ret;
  2203. switch (ue->type) {
  2204. case KVM_IRQ_ROUTING_S390_ADAPTER:
  2205. e->set = set_adapter_int;
  2206. e->adapter.summary_addr = ue->u.adapter.summary_addr;
  2207. e->adapter.ind_addr = ue->u.adapter.ind_addr;
  2208. e->adapter.summary_offset = ue->u.adapter.summary_offset;
  2209. e->adapter.ind_offset = ue->u.adapter.ind_offset;
  2210. e->adapter.adapter_id = ue->u.adapter.adapter_id;
  2211. ret = 0;
  2212. break;
  2213. default:
  2214. ret = -EINVAL;
  2215. }
  2216. return ret;
  2217. }
  2218. int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm,
  2219. int irq_source_id, int level, bool line_status)
  2220. {
  2221. return -EINVAL;
  2222. }
  2223. int kvm_s390_set_irq_state(struct kvm_vcpu *vcpu, void __user *irqstate, int len)
  2224. {
  2225. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  2226. struct kvm_s390_irq *buf;
  2227. int r = 0;
  2228. int n;
  2229. buf = vmalloc(len);
  2230. if (!buf)
  2231. return -ENOMEM;
  2232. if (copy_from_user((void *) buf, irqstate, len)) {
  2233. r = -EFAULT;
  2234. goto out_free;
  2235. }
  2236. /*
  2237. * Don't allow setting the interrupt state
  2238. * when there are already interrupts pending
  2239. */
  2240. spin_lock(&li->lock);
  2241. if (li->pending_irqs) {
  2242. r = -EBUSY;
  2243. goto out_unlock;
  2244. }
  2245. for (n = 0; n < len / sizeof(*buf); n++) {
  2246. r = do_inject_vcpu(vcpu, &buf[n]);
  2247. if (r)
  2248. break;
  2249. }
  2250. out_unlock:
  2251. spin_unlock(&li->lock);
  2252. out_free:
  2253. vfree(buf);
  2254. return r;
  2255. }
  2256. static void store_local_irq(struct kvm_s390_local_interrupt *li,
  2257. struct kvm_s390_irq *irq,
  2258. unsigned long irq_type)
  2259. {
  2260. switch (irq_type) {
  2261. case IRQ_PEND_MCHK_EX:
  2262. case IRQ_PEND_MCHK_REP:
  2263. irq->type = KVM_S390_MCHK;
  2264. irq->u.mchk = li->irq.mchk;
  2265. break;
  2266. case IRQ_PEND_PROG:
  2267. irq->type = KVM_S390_PROGRAM_INT;
  2268. irq->u.pgm = li->irq.pgm;
  2269. break;
  2270. case IRQ_PEND_PFAULT_INIT:
  2271. irq->type = KVM_S390_INT_PFAULT_INIT;
  2272. irq->u.ext = li->irq.ext;
  2273. break;
  2274. case IRQ_PEND_EXT_EXTERNAL:
  2275. irq->type = KVM_S390_INT_EXTERNAL_CALL;
  2276. irq->u.extcall = li->irq.extcall;
  2277. break;
  2278. case IRQ_PEND_EXT_CLOCK_COMP:
  2279. irq->type = KVM_S390_INT_CLOCK_COMP;
  2280. break;
  2281. case IRQ_PEND_EXT_CPU_TIMER:
  2282. irq->type = KVM_S390_INT_CPU_TIMER;
  2283. break;
  2284. case IRQ_PEND_SIGP_STOP:
  2285. irq->type = KVM_S390_SIGP_STOP;
  2286. irq->u.stop = li->irq.stop;
  2287. break;
  2288. case IRQ_PEND_RESTART:
  2289. irq->type = KVM_S390_RESTART;
  2290. break;
  2291. case IRQ_PEND_SET_PREFIX:
  2292. irq->type = KVM_S390_SIGP_SET_PREFIX;
  2293. irq->u.prefix = li->irq.prefix;
  2294. break;
  2295. }
  2296. }
  2297. int kvm_s390_get_irq_state(struct kvm_vcpu *vcpu, __u8 __user *buf, int len)
  2298. {
  2299. int scn;
  2300. unsigned long sigp_emerg_pending[BITS_TO_LONGS(KVM_MAX_VCPUS)];
  2301. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  2302. unsigned long pending_irqs;
  2303. struct kvm_s390_irq irq;
  2304. unsigned long irq_type;
  2305. int cpuaddr;
  2306. int n = 0;
  2307. spin_lock(&li->lock);
  2308. pending_irqs = li->pending_irqs;
  2309. memcpy(&sigp_emerg_pending, &li->sigp_emerg_pending,
  2310. sizeof(sigp_emerg_pending));
  2311. spin_unlock(&li->lock);
  2312. for_each_set_bit(irq_type, &pending_irqs, IRQ_PEND_COUNT) {
  2313. memset(&irq, 0, sizeof(irq));
  2314. if (irq_type == IRQ_PEND_EXT_EMERGENCY)
  2315. continue;
  2316. if (n + sizeof(irq) > len)
  2317. return -ENOBUFS;
  2318. store_local_irq(&vcpu->arch.local_int, &irq, irq_type);
  2319. if (copy_to_user(&buf[n], &irq, sizeof(irq)))
  2320. return -EFAULT;
  2321. n += sizeof(irq);
  2322. }
  2323. if (test_bit(IRQ_PEND_EXT_EMERGENCY, &pending_irqs)) {
  2324. for_each_set_bit(cpuaddr, sigp_emerg_pending, KVM_MAX_VCPUS) {
  2325. memset(&irq, 0, sizeof(irq));
  2326. if (n + sizeof(irq) > len)
  2327. return -ENOBUFS;
  2328. irq.type = KVM_S390_INT_EMERGENCY;
  2329. irq.u.emerg.code = cpuaddr;
  2330. if (copy_to_user(&buf[n], &irq, sizeof(irq)))
  2331. return -EFAULT;
  2332. n += sizeof(irq);
  2333. }
  2334. }
  2335. if (sca_ext_call_pending(vcpu, &scn)) {
  2336. if (n + sizeof(irq) > len)
  2337. return -ENOBUFS;
  2338. memset(&irq, 0, sizeof(irq));
  2339. irq.type = KVM_S390_INT_EXTERNAL_CALL;
  2340. irq.u.extcall.code = scn;
  2341. if (copy_to_user(&buf[n], &irq, sizeof(irq)))
  2342. return -EFAULT;
  2343. n += sizeof(irq);
  2344. }
  2345. return n;
  2346. }